
Anna Petrasova · Brendan Harmon
Vaclav Petras · Payam Tabrizian
Helena Mitasova

Tangible
Modeling with
Open Source
GIS
 Second Edition

Tangible Modeling with Open Source GIS

Anna Petrasova • Brendan Harmon • Vaclav Petras
Payam Tabrizian • Helena Mitasova

Tangible Modeling with
Open Source GIS

Second Edition

123

Anna Petrasova
Center for Geospatial Analytics
North Carolina State University
Raleigh, NC, USA

Vaclav Petras
Center for Geospatial Analytics
North Carolina State University
Raleigh, NC, USA

Helena Mitasova
Center for Geospatial Analytics
North Carolina State University
Raleigh, NC, USA

Brendan Harmon
Robert Reich School of
Landscape Architecture
Louisiana State University
Baton Rouge, LA, USA

Payam Tabrizian
Center for Geospatial Analytics
North Carolina State University
Raleigh, NC, USA

ISBN 978-3-319-89302-0 ISBN 978-3-319-89303-7 (eBook)
https://doi.org/10.1007/978-3-319-89303-7

Library of Congress Control Number: 2018939419

© The Author(s) 2015, 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-89303-7

Preface

This book introduces Tangible Landscape, an open source tangible user interface
for geospatial modeling and visualization powered by GRASS GIS and Blender.
With Tangible Landscape a physical and a digital model of a landscape are coupled
through a near real-time cycle of 3D scanning, geospatial modeling, and projection.
This gives geospatial data an interactive, physical form with which users can
intuitively interact. Users can, for example, sculpt new landforms with their bare
hands to change the flow of simulated digital water, creating new streams and lakes.
They can plant forests by simply placing pieces of colored felt that are immediately
rendered as 3D trees. This makes geographic information systems (GIS) far more
intuitive and accessible for beginners, empowers geospatial experts, and creates new
exciting opportunities for developers.

This second edition introduces a new, faster, more powerful version of Tangible
Landscape with new modes of interaction and near real-time 3D rendering. There
are new chapters on tangible interaction, 3D rendering and immersion, and land-
scape design. The updated system configuration chapter describes the new hardware
and software for Tangible Landscape. The chapter on tangible interaction describes
the new modes of interaction and how they work. The chapter on 3D rendering and
immersion describes how Tangible Landscape integrates Blender to automatically
generate photorealistic visualizations in near-real time. The landscape design case
study concludes the book by demonstrating how many of the topics explored in the
preceding chapters can be integrated together.

This book explains how to build a tangible interface for geospatial modeling
using free and open source software. It teaches digital fabrication methods for
building physical models and introduces 3D modeling and rendering for photo-
realistically visualizing landscapes. It also provides GIS workflows and Python
code snippets for tasks like analyzing topography, simulating surface water flow,
analyzing viewsheds, routing trails, and modeling vegetation. The book is meant
to help educators, researchers, and professionals in any spatial discipline develop
their own applications for classrooms, science communication, scenario planning,

v

vi Preface

or participatory engagement. It should also be a useful resource for learning more
about geospatial modeling and visualization with open source software. Latest
information about Tangible Landscape project can be found at https://tangible-
landscape.github.io.

Raleigh, NC, USA Anna Petrasova
Brendan Harmon

Vaclav Petras
Payam Tabrizian
Helena Mitasova

https://tangible-landscape.github.io
https://tangible-landscape.github.io

Contents

1 Introduction . 1
1.1 Tangible User Interfaces . 1
1.2 Tangible Geospatial Modeling . 4

1.2.1 Shape Changing Interfaces . 7
1.2.2 Augmented Architectural Interfaces . 10
1.2.3 Augmented Clay Interfaces. 11
1.2.4 Augmented Sandbox Interfaces . 13

1.3 Tangible Landscape . 15
1.3.1 Developing Tangible Landscape . 18

1.4 The Organization of This Book. 18
References . 19

2 System Configuration . 23
2.1 Hardware . 23

2.1.1 3D Scanner . 23
2.1.2 Projector . 25
2.1.3 Computer Requirements . 26
2.1.4 Physical Setup . 27

2.2 Software . 29
2.2.1 GRASS GIS . 30
2.2.2 GRASS GIS Python API . 31
2.2.3 Scanning Module r.in.kinect . 33
2.2.4 Tangible Landscape Plugin for GRASS GIS 37
2.2.5 Tangible Landscape Plugin Installation 41

References . 42

3 Building Physical 3D Models . 43
3.1 Handmade Models . 43
3.2 Digitally Fabricated Models . 45

3.2.1 Digital Models . 46
3.2.2 Laser Cutting . 48

vii

viii Contents

3.2.3 CNC Routing . 50
3.2.4 3D Printing . 53

3.3 Molding and Casting . 55
3.4 Workflows . 56

3.4.1 Selecting a 3D Model Scale . 56
3.4.2 Sculpting a Malleable Model from Lidar Data 59
3.4.3 CNC Routing a Topographic Model from Contour

Data . 59
3.4.4 CNC Routing Topographic and Surface Models

from Lidar Data . 60
3.4.5 3D Printing Topographic and Surface Models

from Lidar Data . 61
3.4.6 Casting a Malleable Topographic Model with a

CNC Routed Mold Derived from Lidar Data 63
References . 64

4 Tangible Interactions . 65
4.1 Modes of Interaction . 65
4.2 3D Sculpting of Surfaces and Volumes . 66
4.3 Detecting Markers . 68
4.4 Detecting Color and Shape . 70
4.5 Combining Color and Elevation . 71
4.6 Direction Marker . 73
References . 75

5 Real-Time 3D Rendering and Immersion. 77
5.1 Blender. 77
5.2 Hardware and Software Requirements . 78
5.3 Software Architecture . 79
5.4 File Monitoring . 80
5.5 3D Modeling and Rendering. 80

5.5.1 Handling Geospatial Data . 81
5.5.2 Object Handling and Modifiers. 82
5.5.3 3D Rendering . 84
5.5.4 Materials. 86

5.6 Workflows . 88
5.7 Realism and Immersion . 91

5.7.1 Realism . 91
5.7.2 Virtual Reality Output . 92

5.8 Tangible Landscape Add-on in Blender . 93
References . 94

6 Basic Landscape Analysis . 95
6.1 Processing and Analyzing the Scanned DEM .. 95

6.1.1 Creating DEM from Point Cloud. 95
6.1.2 Interpolation with the RST Function . 96
6.1.3 Analyzing the DEM.. 97

Contents ix

6.2 Case Study: Topographic Analysis of Graded Landscape 101
6.2.1 Site Description and 3D Model Properties. 101
6.2.2 Basic Workflow with DEM Differencing 102
6.2.3 The Impact of Model Changes on Topographic

Parameters . 103
6.2.4 Changing Landforms . 105

References . 106

7 Surface Water Flow Modeling . 107
7.1 Foundations in Flow Modeling . 107

7.1.1 Overland Flow . 107
7.1.2 Dam Breach Flooding . 109

7.2 Case Study: The Impact of Development on Surface
Water Flow . 110

7.3 Case Study: Dam Breach . 112
7.3.1 Site Description and Input Data Processing 113
7.3.2 The Impact of the Road on Flooding. 114

7.4 Case Study: Stormwater Runoff Control Design with Flow
Outside the 3D Model Area. 116
7.4.1 Site Description and the Physical Model 116
7.4.2 Surface Runoff Modeling . 117

References . 118

8 Soil Erosion Modeling . 119
8.1 Soil Erosion and Deposition Modeling. 119
8.2 Case Study: Designing Erosion Control Measures 120

8.2.1 Site Description and 3D Model Properties. 121
8.2.2 Erosion Modeling While Modifying Topography 122
8.2.3 Reducing Erosion by Modifying Land Cover 124

References . 125

9 Viewshed Analysis . 127
9.1 Line of Sight Analysis . 127
9.2 Case Study: Viewsheds Around Lake Raleigh . 128

9.2.1 Site Description and Model. 128
9.2.2 Visibility Analysis on DSM Using Markers 129
9.2.3 Modeling Viewsheds from a New Building 130

References . 132

10 Trail Planning . 133
10.1 Trail Design Methodology . 133

10.1.1 Least Cost Path Analysis . 134
10.1.2 Network Analysis . 135
10.1.3 Trail Slope Extraction. 135

x Contents

10.2 Case Study: Designing a Recreational Trail . 136
10.2.1 Input Data Processing. 137
10.2.2 Computing the Trail Using the Least Cost Path 138
10.2.3 Finding the Optimal Trail . 140
10.2.4 Mapping Trail Slopes . 142
10.2.5 Alternative Trail Scenarios . 142

References . 145

11 Solar Radiation Dynamics . 147
11.1 Solar Radiation Modeling. 147
11.2 Case Study: Solar Irradiation in Urban Environment 149

11.2.1 The Impact of Building Configuration on Cast
Shadows . 150

11.2.2 The Impact of Building Configuration on Direct
Solar Irradiation . 150

References . 152

12 Wildfire Spread Simulation . 155
12.1 Fire Spread Modeling Methods . 155

12.1.1 Input Data . 155
12.1.2 Fire Spread Algorithm . 156

12.2 Case Study: Controlling Fire with Firebreaks . 157
12.2.1 Data Preparation . 158
12.2.2 Scenario with Multiple Firebreaks . 159

References . 163

13 Coastal Modeling . 165
13.1 Modeling Potential Inundation . 165
13.2 Case Study: Simulating Barrier Islands Flooding 166

13.2.1 Storm Surge Flooding at Jockey’s Ridge Sand Dunes . . . 166
13.2.2 Exploring Storm Surge Protection . 168

13.3 Case Study: Designing Resilient Coastal Architecture 169
Reference . 171

14 Landscape Design . 173
14.1 Integrating Tangible and 3D Modeling Methods 173
14.2 Case Study: Designing a Park . 177

14.2.1 Site Description and Model. 177
14.2.2 Scenario 1 . 177
14.2.3 Scenario 2 . 180
14.2.4 Evaluation of Scenarios . 180

References . 183

Contents xi

Appendix A . 185
A.1 Applications of Tangible Landscape . 185

A.1.1 Modeling Avalanches in High Tatras . 185
A.1.2 Visualizing the Evolution of Oregon Inlet 185
A.1.3 Designing Disaster Relief Housing for Rodanthe 186
A.1.4 Simulating Landscape Change in Charlotte 187
A.1.5 Reconstructing a Paleolake in Mongolia 188
A.1.6 Cell Tower Planning in Athens County 188
A.1.7 Monitoring Coastal Erosion . 188
A.1.8 Exploring Impacts of a Beaver Dam . 189
A.1.9 Modeling the Potential Impacts of a Coal Ash

Pond Spill . 189
A.1.10 Testing a Landform Migration Algorithm 190
A.1.11 Managing the Spread of Sudden Oak Death in

Sonoma Valley . 191
A.1.12 Participatory Modeling Workshop for Managing

Sudden Oak Death in Oregon . 191
A.1.13 Managing the Spread of Termites in Fort Lauderdale 192
A.1.14 Tangible Exploration of Subsurface Data 192

A.2 Data Sources . 193
A.2.1 Sample Data for This Book. 193
A.2.2 US Lidar Data . 193
A.2.3 US Digital Elevation Models . 194
A.2.4 US Orthoimagery . 194
A.2.5 US Soil Surveys . 194
A.2.6 US Fire Modeling Data . 194
A.2.7 Global Datasets . 194
A.2.8 NC Climate Data . 194

A.3 Starting with GRASS GIS . 195
References . 197

Index . 199

Acronyms

2D Two-dimensional
2.5D Two-and-a-half-dimensional
3D Three-dimensional
API Application programming interface
CAD Computer-aided design
CAM Computer-aided manufacturing
CLI Command line interface
CNC Computer numerical control
DEM Digital elevation model
DSM Digital surface model
GIS Geographic information system
GNU GPL GNU General Public License
GRASS Geographic Resources Analysis Support System
GUI Graphical user interface
HCI Human-computer interaction
MDF Medium density fiberboard
NC North Carolina
NCSU North Carolina State University
NURBS Non-uniform rational b-spline
RGB Red (R), green (G) and blue (B)
RST Regularized spline with tension
USB Universal Serial Bus (device communication standard)
USLE Universal soil loss equation
SDK Software development kit
SED Simplified erosion and deposition
TanGeoMS The tangible geospatial modeling system
TIN Triangulated irregular network
TSP Traveling salesman problem
TUI Tangible user interface

xiii

xiv Acronyms

UNC University of North Carolina
US United States (of America)
USGS United States Geological Survey
USDA United States Department of Agriculture
UI User interface

Chapter 1
Introduction

The complex, 3D form of the landscape—the morphology of the terrain, the
structure of vegetation, and built form—is shaped by processes like anthropogenic
development, erosion by wind and water, gravitational forces, fire, solar irradiation,
or the spread of disease. In the spatial sciences GIS are used to computationally
model, simulate, and analyze these processes and their impact on the landscape.
Similarly in the design professions GIS and CAD programs are used to help study,
re-envision, and reshape the built environment. These programs rely on GUIs for
visualizing and interacting with data. Understanding and manipulating 3D data
using a GUI on a 2D display can be highly unintuitive, constraining how we
think and act. Being able to interact more naturally with digital space enhances
our spatial thinking, encouraging creativity, analytical exploration, and learning.
This is critical for designers as they need to intuitively understand and manipulate
information in iterative, experimental processes of creation. It is also important for
spatial scientists as they need to observe spatial phenomena and then develop and
test hypotheses. With tangible user interfaces (TUIs) like Tangible Landscape one
can work intuitively by hand with all the benefits of computational modeling and
analysis. This chapter discusses the evolution of tangible user interfaces and the
development of Tangible Landscape. This chapter also describes the organization of
this book.

1.1 Tangible User Interfaces

Inspired by prototypes like Durrell Bishop’s Marble Answering Machine (Poynor
1995) and concepts like Fitzmaurice et al.’s Graspable User Interface (1995), Ishii
and Ullmer (1997) proposed a new paradigm of human-computer interaction—
tangible user interfaces (TUIs). They envisioned that TUIs could make computing
more natural and intuitive by coupling digital bits with physical objects as Tangible

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_1&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_1

2 1 Introduction

Fig. 1.1 Tangible
Landscape: a real-time cycle
of 3D scanning, geospatial
computation and 3D
modeling, and projection and
3D rendering

Bits. In their vision Tangible Bits bridge the physical and digital, affording more
manual dexterity and kinesthetic intelligence and situating computing in physical
space and social context (Ishii and Ullmer 1997; Dourish 2001). Recently, the
development of TUIs has gained momentum thanks to new developments in 3D
technologies such as 3D scanning and 3D printing.

We can easily, intuitively understand and manipulate space physically, but our
understanding is largely qualitative. We can also precisely and quantitatively model
and analyze space computationally, but this tends to be less intuitive and requires
more experience. Intuition allows us to perceive, think, and act in rapid succession;
it allows us to creatively brainstorm and express new ideas. TUIs like Tangible
Landscape (Fig. 1.1) aim to make the use of computers more intuitive combining
the advantages of physicality and computation.

1.1 Tangible User Interfaces 3

Spatial thinking—‘the mental processes of representing, analyzing, and drawing
inferences from spatial relations’ (Uttal et al. 2013)—is used pervasively in
everyday life for tasks such as recognizing things, manipulating things, interacting
with others, and way-finding. Higher dimensional spatial thinking—thinking about
form, volume, and processes unfolding in time—plays an important role in sci-
ence, technology, engineering, the arts, and math. Three-dimensional (3D) spatial
thinking is used in disciplines such as geology to understand the structure of the
earth, ecology to understand the structure of ecosystems, civil engineering to shape
landscapes, architecture to design buildings, urban planning to model cities, and the
arts to shape sculpture.

Physical models are used to represent landscapes intuitively. With a physical
model we can not only see its volume and depth just as we would perceive space
in a real landscape, but also feel it by running our hands over the modeled terrain.
We can shape physical models intuitively—for example we can sculpt landforms
by hand, place models of buildings, or draw directly on the terrain. With a physical
model, however, we are constrained to a single scale, simple measurements, and
largely qualitative impressions.

Many spatial tasks can be performed computationally enabling users to effi-
ciently store, model, and analyze large sets of spatial data and solve complex
spatiotemporal problems. In engineering, design, and the arts computer-aided design
(CAD) and 3D modeling software are used to interactively, computationally model,
analyze, and animate complex 3D forms. In scientific computing multidimensional
spatial patterns and processes can be mathematically modeled, simulated, and
optimized using geographic information systems (GIS), geospatial programming,
and spatial statistics. GIS can be used to quantitatively model, analyze, simulate, and
visualize complex spatial and temporal phenomena—computationally enhancing
users’ understanding of space. With extensive libraries for point cloud processing,
3D vector modeling, and surface and volumetric modeling and analysis, GIS are
powerful tools for studying 3D space.

GIS, however, can be unintuitive, challenging to use, and creatively constraining
due to the complexity of the software, the complex workflows, and the limited
modes of interaction and visualization (Ratti et al. 2004a). Unintuitive interactions
with GIS can frustrate users, constrain how they think about space, and add new
cognitive burdens that require highly developed spatial skills and reasoning to
overcome. The paradigmatic modes for interacting with GIS today—command line
interfaces (CLI) and graphical user interfaces (GUI)—require physical input into
devices like keyboards, mice, digitizing pens, and touch screens, but output data
visually as text or graphics. Theoretically this disconnect between intention, action,
and feedback makes graphical interaction unintuitive (Dourish 2001; Ishii 2008b).
Since users can only think about space visually with GUIs, they need sophisticated
spatial abilities like mental rotation (Shepard and Metzler 1971; Just and Carpenter
1985) to parse and understand, much less to manipulate 3D space.

In embodied cognition higher cognitive processes are grounded in, built upon,
and mediated by bodily experiences such as kinesthetic perception and action
(Anderson 2008). Tangible interfaces—interfaces that couple physical and digital

4 1 Introduction

data (Dourish 2001)—are designed to enable embodied interaction by physically
manifesting digital data so that users can cognitively grasp and absorb it, thinking
with it rather than about it (Kirsh 2013). Embodied interaction should be highly
intuitive—drawing on existing motor schemas and seamlessly connecting intention,
action, and feedback. It should reduce users’ cognitive load by enabling them
to physically simulate processes and offload tasks like spatial perception and
manipulation onto the body (Kirsh 2013). Distance and physical properties like
size, shape, volume, weight, hardness, and texture can be automatically and sub-
consciously assessed with the body (Jeannerod 1997). Tangible interfaces should,
therefore, enable users to subconsciously, kinesthetically judge and manipulate
spatial distances, relationships, patterns, 3D forms, and volumes offloading these
challenging cognitive tasks onto their bodies.

1.2 Tangible Geospatial Modeling

Tangible interfaces for geospatial modeling can transform the way we use GIS
by affording intuitive, hands-on modes of embodied interaction, streamlining
workflows for tasks like 3D modeling and analysis, and thus encouraging cre-
ative exploration. Embodied, tangible interaction should enhance users’ spatial
performance—their ability to sense, manipulate, and interact with multidimen-
sional space—for challenging tasks like sculpting topography and guiding the
flow of water by combining kinesthetic and computational affordances. Since
tangible interfaces for geospatial modeling streamline workflows and enhance
spatial performance, users can quickly develop new scenarios and quantitatively
analyze the results in an analytical, yet creative process. There are already many
tangible interfaces for geospatial modeling. These include shape changing inter-
faces (Table 1.1), augmented architectural interfaces (Table 1.2), augmented clay
interfaces (Table 1.3), and augmented sandboxes (Table 1.4).

Shape changing interfaces (Rasmussen et al. 2012) or dynamic shape displays
(Poupyrev et al. 2007) are a type of transformable tangible interface (Ishii et al.
2012). Typically these use motor-driven pistons to actuate an array of pins that
physically change the shape of a tabletop surface based on computation. These
tangible interfaces have three feedback loops—users can feel the physical model
for passive, kinesthetic feedback, the model can be computationally transformed for
active, kinesthetic feedback, and users can see computationally generated, graphical
feedback.

Projection-augmented tangible interfaces rely on projection for representing dig-
ital data. Projected imagery has long been used to augment physical terrain models
(Priestnall et al. 2012) (Fig. 1.2). Projection augmented tangible interfaces, however,
are interactive. They couple physical and digital models through a cycle of 3D
sensing or object recognition, computation, and projection. Augmented architectural
interfaces like Urp (Underkoffler and Ishii 1999) and the Collaborative Design
Platform (Schubert et al. 2011b) are a type of ‘discrete tabletop tangible interface’

1.2 Tangible Geospatial Modeling 5

Table 1.1 Shape changing interfaces

System Interaction Studies Publications

XenoVision Mark III
Dynamic Sand Table

Sculpting

Northrop Grumman Terrain
Table

Sculpting

Relief Sculpting Leithinger et al. (2009), Leithinger
and Ishii (2010)

Recompose Sculpting Leithinger et al. (2011)

Gesture Blackshaw et al. (2011)

Tangible CityScape Gesture

inFORM Sculpting Follmer et al. (2013)

Gesture

Object detection

Table 1.2 Augmented architectural interfaces

System Interaction Studies Publications

Urp Object detection Case studies∗ Underkoffler and Ishii (1999),
Ishii et al. (2002)∗

Collaborative Design
Platform

Object detection Schubert et al. (2011b)

Touch Schubert et al. (2011a)

Sketching Schubert et al. (2012, 2014, 2015)

CityScope Object detection Hadhrawi and Larson (2016)

Note: symbols link type of study to relevant publications

Table 1.3 Augmented clay interfaces

System Interaction Studies Publications

Illuminating Clay Sculpting Protocol analysis‡ Piper et al. (2002a,b),
Fielding-Piper (2002), Shamonsky
(2003)‡, Ishii et al. (2004), Ratti
et al. (2004a)

Tangible Geospatial
Modeling System

Sculpting Case studies∗ Mitasova et al. (2006), Tateosian
et al. (2010)∗

Note: symbols link type of study to relevant publications

6 1 Introduction

Ta
bl

e
1.

4
A

ug
m

en
te

d
sa

nd
bo

x
in

te
rf

ac
es

Sy
st

em
In

te
ra

ct
io

n
St

ud
ie

s
Pu

bl
ic

at
io

ns

Sa
nd

Sc
ap

e
Sc

ul
pt

in
g

Is
hi

ie
ta

l.
(2

00
4)

,R
at

ti
et

al
.(

20
04

a)

Ph
ox

el
Sp

ac
e

Sc
ul

pt
in

g
R

at
ti

et
al

.(
20

04
b)

E
fe

ct
o

M
ar

ip
os

a
Sc

ul
pt

in
g

V
iv

o
(2

01
1)

Sa
nd

yS
ta

tio
n

Sc
ul

pt
in

g

A
ug

m
en

te
d

R
ea

lit
y

Sa
nd

bo
x

Sc
ul

pt
in

g
Su

rv
ey

§
W

oo
ds

et
al

.(
20

16
)§

G
es

tu
re

H
ak

on
iw

a
Sc

ul
pt

in
g

K
ik

uk
aw

a
et

al
.(

20
13

)

O
bj

ec
td

et
ec

tio
n

So
un

d

Se
di

m
ac

hi
ne

Ph
ys

ic
al

si
m

ul
at

io
n

C
an

tr
el

la
nd

H
ol

zm
an

(2
01

4)

R
ap

id
L

an
ds

ca
pe

Pr
ot

ot
yp

in
g

M
ac

hi
ne

M
ac

hi
ni

ng
R

ob
in

so
n

(2
01

4)

Ta
ng

ib
le

L
an

ds
ca

pe
Sc

ul
pt

in
g

C
as

e
st

ud
ie

s∗
Pe

tr
as

ov
a

et
al

.(
20

14
)

O
bj

ec
td

et
ec

tio
n

Q
ua

nt
ita

tiv
e

ex
pe

ri
m

en
ts

†
Pe

tr
as

ov
a

et
al

.(
20

15
)∗

Sk
et

ch
in

g
H

ar
m

on
et

al
.(

20
16

)†
,H

ar
m

on
(2

01
6)

†
,

Ta
br

iz
ia

n
et

al
.(

20
16

,2
01

7)
∗ ,

H
ar

m
on

et
al

.(
20

18
)†

,M
ill

ar
et

al
.(

20
18

)†

T
he

A
ug

m
en

te
d

R
E

al
ity

Sa
nd

ta
bl

e
(A

R
E

S)
Sc

ul
pt

in
g

Q
ua

nt
ita

tiv
e

ex
pe

ri
m

en
ts

†
A

m
bu

rn
et

al
.(

20
15

)

G
es

tu
re

Sc
hm

id
t-

D
al

y
et

al
.(

20
16

)†

In
ne

r
G

ar
de

n
Sc

ul
pt

in
g

R
oo

et
al

.(
20

16
)

B
re

at
hi

ng

E
m

ot
io

n

N
ot

e:
sy

m
bo

ls
lin

k
ty

pe
of

st
ud

y
to

re
le

va
nt

pu
bl

ic
at

io
ns

1.2 Tangible Geospatial Modeling 7

Fig. 1.2 A projection augmented model powered by Tangible Landscape with simulated water
flow projected over 3D printed topography

(Ishii et al. 2012) with physical models of buildings that are augmented with
projected analytics. Augmented clay interfaces like Illuminating Clay (Piper et al.
2002a) and augmented sandboxes like SandScape (Ishii et al. 2004) are types of
‘deformable, continuous tangible interfaces’ (Ishii et al. 2012) that users can sculpt.
These tangible interfaces have two feedback loops—there is passive, kinesthetic
feedback from grasping the physical model and active, graphical feedback from
computation.

1.2.1 Shape Changing Interfaces

Shape changing interfaces—or dynamic shape displays—are computer controlled,
interactive, physically responsive surfaces. As we interact with the physical surface
it changes the digital model and, conversely, as we interact with the digital model
the physical surface changes (Ishii 2008a; Poupyrev et al. 2007). Shape changing
interfaces tend to be arrays of pistons and actuated pins that form kinetic, 2.5D
surfaces (Petrie 2006) although there is experimental research into continuous,
moving surfaces made of shape changing materials driven by heat, magnetic, or
electrical stimuli (Coelho and Zigelbaum 2010).

Aegis Hyposurface The Aegis Hyposurface, an early example of a shape changing
interface, is a generative art installation that uses pneumatic actuators to move a
triangulated mesh surface according to an algorithm. It can be either preprogrammed

8 1 Introduction

or interactive, moving in response to sensed sound, light, or movement. As it was
designed and built at an architectural scale the Aegis Hyposurface has a very coarse
resolution for an actuated shape changing interface (Goulthorpe 2000).

FEELEX The resolution of actuated shape changing interfaces are constrained by
the size and arrangement of the piston motors and piston rods or pins that move
the surface. Project FEELEX, another early shape changing interface, used linear
actuators to deform a rubber plate. The size of the motors—4 cm—meant that the
resolution of the shape display was very coarse. Since the motors are larger than the
pins, FEELEX 2 used a piston-crank mechanism to achieve a relatively high 8 mm
resolution by clustering the pins while offsetting the motors below. A rubber sheet
was stretched over the array of pins to create a 2.5D display for projection. When a
user touched the surface they would depress the pins and the pressure of their touch
would be recorded as a user interaction (Iwata et al. 2001).

Dynamic Sand Table and Terrain Table The XenoVision Mark III Dynamic Sand
Table, developed in 2004, and the Northrop Grumman Terrain Table, developed
in 2006, were actuated shape changing interfaces that represented topography in
2.5D. In the Terrain Table thousands of pins driven by a motor shaped a silicone
surface held taut by suction from a vacuum below into a terrain. The Terrain
Table recorded touches as user interactions such as panning and zooming. As
users panned, zoomed, or loaded new geographic data, the actuated surface would
automatically reshape within seconds (Petrie 2006).

Relief Relief is a relatively low-cost, scalable, 2.5D actuated shape display based
on open source hardware and software. Given the complexity and thus the cost,
maintenance, and unadaptability of earlier shape changing interfaces like FEELEX
and the Northrop Grumman Terrain Table, Leithinger and Ishii (2010) aimed to
design a simpler, faster system that was easier to build, adapt, scale, and maintain.
In the first prototype of Relief an array of 120 actuated pins driven by electric
slide potentiometers stretch a Lycra sheet into a shape display. Users can reshape
the shape display by pressing or pulling on the actuated pins. The actuators are
controlled with open source Arduino boards and a program written in the open
source language Processing controls, senses, and tracks all of the pins and their
relation to the digital model (Leithinger et al. 2009; Leithinger and Ishii 2010). The
transparency and freedom of open source solutions should make it relatively easy to
reconfigure and adapt this system.

Recompose While Relief was initially designed for a simple, highly intuitive
interaction—direct physical manipulation (Leithinger and Ishii 2010)—its next
iteration, Recompose, added gesture recognition (Leithinger et al. 2011; Blackshaw
et al. 2011). While with Relief users can only directly sculpt the shape changing
interface with their hands, with Recompose they can also use gestures to select,
translate, rotate, and scale regions of the interface. The size and coarse resolution
of the actuated interface mean that only small datasets or subsets of larger datasets
can be modeled with useful fidelity. Furthermore, Leithinger et al. (2011) found that
only a very limited range of touch interactions could be recognized at the same time

1.2 Tangible Geospatial Modeling 9

and that it can be challenging to manipulate individual pins as they may be out of
reach. They augment touch with gestures by adding a Kinect as a depth camera so
that users can easily change the context and explore larger datasets. While gestures
are less precise than direct physical manipulation, they greatly expand the scope of
possible interactions (Blackshaw et al. 2011). Interactions via external devices such
as a mouse may be less ambiguous than gestures, but Leithinger et al. argue that they
draw users’ focus away from the shape display. Therefore they choose to combine
touch interactions with gestures rather than pointing devices so that the transition
from sculpting to selection, translation, rotation, and scaling would be fluid and
seamless given the physical directness of both modes of interaction (Leithinger et al.
2011).

Tangible CityScape Tangible CityScape, a system built upon Recompose, is an
example of how this type of TUI can be applied to a specific domain—urban
planning. It used a 2.5D shape changing interface to model and study urban massing.
Building masses were modeled by clusters of pins and the model dynamically
reshaped as users panned or zoomed with gestures (Tang et al. 2013).

inFORM With inFORM Follmer et al. (2013) developed a dynamically changing
user interface capable of diverse, rich user interactions. Building on the Relief
and Recompose systems, they developed a 2.5D actuated shape changing interface
that supports object tracking, visualization via projection, and both direct and
indirect physical manipulation. The surface of the interface is moved by a dense
array of pins linked by connecting rods to a larger array of actuators below. The
pins, pushing and pulling with variable pressure, offer nuanced haptic feedback
to users. A Kinect depth sensor is used to track objects and users’ hands. The
actuated surface—a grid of pins—can be manipulated directly by pushing and
pulling pins. Furthermore, users can interact with the system indirectly via object
tracking. The surface can respond to interactions—both direct and indirect—and
reshape itself. The actuated surface can also move objects placed on it, enabling
indirect physical manipulations. Follmer et al. used this system to explore how
shape-changing displays can dynamically model content and offer novel modes
of interaction based on dynamically changing constraints and opportunities. As
a responsive tangible user interface inFORM enables rich and varied mode of
interaction such as responsive sculpting, moving passive objects, painting changes,
and physically instantiated UI elements like buttons (Follmer et al. 2013).

Shape changing interfaces that can be shaped both by touch and computation
enable physical interactions from human to computer and computer to human. With
a shape changing interface the digital model is physically instantiated and this shape
changing physical model is used for both input and output. When a user changes the
surface of the shape display the computer reads the changes; when the computer
changes the surface the user sees and feels the changes. Hypothetically this should
radically reduce the level of abstraction in human-computer interaction. This novel
mode of bidirectional, tangible interaction should be highly intuitive because it is
so direct—human and computers communicate via the same medium. However,
while dynamic shape displays may be highly intuitive, they have a relatively coarse

10 1 Introduction

resolution, are expensive, maintenance intensive, and hard to transport, all due to the
actuators. The resolution of the display for example is constrained by the size of the
actuators that make the display kinetic. The coarse resolution makes these displays’
representations approximate and abstract, limiting their possible applications.

1.2.2 Augmented Architectural Interfaces

With augmented architectural interfaces users can place and move physical massing
models of buildings, which are digitized using computer vision or 3D scanning.
These interfaces enable users to intuitively model and visualize urban form and
learn from computational feedback.

Urp Urp—a projection augmented interface for urban design—used tag-based
objection detection to digitize physical models of buildings on a table. Spatial
analyses and simulations such as proximity, wind, shadow, and viewsheds were
computed and projected onto the tabletop in real-time so that users could rapidly
test different spatial configurations of buildings (Underkoffler and Ishii 1999). As a
case study Urp was used by a urban design class in the MIT School of Architecture
and Planning. The researchers observed that it helped students to rapidly explore
and test different configurations of space and effectively communicate their designs
(Ishii et al. 2002).

Collaborative Design Platform The Collaborative Design Platform uses a depth
camera to digitize and track physical models of buildings on a rear-projection light
table. As users move polystyrene foam models of buildings, the models are 3D
scanned updating a digital 3D model of a city. Analyzes like wind, light, shadow,
accessibility, distance, and views are projected onto the table in realtime. Views are
also rendered in 3D on a wall-mounted touch screen. Users can interact by placing
and moving physical models of buildings, touching the screen, or sketching with a
digitizing pen (Schubert et al. 2015).

CityScope MIT’s City Science group developed CityScope, a tangible interface
for urban modeling using Lego blocks. It is a participatory tool for urban planning,
analysis, and prediction. With CityScope users build a Lego model of an urban
neighborhood, which is 3D scanned to create a digital model of urban form. Then
CityScope run simulations such as pedestrian and vehicular traffic, wind, and energy
use and computes indices such as density, diversity, traffic, and proximity. Spatial
data such as density, land use, and simulated traffic are projected onto the Lego
model, while 3D facades, building temperature, and plots of indices can be rendered
on a display. CityScope enables intuitive participatory urban modeling augmented
with urban analytics. Users are able to rapidly explore different configurations of
urban form, land use, and circulation and see the consequences (MIT Media Lab
2014; Hadhrawi and Larson 2016).

1.2 Tangible Geospatial Modeling 11

1.2.3 Augmented Clay Interfaces

Augmented clay interfaces couple a clay model of topography with a digital terrain
model through a cycle of sculpting, 3D scanning, computation, and projection. As
users sculpt the clay, the model is 3D scanned, the digital terrain model updates, and
updated graphics are projected onto the clay model.

Illuminating Clay Illuminating Clay coupled a clay model and digital model of
landscape through a cycle of laser scanning, spatial modeling, and projection. A
clay model of a landscape was continuously scanned with a laser to generate a point
cloud of x, y, and z coordinates which were then binned into a digital elevation
model (DEM). The DEM or a derived topographic parameter such as slope, aspect,
or cast shadow was then projected back onto the clay model so that users could see
the impact of their changes in near real-time. Because Illuminating Clay used a laser
scanner the scans were relatively fast—1.2 s each—and accurate to less than 1 mm,
but the system was very expensive (Piper et al. 2002a,b). By enriching physical
models of urban spaces and landscapes with spatial analyses such as elevation,
aspect, slope, cast shadow, profile, curvature, viewsheds, solar irradiation, and water
direction, Illuminating Clay enabled intuitive form-finding, streamlined analog and
digital workflows, and enabled multiple users to simultaneously interact in a natural
way (Ratti et al. 2004a). Illuminating Clay, however, had a very limited library of
custom implemented spatial analyses. Since many of analyses were adapted from
the open source GRASS GIS project (Piper et al. 2002a) there was a call for closer
integration with GRASS GIS in order to draw on its extensive libraries for spatial
computation (Piper et al. 2002b). The effort to couple a physical landscape model
with GRASS GIS (Mitasova et al. 2006) led to the development of the Tangible
Geospatial Modeling System (Tateosian et al. 2010).

Tangible Geospatial Modeling System The Tangible Geospatial Modeling Sys-
tem (TanGeoMS) coupled a physical model and GIS model of a landscape through
a cycle of laser scanning, geospatial computation in GRASS GIS, and projection
giving developers and users access to a sophisticated library for spatial modeling,
simulation, visualization, and databasing in a highly intuitive environment. Like
Illuminating Clay the system used a laser scanner to 3D scan a clay model. The
scanned point cloud was then interpolated as a DEM, select geospatial analyses
or simulations were computed from the DEM, and the results were projected back
onto the clay model (Tateosian et al. 2010) (Fig. 1.3). It combined freeform hand
modeling with geospatial modeling, simulation, and visualization so that users could
easily explore how changes in topographic form affect landscape processes such as
diffusive water flow and erosion and deposition (Mitasova et al. 2006).

12 1 Introduction

Fig. 1.3 The Tangible Geospatial Modeling System—an augmented clay interface powered by
GRASS GIS: (a) multiple users interacting with a model, (b) projection augmented clay model
coupled with a 3D rendering, (c) hardware setup with a laser scanner mounted above the model

1.2 Tangible Geospatial Modeling 13

1.2.4 Augmented Sandbox Interfaces

These tangible interfaces couple a sandbox with a digital terrain model through
a cycle of sculpting, 3D scanning, computation, and projection. The sandbox is
augmented with projected graphics such as simulated water flow. As users sculpt
the sand, the sandbox is 3D scanned, the digital terrain model updates, and updated
graphics are projected onto the sandbox.

SandScape SandScape used infrared depth sensing to digitize a ‘sandbox’ of 1 mm
glass beads. An infrared camera captured the intensity of infrared light passing
through the beads from below in real-time. A digital elevation model computed
from the light intensity and derived analyses were projected back onto the sandbox
for real-time feedback. SandScape was relatively low resolution due to the quality
of the infrared sensing and the size of the glass beads (Ishii et al. 2004; Ratti et al.
2004a).

Phoxelspace Phoxel-Space adapted SandScape and Illuminating Clay for phys-
ically interacting with voxels, i.e. volumetric pixels or 3D rasters. The system
coupled a malleable physical model—built of media like clay, plasticine, cubic
blocks, or glass beads—with a 3D raster dataset using either a laser scanner or
an IR camera. The researchers demonstrated how Phoxel-Space could be used to
explore magnetic resonance imaging data, seismic velocity, and computational fluid
dynamics (Ratti et al. 2004b).

Efecto Mariposa Efecto Mariposa was an interactive art installation using a Kinect
sensor to scan a sand model of an island. The model of the island was augmented
with a projection of a simulated ecosystem that changed as users sculpted the
topography (Vivo 2011).

Augmented Reality Sandbox The Augmented Reality Sandbox developed by
the UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences
couples a sandbox with a digital model of a landscape through a real-time cycle
of 3D scanning with a Kinect sensor. As users sculpt the sand the Kinect sensor
continually scans the sand surface generating a stream of depth maps. Scans are
statistically filtered to remove hands and tools, reduce noise, and fill in areas with
no data. The default filtering—30 frames—results in 1 s of lag. The digital elevation
model, contours, and simulated water flow based on the shallow water equations
are projected back onto the sand model of the landscape (Kreylos 2012). It was
inspired by a Czech prototype called SandyStation developed in 2011 (Altman and
Eckstein 2014). The code for this open source project, released under the GNU
General Public License, and blueprints for building the system are available at
https://arsandbox.ucdavis.edu. Two hundred eighty Augmented Reality Sandboxes
have already been built around the world (Kreylos 2017).

Researchers at Eastern Carolina University built an Augmented Reality Sandbox
and conducted a qualitative pilot study examining the effect of the technology
on learning and engagement in geoscience education. Twelve students used the

https://arsandbox.ucdavis.edu

14 1 Introduction

Augmented Reality Sandbox to build terrain models from contours, model fluvial
features and processes, and model coastal features and processes. The researchers
solicited feedback with an exit survey. Students reported that the sandbox helped
them learn about topography, fluvial and coastal processes, and process-form inter-
actions more effectively. Based on the survey and their observations the researchers
hypothesized that augmented sandboxes could enable embodied learning and
encourage the development of scientific modeling skills (Woods et al. 2016).

Hakoniwa Hakoniwa—a projection-augmented sandbox for making generative
music and art—was inspired by sandtray therapy. The system was designed to
create a playful, embodied experience that could be therapeutic. As users built
landscapes in the sandbox by sculpting sand and placing wooden blocks they created
music and visual patterns in real-time through a cycle of depth and color sensing,
image processing, audio generation, computer graphics, and projection (Kikukawa
et al. 2013). The system evolved from PocoPoco—a tabletop tangible interface for
making music (Kanai et al. 2011).

Rapid Landscape Prototyping Machine The Landscape Morphologies Lab at
the University of Southern California developed the Rapid Landscape Prototyping
Machine—a projection-augmented sandbox with robotic fabrication—to design and
test strategies for dust control and mitigation for Lake Owens, California. The
system used a 6-axis robotic arm to digitally fabricate algorithmically generated
landscapes in a sandbox. The sand models were digitized with a laser scanner,
the point cloud was triangulated as a terrain mesh, and spatial analyses such as
viewsheds, aspect, and flooding were projected back onto the sandbox (Robinson
2014; Cantrell and Holzman 2016).

Augmented REality Sandtable The Augmented REality Sandtable (ARES) devel-
oped by the US Army Research Laboratory is designed for military training and
simulation. This system uses a depth camera to continually 3D scan a sandbox
and detect gestures. The digital elevation model and contour map derived from the
scans and military units created using gestures or tablet input are projected onto the
sand model. Units and buildings can be visualized in 3D using tablets or augmented
reality glasses. The Augmented REality Sandtable can be linked with other military
software to simulate scenarios (Amburn et al. 2015). A user study comparing users’
performance with paper maps, Google Earth, and the Augmented REality Sandtable
found that the sandtable was the most effective technology. Participants—especially
participants who were veteran video gamers—tended to perform better with the
sandtable in landmark identification, distance estimation, and situational judgment
tests (Schmidt-Daly et al. 2016).

Inner Garden Inner Garden—a projection-augmented sandbox for contemplation
and self-reflection—couples a sand model of topography with simple digital
environment with water, plants, clouds, and daylight through a cycle of 3D scanning
with a Kinect, biometric sensing, computation, and projection. While a user sculpts
topography in the sand creating a digital elevation model, their physiological and
emotional state are monitored with an electroencephalogram (EEG) and breathing

1.3 Tangible Landscape 15

sensor. Their breath controls the simulated sea level and daylight, their level of
frustration controls the simulated cloud cover, and their meditativeness controls
simulated plant life (Roo et al. 2016).

1.3 Tangible Landscape

Tangible Landscape is a projection-augmented sandbox powered by a GIS for real-
time geospatial analysis and simulation (Petrasova et al. 2015). It was designed
to intuitively 3D sketch landscapes—to rapidly exploring ideas or test hypotheses
with real-time computational feedback (Fig. 1.4). It evolved from Illuminating Clay
(Piper et al. 2002a) and the Tangible Geospatial Modeling System (Tateosian et al.
2010). While the Tangible Geospatial Modeling System used an expensive laser
scanner for 3D sensing (Tateosian et al. 2010), Tangible Landscape—inspired by
the open source Augmented Reality Sandbox (Kreylos 2012)—uses a low-cost
3D sensor for real-time depth and color sensing. The 1st generation of Tangible
Landscape (Petrasova et al. 2014) used the 1st generation Kinect with structured
light sensing (Smisek et al. 2011), while the 2nd (Petrasova et al. 2015) and 3rd
generations of Tangible Landscape used the 2nd generation Kinect with time-of-
flight sensing (Bamji et al. 2015). Tangible Landscape is tightly integrated with GIS,
using a GRASS GIS plugin to automatically scan, process, georeference, import,
and analyze the model. Because it is so tightly integrated with GRASS GIS users
can also use the GUI, the command line, and scripting as advanced controls for tasks
not suited to a TUI (Petrasova et al. 2014). As a projection-augmented sandbox with
3D sensing and color and object recognition a wide range of media can be used such
as polymer-enriched sand, clay, 3D prints, CNC-machined models, architectural
models, colored felt, and wooden markers.

Conceptually, Tangible Landscape couples a physical model with a digital model
in a real-time feedback cycle of 3D scanning, geospatial modeling and simulation,
and projection and 3D rendering. For example, by sculpting the terrain of the
physical model, we can see how the changes affect processes like the flow of water,
flooding, erosion, and solar irradiation. Thus we can easily and rapidly test ideas
while being guided by scientific feedback, exploring a much a larger solution space
and make more creative and informed decisions. And since many users can interact
with the physical model at once, Tangible Landscape encourages collaboration
and interdisciplinary exchange (Fig. 1.5). Tangible Landscape combines real-time
interaction with extensive scientific tools for modeling, analysis, and visualization
at the precision needed for real-world design and planning applications. Tangible
Landscape can be used for applications such as grading landforms (Chap. 3),
analyzing topography (Chap. 6), modeling water flow and soil erosion (Chap. 7),
analyzing viewsheds (Chap. 9), planning trail networks (Chap. 10), analyzing solar
radiation dynamics (Chap. 11), simulating and managing fire (Chap. 12), modeling
inundation and flooding (Chap. 13), and landscape design (Chap. 14).

16 1 Introduction

Fig. 1.4 3D sketching a check dam with Tangible Landscape: (a) orthoimagery projected over the
model, (b) water flow, (c) sculpting a check dam, (d) updated water flow, (e) a dammed valley with
water flow simulated with r.sim.water

http://grass.osgeo.org/grass72/manuals/r.sim.water.html

1.3 Tangible Landscape 17

Fig. 1.5 Collaboratively sculpting a lake with Tangible Landscape

Tangible Landscape is inexpensive, portable, adaptable, and easy to implement.
As a high resolution sandbox-style tangible interface it can be used for both rapid
ideation and precise modeling. However, unlike a shape changing interface the
physical model is passive and cannot be changed computationally in real-time—
trading real-time response for high resolution, high precision, simplicity of setup,
and low cost. Rapid prototyping can be used to precisely shape or reshape the
physical model allowing users to work with real world landscapes and easily reset
the conditions.

Tangible Landscape has been assessed in a number user studies. Studies by
Harmon et al. found that users were able to sculpt more accurate topographic
models with more distinct landforms using Tangible Landscape than they were
using digital 3D modeling or analog modeling by hand. The study also found
that users worked in a rapid, iterative process learning from real-time geospatial
analytics (Harmon et al. 2016; Harmon 2016; Harmon et al. 2018). Millar et al.
studied the effectiveness of Tangible Landscape as a tool for teaching about grading
(i.e. earthwork), geomorphology, and hydrology. This study found that tangible
teaching methods were highly engaging, enabled a natural learning process, and
helped students build task-specific knowledge about topics such as “cut and fill”
(Millar et al. 2018).

18 1 Introduction

1.3.1 Developing Tangible Landscape

Tangible Landscape is a free, open source project with source code hosted on
GitHub.1 The system is constantly evolving in response to new developments in
its hardware and software components and the needs of its expanding range of
applications. Enhanced point cloud processing, optimization of the core functions,
and migration to more efficient hardware and operating systems will improve
real-time interaction and allow us to incorporate more sophisticated dynamic
modeling. User interaction and experience can be further improved with dashboards
and steered simulations. Computationally controlled shape generation with in-situ
digital fabrication will combine the advantages of dynamic and continuous shape
displays. By providing Tangible Landscape as a free, open source project, along
with this book, we aim to build a community of developers and users of this
technology for the benefit of education, research and collaborative decision making
in communities worldwide.

1.4 The Organization of This Book

This book describes tangible geospatial modeling using open source GIS and its
applications. For each application we explain the underlying theory and algorithms,
provide the workflows used, and describe case studies. The workflows include
GRASS GIS and Rhinoceros command calls as well as GRASS GIS and Blender
Python code snippets.

Chapter 2 describes how Tangible Landscape works and how it is set up. This
chapter details the 3D scanning technology, the hardware and software used, and
the physical setup of the system. It provides information about where to download
GRASS GIS and the Tangible Landscape plugin and explains how to read and
use the workflows. Chapter 3 explains how to build physical models for use with
Tangible Landscape. This chapter covers handmade modeling techniques, digital
fabrication techniques, and techniques for molding and casting models. Chapter 4
introduces and explains the different modes of tangible interaction. Chapter 5
covers 3D visualization, explaining how to 3D model and 3D render scenes in real-
time with Tangible Landscape. Chapter 6 covers the basic processes of scanning,
interpolating, and analyzing a terrain model. The following chapters describe a
range of scientific applications for Tangible Landscape. Each chapter first covers
the relevant theory and algorithms and then demonstrates the application in a case
study. Chapter 7 covers surface water flow modeling. Chapter 8 covers soil erosion
modeling. Chapter 9 covers viewshed analysis. Chapter 10 covers trail planning.
Chapter 11 covers solar irradiation dynamics. Chapter 12 covers simulating the

1https://github.com/tangible-landscape/grass-tangible-landscape.

https://github.com/tangible-landscape/grass-tangible-landscape

References 19

spread of wildfire. Chapter 13 covers coastal inundation and flooding modeling.
Chapter 14 covers landscape architecture and design. Appendix includes case
studies of additional applications of Tangible Landscape, a summary of the data
used in this book with download links, a list of useful online data sources, and a
guide to getting started with GRASS GIS.

References

Altman, P., & Eckstein, R. (2014). SandyStation [online]. Accessed 12.08.2015. http://en.
sandystation.cz/.

Amburn, C. R., Vey, N. L., Boyce, M. W., & Mize, J. R. (2015). The Augmented REality Sandtable
(ARES). Technical Report October. US Army Research Laboratory.

Anderson, M. L. (2008). Evolution, embodiment and the nature of the mind. In B. Hardy-Vallee &
N. Payette (Eds.), Beyond the brain, chapter 1. Newcastle, UK: Cambridge Scholars Publishing.

Bamji, C. S., O’Connor, P., Elkhatib, T., Mehta, S., Thompson, B., Prather, L. A., Snow, D.,
Akkaya, O. C., Daniel, A., Payne, A. D., Perry, T., Fenton, M., & Chan, V. H. (2015). A 0.13
μm CMOS system-on-chip for a 512 x 424 time-of-flight image sensor with multi-frequency
photo-demodulation up to 130 MHz and 2 GS/s ADC. IEEE Journal of Solid-State Circuits,
50(1), 303–319.

Blackshaw, M., DeVincenzi, A., Lakatos, D., Leithinger, D., & Ishii, H. (2011). Recompose:
Direct and gestural interaction with an actuated surface. In Proceedings of the 2011 Annual
Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’11 (p.
1237). Vancouver: ACM Press.

Cantrell, B., & Holzman, J. (2014). Synthetic ecologies: Protocols, simulation, and manipulation
for indeterminate landscapes. In ACADIA 14: Proceedings of the 34th Annual Conference of
the Association for Computer Aided Design in Architecture, Los Angeles (pp. 709–718).

Cantrell, B., & Holzman, J. (2016). Rapid landscape prototyping machine. In Responsive
Landscapes, chapter 6.6 (pp. 159–166). New York: Routledge.

Coelho, M., & Zigelbaum, J. (2010). Shape-changing interfaces. Personal and Ubiquitous
Computing, 15(2), 161–173.

Dourish, P. (2001). Where the action is: The foundations of embodied interaction. Cambridge,
MA: MIT.

Fielding-Piper, B. T. (2002). The illuminated design environment: A 3-D tangible interface for
landscape analysis. Master’s thesis, Massachusetts Institute of Technology.

Fitzmaurice, G. W., Ishii, H., & Buxton, W. (1995). Bricks: Laying the foundations for graspable
user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 442–449).

Follmer, S., Leithinger, D., Olwal, A., Hogge, A., & Ishii, H. (2013). inFORM: Dynamic physical
affordances and constraints through shape and object actuation. In UIST ’13 Proceedings of
the 26th Annual ACM Symposium on User Interface Software and Technology (pp. 417–426).
St. Andrews, UK: ACM Press.

Goulthorpe, M. (2000). Aegis Hyposurface [online]. Accessed 10.04.2015. http://hyposurface.
org/.

Hadhrawi, M., & Larson, K. (2016). Illuminating legos with digital information to create urban
data observatory and intervention simulator. In Proceedings of the 2016 ACM Conference
Companion Publication on Designing Interactive Systems, DIS ’16 Companion (pp. 105–108).
New York, NY, USA: ACM.

Harmon, B. A. (2016). Embodied spatial thinking in tangible computing. In Proceedings of the
TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction,
TEI ’16 (pp. 693–696). New York, NY, USA: ACM.

http://en.sandystation.cz/
http://en.sandystation.cz/
http://hyposurface.org/
http://hyposurface.org/

20 1 Introduction

Harmon, B. A., Petrasova, A., Petras, V., Mitasova, H., & Meentemeyer, R. (2018). Tangible topo-
graphic modeling for landscape architects. International Journal of Architectural Computing,
16, 4–21.

Harmon, B. A., Petrasova, A., Petras, V., Mitasova, H., & Meentemeyer, R. K. (2016). Tangible
landscape: Cognitively grasping the flow of water. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, XLI-B2, 647–653.

Ishii, H. (2008a). Tangible bits: Beyond pixels. In Proceedings of the 2nd International Conference
on Tangible and Embedded Interaction - TEI ’08 (pp. xv–xxv). Bonn, Germany. ACM Press.

Ishii, H. (2008b). The tangible user interface and its evolution. Communications of the ACM,
51(6):32–36.

Ishii, H., Lakatos, D., Bonanni, L., & Labrune, J.-B. (2012). Radical atoms: Beyond tangible bits,
toward transformable materials. Interactions, 19(1), 38–51.

Ishii, H., Ratti, C., Piper, B., Wang, Y., Biderman, A., & Ben-Joseph, E. (2004). Bringing clay and
sand into digital design—continuous tangible user interfaces. BT Technology Journal, 22(4),
287–299.

Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and
atoms. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems -
CHI ’97 (pp. 234–241). New York, USA: ACM Press.

Ishii, H., Underkoffler, J., Chak, D., Piper, B., Ben-Joseph, E., Yeung, L., & Kanji, Z. (2002).
Augmented urban planning workbench: Overlaying drawings, physical models and digital
simulation. In ISMAR ’02 Proceedings of the 1st International Symposium on Mixed and
Augmented Reality (pp. 203–211). Washington, DC: IEEE Computer Society.

Iwata, H., Yano, H., Nakaizumi, F., & Kawamura, R. (2001). Project FEELEX: Adding haptic
surface to graphics. In Proceedings of SIGGRAPH 2001 (pp. 469–475).

Jeannerod, M. (1997). The cognitive neuroscience of action. Cambridge, MA: Blackwell.
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation

and individual differences in spatial ability. Psychological Review, 92(2), 137–172.
Kanai, T., Kikukawa, Y., Suzuki, T., Baba, T., & Kushiyama, K. (2011). Pocopoco: A tangible

device that allows users to play dynamic tactile interaction. In ACM SIGGRAPH 2011
Emerging Technologies, SIGGRAPH ’11 (pp. 12:1–12:1), New York, NY, USA: ACM.

Kikukawa, Y., Kato, M., Baba, T., & Kushiyama, K. (2013). Hakoniwa: A sonification art
installation consists of sand and woodblocks. In Proceedings of the 19th International
Conference on Auditory Display (ICAD 2013) (pp. 283–286). Lodz, Poland: International
Community for Auditory Display.

Kirsh, D. (2013). Embodied cognition and the magical future of interaction design. ACM
Transactions on Computer-Human Interaction, 20(1), 3:1–3:30.

Kreylos, O. (2012). Augmented Reality Sandbox [online]. Accessed 20.01.2017. http://idav.
ucdavis.edu/~okreylos/ResDev/SARndbox/index.html

Kreylos, O. (2017). Augmented Reality Sandbox [online]. https://arsandbox.ucdavis.edu/
Leithinger, D., & Ishii, H. (2010). Relief: A scalable actuated shape display. In Proceedings of the

Fourth International Conference on Tangible, Embedded, and Embodied Interaction - TEI ’10
(p. 221). Cambridge, MA: ACM Press.

Leithinger, D., Kumpf, A., & Ishii, H. (2009). Relief [online]. http://tangible.media.mit.edu/
project/relief/

Leithinger, D., Lakatos, D., Devincenzi, A., Blackshaw, M., & Ishii, H. (2011). Direct and
gestural interaction with relief: A2. 5D shape display. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (pp. 541–548).

Millar, G. C., Tabrizian, P., Petrasova, A., Petras, V., Harmon, B., & Meentemeyer, R. K. (2018).
Tangible landscape: A hands-on method for teaching terrain analysis. In CHI ’18 Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, Canada.

MIT Media Lab (2014). CityScope. http://cp.media.mit.edu/cityscope/
Mitasova, H., Mitas, L., Ratti, C., Ishii, H., Alonso, J., & Harmon, R. S. (2006). Real-

time landscape model interaction using a tangible geospatial modeling environment. IEEE
Computer Graphics and Applications, 26(4), 55–63.

http://idav.ucdavis.edu/~okreylos/ResDev/SARndbox/index.html
http://idav.ucdavis.edu/~okreylos/ResDev/SARndbox/index.html
https://arsandbox.ucdavis.edu/
http://tangible.media.mit.edu/project/relief/
http://tangible.media.mit.edu/project/relief/
http://cp.media.mit.edu/cityscope/

References 21

Petrasova, A., Harmon, B., Petras, V., & Mitasova, H. (2015). Tangible modeling with open source
GIS. Berlin: Springer.

Petrasova, A., Harmon, B. A., Petras, V., & Mitasova, H. (2014). GIS-based environmental
modeling with tangible interaction and dynamic visualization. In D. Ames & N. Quinn (Eds.),
Proceedings of the 7th International Congress on Environmental Modelling and Software, San
Diego, California, USA. International Environmental Modelling and Software Society.

Petrie, G. (2006). TouchTable & TerrainTable - showstoppers at the ESRI user conferences.
Geoinformatics, 9(2), 40–41.

Piper, B., Ratti, C., & Ishii, H. (2002a). Illuminating clay: A 3-D tangible interface for landscape
analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems -
CHI ’02 (p. 355), Minneapolis: ACM Press.

Piper, B., Ratti, C., & Ishii, H. (2002b). Illuminating clay: A tangible interface with potential
GRASS applications. In Proceedings of the Open Source GIS - GRASS Users Conference
2002, Trento, Italy.

Poupyrev, I., Nashida, T., & Okabe, M. (2007). Actuation and tangible user interfaces: The
Vaucanson duck, robots, and shape displays. In Proceedings of TEI 2007 (pp. 205–212).

Poynor, R. (1995). The hand that rocks the cradle. ID Magazine, 42, 60–65.
Priestnall, G., Gardiner, J., Way, P., Durrant, J., & Goulding, J. (2012). Projection Augmented

Relief Models (PARM): Tangible displays for geographic information. In Proceedings of
Electronic Visualisation and the Arts, London (pp. 1–8).

Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., & Hornbæk, K. (2012). Shape-changing
interfaces: A review of the design space and open research questions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’12 (pp. 735–744). New
York, NY, USA. ACM.

Ratti, C., Wang, Y., Ishii, H., Piper, B., Frenchman, D., Wilson, J. P., Fotheringham, A. S., &
Hunter, G. J. (2004a). Tangible User Interfaces (TUIs): A novel paradigm for GIS. Transactions
in GIS, 8(4), 407–421.

Ratti, C., Wang, Y., Piper, B., Ishii, H., & Biderman, A. (2004b). Phoxel-space: An interface
for exploring volumetric data with physical voxels. In Proceedings of the 5th Conference on
Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS ’04, pages
289–296, New York, NY, USA. ACM.

Robinson, A. (2014). Calibrating agencies in a territory of instrumentality: Rapid landscape
prototyping for the owens lake dust control project. In ACADIA 14: Projects of the 34th Annual
Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 143–
146).

Roo, J. S., Gervais, R., & Hachet, M. (2016). Inner garden: An augmented sandbox designed for
self-reflection. In Proceedings of the TEI ’16: Tenth International Conference on Tangible,
Embedded, and Embodied Interaction, TEI ’16 (pp. 570–576). New York, NY, USA: ACM.

Schmidt-Daly, T. N., Riley, J. M., Amburn, C. R., Hale, K. S., & Yacht, P. D. (2016). Video game
play and effect on spatial knowledge tasks using an augmented sand table. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 60(1), 1429–1433.

Schubert, G., Artinger, E., Petzold, F., & Klinker, G. (2011a). Bridging the gap: A (collaborative)
design platform for early design stages. In Education and Research in Computer Aided
Architectural Design in Europe, Ljubljana (Vol. 29, pp. 187–193).

Schubert, G., Artinger, E., Petzold, F., & Klinker, G. (2011b). Tangible tools for architectural
design: Seamless integration into the architectural workflow. In Proceedings of Association for
Computer Aided Design in Architecture, Banff, Canada (pp. 1–12).

Schubert, G., Artinger, E., Yanev, V., Petzold, F., & Klinker, G. (2012). 3D Virtuality sketching:
Interactive 3D-sketching based on real models in a virtual scene. Proceedings of the 32nd
Annual Conference of the Association for Computer Aided Design in Architecture, 32, 409–
418.

Schubert, G., Schattel, D., Marcus Tönnis, G. K., & Petzold, F. (2015). Tangible mixed reality on-
site: interactive augmented visualisations from architectural working models in urban design.

22 1 Introduction

In Computer-aided architectural design futures. the next city - new technologies and the future
of the built environment (Vol. 527, pp. 55–74). Berlin, Heidelberg: Springer.

Schubert, G., Tönnis, M., Yanev, V., Klinker, G., & Petzold, F. (2014). Dynamic 3d-sketching.
Proceedings of the 19th International Conference on Computer-Aided Architectural Design
Research in Asia, 19, 107–116.

Shamonsky, D. J. (2003). Tactile, spatial interfaces for computer-aided design: superimposing
physical media and computation. PhD thesis, Massachusetts Institute of Technology.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science,
171(3972), 701–703.

Smisek, J., Jancosek, M., & Pajdla, T. (2011). 3D with Kinect. In Proceedings of the IEEE
International Conference on Computer Vision (pp. 1154–1160). Barcelona: IEEE.

Tabrizian, P., Harmon, B. A., Petrasova, A., Mitasova, H., & Meentemeyer, R. K. (2017). Tangible
immersion for ecological design. In ACADIA 17: Proceedings of the 37th Annual Conference
of the Association for Computer Aided Design in Architecture, Cambridge, MA (pp. 600–609)

Tabrizian, P., Petrasova, A., Harmon, B., Petras, V., Mitasova, H., & Meentemeyer, R. (2016).
Immersive tangible geospatial modeling. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems - GIS ’16 (pp. 1–4).

Tang, S. K., Sekikawa, Y., Leithinger, D., Follmer, S., & Ishii, H. (2013). Tangible CityScape
[online]. Accessed 27.03.2014. http://tangible.media.mit.edu/project/tangible-cityscape/

Tateosian, L., Mitasova, H., Harmon, B. A., Fogleman, B., Weaver, K., & Harmon, R. S. (2010).
TanGeoMS: Tangible geospatial modeling system. IEEE transactions on visualization and
computer graphics, 16(6), 1605–1612.

Underkoffler, J., & Ishii, H. (1999). Urp: A luminous-tangible workbench for urban planning and
design. In CHI ’99 Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 386–393). New York, New York, USA. ACM Press.

Uttal, D. H., Miller, D. I., Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: links
to achievement in science, technology, engineering, and mathematics? Current Directions in
Psychological Science, 22(5), 367–373.

Vivo, P. G. (2011). Efecto Mariposa. http://patriciogonzalezvivo.com/2011/efectomariposa/
Woods, T. L., Reed, S., Hsi, S., Woods, J. A., & Woods, M. R. (2016). Pilot study using the

augmented reality sandbox to teach topographic maps and surficial processes in introductory
geology labs. Journal of Geoscience Education, 64(3), 199–214.

http://tangible.media.mit.edu/project/tangible-cityscape/
http://patriciogonzalezvivo.com/2011/efectomariposa/

Chapter 2
System Configuration

The setup of the Tangible Landscape system consists of four primary components:
(a) a physical model that can be modified by a user, (b) a 3D scanner, (c) a
projector, and (d) a computer installed with GRASS GIS for geospatial modeling
and additional software that connects all the components together. The physical
model, placed on a table, is scanned by the 3D scanner mounted above. The scan is
then imported into GRASS GIS, where a DEM is created. The DEM is then used to
compute selected geospatial analyses. The resulting image or animation is projected
directly onto the modified physical model so that the results are put into the context
of the modifications to the model.

2.1 Hardware

Tangible Landscape can be built with affordable, commonly available hardware: a
3D scanner, a projector and a computer. We describe some of the current hardware
options while noting that the technology develops rapidly and alternative, more
effective solutions may emerge.

2.1.1 3D Scanner

In the Tangible Landscape workflow the 3D scanner captures the physical model as
it is modified by users. Therefore it is important that the device scans as accurately
as the technology allows. The Tangible Landscape system was developed using the
Kinect for Xbox One (formerly Kinect for Windows v2), which is one of the most
affordable 3D scanners on market, providing real-time, high-resolution depth and

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_2&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_2

24 2 System Configuration

color information. Due to the growing demand this technology is developing rapidly
and new, improved 3D scanners may become available soon.

The Technology Behind 3D Scanning We describe the basic principles behind
current 3D depth sensing technologies in order to explain both the potential and the
limitations of current scanning devices. More detailed information can be found for
example in Mutto et al. (2012).

Several currently available depth sensors such as Apple Primesense Carmine,
Asus Xtion PRO LIVE,1 and Kinect for Windows v1, are based on a Primesense
proprietary light-coding technique. This technique uses triangulation to map 3D
space in manner similar to how the human visual system senses depth from two
slightly different images. Rather than using two cameras it triangulates between a
near-infrared camera and a near-infrared laser source. Corresponding objects need to
be identified in order to triangulate between the images. A light coding (or structured
light) technique is used to identify the objects. The laser produces a pseudo-random
dot pattern which is then used to find the matching dot pattern in the projected
pattern. In this way the final depth image can be constructed.

Kinect for Xbox One uses Time-of-Flight (ToF), a technique widely used in lidar
technology. It has a sensor that indirectly measures the time it takes for pulses of
near-infrared laser light to travel from a laser source, to a target surface, and then
back to the image sensor. Time-of-Flight sensors are generally considered to be
more precise, but also more expensive.

Since the scanning and 3D modeling algorithms and their implementations
for most sensors are proprietary, the specific behavior and precision of particular
sensors is subject to many experimental studies. Generally, sensors using near-
infrared light are sensitive to lighting conditions, so outdoor usage is typically not
recommended. The depth resolution decreases with the distance from the sensor
and also at close range (i.e. between a couple of millimeters to tens of centimeters).
The range and field of view of the sensors can vary; Tangible Landscape requires
short range sensors with a minimum distance of 0.5 m to keep the highest possible
resolution. When scanning with one sensor the size of the physical model is limited
by the required accuracy because the sensor must be far enough away to capture the
entire model in the sensor’s field of view, which for the Kinect for Xbox One is 60°
vertical by 70° horizontal.

Detailed information about accuracy and precision of Kinect for Windows v1 and
Kinect for Xbox One can be found in Wasenmüller and Stricker (2017), Andersen
et al. (2012), Lachat et al. (2015) and a comparison to Asus Xtion can be found
in Gonzalez-Jorge et al. (2013). The main limiting factors of Kinect for Xbox One
accuracy include the correlation of depth accuracy and temperature of the scanner,
influence of scene color on depth estimation, flying pixels (erroneous pixels, a
well-known artifact of ToF cameras) along depth discontinuities, and high depth
deviation in image corners. Knowing these limitations, we can to certain extent

1https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/.

https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/

2.1 Hardware 25

compensate for them by pre-heating the scanner before measuring, avoiding high
contrast scenes, and using statistical filtering methods to avoid flying pixels (see
Sect. 2.2.3 for more details).

2.1.2 Projector

The projector projects the background geospatial data and results of analyses onto
the 3D physical model. Therefore it is important to select a projector with sufficient
resolution and properties that minimize distortion and generate a bright image.

Resolution and brightness are two important criteria to be considered. We
recommend higher resolution projectors offering at least WXGA (1280×800).
The brightness depends upon where Tangible Landscape is used and whether the
room’s ambient light can be reduced for the sake of brighter projected colors. We
recommend brighter projectors (at least 3000 lumens) since we project on a variety
of materials which are not always white and reflective.

There are two important types of projectors—standard and short-throw projec-
tors. They differ in throw ratio values, which are defined as the distance from
the projector’s lens to the screen, divided by the width of the projected image
(short throw and ultra short throw projectors have ratios 0.3–0.7, while the standard
projectors have throw ratio values around 2). At the same distance the projector
with a lower throw ratio can display a larger image. In other words a projector with
a lower throw ratio (short-throw) can project an image of the same size as the higher
throw ratio projector, but from a shorter distance. Tangible Landscape can be set up
using both types of projectors; each has advantages and disadvantages.

The placement and configuration of the projector is important because it affects
the coverage, distortion, and visibility of the projected data. For example in some
setups the 3D scanner may be caught in the projection and would thus cast a shadow
over the model. Therefore it can be practical to use a short-throw projector because
it can be placed to the side of the physical model at a height similar to the 3D
scanner (Figs. 2.1b and 2.3). Since the projection is cast from the side the projection
beam does not cross the 3D scanning device and no shadow is cast. However, with a
short-throw projector there is a certain level of visible distortion when projecting on
a physical model that has substantial relief. The distortion occurs because the light
rays reach the model at a very acute angle. The horizontal position at which the
projected light intersects the model is shifted from the position at which it would
intersect with a flat surface. Larger differences in height increase the distortion.
Theoretically we can remove the distortion by either warping the projected data
itself or using the projector to automatically warp the projected image. The first
solution would require an undistorted dataset for geospatial modeling and a warped
copy of that data for projecting. That is impractical especially when working with
many different raster and vector layers. The other solution requires the projector
itself to warp the image; while this technology exists, it is only offered by a
few projector manufacturers and such projectors are typically more expensive.

26 2 System Configuration

Moreover, as the landscape is modified, the warping pattern should change as well.
Currently it is not possible to find this feature in the off-the-shelf projectors.

With standard projectors the distortion is usually negligible since the incidence
angle of the rays is relatively small. A standard projector needs to be placed much
higher above the model than a short-throw projector does due to the difference in
throw ratios (Fig. 2.1a). This creates several challenges. It is hard to mount and
manipulate the projector when is it so high above the model. Furthermore it is
challenging to align projector and the 3D scanner without casting a shadow. Since
the 3D scanner has a limited field of view it must be placed close to the horizontal
center of the model. When the projector is mounted above the scanner, the scanner
is caught in the projector’s beam, casting a shadow over part of the model. For small
to mid sized models, depending on the particular setup and the height of the scanner
and projector, this may not be a problem.

The shadow of the scanner can also be avoided with specialized short throw
projectors that allow greater installation flexibility through lens shifting. These
projectors (for example Canon WUX400ST) are capable of projecting from the
horizontal center of the projected area at the same height as the scanner (Fig. 2.1c).
A device which combines the scanner and projector would make this setup easy; an
appropriate device, however, was not available at the time of writing.

To minimize the distortion when using projectors with lower throw ratios, we
can project from the center by tilting the projector and correcting the resulting
keystone distortion (Fig. 2.1d). With this setup we recommend projectors that have
throw ratios around 1.0 (for example Epson PowerLite 1700 Series) as a lower ratio
can result in additional distortion. When testing the projector setup it is useful to
project the rectangular grid on a flat surface in order to quickly check if there is any
distortion.

2.1.3 Computer Requirements

System requirements depend largely upon the sensor and its associated library
or software development kit (SDK). Certain sensors, such as Kinect for Xbox,
are designed to work on specific operating systems with the producer’s SDK,
however open source drivers, namely libfreenect2 (Xiang et al. 2016), allow
users to run Kinect on other platforms. The preferred platform of Tangible Land-
scape is GNU/Linux distribution Ubuntu, see notes in Sect. 2.2.5. The computer
should be configured for 3D scanning and geospatial modeling, both of which are
performance- and memory-intensive processes. The hardware requirements are very
similar to the requirements for gaming computers: a multi-core processor, at least 4
GB of system memory and a good graphics card are necessary to achieve real-time
interaction with the model. The specific parameters required for the scanner device
should be reviewed on the manufacturer’s website.

2.1 Hardware 27

(a) (b)

(c) (d)

Fig. 2.1 Possible placements of the projector and scanner according to projector type: (a) standard
projector mounted in the ceiling, (b) standard short throw projector, (c) short throw projector
capable of projecting above the center, (d) short throw projector tilted to project above the center
with keystone correction

2.1.4 Physical Setup

The setup for Tangible Landscape system is quite flexible. However, there are
some crucial components and some specifics that make a setup more usable. When
building Tangible Landscape in the laboratory or when bringing it to the community
the following items are necessary:

• a table for a model
• a laptop or desktop computer with a table

28 2 System Configuration

• a scanner
• a projector
• 1–2 stands for a projector and a scanner
• 3–4 power plugs (and/or extension cable)

Ideally the table should be either a 90 cm × 90 cm square table with rounded corners,
a rounded table 100 cm in diameter, or a teardrop table of similar size. To freely
interact with the model a person should be able to almost reach the other side of the
table; this is not possible with larger tables. Smaller tables, on the other hand, have
less space for tools, additional sand, and application windows. Ideally application
windows with additional information should be projected onto the table beside the
model. A large model can be placed on top of a smaller table or stand, provided that
this base is stable. In this case if any application windows are needed, they have to
be projected directly onto the model.

A round table is quite advantageous because people can stand at equal distances
from the model and can easily move around the table. Unfortunately, one side of
the table is typically occupied by the metal stands for projector and scanner since
ceiling mounts are rarely possible and render the system immobile. The table should
be stable enough to hold sand and models and sturdy enough to withstand their
manipulation. We recommend putting the computer on a separate table so that
the modeling table is not cluttered. The more space there is around the modeling
table, the more access users have to the model. The computer, however, needs to be
situated so that its operator has easy access to the model as well.

An alternative is to use a rectangular table (ideally with rounded corners) that
is 140 cm × 90 cm for both the model and the laptop. A narrow table that is
150 cm × 75 cm may work as well. This setup makes the model less accessible as
at least two sides of the model are blocked. However, the whole model should be
accessible from any of the remaining sides, so this setup does not necessarily limit
interaction, but rather the number of users.

Sometimes it is advantageous to have a large screen showing additional data or
3D views to enhance users’ understanding of the processes. However, such screen
should not limit access to the physical model. Tangible Landscape could be also
extended with additional devices such as 3D displays, head-mounted displays, and
hand-held devices.

There should be at least 80 cm of space on each side of the modeling table so that
there is room for walking, standing, and placing the stands. The whole area required
is about 2.5 m × 2.5 m but in practice the area is often larger depending on the size
of the tables and the surroundings. Generally, it is better to have a larger open space
so that people can spread around the different sides of Tangible Landscape setup.

The projector and scanner can be mounted on one or two stands according to
projector’s capabilities as discussed in detail in Sect. 2.1.2. Two separate stands or
arms give enough flexibility to accommodate various types of projectors. In any
case, the stand for the projector must be robust because some of the projectors with
adequate parameters can be heavy. However, there exist some portable projectors
weighting less than 2 kg as well. A mobile setup with one stand and two separate

2.2 Software 29

Fig. 2.2 Mobile system setup: projector, scanner, model, laptop and optionally screen

tables is shown in Fig. 2.2, optionally a screen can be attached to the stand.
Figure 2.3 shows a similar setup with short throw projector. For permanent setups
the projector can be mounted in the ceiling.

2.2 Software

The software for Tangible Landscape consists of two main components:

• Module r.in.kinect is a GRASS GIS module which obtains depth and optionally
color data from Kinect sensor and processes it into a DEM and RGB rasters. It
can run in a loop to continually create new DEMs.

30 2 System Configuration

Fig. 2.3 Laboratory system setup with short throw projector and large physical model

• Tangible Landscape Plugin is a GUI plugin of GRASS GIS, which calls
r.in.kinect and runs selected geospatial analyses on the scanned DEMs as the
physical model is being scanned.

• GRASS GIS is the processing engine of Tangible Landscape, which provides all
the algorithms and libraries for geocomputation.

Tangible Landscape software is available in the GitHub repository2 under the
GNU GPL license.

2.2.1 GRASS GIS

GRASS GIS (Neteler and Mitasova 2008) is a general purpose cross-platform,
open-source geographic information system with raster, vector, 3D raster and image

2https://github.com/tangible-landscape/grass-tangible-landscape.

https://github.com/tangible-landscape/grass-tangible-landscape

2.2 Software 31

Table 2.1 Naming conventions for GRASS GIS modules with examples

Name Data type Examples

g.* General data management g.list, g.remove, g.manual

r.* Raster data r.neighbors, r.viewshed, r.cost

r3.* 3D raster data r3.colors, r3.to.rast, r3.cross.rast

v.* Vector data v.net, v.surf.rst, v.generalize

db.* Attribute data db.tables, db.select, db.dropcolumn

t.* Temporal data t.register, t.rast.aggregate, t.vect.extract

i.* Imagery data i.segment, i.maxlik, i.pca

processing capabilities. It includes more than 400 modules for managing and
analyzing geographical data and many more user contributed modules available
in the add-on repository. GRASS GIS modules can be run using a command-line
interface (CLI) or a native graphical user interface (GUI) called wxGUI which offers
a seamless combination of GUI and CLI native to the operating system.

Modules are organized based on the data type they handle and they follow
naming conventions explained in Table 2.1. Each module has a set of defined options
and flags which are used to specify inputs, outputs, or different module settings.
Most core modules using GRASS GIS C library are written in C for performance
and portability reasons. Other modules and user scripts are written in Python using
the Python Scripting Library which provides a Python interface to GRASS GIS
modules.

GRASS GIS software can be downloaded freely from the main GRASS project
website.3 The download web page offers easy to install binary packages for
GNU/Linux, Mac OS X, and Microsoft Windows as well as the source code. The
GRASS GIS website also provides additional documentation including manual
pages, tutorials, information about the externally developed modules (add-ons)
and various publications. Support for developers and users is provided by several
mailing lists. The following tutorial provides a quick introduction to GRASS GIS:
http://grass.osgeo.org/grass72/manuals/helptext.html.

2.2.2 GRASS GIS Python API

GRASS GIS provides several Python application programming interfaces (API) to
access different functionalities and accommodate many different use cases. Tangible
Landscape uses the Python Scripting Library to easily build new workflows by
chaining together existing GRASS GIS modules. We will show an example how
to use this library to automate tasks and build new functionality.

3http://grass.osgeo.org.

http://grass.osgeo.org/grass72/manuals/helptext.html
http://grass.osgeo.org

32 2 System Configuration

GRASS GIS modules are called with the following command syntax:

r.colors
︸ ︷︷ ︸

module name

-e
︸︷︷︸

flag

raster
︸ ︷︷ ︸

option name

=elev_state_500m
︸ ︷︷ ︸

option value

color=elevation

This command assigns a predefined color ramp elevation to the raster map
elev_state_500m. It can be executed in a GRASS GIS session from a terminal
or from a GRASS GIS GUI command console. The same command looks very
similar when written using the Python Scripting Library—it is just adjusted to
Python syntax. To run it we have to be in a GRASS GIS session and must first import
the necessary library.4 We will use function run_command to call individual
modules:

import grass.script as gscript
gscript.run_command('r.colors', flags='e',

raster='elev_state_500m', color='elevation')

Besides run_command, other important functions are read_command for read-
ing the raw module output, parse_command for reading module output already
parsed into a Python dictionary, and write_command for passing strings from
standard input. All GRASS GIS modules can be called using these functions.
However, for some commonly used modules the library conveniently provides
wrappers simplifying the syntax, such as the mapcalc function, a wrapper for the
r.mapcalc module.

The following code snippet is a complete Python script which provides a more
complex example using these functions. Here, we extract low-lying areas from a
DEM where the elevation z is lower than the difference zmean − zstddev :

import grass.script as gscript

def main():
input_raster = 'elevation'
output_raster = 'low_areas'
stats = gscript.parse_command('r.univar', map=input_raster,

flags='g')
mean = float(stats['mean'])
stddev = float(stats['stddev'])
low = mean - stddev
gscript.mapcalc('{out} = {inp} <

{lim}'.format(out=output_raster, inp=input_raster,
lim=low))

if __name__ == "__main__":
main()

More information on writing Python scripts in GRASS GIS can be found in the
online Python Scripting Library documentation.5

4All further Python code snippets assume the library is already imported to avoid code duplication.
5Python Scripting Library documentation: http://grass.osgeo.org/grass72/manuals/libpython/
script_intro.html.

http://grass.osgeo.org/grass72/manuals/r.mapcalc.html
http://grass.osgeo.org/grass72/manuals/libpython/script_intro.html
http://grass.osgeo.org/grass72/manuals/libpython/script_intro.html

2.2 Software 33

2.2.3 Scanning Module r.in.kinect

GRASS GIS add-on r.in.kinect processes raw data from Kinect sensor and processes
it through a series of transformations and filtering procedures to obtain a raster or
vector representation of the physical model. Add-on r.in.kinect is written in C++
and uses several open source libraries:

• libfreenect2 library6 for access to the color and depth image streams from Kinect
(Xiang et al. 2016),

• Point Cloud Library (PCL)7 for 3D image and point cloud processing; contains
numerous algorithms for filtering, segmentation and surface reconstruction (Rusu
and Cousins 2011),

• GRASS GIS library for writing raster and vector data and interpolation.

Using these libraries r.in.kinect performs the following basic steps with each
new scan:

1. acquiring the scan as a point cloud,
2. correcting tilting of the scanner through 3D rotation of the point cloud,
3. extracting only relevant points from the point cloud (filtering points outside the

model area),
4. filtering point cloud to remove outliers,
5. smoothing the point cloud to reduce noise in the data,
6. georeferencing (horizontal rotation, horizontal and vertical scaling, translation)

the scanned data to known geographic coordinates on the edges of the model,
7. reconstructing a raster digital elevation model using binning or interpolation

techniques.

Apart from processing the scans, r.in.kinect also performs the initial calibration
in two steps. In the first step it estimates the tilting of the sensor in respect to the
table with the model, and in the second step it detects the position of the model on
the table to estimate the cropping extent. After the calibration, the conversion from
the scanned point cloud to a DEM is an automated process; the process’ details,
and assumptions that have to be met to produce good results, are described in the
following paragraphs.

Calibrating Scanning Angle During scanning the scanner axis should be oriented
precisely perpendicular to the table with the model in order to avoid a tilted scan.
Even a small deviation of 1 degree can cause centimeters of height difference
depending on the size of the model (see Fig. 2.4a). Therefore, we first calibrate
the system by scanning the empty table and computing the angular deviation. We
then use this information to automatically rotate each scanned point cloud. We
use plane segmentation algorithm (Rusu and Cousins 2011) to extract the part of

6github.com/OpenKinect/libfreenect2.
7github.com/PointCloudLibrary/pcl.

34 2 System Configuration

Fig. 2.4 Even slight angular deviation from the vertical scanner axis will cause a tilted scan as
seen in (a) on a scan of a flat plane with a small angular deviation of 1.7°. A calibration based on
the initial scan of a flat plane can compensate for such angular deviations resulting in a horizontally
aligned scan as shown in (b) although a small radial distortion will still be present

the scanned point cloud representing the table and compute the parameters of the
resulting plane. We compute the angular deviation between the unit vector along
the scanner axis and the vector perpendicular to the plane. We then use Rodrigues’
rotation formula (Wikipedia 2015) to derive a rotation matrix to rotate the point
cloud by this angular deviation around a vector given as a cross product of the two
vectors. After calibration, the derived rotation matrix is used for rotating every scan
resulting in perfectly horizontal scan, see Fig. 2.4b. For more precise results, we can
also minimize the radial distortion of the scanner visible in Fig. 2.4b. The simplest
way to do this is to acquire a scan of a flat surface with the dimensions of the
physical model and then subtract it from the raster representation of the model. If
the scanner is moved the calibration must be repeated.

Calibrating Model Size and Position Since the scanner captures objects around
the physical model, we need to find the boundaries of the model and crop the point
cloud by this 3D bounding box in order to georeference it. We first automatically
estimate the distance of the scanner from the table where the model will be placed
by using plane segmentation algorithm. This value represents the bottom part of the
bounding box and allows us to filter the points representing the table (Fig. 2.7a).
The horizontal extent of the model is then estimated by identifying the physical
model from the scan using Euclidean Cluster Extraction (Rusu and Cousins 2011),
and obtaining a 2D bounding box of the identified cluster. Each scanned point
cloud is then trimmed using this bounding box, which is slightly enlarged in order
to accommodate cases when the model is accidentally moved during scanning.
The coordinates of the bounding box can also be specified manually in case the
calibration is not suitable for certain models.

2.2 Software 35

Sometimes the edges of physical models are uneven because of sand falling
off the sides of the model, which can cause slightly incorrect georeferencing.
In those cases additional trimming of the edges may be desirable. This can be
successfully done automatically when the model is rectangular, since we can
compute a frequency distribution of scanned points of the model in x and y
dimensions, and then trim the areas that do not contain enough points with a given
threshold from each side of the model (Fig. 2.7c).

Georeferencing Georeferencing the scanned model is an important step when we
need to combine it with our geographic data and to ensure that any geospatial
analyses are performed on a DEM with real-world dimensions. We need to designate
the DEM raster map that the model represents and specify the vertical exaggeration
of the physical model to scale the elevation values properly. The scale factors Sx , Sy

and Sz are computed:

Sx = Xeast − Xwest

xmax − xmin

, Sy = Ynorth − Ysouth

ymax − ymin

, Sz = (Sx + Sy)/2

e
(2.1)

where X, Y are DEM (real-world) coordinates, x, y are coordinates on the physical
model and e is the specified vertical exaggeration. The vertical scale of the model
typically differs from the horizontal because we vertically exaggerate the physical
model to enhance our perception of the landscape and simplify our interaction with
the model. Since Tangible Landscape users usually interact with the physical model
from the side opposite to the scanner we have to rotate the scan by 180 degrees in
the z-axis. We can georeference the point cloud with the following equation:

⎡

⎣

X

Y

Z

⎤

⎦ =
⎡

⎣

Sx 0 0
0 Sy 0
0 0 Sz

⎤

⎦ ·
⎡

⎣

cos α − sin α 0
sin α cos α 0

0 0 1

⎤

⎦ ·
⎡

⎣

x

y

z

⎤

⎦ +
⎡

⎣

tx

ty

tz

⎤

⎦ (2.2)

which rotates the points around the z axes by angle α in the counterclockwise
direction, scales to real-world dimensions, and translates the points by adding tx
and ty computed so that the lower left corner of the model matches the south-west
corner of the DEM. The vertical translation tz is then similarly computed to match
the lowest point of the model and the minimum height of the DEM.

DEM Processing One of the challenges of DEM reconstruction specific to Kinect
is the high noise present in each scan. Certain points of the point cloud are marked
as invalid and therefore simple to filter out, others called flying pixels (Sarbolandi
et al. 2015) can be removed using neighborhood statistics filter, which identifies
outliers based on their distance to their k-nearest neighbors (Rusu and Cousins
2011). Further, by applying Moving Least Squares (MLS) surface reconstruction
method (Alexa et al. 2003), the point cloud can be resampled and smoothed. The
smoothing may vary depending on the application, for example, high smoothing is
desired for water flow analysis, but less suitable for solar analysis in urban context.

36 2 System Configuration

The point spacing, which determines ideal resolution of the reconstructed DEM,
depends on the distance from the scanner, however for most cases 2–3 mm as
cell resolution is a suitable value. Note that this resolution is later scaled after
georeferencing based on the model scale. Based on the height h of Kinect above
the model and Kinect’s specifications, the actual point spacing a can be computed:

a = h · tan

(

70.6°

512

)

, hmin = 0.5 m

So for example for height 0.7 m above the model, the point spacing is 1.7 mm.
For creating the DEM from the point cloud we allow users to select either binning

or interpolation (see Sect. 6.1). To avoid large number of empty cells, resolution
value for binning must be slightly larger than the points spacing value. Interpolation
is generally slower, however ensures no empty cells, smoother surface, and allows
more flexibility in choosing resolution value. Another approach to improve the DEM
quality is to integrate more than one scan into the DEM; this is especially useful
when the model has smaller, but important features, which need to be captured
(for example markers described in Chap. 4). However, increasing number of points
necessarily increases the processing time.

Color Processing Since Kinect provides also color information, we can obtain
RGB values together with the depth values. Module r.in.kinect then writes red, green
and blue components as separate raster layers using binning method. See Sect. 4.4
for examples of using color information to define areas of certain properties.
Alternatively, color can be used for tracking laser pointer as the brightest point on
the model, which can be used for drawing points, lines or areas. Kinect unfortunately
does not allow any control of exposure, often resulting in underexposed or overex-
posed images. To obtain good results, it is often necessary to manipulate ambient
light, brightness of the projector, or the color of the surface on which the physical
model lies.

Scanning Speed and Accuracy Tangible Landscape’s speed depends upon the size
of the model, the point cloud processing methods, and the analyses chosen. Table 2.2
compares approximate times for different point cloud processing methods (binning
and interpolation) and analyses (e.g., simulated water flow) for small and medium
sized models.8 If a user interacts with Tangible Landscape immediately after a scan
has been captured, then they will have to wait for that scan to be processed before
their change will be processed potentially doubling the total processing time.

Figure 2.5 shows an accuracy assessment of scanning, where we compared the
difference between original digital elevation model and the scanned and interpolated
elevation of a digitally fabricated physical model of the same landscape. Higher
differences are to be expected in areas of higher slopes and sharp changes in
topography.

8Benchmarks were performed using a System76 Oryx Pro with i7-6700HQ processor, 16 GB
DDR4 RAM, M.2 SSD storage (540 MB/s read, 520 MB/s write), NVIDIA GeForce GTX 1060
Ubuntu 16.04 LTS (64-bit), GRASS GIS 7.2, and Tangible Landscape 2c1ede9.

http://grass.osgeo.org/grass72/manuals/r.in.kinect.html

2.2 Software 37

Table 2.2 Scanning speed
for different model sizes

Size, Process Small Medium

Physical size 23.5 cm × 23.5 cm 34 cm × 34 cm

Cells 13,456 26,235

Binning 0.51 s 0.71 s

Interpolation 0.74 s 0.97 s

Water flow 0.29 s 1.05 s

Contours 0.05 s 0.06 s

Difference 0.04 s 0.04 s

Landforms 0.03 s 0.08 s

Fig. 2.5 Accuracy assessment: the difference between original digital elevation model and the
scanned elevation of a digitally fabricated physical model of the same landscape. The mean
difference is −0.02 ± 0.7 mm and the interquartile range is 0.7 mm. The scanned elevation is
higher than the original digital elevation model in blue areas and lower in red areas. Legend values
are in millimeters

2.2.4 Tangible Landscape Plugin for GRASS GIS

The Tangible Landscape plugin connects the scanning component with GRASS
GIS and automates the loop of scanning, importing scans, and geoprocessing in
the GRASS GIS environment. It has a graphical user interface which allows the
adjustment of the different processing parameters that are necessary to properly
georeference and extract the model (Fig. 2.6).

Plugin dialog can be opened from GRASS GIS command console by typing:

g.gui.tangible

38 2 System Configuration

Fig. 2.6 Tangible Landscape plugin dialog (appearance depends on operating system)

The first two buttons of the topmost button group start and stop the continuous
scanning process. Since stopping and restarting the process takes up to several
seconds and switches off the scanner, it is often advantageous to use the Pause button
to just temporarily stop the processing of the scan while keeping the scanner running
and at the same temperature preventing measurement drift. Scan once launches the
scanning process in a single-scan mode, which is useful when continuous scanning
is not needed.

Scanning Tab There are several tabs below the buttons to parametrize different
aspects of scanning and analysis. Parameters in scanning tab are grouped based
on their effect on scan geometry, georeferencing and reconstructed DEM quality,
and they reflect the parameters of r.in.kinect module. Scan geometry refers to the
relative position of the scanner and the physical model. It includes the rotation along
z-axis, which is used when the scanner is oriented differently than the model, and
the coordinates of the 3D bounding box (relative to the scanner position) limiting
the scanned point cloud (Fig. 2.7a, b). These values can be in most cases calibrated
automatically. The Trim tolerance value can optionally be used to automatically find
best edges of a rectangular model for each scan, which makes georeferencing of the
model more precise in case of lying sand or other objects around the model or hands
reaching over the model.

2.2 Software 39

Fig. 2.7 Finding the boundaries of the physical model: (a) setting vertical limits for scanning the
physical model (distances from the scanner) and (b) setting horizontal limits (horizontal distances
from the scanner in north, south, east, and west direction). Automated trimming of edges (c) of a
rectangular model finds exact edges of the model to make georeferencing less sensitive to objects
and hands around the model

Georeferencing options allow us to determine the geographical location and
extent the model represents by providing a reference DEM (or alternatively a
named GRASS region). Since we often vertically exaggerate the physical model
to highlight terrain features, we can specify the exaggeration factor, which is used
subsequently for correcting the scanned digital DEM, in order to run simulations on
landscapes without exaggeration.

There are several parameters which influence the quality of the reconstructed
DEM, including the number of scans integrated into the final DEM, level of smooth-
ing, reconstruction method (binning or interpolation), and DEM resolution. Certain
applications, such as water flow modeling, can benefit from highly smoothed,
interpolated surface, while change detection typically works well even with rougher
binned surface, which is faster to reconstruct. We can change all these parameters
during scanning to see the resulting DEM and select the optimal combination of
parameters.

Output Tab In Output tab we can specify the names of the scanned DEM (the
default is scan) and the prefix for the three color raster layers (red, green and blue
channels) if we need them. Besides the R, G, B raster layers, GRASS imagery
group named as the specified prefix is created to allow using the color outputs easily
with GRASS imagery modules. For cases when a point cloud is more advantageous
representation, a PLY file can be automatically exported. In all cases, each new scan
overwrites the previous files.

Analyses Tab This section allows to customize the geospatial analyses running for
each scan. Here you can specify the path to your Python file where you call all your
analyses. The button Create new file with predefined analyses creates a new Python
file which already contains examples of analyses that can be used as they are, or as
a starting point for more complex workflows. The file contains several functions

40 2 System Configuration

Table 2.3 Available parameters of functions ran for each scan

Function parameter Purpose

real_elev Name of the reference DEM

scanned_elev Name of the scanned DEM

scanned_color Basename for the RGB rasters, imagery group name

blender_path Directory monitored by Blender (Sect. 5.3)

zexag Currently set vertical exaggeration

eventHandler Used for updating dashboards (Sect. 14.1)

env Environment for running modulesa

aDefines computational region matching the scan, and other environment variables controlling
overwriting outputs and verbosity level

(initially commented out), where each function represents separate analysis, for
example:

def run_contours(scanned_elev, env, **kwargs):
analyses.contours(scanned_elev=scanned_elev,

new='contours_scanned', env=env, step=2)

Uncommenting this function activates contour computation with contour
interval of 2 vertical units (the suitable interval depends on your reference
DEM). Once Tangible Landscape runs, after each scanning cycle a vector map
contours_scanned (the name can be changed) is created. You can add that
vector map to the Map Display. During scanning you can add new functions
or change the code of the functions, for example to adjust the contour interval,
and once the file is saved the change is adopted. This enables us to dynamically
develop and test new workflows during scanning. Each function is independently
run for each scan. The function name must start with prefix run_ and has several
parameters, where some of them don’t have to be listed as they are useful only for
specific workflows (Table 2.3):

def run_myanalysis(real_elev, scanned_elev, scanned_color,
blender_path, zexag, eventHandler, env, **kwargs):
do computation

The plugin provides a library containing often used analyses and workflows
which can be readily used and combined with other GRASS GIS functionality. The
analyses can be scripted using GRASS GIS Python API (see Sect. 2.2.2). Additional
examples of analyses can be found on GRASS GIS Wiki.9

Drawing Tab Tangible Landscape allows using laser pointer to draw points, lines
and polygons on the model. This tabs allows you to activate this functionality and
select which vector type to draw. While drawing, r.in.kinect looks in a loop for

9https://grasswiki.osgeo.org/wiki/Using_GRASS_GIS_through_Python_and_tangible_
interfaces_(workshop_at_FOSS4G_NA_2016)#Tangible_Landscape.

http://grass.osgeo.org/grass72/manuals/r.in.kinect.html
https://grasswiki.osgeo.org/wiki/Using_GRASS_GIS_through_Python_and_tangible_interfaces_(workshop_at_FOSS4G_NA_2016)#Tangible_Landscape
https://grasswiki.osgeo.org/wiki/Using_GRASS_GIS_through_Python_and_tangible_interfaces_(workshop_at_FOSS4G_NA_2016)#Tangible_Landscape

2.2 Software 41

the brightest point (sum of R, G, and B values) above certain threshold and keeps
recording it until the drawing is ended. Then the vector layer is created and can be
used in further workflows. This method is fairly sensitive to the overall brightness
and ambient light, therefore the threshold value needs to be tested and adjusted
whenever the conditions change.

Activities Tab When using Tangible Landscape as a teaching tool, it is advanta-
geous to go through several exercises and demonstrations of geospatial concepts.
In order to quickly switch between these different analyses, we can define separate
activities, where each activity is defined by Python file with analyses, map layers
loaded in the beginning of each activity, scanning parameters, optional simple
dashboard and slides accompanying the activity. These components are specified
in JSON configuration file, which is described on Tangible Landscape wiki.10

2.2.5 Tangible Landscape Plugin Installation

Since Tangible Landscape is currently not packaged, we describe here the general
steps for its compilation on any platform. Some experience with compilation is
advantageous.

1. Install (either compile or use packaged) dependencies, namely Point Cloud
Library v1.8, libfreenect2 v0.2, GRASS GIS v7.4 using each project’s instal-
lation instructions.

2. Download and compile r.in.kinect.
3. Install Tangible Landscape plugin using GRASS module g.extension, alterna-

tively download and compile it yourself.

In the Tangible Landscape repository we provide installation script for
GNU/Linux distribution Ubuntu, which is the preferred platform for Tangible
Landscape. The installation is then simplified into a few lines:

mkdir dev && cd dev
wget https://raw.githubusercontent.com/tangible-landscape/grass\
-tangible-landscape/master/install.sh
sudo sh install.sh

The script would be similar for Mac OS, however we recommend using home-
brew package manager11 for installing dependencies. Compilation on Windows
platform requires extensive experience and is not recommended.

10https://github.com/tangible-landscape/grass-tangible-landscape/wiki/Working-with-Activities.
11https://brew.sh/.

http://grass.osgeo.org/grass72/manuals/r.in.kinect.html
http://grass.osgeo.org/grass72/manuals/g.extension.html
https://github.com/tangible-landscape/grass-tangible-landscape/wiki/Working-with-Activities
https://brew.sh/

42 2 System Configuration

References

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., & Silva, C. T. (2003). Computing and
rendering point set surfaces. IEEE Transactions on visualization and computer graphics, 9(1),
3–15.

Andersen, M., Jensen, T., Lisouski, P., Mortensen, A., Hansen, M., Gregersen, T., & Ahrendt, P.
(2012). Kinect depth sensor evaluation for computer vision applications. Technical Report,
Aarhus University, Department of Engineering. Denmark.

Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., & Arias, P. (2013).
Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6),
1800–1806.

Lachat, E., Macher, H., Mittet, M.-A., Landes, T., & Grussenmeyer, P. (2015). First experiences
with Kinect V2 sensor for close range 3D modelling. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4(February), 93–
100.

Mutto, C., Zanuttigh, P., & Cortelazzo, G. (2012). Introduction. In Time-of-flight cameras
and microsoft kinect (TM). Springer briefs in electrical and computer engineering (pp. 1–15).
Boston, MA: Springer US.

Neteler, M., & Mitasova, H. (2008). Open source GIS: A GRASS GIS approach (3rd ed.). New
York: Springer.

Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China.

Sarbolandi, H., Lefloch, D., & Kolb, A. (2015). Kinect range sensing: Structured-light versus
time-of-flight kinect. Computer Vision and Image Understanding, 139, 1–20.

Wasenmüller, O., & Stricker, D. (2017). Comparison of kinect V1 and V2 depth images in terms
of accuracy and precision. In C.-S. Chen, J. Lu, & K.-K. Ma (Eds.), Computer Vision – ACCV
2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20–24,
2016. Revised Selected Papers, Part II (pp. 34–45). Cham: Springer International Publishing.

Wikipedia (2015). Rodrigues’ rotation formula — wikipedia, the free encyclopedia [online].
Accessed 13.08.2015. https://en.wikipedia.org/w/index.php?title=Rodrigues%27_rotation_
formula&oldid=671556479

Xiang, L., Echtler, F., Kerl, C., Wiedemeyer, T., Lars, hanyazou, Gordon, R., Facioni, F.,
laborer2008, Wareham, R., Goldhoorn, M., alberth, gaborpapp, Fuchs, S., jmtatsch, Blake, J.,
Federico, Jungkurth, H., Mingze, Y., vinouz, Coleman, D., Burns, B., Rawat, R., Mokhov,
S., Reynolds, P., Viau, P., Fraissinet-Tachet, M., Ludique, Billingham, J., & Alistair (2016).
libfreenect2: Release 0.2. https://doi.org/10.5281/zenodo.594510

https://en.wikipedia.org/w/index.php?title=Rodrigues%27_rotation_formula&oldid=671556479
https://en.wikipedia.org/w/index.php?title=Rodrigues%27_rotation_formula&oldid=671556479
https://doi.org/10.5281/zenodo.594510

Chapter 3
Building Physical 3D Models

Tangible Landscape works with many types of physical 3D models. When used
to sculpt topography the physical model should be built of a malleable material
such as sand or clay so that users can easily deform the surface. When used for
object recognition the physical model can be built of a rigid material such as a
wood product, foam, plastic, or resin. When both modes of interaction are combined
the physical model should use malleable materials for the base and rigid materials
for the objects. These models can be built by hand or digitally fabricated using
3D printing or computer numerically controlled (CNC) manufacturing (Fig. 3.1).
Tangible Landscape’s difference analytic can be used as an aid for hand-making
models. The final model should be opaque, have a light color, and have a matte
finish so that the projected image is crisp and vivid. The final model should be
opaque, have a light color, and have a matte finish so that the projected image is crisp
and vivid, since transparent materials such as acrylic cannot be 3D scanned. Some
3D printing and casting materials like resin may appear opaque, but have translucent
properties—this will diffuse the projection. If we desire a very crisp and vivid image
on a rigid model made of wood products or resins we recommend painting the model
white. In this chapter we discuss different types of physical models and explain how
to fabricate them.

3.1 Handmade Models

Rigid physical models can be handmade by hand-cutting contours and malleable
physical models can be handmade by sculpting sand or clay.

Contour Models Contour models can be precise if they are finely cut, but they are
inaccurate as they depict abstract, stepped landscapes that are discrete rather than
continuous. They are also very legible—one can easily count the contours and read
the height—but again they represent abstracted landscapes. While one can easily

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_3&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_3

44 3 Building Physical 3D Models

Fig. 3.1 A CNC routed model of the Sonoma Valley, California

read the contours and then calculate slope, it is hard to intuitively visualize the
slope. Furthermore this abstract, discontinuous representation may obfuscate the
relationship between form and process. Furthermore they are time consuming and
complicated to construct especially for complex topographies. Hand cutting contour
models can be dangerous as the knife may slip or jump.

Contour models can be made out of stacked boards of paperboard, cardboard,
foam, or a soft wood like balsa or basswood. The thickness of the sheets should
correspond to the vertical interval between contours at the desired map scale. To
build a contour model by hand start by plotting a contour map at the desired map
scale. Then spray the plotted paper map with a spray mount adhesive, and stick
the plotted map onto a board. As an alternative to plotting and mounting, we can
instead project the contour map. Cut out the lowest contour level with a precision
knife such an x-acto. Glue this contour level onto the base or the level below. Repeat
this process until all of the contour levels have been cut out and stacked together.

Hand Sculpted Models Hand sculpted sand and clay models are natural, intuitive,
and even fun to make, but are imprecise and hard to read quantitatively. When
sculpting by hand we not only see, but also feel the 3-dimensional form, using
our highly developed kinaesthetic intelligence to better understand the space. While
tools can help us to cut sharp edges, shape certain forms, and smooth surfaces,
sculpting with our hands alone lets us feel the shape of the topography and get an
intuitive understanding of its form undistorted by perspective and depth perception.
Because these models are continuous they could—if sculpted well—accurately
represent the topography, but as they lack discrete intervals it is challenging to
quantitatively judge distances and heights. Because it is so natural and easy to make,
but challenging to read quantitatively freeform hand modeling is better suited to
ideation than detailed design or presentation.

While hand sculpted models have traditionally been made out of sand or clay,
we recommend using polymer enriched sand. Clay holds form well, but can be
sticky and hard to work with. Sand, though easy to move, does not hold a shape
well—sculpt too steep a slope and it will slump, the grains avalanching down.
Polymeric sand is easy to work with and holds together well without sticking to

3.2 Digitally Fabricated Models 45

Fig. 3.2 Sculpting a polymeric sand model with the aid of a projected elevation map and contours

our hands. It is not only easy to sculpt, but also easy to cast into precise forms.
We will discuss methods for casting sand in digitally fabricated molds in Sect. 3.3.
We use the product DeltaSand, which is also marketed as Kinetic Sand. It is made
by mixing sand with a low-viscosity polymer and a cross-linking agent, resulting
in a sand with the plasticity, moldability, adhesiveness, and longevity required for
sculpting (Modell and Thuresson 2009).

Tangible Landscape can be also be used as an aid for hand sculpting models.
Users can project the digital elevation model and contours that they want to build
over their polymeric sand model as a static guide for sculpting (Fig. 3.2). They can
also use Tangible Landscape’s DEM differencing as a real-time guide about where
to add or remove sand. This analysis computes the difference between the target
digital elevation model and the scanned model that has been sculpted (Fig. 3.3). See
Sect. 6.2.2 for a detailed description of DEM differencing.

3.2 Digitally Fabricated Models

Complex physical models for Tangible Landscape can be digitally fabricated with
CNC routing or 3D printing. Digitally fabricated models are rigid and precise—
while they can not easily be sculpted, they are ideal presentation models, base
models for object recognition, and molds for casting malleable models. CNC

46 3 Building Physical 3D Models

Fig. 3.3 Hand sculpting a terrain model from polymer enriched sand with the aid of Tangible
Landscape’s DEM differencing where blue is too low and red is too high: (a) unsculpted sand
showing major differences, (b) sculpting the sand to reduce differences, (c) intermediate model
with moderate differences, (d) and final terrain model with minimal differences

machines such as laser cutters, routers, and 3D printers require digital instructions,
a controller to decode the instructions, and a machining tool. Machining processes
include subtraction with routers, addition with 3D printers, and deformation and
molding with vacuum formers (Schodek et al. 2004; chap. 13). In this section we
will explain how to prepare GIS data for digital fabrication and discuss various
methods of digital fabrication. Section 3.4 describes workflows for creating models
using these methods.

3.2.1 Digital Models

Terrain and other continuous, 3D geographic data can be digitally represented as
3D points, 2.5D rasters, 3D rasters, contours, meshes, or surfaces. In GRASS GIS
our workflows for landscape modeling and analysis are raster based. 3D printers
and CNC routers, however, require vector data, typically meshes. After acquiring
elevation data we import them into GRASS GIS and if necessary we interpolate a
raster digital elevation model (DEM). This raster will later be used as the reference
data for Tangible Landscape. Next, we export the raster as a point cloud and import
it into a 3D modeling program to compute a surface, mesh, or solid from the point
cloud. Finally, we generate a toolpath from the surface or mesh for the 3D printer or
CNC router.

3.2 Digitally Fabricated Models 47

Digital Elevation Models The first step in modeling a landscape is to acquire
data. Entire landscapes can be precisely 3D scanned as point clouds with airborne
lidar. As pulses of light are emitted from the aircraft they hit and reflect back from
vegetation, structures, and topography. When a pulse of light hits a tree part of the
light is reflected and recorded as the first return, while the rest penetrates the outer
canopy. The residual pulse, recorded as a series of returns, reflects off of leaves,
branches, shrubs, and the ground. Lidar data can be used to compute very precise,
high resolution models. By filtering lidar returns and classes we can extract points
for the bare earth topography and interpolate a raster DEM or we can extract points
with all of the structures and vegetation and interpolate a raster digital surface model
(DSM). Lidar point clouds or ready to use raster DEMs are available for many
locations and are well suited for building topographic models (see Appendix A.2
for links to lidar data and DEM repositories).

DEMs—raster maps of bare earth topography—and DSMs—raster maps of
topography with structures and vegetation—are commonly used in GIS to represent
and analyze terrain as they can easily be mathematically transformed. For example
topographic parameters such as slope, aspect, and curvature can be computed from
the partial derivatives of a function approximating a DEM or DSM (see Chap. 6).

Lidar, especially when filtered by classes or returns, can produce scattered,
spatially heterogeneous data points that are challenging to accurately interpolate
as terrain surfaces. Furthermore, other sources of elevation data such as digitized
contours and surveying data can be clustered and have a highly spatially heteroge-
neous distribution. The regularized spline with tension (RST) interpolation function,
implemented as the v.surf.rst module in GRASS GIS, can be used to accurately
model terrain surfaces from clustered and heterogeneous data such as lidar with
some experimentation and tuning (see Sect. 6.1.2).

Contour data are challenging to interpolate because the data are spatially
heterogenous—they are often very dense along the contour lines with large unsam-
pled areas in regions with flat topography. If we acquire digital contour data we can
either linearly interpolate between contours with r.surf.contour or thin the points
along contours using v.generalize, convert them to a point representation and then
interpolate them using a function like RST with the module v.surf.rst (The GRASS
GIS Community 2015).

Meshes Terrain can also be modeled in 3D vector representations such as polygon
meshes or mathematically defined surfaces. In a mesh a vector network of polygons
such as triangles or quadrilaterals forms a shape. Terrain meshes are typically
triangulated irregular networks (TINs) that connect the data points from which
they are computed. Triangulation was used to manually interpolate contours from
surveyed spot elevations before the advent of computers. Now TINs are typically
computed using the Delaunay triangulation algorithm which maximizes the smallest
angle of every triangle in order to minimize the occurrence of very thin triangles.
Since TINs connect the data points the input data is preserved. When meshes are low
resolution, i.e. computed from small datasets, they reveal their polygonal structure
with angled planes where there should be curved surfaces. When meshes are high

http://grass.osgeo.org/grass72/manuals/v.surf.rst.html
http://grass.osgeo.org/grass72/manuals/r.surf.contour.html
http://grass.osgeo.org/grass72/manuals/v.generalize.html
http://grass.osgeo.org/grass72/manuals/v.surf.rst.html

48 3 Building Physical 3D Models

resolution, i.e. computed from large datasets, they can be very detailed and represent
highly complex forms. Even a high resolution mesh, however, is inaccurate when
used to represent curved slopes as planar faces. Meshes are very useful for modeling
structures and engineered topography with discontinuous slopes.

NURBS Non-uniform rational B-splines (NURBS) are parametric approximation
curves and surfaces defined by a series of polynomials. The curves are basis
splines defined by a knot vector, weighted control points, and the curve’s order
or degree (Piegl and Tiller 1995). A NURBS surface is the tensor product of
two NURBS curves (Martisek and Prochazkova 2010). Since NURBS surfaces are
mathematically defined they can precisely describe a continuous geometry.

Processed lidar data and rasters can be exported as point clouds from GIS and
then imported into a 3D modeling program for meshing or surface generation.
Toolpaths for CNC routing can be generated for a mesh or NURBS surface once it
has been scaled. 3D printing, however, requires closed, solid volumes so the terrain
surface should be offset or extruded to give it a thickness. Most 3D printers read the
stereolithography (.stl) format, a mesh representation of a solid.

We typically use Rhinoceros for 3D modeling1 with the RhinoTerrain plugin for
terrain modeling2 and the RhinoCAM plugin for CNC routing.3 This proprietary
3D modeling program is useful for its interoperability—it can write and read a wide
range of formats and can model NURBS, polygon meshes, solids, and point clouds.
The RhinoTerrain plugin has modules for importing and exporting geographic
data and efficiently computing large terrain meshes. While many computer aided
manufacturing (CAM) programs require polygon meshes, the RhinoCAM plugin
enables us to generate and simulate CNC toolpaths in Rhinoceros using NURBS,
polygon meshes, or solids. The Rhino3DPRINT plugin can be used to prepare
models for 3D printing.4 Alternatives include a proprietary 3D modeling and
animation program,5 or MeshLab, an open source mesh processing program.6

3.2.2 Laser Cutting

Laser cutting can be used to efficiently build precise contour models of moderate
complexity (Fig. 3.4). Laser cutters are CNC machines that use a laser moving
along a gantry in the x and y axes to make 2D cuts. To laser cut a contour model
we separate each contour step onto different layers of a 2D vector drawing in a

1Rhinoceros: http://www.rhino3d.com/.
2RhinoTerrain: http://www.rhinoterrain.com/.
3RhinoCAM: http://mecsoft.com/rhinocam-software/.
4Rhino3DPRINT: http://mecsoft.com/rhino3dprint/.
5Maya: http://www.autodesk.com/products/maya/overview.
6MeshLab: http://meshlab.sourceforge.net/.

http://www.rhino3d.com/
http://www.rhinoterrain.com/
http://mecsoft.com/rhinocam-software/
http://mecsoft.com/rhino3dprint/
http://www.autodesk.com/products/maya/overview
http://meshlab.sourceforge.net/

3.2 Digitally Fabricated Models 49

Fig. 3.4 A laser cut chipboard contour model with basswood buildings fabricated by David
Koontz and Faustine Pastor

computer-aided design (CAD) format (like .dwg, .dxf, or .ai). We cut each
contour step out of a sheet of our material of choice and glue them together. We
can also laser etch elevation values, patterns, and line work like road outlines
and building footprints onto each layer. While it is easy to precisely cut complex
topographies it is still challenging to construct them as we have to lay and glue each
piece by hand.

The materials determine the cost. As this is a subtractive method a lot of material
is wasted. Contour models cut from thick, low-cost materials like cardboard are
relatively inexpensive, but have large contour steps and thus low resolution. Models
cut from thin, low-cost materials like chipboard allow for small contour steps at
moderate cost, but tend to warp with time especially if too much glue has been
applied. When aesthetics and archivability are important museum board or acrylic
can be cut to create presentation-quality laser cut contour models. Paper-based
media such as chipboard or museum board are not suitable for casting polymeric
sand as the polymer will stick and soak into them.

50 3 Building Physical 3D Models

Fig. 3.5 A CNC routed terrain model of the Jockey’s Ridge dune complex on the Outer Banks of
North Carolina

3.2.3 CNC Routing

CNC routing or milling is a subtractive fabrication process that can be used to
precisely manufacture contour models and surface models of great complexity
(Fig. 3.5). This type of digital fabrication is a precise, accurate, inexpensive, and
scalable way to build terrain models. 3-axis CNC routers and milling machines
move a spindle with a machining bit along the x, y, and z axes in a programmed
path to carve a shape out of a block of material (Fig. 3.6). Because 3-axis routers
can only carve vertically they produce 2.5D surface models on a solid base, rather
than full 3D volumetric models. It is possible, however, to manufacture fully 3D
volumes with 3-axis routers; after each cut one can reorient the model and then
route the sides or bottom of the model (Schodek et al. 2004; chap. 14).

To CNC route a terrain model we first prepare a solid block of our material. We
can use materials such as foam, wax, and wood products. We typically use medium
density fiberboard (MDF), an engineered wood product with high strength, good
dimensional stability, and a fine, uniform grain with minimal voids. Some suppliers
manufacture blocks of MDF up to 4-in. thick. If your suppliers only stock 0.25-
and 0.5-in. thick sheets of MDF, then you can create a block of custom thickness
by cutting the sheets into tiles that match the desired extent of our scale model,

3.2 Digitally Fabricated Models 51

Fig. 3.6 A 3-axis CNC router carving a terrain model

Fig. 3.7 Preparing MDF for CNC routing: (a) pour glue onto a layer of MDF, (b) spread glue
evenly over a layer of MDF, (c) stack layers of MDF, (d) clamp the stack of MDF, (e) add a weight
on top of the stack of MDF, and (f) wait for the glue to dry

spreading wood glue evenly over each tile and stacking the tiles together, and firmly
clamping the stack of tiles together until the glue sets (Fig. 3.7). MDF is relatively
inexpensive and very durable, but is heavy, only machines moderately well, and
the particulate produced during machining is a serious health hazard. Low density
polystyrene foams are inexpensive and lightweight, but machine poorly and are not

52 3 Building Physical 3D Models

Table 3.1 CNC settings: horizontal rough cut with MDF

Step Stepover

Bit ∅ (in.) Speed Plunge Approach Engage Cut Retract Depart. down (in.) (%)

0.5 16,000 65 135 205 275 800 800 0.32 48

0.25 16,000 50 75 125 175 800 800 0.25 40

Table 3.2 CNC settings: parallel finish cut with MDF

Bit ∅ (in.) Speed Plunge Approach Engage Cut Retract Departure Stepover (%)

0.5 16,000 65 160 230 325 800 800 20

0.25 16,000 50 100 150 225 800 800 20

durable. Typically polystyrene foams are manufactured in colors such as light blue
and pink that are not suitable for terrain models. These foams dissolve if spray
painted, unless a water-based paint is used or the foam is primed prior to painting.
Medium and high density polyurethane foams such as RenShape are designed for
high precision machining. These foams are manufactured in sheets and blocks up
to 4-in. thick. They are relatively light weight, machine finely—producing very
detailed models—but can be very expensive. We often use RenShape 5020 foam
board for its weight, machinability, color, and cost.

In a CAD program we prepare a digital model of the geometry we wish to carve.
Then we generate a toolpath for this digital model in a CAM program. To make a
contour model we use closed, 3D contour curves as our data and then carve with a
contour cut. Contour cutting can also be used to carve buildings. To carve a surface
model from a mesh or NURBS surface we use parallel cuts. For a surface model
we typically start with a horizontal rough cut with a 0.5 in. diameter, carbide bit to
remove the bulk of the excess material (Table 3.1). Then we use a parallel finish cut
with a 0.25 in. diameter, carbide, ball-nose bit to carve the terrain as a continuous
surface (Table 3.2). If we need a more refined presentation-quality model we then
make two more parallel finish cuts in alternative cutting directions with a 0.125 in.
diameter, carbide, ball-nose bit to smooth the surface and capture more detail.
Finally a contour cut along the border can be used to neatly trim and remove the
model from the base material. The toolpath is written as a sequence of instructions
in a CNC programming language often as a .nc file in G-Code. The CNC machine’s
controller reads this code and drives the tool along the toolpath carving our model.
We have a streamlined workflow using Rhinoceros with the RhinoCAM plugin for
both 3D modeling and the generation, simulation, and visualization of toolpaths.
We do our CAD and CAM in the same environment—Rhinoceros—so that we can
easily edit our models and work with both meshes and NURBS.

Once the model has been routed we may want to finish it by sanding, priming,
and painting the model. Sanding the model, a prerequisite for priming and painting,
with a fine grit sandpaper produces a smoother surface. After routing and sanding we
clean the model with an air hose. Applying several coats of magnetic primer to our
model weakly magnetizes it so that magnetized markers stick to the slopes (Fig. 3.8).

3.2 Digitally Fabricated Models 53

Fig. 3.8 A marker with a magnetic base sticking to CNC-routed terrain model primed with
magnetic paint

A magnetized model is useful for Tangible Landscape applications relying on object
recognition rather than sculpting (Sect. 4.3). Finally we may want to spray paint our
model white to enhance the brightness of projected imagery.

3.2.4 3D Printing

With 3D printing, a type of solid freeform fabrication, we can make a complex,
3D volume in a single run. While the models can be precise, accurate, and highly
complex, they are also expensive and small as 3D printers have restrictively small
build areas and the materials are relatively expensive. 3D printing is an ideal process
for fabricating small, complex models such as buildings or small, high quality
presentation models for use with Tangible Landscape (Fig. 3.9a).

While CNC milling and routing are subtractive processes, 3D printing is an
additive process in which a model is built up layer by layer. A digital, 3D, solid
model is divided into a stack of horizontal layers or slices and a toolpath is computed
for each slice. The physical model is then built slice by slice by depositing or
hardening material along the toolpath. By dividing the model into cross sections,
each as thin as the technology allows, a complex volume can be formed. There are a
variety of different 3D printing processes including stereolithography, selective laser
sintering, fused deposition modeling, and 3D ink-jet printing each with tradeoffs in
build speed, quality, strength, cost, resolution, color, and material (Schodek et al.
2004; chap. 14).

54 3 Building Physical 3D Models

Fig. 3.9 Casting polymeric
sand from 3D printed molds:
(a) 3D prints of the terrain
and canopy, (b) casting sand
with 3D prints, and (c) the
canopy cast in sand

3.3 Molding and Casting 55

3.3 Molding and Casting

To sculpt with Tangible Landscape we need a malleable model made of a soft,
deformable medium. A model made of polymer enriched sand is easy to sculpt,
holds its form well, and can be cast into precise forms. CNC routed and 3D printed
models can be used as molds for casting polymeric sand into malleable models. The
mold should be the inverse of the surface that will be cast. Cast models can precisely
represent complex forms that are too challenging to model by hand and can easily
be recast.

To cast a terrain model either CNC route the inverse of the terrain (Fig. 3.10)
or 3D print the terrain as a volume extruded with enough thickness to survive the
casting process (Fig. 3.9). We press the mold into the polymeric sand to cast the
form. We have to check the cast and repeat the process if necessary—sand may
need to be added or removed in places to get a good cast. Clamps can be used to get
strong, even pressure on a CNC routed mold when casting.

Thermoforming or vacuuming forming can be used to quickly make lightweight
copies or imprints of a CNC routed terrain model in a thermoplastic (Fig. 3.11).
Since they are lightweight thermoformed models are very portable and are ideal for
casting polymeric sand while traveling. To thermoform a terrain model we heat a
thermoplastic sheet in a vacuum former until it becomes soft. Use the vacuum to
pull the hot plastic over a mold deforming the plastic into the desired shape. Once
the plastic cools into the cast shape we release the vacuum. We may need to drill
small holes through our mold to make a complete vacuum (Schodek et al. 2004;
chap. 14).

Fig. 3.10 Cast polymeric sand from CNC routed molds: (a) pour polymeric sand onto the base,
(b) stack the inverse model on top of the sand, (c) apply pressure, (d) check the cast and remold if
necessary, (e) trim the excess sand, and (f) remove the inverse model

56 3 Building Physical 3D Models

Fig. 3.11 A thermoformed
polystyrene model of part of
Lake Raleigh Woods cast
over a CNC routed mold

Fig. 3.12 3D renderings of terrain models derived from lidar tile 0793_015 using (a) GRASS GIS
and (b) Rhinoceros with the RhinoTerrain plugin (see Sect. 3.4.4)

3.4 Workflows

This section describes workflows for creating physical models for Tangible Land-
scape. Our examples use lidar point cloud data for Lake Raleigh Woods on North
Carolina State University’s (NCSU) Centennial Campus (Fig. 3.12) acquired during
a 2013 lidar survey by Wake County. The data are provided as a single tile
in the standard LAS format (tile_0793_015_spm.las). We processed this
data within a GRASS GIS data set nc_spm_tl. All examples in the following
subsections assume running GRASS GIS with this data set; see Appendix A.3 for
information on how to download the data, start GRASS GIS with this location data
set, and perform basic display and other operations.

3.4.1 Selecting a 3D Model Scale

The scale of the physical 3D model depends on the extent of the data, the desired
model size, and the desired scale. The scale may also depend on the material of the
model, the scanning technology, and the resolution of the data. Here we assume that

3.4 Workflows 57

we know the spatial extent of our data and want our model to be approximately half
a meter long on each side. If we do not already know the extent of our data we can
determine the values once the data has been imported into GRASS GIS for example
using v.info or r.info.

We can perform this computation in the Python interactive console. First, we
enter the spatial extent of the data and approximate the size of the model (in meters):

n = 224028.45
s = 223266.45
e = 639319.28
w = 638557.28
desired_model_x = 0.50

Then we compute the scale using the equation:

s = dm

dr

(3.1)

where s is the scale of the model, dm is the distance measured on the model, and dr

is the real-world distance. For convenience we can also compute the scale number
using the equation:

sn = 1

s
(3.2)

where sn is the scale number of the model and s is the scale of the model.
We then type the following in the Python console:

scale = desired_model_x / (n - s)
scale_number = 1. / scale

The scale is now 1 : 1524 and the scale number is 1524. Since we want the scale to
be a round number and do not want to add or remove data we need to modify the
scale and reverse the computation in the previous step so that we can compute the
new size of the model at the selected scale. We select a scale of 1 : 1500 (a round
value close to the previously computed scale). In Python we then write:

scale_number = 1500
scale = 1. / scale_number
model_x = (n - s) * scale

The resulting model size is 50.8 cm.
So far we have only used the spatial extent along the north-south direction. We

skipped the east-west direction because the extent of both the data and the model
were squares. In a region with an elongated rectangular shape we might need to
determine a suitable scale for each of the horizontal directions and then decide on a
compromise.

Next we determine the vertical size of the model and its vertical exaggeration.
First, we enter the minimum and maximum elevation in the dataset (called top and

http://grass.osgeo.org/grass72/manuals/v.info.html
http://grass.osgeo.org/grass72/manuals/r.info.html

58 3 Building Physical 3D Models

bottom in GRASS GIS) and we also include the desired height of the model (in
meters). In our example we set the desired height of the model to 0.04 m:

t = 109.33
b = 76.54
desired_model_h = 0.04

Then we compute the model height without vertical exaggeration and the exaggera-
tion based on the desired model height using the equation:

e = he

h
(3.3)

where e is the exaggeration, he is the exaggerated height (in our case the desired
height of the model) and h is the height of the model according to the scale in case
the model would not be exaggerated.

Since we already know the scale of the model from the previous computations we
can now compute the exaggeration and model height without vertical exaggeration:

model_h = scale * (t - b)
exaggeration = desired_model_h / model_h

With the given the inputs the exaggeration is now approximately 1.8. Since we want
a round number we set the vertical exaggeration to 2 and compute the actual height
of the model using Eq. (3.3):

exaggeration = 2
actual_model_h = exaggeration * model_h

With the exaggeration set to 2 the model height (or more precisely the maximum
height difference of the top surface of the model) will be approximately 4.4 cm.
The base of the model will increase the actual model height. Depending on how it
is constructed the base may or may not be an integral part of the model. If we set
the exaggeration to 1.5 the model height difference would be approximately 3.3 cm,
which might be too shallow. At a different scale, however, an exaggeration of 1.5
might be the right choice.

We have used the same scale in both the x and y horizontal directions (1 : 1500).
However, in the vertical direction (z) we exaggerated the scale by a factor of 2.
As a result the vertical scale (1 : 750) is different than horizontal scale (1 : 1500).
Depending on the audience it may be advantageous to note either the horizontal and
vertical scales or the scale and exaggeration. When the scale and exaggeration are
known the vertical scale can be computed using the equation:

sv = se (3.4)

where sv is the vertical scale, s is the horizontal scale and e is the exaggeration.
Once we have computed the size of our model we can build the model using any of
the methods described in the following sections.

3.4 Workflows 59

3.4.2 Sculpting a Malleable Model from Lidar Data

A simple way to create a malleable 3D model is to sculpt the landscape in
polymer-enriched sand using projected contours derived from DEM as a guide.
In this workflow we used a point cloud of elevation data in the LAS for-
mat (tile_0793_015_spm.las) and worked in the GRASS GIS location
nc_spm_tl. Refer to the manual page of each relevant GRASS GIS command
for more detailed explanation of the command syntax and parameters.

To sculpt a malleable model from lidar data perform the following steps: Import
the lidar points classified as ground (standard class 2) into GRASS GIS using the
module v.in.lidar:

v.in.lidar -t input=tile_0793_015_spm.las output=ground \
class_filter=2

Set the region to the spatial extent of the imported tile and resolution to 1 m. Then
interpolate the DEM from the processed lidar data:

g.region vector=ground res=1
v.surf.rst -t input=ground elevation=dem tension=100 npmin=250 \

dmin=2

Check the results, adjust the parameters, and rerun with the overwrite flag if
necessary. Then compute the 1 m interval contours from the DEM:

r.contour input=dem output=contours_1m step=1

We can now sculpt the terrain in polymer-enriched sand using the projected
DEM and contours as a guide (Fig. 3.2). Once we have made at least a rough
approximation of the form, we can use DEM differencing to critique and refine
the modeled form (see Sect. 6.2.2).

3.4.3 CNC Routing a Topographic Model from Contour Data

Import the contours provided in .dxf file into Rhinoceros:

_Import contours.dxf _Enter

Zoom to the extent of all viewports:

Zoom All Extents

Select the contours and interpolate a terrain mesh:

_RtMeshTerrainCreate _Accept _Enter

http://grass.osgeo.org/grass72/manuals/v.in.lidar.html

60 3 Building Physical 3D Models

Scale the model uniformly in the x, y, z direction to our chosen map scale by
selecting the mesh, setting the origin to 0,0,0 and setting the scale factor:

_Scale 0,0,0 1/450 _Enter % 1/1500 ft

Optionally scale the model in the z-direction to exaggerate the relief by selecting
the mesh, setting the origin to 0,0,0, setting the scale factor to 2, and setting the
scale direction by drawing a line in the z-axis with ortho mode, using the gumball,
or entering the coordinates 0,0,0 and 0,0,1:

_Scale1D 0,0,0 2 0,0,0 0,0,1 _Enter

Use RhinoCAM to generate the toolpath. Then CNC route the model.

3.4.4 CNC Routing Topographic and Surface Models from
Lidar Data

Import the lidar data classified as ground (standard class 2) into GRASS GIS:

v.in.lidar -t input=tile_0793_015_spm.las output=ground \
class_filter=2

Import the first return lidar data into GRASS GIS filtering unnecessary points:

v.in.lidar -t input=tile_0793_015_spm.las output=surface \
return_filter=first class_filter=1,2,3,4,5,6,9

Set the region and resolution and interpolate the DEM from the ground points:

g.region vector=ground res=1
v.surf.rst -t input=ground elevation=dem tension=100 npmin=250 \

dmin=2

Check the results, adjust the parameters, and rerun with the overwrite flag if
necessary. With the region already set in the previous step, interpolate the DSM
from the surface points:

v.surf.rst -t input=surface elevation=dsm tension=200 \
smooth=0.5 npmin=120 dmin=2

Check the results, adjust the parameters, and rerun with the overwrite flag if
necessary. Export the DEM to a space delimited text file with x, y, and z values:

r.out.xyz input=dem output=dem.xyz separator=space

Export the DSM to a space delimited text file with x, y, and z values:

r.out.xyz input=dsm output=dsm.xyz separator=space

3.4 Workflows 61

Import the DEM text file into Rhinoceros as a point cloud. In the import options, set
delimiter to ‘space’ and check ‘create point cloud’:

_Import dem.xyz

Import the DSM text file as a point cloud. In the import options, set delimiter to
‘space’ and check ‘create point cloud’:

_Import dsm.xyz

Zoom to the extent of all viewports:

Zoom All Extents

Select the DEM point cloud, interpolate a terrain mesh, and delete or hide the point
cloud:

_RtMeshTerrainCreate _Accept _Enter

Select the DSM point cloud and interpolate a terrain mesh. Delete or hide the point
cloud:

_RtMeshTerrainCreate _Accept _Enter

Scale both the DEM and DSM meshes uniformly in the x, y, z direction to our
chosen map scale by selecting the meshes, setting the origin to 0,0,0 and setting the
scale factor:

_Scale 0,0,0 1/1500 _Enter

Optionally scale both the DEM and DSM meshes in the z-direction to exaggerate
the relief by selecting the meshes, setting the origin to 0,0,0, setting the scale factor
to 2, and setting the scale direction by drawing a line in the z-axis with ortho mode,
using the gumball, or entering the coordinates 0,0,0 and 0,0,1:

_Scale1D 0,0,0 2 0,0,0 0,0,1 _Enter

Optionally, create a vector curve delineating the border of the DEM or DSM:

_RtMeshFindBorder _Enter

Use RhinoCAM to generate the toolpaths. CNC route the models.

3.4.5 3D Printing Topographic and Surface Models from Lidar
Data

Import the lidar data classified as ground (standard class 2) into GRASS GIS:

v.in.lidar -t input=tile_0793_015_spm.las output=ground \
class_filter=2

62 3 Building Physical 3D Models

Set the region to the given tile and set a relatively low resolution of 10 m. Interpolate
the DEM from the ground points:

g.region vector=ground res=10
v.surf.rst -t input=ground elevation=dem tension=100 npmin=250

Export the DEM to a space delimited text file with x, y, z values:

r.out.xyz input=dem output=dem.xyz separator=space

Import the DEM text file into Rhinoceros as a point cloud. In the import options, set
delimiter to ‘space’ and check ‘create point cloud’:

_Import dem.xyz _Enter

Zoom to the extent of all viewports:

Zoom All Extents _Enter

Select the DEM point cloud and interpolate a terrain mesh. Delete or hide the point
cloud:

_RtMeshTerrainCreate _Accept _Enter

Scale the mesh uniformly in the x, y, z direction to our chosen map scale by
selecting the mesh, setting the origin to 0,0,0 and setting the scale factor:

_Scale 0,0,0 1/3000 _Enter

Optionally scale the mesh in the z-direction to exaggerate the relief by selecting the
mesh, setting the origin to 0,0,0, setting the scale factor to 2, and setting the scale
direction by drawing a line in the z-axis with ortho mode, using the gumball, or
entering the coordinates 0,0,0 and 0,0,1:

_Scale1D 0,0,0 2 0,0,0 0,0,1 _Enter

Create a vector curve delineating the border of the DEM:

_RtMeshFindBorder _Enter

Prepare the mesh for 3D printing. Select the border curve as the boundary and the
DEM mesh as the mesh. Set offset to relative or absolute. Set a base height:

_RtMesh3dPrintPrepare

Export the selected mesh as a stereolithography file (.stl) and send it to the 3D
printer:

_SaveAs

3.4 Workflows 63

3.4.6 Casting a Malleable Topographic Model with a CNC
Routed Mold Derived from Lidar Data

Import the lidar data classified as ground (standard class 2) into GRASS GIS:

v.in.lidar -t input=tile_0793_015_spm.las output=ground \
class_filter=2

Set the region and resolution, then interpolate the DEM from the ground points:

g.region vector=ground res=1
v.surf.rst -t input=ground elevation=dem tension=100 npmin=250 \

dmin=2

Check the results, adjust the parameters, and rerun with the overwrite flag if
necessary. Export the DEM to a space delimited text file with x, y, z values:

r.out.xyz input=dem output=dem.xyz separator=space

Import the DEM text file into Rhinoceros as a point cloud. In the import options, set
delimiter to ‘space’ and check ‘create point cloud’:

_Import dem.xyz _Enter

Zoom to the extent of all viewports:

Zoom All Extents _Enter

Select the DEM point cloud and interpolate a terrain mesh. Delete or hide the point
cloud:

_RtMeshTerrainCreate _Accept _Enter

Optionally, create a vector curve delineating the border of the DEM:

_RtMeshFindBorder _Enter

Invert the DEM by rotating it 180 degrees on the z axis. Set the ‘first reference point’
by drawing a vertical line with ortho mode on and then set the ‘second reference
point’ to ‘180’ or by or entering the coordinates 0,0,0 and 0,0,1 and then 180 in the
command line:

_Rotate 0,0,0 0,0,1 180 _Enter

Scale the mesh uniformly in the x, y, z direction to our chosen map scale by
selecting the mesh, setting the origin to 0,0,0 and setting the scale factor:

_Scale 0,0,0 1/1500 _Enter

Optionally scale the mesh in the z-direction to exaggerate the relief by selecting the
mesh, setting the origin to 0,0,0, setting the scale factor to 2, and setting the scale

64 3 Building Physical 3D Models

direction by drawing a line in the z-axis with ortho mode, using the gumball, or
entering the coordinates 0,0,0 and 0,0,1:

_Scale1D 0,0,0 2 0,0,0 0,0,1 _Enter

Optionally, create a vector curve delineating the border of the DEM or DSM:

_RtMeshFindBorder _Enter

Use RhinoCAM to generate the toolpath, CNC route the inverted terrain model, and
use this routed model as a mold to cast polymeric sand into a solid, malleable model
of the topography.

References

Martisek, D., & Prochazkova, J. (2010). Relation between algebraic and geometric view on nurbs
tensor product surfaces. Applications of Mathematics, 55(5), 419–430. Copyright - Institute of
Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2010;
Last updated - 2014-08-22.

Modell, J., & Thuresson, S. (2009). Material composition and method for its manufacture. EP
Patent App. EP20070794114.

Piegl, L., & Tiller, W. (1995). The NURBS book. New York: Springer.
Schodek, D., Bechthold, M., Griggs, K., Kao, K. M., & Steinberg, M. (2004). Digital design and

manufacturing. Hoboken, New Jersey: John Wiley & Sons, Inc.
The GRASS GIS Community (2015). Contour lines to DEM [online]. Accessed 28.05.2015. http://

grasswiki.osgeo.org/wiki/Contour_lines_to_DEM.

http://grasswiki.osgeo.org/wiki/Contour_lines_to_DEM
http://grasswiki.osgeo.org/wiki/Contour_lines_to_DEM

Chapter 4
Tangible Interactions

Geospatial models require various types of spatial data inputs, often with different
attributes and geometries (i.e. continuous surfaces, points, lines, or polygons).
To enable a broad range of applications, while keeping interactions tangible and
intuitive, we use tangible objects such as wooden markers, wooden blocks, colored
sand, and colored felt to specify various types of geospatial inputs. Depending
upon the application, markers can be interpreted as viewpoints or waypoints, while
cutout felt shapes of different colors can represent land cover or species habitat.
Combining color and with changes in surface creates additional possibilities for
tangibly interacting with geospatial models. We provide examples of different
tangible interactions and explain the change detection, image segmentation, and
image classification algorithms behind these methods.

4.1 Modes of Interaction

There are many ways to 3D sketch with Tangible Landscape (Fig. 4.1). Sculpting—
either with bare hands or sculpting tools—is the most common way of interacting
with an augmented clay or sand model. A single mode of interaction like this,
however, limits the spectrum of geospatial modeling tasks. We can use tangible
objects such as pins, wooden blocks, or pieces of textile such as felt to enable richer,
more intuitive, and creative ways of interacting with geospatial models (Fig. 4.2).

In the following sections we describe various modes of interaction and explain
how some of these objects can be detected and identified using simple approaches
such as raster algebra, but also using more complex object recognition methods
developed in the field of computer vision, which are implemented in GRASS GIS.
Several examples of how tangible objects can be used in geospatial applications are
included in this and the following chapters.

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_4&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_4

66 4 Tangible Interactions

Fig. 4.1 Different modes of interaction used in Tangible Landscape: (a) sculpting the model with
hand, (b) placing objects as markers, (c) drawing with laser pointer, (d) shaping and placing colored
sand, and (e) cutting pieces of textile

Fig. 4.2 Examples of different tangible objects used for interaction: (a) pins for specifying point
data, (b) wooden block for directions, and (c) pieces of felt for areal features

Fig. 4.3 3D sketching a levee breach with feedback on the resulting extent of flooding: (a) flooded
landscape, (b) breaching the levee, and (c) updated flooding

4.2 3D Sculpting of Surfaces and Volumes

By sculpting a physical model made of clay or polymeric sand we can intuitively
model topography (Fig. 4.3), which drives e.g., hydrological processes, solar radia-
tion and visibility.

Physical models, however, can also represent more abstract surfaces, such as
3D raster cross-sections, cost, or probability surfaces. Figure 4.4 shows how we

4.2 3D Sculpting of Surfaces and Volumes 67

Fig. 4.4 Schema of interaction with 3D rasters: (a) 3D raster, (b) scanned surface of a physical
model with excavated sand, and (c) cross-section of the scanned surface with 3D raster

Fig. 4.5 Exploring 3D soil moisture dataset: (a) using hands and tools to show moisture values
below ground and (b) projecting the cross-section of the scanned surface with soil moisture. Blue
color represents highest and red lowest moisture percentage. The orthophoto, sampled sites, and
flow accumulation are also projected onto the model as spatial context

can explore 3D raster data (also called volumes), which are typically difficult to
visualize and interpret. 3D rasters in GRASS GIS represent trivariate continuous
fields, such as soil or atmospheric properties, and are similar to 2D rasters, but with
an additional z-dimension (called depth). One of the ways to visualize 3D rasters
with Tangible Landscape is to create a physical model of the 3D raster as a box of
sand and then modify the surface by excavating sand (Fig. 4.5). The surface is then
used to compute the cross-section (2D raster) of the 3D raster (Fig. 4.4c) using the
module r3.cross.rast:

r3.cross.rast input=map_3D elevation=scan output=cross_section
r.colors map=cross_section raster_3d=map_3D

An example of such interaction is shown in Fig. 4.5, where we visualize 3D soil
moisture distribution measured on an agriculture field near Kinston, North Carolina
(Duffera et al. 2007; Petrasova et al. 2014). Soil moisture and other soil properties
were measured in different locations and depths, and processed into a 3D raster
using trivariate interpolation implemented in v.vol.rst module. We can sculpt the
sand (Fig. 4.5a) with our hands and then project the cross-section of the scanned
surface with the 3D raster to visualize subsurface moisture levels, similar to on-site
excavation and measurements (Fig. 4.5b). This method is an intuitive and natural
way of exploring subsurface data and it represents an alternative to more abstract
3D computer visualization tools.

http://grass.osgeo.org/grass72/manuals/r3.cross.rast.html
http://grass.osgeo.org/grass72/manuals/v.vol.rst.html

68 4 Tangible Interactions

4.3 Detecting Markers

In Tangible Landscape applications point data can represent individual features such
as trees or buildings, the position of an observer when modeling viewsheds, or the
origin of fire when simulating wildfire spread. Alternatively, a group of points can
be interpreted as a line or polygon, where the points represent vertices, allowing us
to construct trails or least cost paths.

To specify these points on the landscape we can use small wooden blocks or
pins, which we can stick in the sand model (Fig. 4.2a). The most reliable detection
of these markers can be achieved by comparing the scan of the physical model
before and after placing the marker, detecting the change in 3D, identifying markers
based on their size, and then vectorizing the change raster into discrete vector points.
Given the scanning resolution of the Kinect v2, the diameter and height of the
marker should be at least 1.5 centimeters to enable reliable detection. It’s best to
avoid glossy and reflective materials which can hinder the scanning. The following
Python functions can be used for marker detection during scanning. It computes
the change raster and filters the change based on the vertical threshold and specified
range of cells numbers. We use Python function adjust_scan previously defined
in Sect. 6.2.2.

def marker_detection(before, after, markers, h_thres, c_thres):
adjust_scan(before, after, 'tmp_matched')
gscript.mapcalc("{d} = if(({m}-{b})>{t1} && ({m}-{b})<{t2},

1, null())".format(d='tmp_diff', m='tmp_matched',
b=before, t1=h_thres[0], t2=h_thres[1]))

gscript.run_command('r.clump', input='tmp_diff',
output='tmp_diff_clump')

stats = gscript.read_command('r.stats', flags='cn',
input='tmp_diff_clump',
sort='desc').strip().splitlines()

filter areas larger than specified number of cells
cats = []
for stat in stats:

cat, val = stat.split()
if float(val) < c_thres[1] and float(val) > c_thres[0]:

cats.append(cat)
if cats:

rules = ['{c}:{c}:1'.format(c=cat) for cat in cats]
gscript.write_command('r.recode',

input='tmp_diff_clump', output=markers, rules='-',
stdin='\n'.join(rules))

gscript.run_command('r.volume', flags='f',
input=markers, clump='tmp_diff_clump',
centroids=markers)

Examples of different applications for markers are shown in Figs. 4.6, 4.7, 4.8.
After the markers are detected, they can be used directly as input in many GRASS
GIS modules, such as r.drain for computing a flow path (Fig. 4.6a), or they can be
further processed to generate lines (Fig. 4.6b).

http://grass.osgeo.org/grass72/manuals/r.drain.html

4.3 Detecting Markers 69

Fig. 4.6 Examples of using markers to (a) explore where water drains from a point or (b) specify
waypoints along a trail (with color representing slope along the trail as computed in Sect. 10.2.4)

Fig. 4.7 Using magnetized markers on a CNC-routed model with magnetic primer to (a) draw
boundaries of a polygon and to (b) rasterize an area

Fig. 4.8 Examples of using markers to explore 3D soil moisture distribution: (a) visualizing
vertical profiles of soil moisture and other soil properties with two markers and combining it
with sand sculpting; (b) querying the 3D raster at any point with markers to obtain “soil core”
information (Petrasova et al. 2014)

70 4 Tangible Interactions

Alternatively, markers can be used to interact with 3D rasters as described in
Sect. 4.2. We can use two markers to create a vertical profile (slice) of a 3D raster
projected next to the model (Fig. 4.8a) or we can use multiple markers to query a
3D raster at the specified points and display the results beside them (Fig. 4.8b).

4.4 Detecting Color and Shape

When interacting with geospatial models we often need to input or modify areas to
represent certain land cover, or more abstract concepts such as cost or probability.
Using cloth or felt to define areas and their properties gives us a lot of flexibility—
we can cut out various shapes from felt with different colors and move these pieces
freely on the physical model. Based on the RGB information from the scanner (or
any camera), the shapes and colors can be detected and interpreted to represent
different phenomena.

The procedure consists of a calibration phase, when we assign different colors to
different classes, followed by a classification phase, which determines the class of
each RGB cell during scanning. We combine supervised classification with image
segmentation to delineate clear outlines of each class.

For calibration we need to assign class numbers to different colors of felt, capture
the physical model with felt as RGB image by the scanner, and then delineate these
felt pieces on the scanned RGB maps as training areas. We can digitize the training
areas and then convert them to raster map with the appropriate categories. Module
i.gensigset then extracts spectral signatures from these training areas into a signature
file, which then allows us to classify new RGB image with module i.smap. Module
i.group is used here to collect raster map layers in an imagery group.

i.group input=color_r,color_g,color_b group=color subgroup=color
i.gensigset trainingmap=training group=color subgroup=color \

signaturefile=signature
i.smap group=group subgroup=group signaturefile=signature \

output=classified

Module i.smap classifies pixels into the specified classes and can provide an
output raster map informing about the goodness of fit (Bouman and Shapiro 1994).
Although the classification tries to avoid highly speckled results, the patches of felt
are often not detected perfectly, resulting in misclassified edges or holes classified
as different classes. This is where image segmentation can improve the process.
Segmentation algorithms divide image into segments (also known as super-pixels)
of uniform color values and delineate the borders between segments. We use the
segmentation algorithm SLIC (Achanta et al. 2012) implemented in the GRASS GIS
add-on i.superpixels.slic, which divides imagery group of raster maps into similarly
sized segments with compact boundaries.

g.extension i.superpixels.slic

http://grass.osgeo.org/grass72/manuals/i.gensigset.html
http://grass.osgeo.org/grass72/manuals/i.smap.html
http://grass.osgeo.org/grass72/manuals/i.group.html
http://grass.osgeo.org/grass72/manuals/i.smap.html
http://grass.osgeo.org/grass72/manuals/addons/i.superpixels.slic.html

4.5 Combining Color and Elevation 71

We independently compute the classification and segmentation and combine
these results using zonal statistics in order to determine the most common class
in each segment. In this way we safely filter out potentially misclassified pixels and
still obtain continuous patches with more realistic compact boundaries.

def classify_colors(new, group, signature, compactness=2,
threshold=0.3, minsize=10):
create segments
gscript.run_command('i.superpixels.slic', input=group,

output='tmp_segment', compactness=compactness,
minsize=minsize)

classify scanned color maps in a group
gscript.run_command('i.smap', group=group, subgroup=group,

signaturefile=signature,
output='tmp_class', goodness='tmp_rej')

remove cells with high rejection value
percentile = float(gscript.parse_command('r.univar',

flags='ge', map='tmp_rejected')['percentile_90'])
gscript.mapcalc('tmp_class_filtered = if(tmp_class < {p},

tmp_class, null())'.format(p=percentile))
compute most common class in each segment
gscript.run_command('r.mode', base='tmp_segment',

cover=tmp_class_filtered, output=new)

In practice the calibration can be automated in Tangible Landscape plugin by
creating the training areas raster and selecting it in the plugin’s Analysis tab. Once
we place pieces of felt on the model (Fig. 4.9a) we can click on the Calibrate button
in Analysis tab to capture the RGB raster maps and extract the spectral signatures.
The training layer is automatically hidden during the scanning to avoid interference.
After calibration, the felt pieces of varied shapes can be detected and correctly
classified using the above-mentioned procedure available in Tangible Landscape’s
library of functions.

The disadvantages of this method, which need to be considered for different
applications, include the limited number of colors that can be reliably detected
(around 6) and the decreased detection precision when multiple layers are projected
on top of the physical model.

4.5 Combining Color and Elevation

The depth and color information from the scanner can be combined to create more
abstract types of input data for geospatial models and simulations. Using colored
moldable materials, such as colored sand or modeling clay, we can create colored
volumes of varying shapes placed on top of a physical model (Fig. 4.10a). The color
of the volume can represent a distinct category (e.g., landuse), while its height can
be interpreted as a varying attribute of that category (e.g, elevation, density).

As an example, we use this technique to tangibly interact with a regional urban
growth simulation by designing protected zones with limited development and

72 4 Tangible Interactions

Fig. 4.9 Calibration and scanning of colored felt pieces: (a) placing felt pieces on projected
training areas; (b) detecting the color and shape of felt pieces. The resulting raster is shown in
the inset in the bottom right corner.

Fig. 4.10 Using colored sand to design new urban development zones in Asheville: (a) red
increases probability of new development and green represents protected zones; (b) sand is
detected and classified into zones and resulting computational scenario shows dark red patches
of new urban development with high concentration in the area with red sand (zoomed in figure)

desired development zones. We use FUTURES, a stochastic, patch-based urban
growth model implemented as the set of GRASS GIS add-on modules r.futures
(Meentemeyer et al. 2013; Petrasova et al. 2016), which simulates land conversions
in discrete patches based on a probability surface.

By creating red zones (which support new development) and green zones (which
protect existing land cover) using colored sand (Fig. 4.10a), we can modify the
probability surface and create new scenarios for future development. By changing
the height of each zone we can locally increase or decrease the probability of
development. Figure 4.10b shows one of the scenarios for anticipated urban growth
in next 20 years. The green and red outlines represent the designed zones, and the
dark red patches concentrated in the red zone represent simulated development.

http://grass.osgeo.org/grass72/manuals/addons/r.futures.html

4.6 Direction Marker 73

The following code snippet shows a particular way to implement this approach.
We first identify the designed zones based on their elevation difference from the
physical model beyond a threshold value. There are multiple ways to identify the
category of each zone based on its color. For simplicity’s sake we demonstrate a fast
method that distinguishes two distinct colors. Alternatively, multiple colors can be
detected using the procedure described in Sect. 4.4.

For the purpose of r.futures module inputs, in this code snippet the elevation
difference of all zones is scaled from 0 to 1 based on the maximum elevation (using
the graph function for linear interpolation implemented in r.mapcalc). However,
other applications of this interaction method may require different scaling. The
identified zones can be then passed into the r.futures model to run the urban growth
simulation.

def colored_sand(before, after, color, thres):
adjust_scan(before, after, 'tmp_matched')
gscript.mapcalc('change = if(({m}-{b})>{t}, {m}-{b},

null())'.format(m='tmp_matched', b=before, t=thres))
gscript.mapcalc('change_bin = if(change, 1, null())')
gscript.run_command('r.clump', input='change_bin',

output='clump')
gscript.run_command('r.stats.zonal', base='clump',

cover=color+'_r', output='red_mean', method='average')
gscript.run_command('r.stats.zonal', base='clump',

cover=color+'_g', output='green_mean', method='average')
identify red zones, convert to vector
gscript.mapcalc('red = if(red_mean > green_mean, 1,

null())')
gscript.run_command('r.to.vect', input='red', output='red',

type='area', flags='s')
scale magnitude of elevation change to 0 to 1
max_change = gscript.raster_info('change')['max']
gscript.mapcalc('red_magnitude = if(red_mean > green_mean,

graph(change, {}, 0, {}, 1), null())'.format(thres,
max_change))

similarly for green zones

4.6 Direction Marker

Directionality is a common property of many terrain visualization techniques, solar
radiation models, or dynamic simulations of widlfire or disease spread. In Tangible
Landscape applications we can input direction using a dedicated tangible object
(Fig. 4.2b), which can be implemented as a wooden block of approximately 1.5 ×
1.5 × 5 centimeters preferably with a needle in the center to hold the object on the
physical model. One half of the marker is painted with darker color specifying the
main direction in the same way a compass needle represents the north direction. To
detect this object we combine the depth and color information from the scanner—

http://grass.osgeo.org/grass72/manuals/addons/r.futures.html
http://grass.osgeo.org/grass72/manuals/r.mapcalc.html
http://grass.osgeo.org/grass72/manuals/addons/r.futures.html

74 4 Tangible Interactions

the elevation difference (see Sect. 4.3) identifies the position of the direction marker
and the color difference in the marker surface determines the direction. Instead of the
full classification procedure introduced in Sect. 4.4 we apply a simplified method to
classify each pixel of the marker as either of the two classes based on the brightness
threshold. This simple method typically works even when we project other data,
while using the marker. The choice of brightness threshold, however, depends on
the projected data. By computing a centroid of each class using r.volume module,
we obtain an approximate direction vector:

def direction_marker(before, after, group, marker, h_thres,
b_thres):
adjust_scan(before, after, 'tmp_matched')
gscript.mapcalc('{r} = if(({m}-{b})>{t}, 1,

null())'.format(m='tmp_matched', b=before, t=h_thres,
r='change'))

gscript.mapcalc('{r} = if({c} && ({g}_r + {g}_g + {g}_b) /
3. >= {t}, 1, 2)'.format(r=marker, c='change',
t=b_thres, g=group))

gscript.run_command('r.volume', flags='f', input=marker,
clump=marker, centroids=marker)

Once we have computed the two centroids, we can use this information for
various tasks, such as computing the direction and converting it to degrees in a
specific convention, for example by mathematical conventions degrees are measured
from the east in counter-clockwise direction, while many other applications measure
angles clockwise from north. From the centroids we can also obtain the approximate
center of the direction marker.

r = gscript.read_command('v.out.ascii',
input=marker).strip()

p = []
for point in r.splitlines():

x, y, c = point.split('|')
p.append((float(x), float(y)))

needs from math import atan2, pi
angle = atan2(p[1][1] - p[0][1], p[1][0] - p[0][0])
angle_deg = angle * 180 / pi
center = (p[0][0] + p[1][0]) / 2., (p[0][1] + p[1][1]) / 2.

Figure 4.11 demonstrates how the direction marker dynamically changes the
azimuth of shaded relief. In this example the particular position of the marker is
not important, whereas in viewshed modeling as shown in Fig. 4.12, the position
specifies the observer’s location and the direction represents the orientation of the
observer. The 360° viewshed map is masked to project the human field of view.

http://grass.osgeo.org/grass72/manuals/r.volume.html

References 75

Fig. 4.11 Using the direction of the marker to change azimuth of the sun for shaded relief
computation: (a) 320° and (b) 90° clockwise from north

Fig. 4.12 Using the position and direction of the marker to compute visibility with the field of
view constrained by the given angle

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels
compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11), 274–2282.

Bouman, C. A., & Shapiro, M. (1994). A multiscale random field model for Bayesian image
segmentation. IEEE Transactions on Image Processing, 3(2), 162–177.

Duffera, M., White, J. G., & Weisz, R. (2007). Spatial variability of Southeastern U.S. Coastal
Plain soil physical properties: Implications for site-specific management. Geoderma, 137(3–
4), 327–339.

Meentemeyer, R. K., Tang, W., Dorning, M. A., Vogler, J. B., Cunniffe, N. J., & Shoemaker, D. A.
(2013). FUTURES: Multilevel simulations of emerging urban-rural landscape structure using
a stochastic patch-growing algorithm. Annals of the Association of American Geographers,
103(4), 785–807.

76 4 Tangible Interactions

Petrasova, A., Harmon, B., Mitasova, H., & White, J. (2014). Tangible exploration of subsurface
data. Poster presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15–19 December.

Petrasova, A., Petras, V., Van Berkel, D., Harmon, B. A., Mitasova, H., & Meentemeyer, R. K.
(2016). Open source approach to urban growth simulation. ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7(July), 953–
959.

Chapter 5
Real-Time 3D Rendering and Immersion

People’s perception and experience of landscape plays a critical role in the social
construction of these spaces—in how individuals and societies understand, value,
and use landscapes. Perception and experience should, therefore, be an integral
part of environmental modeling and geodesign (Steinitz 2012; Nassauer 1997;
Gobster et al. 2007). With the natural interaction afforded by Tangible Landscape
and the realistic representations afforded by Immersive Virtual Environments
(IVEs) experts and non-experts can collaboratively model landscapes and explore
the environmental and experiential impacts of “what if” scenarios (Smith 2015;
Tabrizian et al. 2018). We have paired GRASS GIS with Blender, a state-of-the-
art 3D modeling and rendering program, to allow real-time 3D rendering and
immersion. As users manipulate a tangible model with topography and objects,
geospatial analyses and simulations are projected onto the tangible model and
perspective views are realistically rendered on monitors and head-mounted displays
(HMDs) in near real-time. Users can visualize in near real-time the changes they
are making with either bird’s-eye views or perspective views from human vantage
points. While geospatial data is typically visualized as maps, axonometric views, or
bird’s-eye views, human-scale perspective views help us to understand how people
would experience and perceive spaces within the landscape.

5.1 Blender

Blender is a free and open source software for 3D modeling, rendering and game
design (Blender Online Community 2016). We use this software to 3D model and
3D render geospatial data in near real-time. It has an easy-to-use Python API
for automating procedural 3D modeling workflows. It supports realtime viewport

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_5&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_5

78 5 Real-Time 3D Rendering and Immersion

shading1 with a sufficient degree of realism. Blender has a GIS add-on for importing
and processing georeferenced data in raster and vector formats. There are also
several plugins for displaying the viewport content in head-mounted displays
(HMDs) for realtime immersive interaction with 3D models.

5.2 Hardware and Software Requirements

With three additional components Tangible Landscape setup can support 3D render-
ing and immersive display: a computer with network connection, a monitor, and a
head-mounted display (Fig. 5.1). For optimal performance we recommend a Virtual

Fig. 5.1 Tangible Landscape setup with 3D modeling and rendering components including
Blender, a computer monitor, and an Oculus Rift headset

1Viewport shading refers to drawing 3D geometries and computing their shading (e.g., textures
and reflection) and lighting (e.g., cast and received light and shadow).

5.3 Software Architecture 79

Reality (VR) ready computer with the most recent version of Blender. Blender and
GRASS GIS can be run on the same computer if that the computer has enough
computing power and its graphics card supports at least three display outputs.
Display outputs are needed for Tangible Landscape’s operator’s display, Tangible
Landscape’s projection, and Blender’s rendering display. Although Blender is
multiplatform software, the choice of operating systems may be limited when the
immersion is required. We use the Virtual Reality Viewport add-on (Felinto 2015),
currently available for MS Windows, which supports the Oculus Rift DK2 and
Oculus runtime (0.8). There are, however, other VR add-ons for Blender (e.g.,
OpenHMD) that can be compiled with Blender to enable multiplatform HMD
support (Open HMD Team 2016).

5.3 Software Architecture

Blender and GRASS GIS are loosely coupled through file-based communication
established via a local wireless or Ethernet connection. GRASS GIS exports the
spatial data as a standard raster, a vector, or a text file containing coordinates
into a specified directory typically called Watch (Fig. 5.2). The Tangible Landscape
Blender plugin (modeling3D.py)—implemented and executed inside Blender—
constantly monitors the directory for incoming information. Examples of spatial
data include a terrain surface (raster), water bodies (3D polygons or rasters),
forest patches (3D polygons), a camera location (3D polyline, text file), and
routes (3D polylines). Upon receiving this information, the file is imported using
the BlenderGIS add-on. Then the relevant modeling and shading procedures for
updating an existing 3D object or creating a new 3D object are applied. The

Fig. 5.2 Tangible Landscape’s software architecture couples tangible interaction, 3D scanning,
geospatial computation in GRASS GIS with 3D modeling and rendering in Blender

80 5 Real-Time 3D Rendering and Immersion

adaptation procedure applied depends upon the type of spatial data and is handled by
a module called adapt. All 3D elements in the scene (i.e. objects, lights, materials,
and cameras) reside in a Blender file (modeling3D.blend).

5.4 File Monitoring

File monitoring is handled through a native function of Blender called the Modal
Timer Operator. We use this particular module instead of Python libraries for
monitoring such as Watchdog, because these libraries can interfere with Blender’s
ability to run multiple operators at once and update different parts of the interface.2

The following snippet demonstrates the structure of the modal timer function. In
this example, the monitored folder is inventoried every second and when a terrain
surface is the detected (e.g., terrain.tif), the adapt module executes to update the
terrain model.

def modal(self, context, event):
if event.type in {"RIGHTMOUSE", "ESC"}:

return {"CANCELLED"}

if event.type == "TIMER":
if self._timer.time_duration != self._timer_count:

self._timer_count = self._timer.time_duration
fileList = (os.listdir(watchFolder))

if terrainFile in fileList:
adapt().terrain()

execute the timer for the first time
def execute(self, context):

wm = context.window_manager
wm.modal_handler_add(self)
self._timer = wm.event_timer_add(1, context.window)
return {"RUNNING_MODAL"}

def cancel(self, context):
wm = context.window_manager
wm.event_timer_remove(self._timer)

5.5 3D Modeling and Rendering

In this section we provide an overview of the techniques for handling geospatial
data, 3D modeling, and rendering in Blender. A description of each technique is
followed by a Python code snippet that can be used to program procedural modeling

2See https://docs.blender.org/api/blender_python_api_2_62_2/info_gotcha.html.

https://docs.blender.org/api/blender_python_api_2_62_2/info_gotcha.html

5.5 3D Modeling and Rendering 81

and shading workflows for various types of geospatial data (see Sect. 5.6 for sample
workflows). All the code snippets use Blender’s Python API (bpy) and assume that
it has been imported.

import bpy

5.5.1 Handling Geospatial Data

Importing Geospatial Data in Blender We use Blender GIS add-on importgis
functions to import raster and vector formats. The coordinate reference system
(CRS) of the spatial data should be specified (using an EPSG code) in both the add-
on configuration and the import function. A raster can be imported as an interpolated
3D surface (option DEM), a point cloud (option Raw DEM), or a texture to be draped
onto an existing mesh (option On mesh). The following snippet provides an example
for importing a digital elevation model (DEM) as a 3D mesh using the DEM method.

import os, bpy
inputFile = os.path.join(dirPath, 'terrain.tif')
bpy.ops.importgis.georaster(filepath=inputFile,

importMode="DEM", subdivision="subsurf",
rastCRS="EPSG:3358")

Vector formats are used for points and linear features that can be linked to
interactions with tangible markers, to lines drawn by laser pointer, or to simulations
such as routes and trails. BlenderGIS can not only import geometry, but also vector
attributes such as elevation and height, which used for extrusion. If exported vector
features contain z values (3D polyline or 3D polygons), it is not necessary to specify
the elevation parameter. It should be also noted that, unlike the raster DEMs, the
imported shape features are by default lack surfaces and cannot be rendered unless
an extrusion parameter is specified. If a shapefile contains multiple features (e.g.,
buildings or points), the seperateObject parameter can be used to break the vector
layer into discrete 3D objects. The following snippet imports a shapefile containing
multiple points with height and elevation attributes:

inputFile = os.path.join(dirPath, 'points.shp')
bpy.ops.importgis.shapefile(filepath=inputFile,

fieldElevName="height", fieldObjName='Name',
separateObjects=True, shpCRS='EPSG:3358')

Spatial features with closed boundaries such as water bodies and vegetated patches
can be exported as either vector features (polygons) or rasters. There is, however, is a
trade-off that should be considered when choosing which format to use. Shapefiles
produce more accurate edges and can be imported as discrete objects, but fit less
accurately on rough or undulating topography. Furthermore, it is difficult to rapidly
and continuously transmit shapefiles because they are composed of multiple files
(i.e. .shp, .prj, .dbf, and .shx). Rasters on the other hand are easier to transfer, import,
and fit accurately on topography.

82 5 Real-Time 3D Rendering and Immersion

Exporting Geospatial Data from GRASS GIS Raster features can be exported
using the module r.out.gdal. When exporting digital elevations models, specify the
GeoTIFF format with the data-type set to 32bit float:

r.out.gdal -cf input=dem out=path/output.tif type=Float32 \
format=GTiff create="TFW=YES"

Maps with RGB information such as orthophotographs or simulation outputs (e.g.,
waterflow) should be exported as PNG or JPG formats:

decompose raster to red, green and blue channels
r.rgb input=texture red=red green=green blue=blue
i.group group=texture_group input=red,green,blue
r.out.gdal input=texture_group output=path/output.PNG \

format=PNG type=Byte createopt="WORLDFILE=YES"

Vector data including points, lines, and boundary features can be exported using the
module v.out.ogr:

v.out.ogr input=vector output=path/output.shp \
format="ESRI_Shapefile" lco="SHPT=POINT"

Depending on the type of data, the lco option needs to be adjusted to SHPT=ARC
when exporting lines or to SHPT=POLYGON when exporting areas. Furthermore,
when vector data has Z coordinates, the additional letter Z needs to be appended
with SHPT=POINTZ.

5.5.2 Object Handling and Modifiers

Object Management While in GIS functions are typically applied by specifying
a layer as an input, in Blender modifications such as moving, deleting, hiding, and
rotating are applied to any object that is selected. This makes object management an
integral task for real-time modeling given that the data is continuously transmitted
between the GRASS GIS and Blender, and multiple spatial data may be processed
simultaneously. In Blender the existing data (i.e., materials, objects, meshes,
textures, lights, and cameras) and their status can be retrieved with the bpy.data
module and operations can be applied using the bpy.ops module.

The following snippet demonstrates the procedure for checking if a terrain object
resides in the scene, deselecting any previously selected objects, selecting the terrain
object, and removing it from the scene before importing and processing the new
terrain object:

if bpy.data.objects.get("terrain"):
bpy.ops.object.select_all(action='DESELECT')
bpy.data.objects["terrain"].select = True
bpy.ops.object.delete()

http://grass.osgeo.org/grass72/manuals/r.out.gdal.html
http://grass.osgeo.org/grass72/manuals/v.out.ogr.html

5.5 3D Modeling and Rendering 83

Object Transformation Because the 3D scene in Blender and GRASS GIS use the
same georeferencing system, it is possible to communicate the changes in position
of tangible objects and their corresponding 3D objects using x, y, z coordinates
exported by GRASS GIS. The following snippet relocates a 3D model of a building
when a user moves a wooden marker on the tangible model. Object coordinates are
transferred as text files.

buildingObj = bpy.data.objects["Building"]
buildingObj.location = [X, Y, Z]

The snippet below demonstrate how to retrieve the start and endpoint coordinates
of an imported polyline. The line object is converted to a mesh and the vertices’
locations are retrieved.

lineObj= bpy.data.objects["line"]
mesh = lineObj.to_mesh(bpy.context.scene, apply_modifiers=True,

settings='PREVIEW')
startCoord = mesh.vertices[0].co
endCoord = mesh.vertices[1].co

Shrink Wrapping Shrink wrapping is a modifier in Blender that wraps an object
onto the surface of another object. The modifier moves each vertex of the selected
object to the closest position on the surface of the given mesh. We apply this
technique for draping a two-dimensional surface on the terrain because it properly
aligns edges and avoids floating or drowning objects. The following snippet provides
an example of using shrink wrap modifier to drape an imported 2D patch onto the
terrain object (i.e. target object).

plane = bpy.data.objects["plane"]
plane.select = True
bpy.data.objects["terrain"].select = True
bpy.ops.object.modifier_add(type='SHRINKWRAP')
plane.modifiers['Shrinkwrap'].target =

bpy.data.objects["terrain"]
plane.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX"
plane.modifiers["Shrinkwrap"].use_keep_above_surface = True

Particle Systems Often tangible geospatial modeling we deal with spatial features
that are composed of a large number of very small individual objects. Examples
include populating city blocks with buildings or patches of forest with specific
plants. In a tangible model the boundaries of such features can be demarcated using
felt pieces, colored sand, or lines drawn by laser pointer. In a 3D model they can be
represented as a a point cloud of particles arranged either randomly or by rules.
In Blender these collections of particles are generated using the particle system
modifier. The particle system’s parameters include the count of the particles, particle
size and rotation, randomness in distribution, size and rotation, random use of a
group of objects, and physics that define the relationships between particles such
as deflection. The following snippet demonstrates the random distribution of maple
trees in a patch. Three maple trees of different ages (young, middle aged, and adult)

84 5 Real-Time 3D Rendering and Immersion

are randomly drawn from a group object and populated with a random size, rotation
and distribution within a boundary object. By calculating the area of an object in
Blender, the population density can be adjusted as function of the count per area
unit (in this case one tree every 200 m2).

patchobj = bpy.data.objects ["patch"]
groupobj = bpy.data.groups["Maple trees"]

bpy.ops.object.particle_system_add()
pset1 = obj.particle_systems[-1].settings
pset1.name = 'TreePatch'
pset1.type = 'HAIR'

pset1.render_type = 'GROUP'
pset1.dupli_group = groupobj
pset1.use_group_pick_random = True

pset1.use_emit_random = True
pset1.lifetime_random = 0.0
pset1.emit_from = 'FACE'
pset1.count = getArea(patchobj) / 200
pset1.use_render_emitter = True

pset1.use_emit_random = True
pset1.userjit = 70
pset1.use_modifier_stack = True
pset1.hair_length = 0.6

pset1.use_rotations = True
pset1.rotation_factor_random = 0.02
pset1.particle_size = 1
pset1.size_random = 0.4

5.5.3 3D Rendering

3D rendering is the automatic generation of images from 3D models. The software
for rendering—the render engine—controls the materials and lighting, how the
objects are drawn, shaded and lit in the viewport (viewport shading), and the realism
and quality of renderings.3 While viewport shading is real-time, a single high quality
production render may take hours or even days to compute.

Blender has two built-in render engines—Blender Render and Cycles—and
also supports external render engines including LuxRender, Maxwell, V-Ray, and
Octane. Blender Render is a scanline rasterization engine for non photo-realistic
rendering, while Cycles is a physically based, path-tracing engine for photoreal-

3https://docs.blender.org/manual/en/dev/render/introduction.html.

https://docs.blender.org/manual/en/dev/render/introduction.html

5.5 3D Modeling and Rendering 85

Fig. 5.3 Three modes of 3D rendering: (a) viewport display with Blender Render engine, (b)
viewport display with Cycles engine, and (c) full render with Cycles engine

istic rendering with global illumination. While Blender Render does not support
raytraced lightning and caustics, its speed is useful for real-time viewport shading.
Blender 2.8 will include the new real-time, physically based render engine Eevee.
We recommend using the Blender Render engine throughout the modeling process
because of its speed and then Cycles for rendering the final production graphics
because of its quality (Fig. 5.3). The following snippets demonstrate the commands
for switching between the active render engine:

bpy.context.scene.render.engine = "CYCLES"
bpy.context.scene.render.engine = "Blender"

86 5 Real-Time 3D Rendering and Immersion

5.5.4 Materials

Objects’ materials directly influence the appearance and realism of a 3D scene.
Materials play in important role in generating lifelike representations from abstract
map features and tangible objects. We briefly discuss two basic components of
modeling materials, namely Shading and Texture mapping. Shading (or coloring)
is a technique for adjusting the base color (as modified by diffusion and specular
reflection) and light intensity of an object’s surface. Texture mapping is the process
of draping images and patterns to add detail to the surfaces. Examples include
draping an aerial image (i.e., orthophotograph) or a grassy texture onto the terrain
or assigning a rippling wave texture to a water surface.

With the Cycles render engine shading and texture parameters are stored in
network of Nodes, which define the surface and volumetric properties of the
material. A water material, for example, can be defined by surface property nodes
such as transparency and glossiness and volumetric property nodes such as ripple
effects and wave textures (Fig. 5.4). While it is possible to generate an entire
material using Python code, this can be processing and time intensive since the data
related to the material network (nodes) and attributes are stored in the bpy.data
object. Therefore, we recommend assigning or modifying previously prepared mate-
rials to reduce the processing time for realtime modeling. The following snippets
demonstrates the procedure for generating a simple terrain material, assigning the
material to a terrain object, and replacing an image in the texture node of an existing
material (Fig. 5.5a):

filePath = os.path.dirname(bpy.path.abspath("//"))
orthoFile = os.path.join(filePath, 'ortho.png')
matName = "orthoMat"
mat = bpy.data.materials.new(matName)
obj.data.materials.append(mat)
Get material tree, nodes and links
mat.use_nodes = True
node_tree = mat.node_tree
nodes = mat.node_tree.nodes
links = node_tree.links
for node in nodes:

nodes.remove(node)
Create a diffuse node, a texture node, and an output node
diffuseNode = node_tree.nodes.new("ShaderNodeBsdfDiffuse")
orthoNode = node_tree.nodes.new("ShaderNodeTexImage")
orthoNode.image = bpy.data.images.load(orthoFile)
outputNode = node_tree.nodes.new("ShaderNodeOutputMaterial")
Create the links
links.new(orthoNode.outputs["Color"],

diffuseNode.inputs["Color"])
links.new(diffuseNode.outputs["BSDF"],

outputNode.inputs["Surface"])

5.5 3D Modeling and Rendering 87

Fig. 5.4 Renderings of a water material: (a) with color, (b) with transparency and glossiness, (c)
with a wave texture, and (d) with a noise (ripple) texture. The water material was created using the
nodes shown in the (e) Node Editor. Noise and Wave texture nodes were assigned to the surface
volume to create ripple and wave effects. Math multiply nodes were used to adjust the magnitude
of the effects. Transparency and Glossy shaders were assigned to the surface

The following script assigns an existing material (orthoMat) to a terrain object
(Fig. 5.5a).

obj = bpy.data.objects["terrain"]
mat = bpy.data.materials.get("orthoMat")
obj.data.materials.append(mat)

The snippet below replaces the existing surface texture of the terrain model (an
aerial image) with a viewshed map computed in GRASS GIS (Fig. 5.5b):

filePath = os.path.dirname(bpy.path.abspath("//"))
viewshedFile = os.path.join(filePath, 'viewshed.png')

88 5 Real-Time 3D Rendering and Immersion

Fig. 5.5 Assigning surface textures using a diffuse shader: (a) an aerial image, (b) a viewshed
map, and (c) the Material tree in the node editor

mat = (bpy.data.materials.get("OrthoMat"))
texNode = mat.node_tree.nodes["Image Texture"]
texNode.image = bpy.data.images.load(viewshedFile)

5.6 Workflows

In this section we describe workflows for importing, 3D modeling and shading
spatial features that are created or modified through tangible modeling. The
automated procedure for adapting each spatial feature in Blender is implemented
as a function in the adapt module.

Terrain Tangible manipulations of the physical terrain model can be communi-
cated from GRASS GIS to Blender with a digital elevation model that is iteratively
imported, swapped with the existing 3D terrain, and shaded. The import speed
depends upon resolution of the raster. In cases where terrain manipulation follows
other tasks that involve adding objects (e.g., planting trees), then an additional shrink
wrapping step should be applied to drape all the above-surface objects back onto the
new terrain (see Sect. 5.5.2).

1. Check bpy.data to determine if the terrain object already exist in the scene. If it
does, then delete it.

2. Import the new terrain raster (Fig. 5.6a).
3. Convert the imported feature to a Mesh object. This conversion enables further

modifications of terrain in the subsequent steps.
4. Add side fringes to the terrain object. Fringes enhance appearance of the terrain

in the bird’s-eye view mode (Fig. 5.6b).
5. Assign the “Grass” material to the terrain and the “Dirt” material to the fringes

(Fig. 5.6c).

5.6 Workflows 89

Fig. 5.6 The process for modeling a terrain feature: (a) after importing the GeoTIFF raster, (b)
after adding fringes, and (c) after assigning the grass material

Fig. 5.7 Modeling a water feature: (a) the imported GeoTIFF raster, and (b) the mesh after
assigning the “Water” and “Grass” materials

Water Features When a user sculpts the tangible model, a depression filling
algorithm (r.fill.dir) in GRASS GIS can simulate water features such as lakes and
ponds. These features can be exported either as a 3D polygon shape or a GeoTIFF.
We recommend using a relatively high-resolution raster to minimize raised edges or
gaps between the outer boundary of the imported feature and the basin, especially
with rough terrain.

1. Check if the water object already exist. If it does, then delete it.
2. Import the water raster (Fig. 5.7a).
3. Assign the “Water” material to the water object (Fig. 5.7b).

Forest Patches Users can tangibly model patches of trees using felt pieces (See
Fig. 4.9) or delineate a single species with a colored wooden marker. Tree patches
are scanned and classified in GRASS GIS and exported to Blender as 3D polygons.
In Blender a particle system modifier is used to populate predefined tree models in
the imported patches according to predefined distribution rules. Vegetation models
can be obtained from 3D model libraries such as Xfrog4 or can be modeled using
procedural plant generation software or add-ons such as The Grove.5

4http://xfrog.com/.
5https://www.thegrove3d.com/.

http://grass.osgeo.org/grass72/manuals/r.fill.dir.html
http://xfrog.com/
https://www.thegrove3d.com/

90 5 Real-Time 3D Rendering and Immersion

Fig. 5.8 Importing polygon features and populating four types of trees based on patch classifica-
tion: (a) 3D models of individual trees, (b) a wireframe representation of patches after importing,
and (c) patches with the particle system modifier applied

1. Import the patch shapefile (Fig. 5.8b).
2. Calculate the patch area.
3. Check the type of patch (based on the file name) and assign the particle system

modifier to populate the designated tree using distribution rules for the density
and distribution of objects (Fig. 5.8c).

4. Assign a transparent material to the patches.

Trail Routes and trails can be tangibly modeled using markers (Fig. 4.6b) and
exported as 3D polylines. In Blender the predefined profile of the pathway is
extruded along the imported features using the bevel modifier6 (Fig. 5.9a). To better
extrude sharp bends and curves, we recommend smoothing the 3D polyline feature
in GRASS GIS using v.generalize command before exporting.

6https://docs.blender.org/manual/en/dev/modeling/modifiers/generate/bevel.html.

http://grass.osgeo.org/grass72/manuals/v.generalize.html
https://docs.blender.org/manual/en/dev/modeling/modifiers/generate/bevel.html

5.7 Realism and Immersion 91

Fig. 5.9 Modeling a trail feature: (a) the imported polyline feature displayed as a curve object in
the wireframe display, (b) the trail after applying the Bevel modifier using a T profile curve, and
(c) the boardwalk after assigning the wood plank material

1. Check if the trail already exist. If it does, then delete it.
2. Import the trail shapefile (3D polyline).
3. Convert the imported object to Curve. The conversion enables the bevel modifier

to be applied in the next step.
4. Extrude the T profile along the curve.
5. Assign the wood planks material to the extruded feature.

Camera Users can tangibly explore human views by placing a colored wooden
marker on the tangible model (Fig. 4.2b). In GRASS GIS the view marker is
exported as a polyline feature. In Blender the first vertex is interpreted as the camera
location and the second point represents the view target.

1. Import the 3D polyline.
2. Retrieve the coordinates of the line’s first and second vertices.
3. Move the camera and target to the retrieved coordinates.
4. Move the camera’s Z coordinate to eye level (1.65 m).

5.7 Realism and Immersion

5.7.1 Realism

The level of realism is an important aspect of visualization. Both abstract and
photorealistic representations can be equally useful depending on the purpose
of visualization, the audience, and computational resources available. Abstract
visualizations—features with less geometric and texture complexity—are less cog-
nitively and computationally demanding making them useful for rapid prototyping
and the early, conceptual phases of the design process. Abstract visualization can
also appeal to younger age groups and are thus useful for education. Photorealistic
representations, on the other hand, are very useful for representing the experience
and aesthetics of a design.

92 5 Real-Time 3D Rendering and Immersion

Fig. 5.10 Viewport rendering of the Blender scene with two modes of realism: (a) low-poly mode
and (b) realistic mode

We implemented a function that enables users to select between either a
realistic or abstract (low-poly) mode of visualization at anytime during the tangible
modeling process (Fig. 5.10). This was done by creating alternate worlds (sky and
background elements), objects (e.g., low-poly trees), and textures. In other words
every component of the 3D scene including lights, objects and background have
a low-poly and a realistic instance. The following snippets include a function that
loops through the elements in the scene and swaps them with their alternate object.
Swapping the world based on the mode of realism defined by the user:

def updateWorld(mode):
newWorld = mode
bpy.context.scene.world = bpy.data.worlds[newWorld]
self.world= bpy.data.worlds[newWorld]

Swapping the realistic and abstract trees in an instance of a particle system assigned
to the forested patches based on the mode of realism defined by the user:

def changeRealism(mode):
for obj in bpy.data.objects:

if "patch_" in obj.name and obj.particle_systems:
newParticle = mode + "_" + obj.name.split("_")[1]
setting = obj.particle_systems[0].settings
setting.dupli_group = bpy.data.groups[newParticle]

5.7.2 Virtual Reality Output

User can access the VR output using the add-on panel located on the Blender’s
3D viewport’s tool shelf. The add-on converts the scene camera to panoramic
display and broadcast it as a stereoscopic image onto the head-mounted display. It
is possible to display the scene in the HMD while the Tangible Landscape plugin is
in watch mode. However, this can slow down the system and occasionally causes
crashes for more complex scenes especially in realistic mode. For a better VR
experience, we recommend using one feature at a time, i.e., stopping the watch
mode before displaying VR and vice versa.

5.8 Tangible Landscape Add-on in Blender 93

Fig. 5.11 The Tangible
Landscape add-on in Blender

5.8 Tangible Landscape Add-on in Blender

In this section we describe the main features and components of the Tangible
Landscape GUI in Blender. After installation the add-on panel can be accessed from
the 3D view’s tool shelf (Fig. 5.11). The Watch Mode button activates the modal
timer function and waits for Tangible Landscape to copy files to the Watch folder.
The second panel Camera options allows user to toggle between the following
four camera types: a human view camera linked to the tangible view marker (See
Sect. 5.6), preset bird’s-eye views, preset human views, and a bird’s-eye view for
an animated orbiting camera. The preset bird’s-eye and human cameras are linked
to the 3D viewport allowing users to navigate the 3D scene (by mouse) and adjust
and revisit their preferred views. The Rendering and realism panel includes buttons
for selecting between the Cycle and Blender Render engines and between low-poly
and realistic representations. Thanks to Blender’s flexible and accessible interface
design, users can modify existing features or add new ones to accommodate specific
project needs. Some examples include enabling atmospheric effects (e.g., mist, rain,
and snow), adjusting the sun position, or initiating a fly-through or walkthrough
animation.

94 5 Real-Time 3D Rendering and Immersion

References

Blender Online Community. (2016). Blender—A 3D modelling and rendering package. http://
www.blender.org

Felinto, D. (2015). Virtual reality viewport. https://github.com/dfelinto/virtual_reality_viewport.
Accessed Jan 12, 2018.

Gobster, P. H., Nassauer, J. I., Daniel, T. C., & Fry, G. (2007). The shared landscape: What does
aesthetics have to do with ecology? Landscape Ecology, 22(7), 959–972.

Nassauer, J. I. (1997). Cultural sustainability: Aligning aesthetics and ecology (pp. 67–83).
Washington, DC: Island Press.

Open HMD Team. (2016). Open HMD. http://www.openhmd.net/index.php/showcase/blender-
openhmd/ Accessed Jan 12, 2018.

Smith, J. W. (2015). Immersive virtual environment technology to supplement environmental
perception, preference and behavior research: A review with applications. International Journal
of Environmental Research and Public Health, 12(9), 11486–11505.

Steinitz, C. (2012). A framework for geodesign: Changing geography by design. Redlands, CA:
Titolo collana. Esri.

Tabrizian, P., Baran, P. K., Smith, W. R., & Meentemeyer, R. K. (2018). Exploring perceived
restoration potential of urban green enclosure through immersive virtual environments. Journal
of Environmental Psychology, 55, 99–109.

http://www.blender.org
http://www.blender.org
https://github.com/dfelinto/virtual_reality_viewport
http://www.openhmd.net/index.php/showcase/blender-openhmd/
http://www.openhmd.net/index.php/showcase/blender-openhmd/

Chapter 6
Basic Landscape Analysis

Tangible Landscape allows us to explore the spatial patterns of topographic
parameters and their relation to basic surface geometry. We can analyze the
topography of a landscape model and how it changes by continually 3D scanning
the model and computing DEMs from the scanned point clouds using binning or
interpolation. By computing basic topographic parameters, morphometric units, and
DEM differencing we can map changes in elevation, slope, and landform as the
model is modified. These maps are then projected over the physical model of the
landscape so that we have near real-time feedback and can understand the impact of
our changes as we make them.

6.1 Processing and Analyzing the Scanned DEM

To start working with Tangible Landscape, the setup is first calibrated as described
in Sect. 2.2.3. After successful calibration the model can be scanned continuously.
With each scan the edges of the model are detected and georeferenced and the point
cloud is converted into a DEM via binning or interpolation. Standard GRASS GIS
modules are then used to compute maps of topographic parameters or landforms that
are then projected over the model. This chapter explains how the DEM is derived
and demonstrates the results in a case study.

6.1.1 Creating DEM from Point Cloud

There are two ways to derive a raster DEM from a set of points in Tangible
Landscape:

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_6&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_6

96 6 Basic Landscape Analysis

Binning A cell value is assigned based on the univariate statistics of the points
that fall inside that particular cell. When constructing a DEM the mean of the z
coordinates is typically used. Binning is fast, but creates a rough surface, possibly
with empty cells, so it is only useful for certain types of analyses (for example for
detecting objects, see Chap. 4).

Interpolation Cell values are estimated from available point data using spatial
interpolation technique, namely regularized spline with tension (RST). Interpolation
produces generally smoother DEM without empty cells, which is more suitable for
deriving topographic parameters and modeling processes such as water flow. For
more discussion on cell size selection, see Sect. 2.2.3.

6.1.2 Interpolation with the RST Function

The point clouds produced by the scanning process are usually noisy. The reg-
ularized spline with tension (RST) function, used in r.in.kinect and implemented
as the v.surf.rst module in GRASS GIS, can be used to interpolate smooth DEMs
from noisy point data and simultaneously compute topographic parameters such as
slope and curvature. RST approximates a surface from data points by minimizing a
smoothness seminorm and the deviations between the given points and the resulting
surface (Mitasova et al. 2005). The RST smoothness seminorm includes derivatives
of all orders with their weights decreasing with the increasing derivative order
leading to the function:

z(r) = a1 +
N

∑

j=1

λjR(ρj) (6.1)

R(ρj) = −[E1(ρj) + ln(ρj) + CE] (6.2)

where z(r) is the elevation at a point r = (x, y), a1 is a trend, λj are coefficients,
N is a number of given points, R(ρj) is a radial basis function, ρj = (ϕrj /2)2,
ϕ is a generalized tension parameter, rj = |r − rj | is a distance, CE = 0.577215
is the Euler constant, and E1(ρj) is the exponential integral function (Abramowitz
and Stegun 1965; Mitasova and Mitas 1993). The coefficients a1, {λj } are obtained
by solving the system of linear equations:

N
∑

j=1

λj = 0 (6.3)

a1 +
N

∑

j=1

λj

[

R(ρj) + δ
w0

wj

]

= z(ri), i = 1, . . . , N (6.4)

http://grass.osgeo.org/grass72/manuals/v.surf.rst.html

6.1 Processing and Analyzing the Scanned DEM 97

where w0/wj are positive weighting factors representing a smoothing parameter at
each given point rj = (xj , yj).

Tension influences the detail of the surface and smoothing influences the
deviations between the given points and the resulting surface. A higher smoothing
value can be used to reduce the noise in the data. Theoretically, the RST method
requires solution of a system of N linear equations equal to the number of
given points, making the method computationally intractable for large data sets.
To make the method applicable to thousands and even millions of points the
v.surf.rst implementation uses a quadtree segmentation algorithm with smooth
overlaps. Depending on the distribution of the input points in relation to the surface
complexity, interpolation with v.surf.rst may require experimental, iterative tuning
of the parameters. By adjusting the parameters which control the RST function
properties and distribution of points used for interpolation, this function can be
used to accurately model smooth or rough topography (Mitasova and Mitas 1993;
Mitasova et al. 2005). The module can be also used to compute basic topographic
parameters simultaneously with interpolation.

6.1.3 Analyzing the DEM

The geometry of an elevation surface at any point can be described by topographic
parameters—slope, aspect, and several types of curvatures (Mitasova et al. 2005;
Olaya 2009). Elevation surface can be partitioned into units with specific geometric
properties; one approach to defining these units is geomorphons (Jasiewicz and
Stepinski 2013).

Basic Topographic Parameters The steepest slope angle β in degrees or percent
and the aspect angle α in degrees are the most commonly used topographic
parameters. They represent the magnitude and direction of the surface gradient
vector ∇z = (fx, fy) (its direction is upslope) and are computed as follows:

β = arctan
√

f 2
x + f 2

y β[%] = 100
√

f 2
x + f 2

y (6.5)

α = arctan
fy

fx

(6.6)

where fx = ∂z/∂x and fy = ∂z/∂y are the first order partial derivatives of elevation
surface function z = f (x, y). The slope values range from 0◦ to 90◦ and the aspect
values range from 0◦ to 360◦. Therefore, computing the correct angle for aspect
requires the evaluation of all possible combinations of negative, positive and zero
values of fx, fy in relation to the selected direction of 0◦ (usually east or north).

For applications in geosciences the curvature in the gradient direction (profile
curvature) is important because it reflects the change in the slope angle and thus

http://grass.osgeo.org/grass72/manuals/v.surf.rst.html
http://grass.osgeo.org/grass72/manuals/v.surf.rst.html

98 6 Basic Landscape Analysis

controls the change of the velocity of mass flowing downwards along the slope
curve. The equation for the profile curvature is

κs = fxxf
2
x + 2fxyfxfy + fyyf

2
y

p
√

q3
(6.7)

where κs is the profile curvature in m−1 and fxx, fxy, fyy are the second order
partial derivatives of the elevation surface function z = f (x, y), p = f 2

x + f 2
y

and q = p + 1. The curvature in a direction perpendicular to the gradient
(tangential curvature) reflects the change in the aspect angle and influences the
divergence/convergence of water flow. The equation for tangential curvature at a
given point is

κt = fxxf
2
y − 2fxyfxfy + fyyf

2
x

p
√

q
(6.8)

where κt is the tangential curvature in m−1. Partial derivatives can be computed
from a suitable approximation function z = f (x, y) such as local second order
polynomial or certain types of splines, such as RST.

Partial Derivatives from a Raster DEM We can use a second order polynomial
approximation of a surface defined by a given grid point and its 3 × 3 neighborhood
to estimate the topographic parameters (Horn 1981):

z(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 (6.9)

By fitting this polynomial to the 9 grid points (the given point zi,j and its 3 ×
3 neighborhood as shown below in Fig. 6.1) using weighted least squares we can
derive the coefficients of this polynomial as well as its partial derivatives (fx =
a1, fy = a2, fxx = 2a4, fyy = 2a5, fxy = a3):

fx = (zi−1,j−1 − zi+1,j−1) + 2(zi−1,j − zi+1,j) + (zi−1,j+1 − zi+1,j+1)

8Δx
(6.10)

fy = (zi−1,j−1 − zi−1,j+1) + 2(zi,j−1 − zi,j+1) + (zi+1,j−1 − zi+1,j+1)

8Δy
(6.11)

where Δx and Δy is the resolution (grid spacing) in the east-west and north-south
directions respectively. To compute the second order partial derivatives we first
denote D(i, δ) = zi,j+1 + zi,j−1 − 2zi,j and D(δ, j) = zi+1,j + zi−1,j − 2zi,j .
Then we can write:

fxx = D(δ, j + 1) + (4zi−1,j + 4zi+1,j − 8zi,j) + D(δ, j − 1)

6(Δx)2
(6.12)

6.1 Processing and Analyzing the Scanned DEM 99

Fig. 6.1 The elevation values
of a grid cell and its 3 × 3
neighborhood z i−1, j+1 z i, j+1 z i+1, j+1

z i−1, j z i, j z i+1, j

z i−1, j−1 z i, j−1 z i+1, j−1

Fig. 6.2 First order topographic parameters: (a) slope and (b) aspect maps in degrees, draped over
a DEM

fyy = D(i − 1, δ) + (4zi,j+1 + 4zi,j−1 − 8zi,j) + D(i + 1, δ)

6(Δy)2 (6.13)

fxy = (zi−1,j−1 − zi+1,j−1) − (zi−1,j+1 − zi+1,j+1)

4ΔxΔy
(6.14)

where zi,j is the elevation value at row j and column i, Δx is the east-west grid
spacing, and Δy is the north-south grid spacing (resolution) (Figs. 6.2 and 6.3).

Landforms Landforms can be identified automatically by fitting a quadratic func-
tion to the elevation values in a given neighborhood or by “moving window” using
least squares. This method for identifying landforms using differential geometry is
implemented in GRASS GIS as a module named r.param.scale. While real-world
landforms are scale-dependent and may be nested, this method can only identify
landforms at a single scale based on the size of the moving window.

Geomorphons—geomorphologic phonotypes—is a novel method for identifying
landforms using pattern recognition developed by Jasiewicz and Stepinski (2013)
and implemented in GRASS GIS as the r.geomorphon add-on module. A geomor-

http://grass.osgeo.org/grass72/manuals/r.param.scale.html
http://grass.osgeo.org/grass72/manuals/addons/r.geomorphon.html

100 6 Basic Landscape Analysis

Fig. 6.3 Elevation surface curvatures: (a) profile and (b) tangential curvature maps draped over a
DEM

(a) (b)

Fig. 6.4 Geomorphons use local ternary patterns and line-of-sights concepts applied to landform
identification: (a) the relationship between a cell and its neighbors in terms of relative elevation
(higher than, equal to, or lower than) is expressed as a ternary pattern; (b) ternary patterns are
derived using the line-of-sight method and comparing the zenith angle Φ and nadir angle Ψ

phon is an abstract unit of terrain described by the local ternary pattern rather than
by relief. The relationship between a cell and its neighborhood is described using
an 8-tuple pattern of lower (−), equal (0), higher (+) elevation values (Fig. 6.4a).
Neighborhoods are based on visibility rather than the predefined dimensions of
a moving window. Geomorphons uses the line-of-sight principle to dynamically
determine the optimal size of the search radius for a neighborhood based on
openness of the terrain (see Fig. 6.4b). Thus, unlike methods based on differential
geometry, the geomorphons approach is able to efficiently classify landforms across
a range of spatial scales (Jasiewicz and Stepinski 2013) (Fig. 6.5).

6.2 Case Study: Topographic Analysis of Graded Landscape 101

Fig. 6.5 Landforms identified by geomorphons (see r.geomorphon manual page for the explana-
tion of landform types)

Fig. 6.6 Lake Raleigh Woods area with the development site highlighted

6.2 Case Study: Topographic Analysis of Graded Landscape

In this section we demonstrate how changes in elevation impact topographic
parameters and landforms in a small study area on NCSU’s Centennial Campus.

6.2.1 Site Description and 3D Model Properties

Our 56 ha case study area is located on NCSU’s Centennial Campus on the south-
west side of Lake Raleigh (Fig. 6.6). The topography is largely natural, but there

http://grass.osgeo.org/grass72/manuals/addons/r.geomorphon.html

102 6 Basic Landscape Analysis

are some anthropogenic features, such as informal trails and the Chancellor’s house
with its access road, parking, and retention pond. There is rapid development on the
campus; several new buildings are currently under construction. At the same time
there is a desire to preserve part of the campus as a park and a natural teaching
area. In this case study we developed part of the natural area as student housing and
constructed an access road. Since significant grading would be required to develop
the site given the steep slopes we extensively modified the topography and mapped
the change in elevation (cut and fill), slope, aspect, curvature, and landform.

We CNC routed the base and mold for the model from MDF based on a DEM
derived from a 2013 lidar survey. We used the base and the mold to cast a sculptable
sand model. Each side of the 1:1500 scale model is 50 cm and represents 750 m.
The model is 2 times vertically exaggerated and has 44 mm of relief which represent
33 m of elevation change.

We sculpted the sand model to grade a road and building sites. With Tangible
Landscape we were able to analyze these modifications and understand how we had
changed the slope, aspect, shape, and volume of the landscape.

6.2.2 Basic Workflow with DEM Differencing

To explore the impact of the new development we graded building sites and a road
for the future neighborhood. We start with the original molded sand model, scan it
and save the scan under different name so that it is not overwritten by the next scan.
Then we compute and display 1-meter contours:

g.rename raster=scan,scan_before
g.region raster=scan_before
r.contour input=scan_before output=contours_1m step=1

Figure 6.7a shows the terrain conditions before grading. While sculpting the model,
we can pause the continuous scanning or keep it running to get ongoing feedback
on our design as we progress.

We can visualize the magnitude and extent of our changes by differencing the
scanned elevation before and after the change and then assigning a diverging color
scheme to helps us distinguish between cut and fill (Fig. 6.7d):

g.rename raster=scan,scan_after
r.mapcalc "diff = scan_after - scan_before"
r.colors -n map=diff color=differences

Because the scans are noisy, they do not align precisely in vertical direction.
When computing difference between scans, any vertical shift is undesirable and
should be minimized. The following workflow uses linear regression to match one
scan to the other on the assumption that there has only been a moderate change in
elevation. The linear regression of the form y = a +bx estimates the vertical shift a

and scale coefficient b (which should be close to 1) for adjusting the scan. Here we
define a function in Python for adjusting the scan to match the other; we will refer
to this function throughout the book:

6.2 Case Study: Topographic Analysis of Graded Landscape 103

Fig. 6.7 Basic workflow: (a) the scanned elevation with contours, a red curve indicates the
planned road; (b) modifying the terrain; (c) the finished design; (d) and the difference in meters
between the elevation before and after grading, red representing soil removal (cut) and blue
representing soil deposition (fill)

def adjust_scan(scan_before, scan_after, scan_adjusted):
coeff = gscript.parse_command('r.regression.line',

mapx=scan_after, mapy=scan_before, flags='g')
gscript.mapcalc('{scan_adjusted} = {a} + {b} *

{scan_after}'.format(scan_adjusted=scan_adjusted,
a=coeff['a'], b=coeff['b'], scan_after=scan_after))

Here we use the function for adjusting scans to compute the difference:

adjust_scan('scan_before', 'scan_after', 'scan_adjusted')
gscript.mapcalc('diff = scan_adjusted - scan_before')
gscript.run_command('r.colors', flags='n', map='diff',

color='differences')

6.2.3 The Impact of Model Changes on Topographic
Parameters

In our case study the new neighborhood is planned on an east-facing hillside with
a gentle slope of about 5◦ (Fig. 6.8). The slope values are steep on two sides of the
hillside where it changes into parallel valleys; the profile curvature increases at the

104 6 Basic Landscape Analysis

Fig. 6.8 Terrain parameters: (a, b) slope and (c, d) aspect in degrees computed from the scanned
model before (a, c) and after (b, d) modification

edge of the valleys (Fig. 6.9). The profile curvature on the hillside varies between
positive and negative values denoting convex (ridges) and concave shapes (valleys).

We computed the slope and aspect using the r.slope.aspect module based on
the standard polynomial approximation using 3 × 3 window, see Eqs. (6.9)–(6.14).
When computing curvature, we use a more flexible method with a larger window
(21 × 21 grid cells) to capture the larger scale morphology associated with the main
valleys and ridges at our study site. This method is implemented in the r.param.scale
module and we used this module to compute profile and tangential curvature. To
visualize the variability in the curvature values we used a dedicated color ramp with
divergent scheme:

r.slope.aspect elevation=scan aspect=scan_aspect \
slope=scan_slope

r.param.scale input=scan output=scan_pcurv size=21 method=longc
r.param.scale input=scan output=scan_tcurv size=21 method=crosc
r.colors map=scan_pcurv color=curvature
r.colors map=scan_tcurv color=curvature

To build a new road with gentle slopes we constructed a series of switchbacks
with low areas raised on embankments. As a result there are steep slopes beside
the road on the faces of the embankments (Fig. 6.8). We also flattened parts of the
hillside as building sites. When we analyzed the curvature of the modified landscape
the flat roads were mapped as concave areas with high curvature due to the larger
neighborhood size used in the analysis (Fig. 6.9).

http://grass.osgeo.org/grass72/manuals/r.slope.aspect.html
http://grass.osgeo.org/grass72/manuals/r.param.scale.html

6.2 Case Study: Topographic Analysis of Graded Landscape 105

Fig. 6.9 Terrain curvatures: (a, b) profile and (c, d) tangential curvature computed from the
scanned model before (a, c) and after (b, d) modification

6.2.4 Changing Landforms

The new development would change the landforms creating new ridges and valleys.
We explored these changes by running the r.geomorphon add-on module which
can be installed using g.extension. We can tune the results with parameters such as
search and skip that determine the appropriate scale of analysis. By increasing these
parameters we can skip small terrain variations in order to capture larger landforms:

g.extension r.geomorphon
r.geomorphon dem=elevation forms=landforms search=16 skip=6

In the resulting landform classification the new road has formed a major ridge
(Fig. 6.10).

http://grass.osgeo.org/grass72/manuals/addons/r.geomorphon.html
http://grass.osgeo.org/grass72/manuals/g.extension.html

106 6 Basic Landscape Analysis

Fig. 6.10 Landform classification: (a) before development, (b) after development with the new
elevated road classified as a ridge, (c) legend and (d) a detailed view of the modification done in
Fig. 6.7

References

Abramowitz, M., & Stegun, I. (1965). Handbook of mathematical functions: With formulas,
graphs, and mathematical tables (Vol. 55). New York: Dover Publications.

Horn, B. K. P. (1981). Hillshading and the reflectance map. Proceedings of the IEEE, 69(1), 41–47.
Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – A pattern recognition approach to

classification and mapping of landforms. Geomorphology, 182, 147–156.
Mitasova, H., & Mitas, L. (1993). Interpolation by regularized spline with tension: I. Theory and

implementation. Mathematical Geology, 25(6), 641–655.
Mitasova, H., Mitas, L., & Harmon, R. (2005). Simultaneous spline approximation and topographic

analysis for lidar elevation data in open-source GIS. IEEE Geoscience and Remote Sensing
Letters, 2, 375–379.

Olaya, V. (2009). Basic land-surface parameters. In Geomorphometry concepts, software, applica-
tions, developments in soil science (Vol. 33, pp. 141–169). Amsterdam: Elsevier.

Chapter 7
Surface Water Flow Modeling

The topography of the Earth’s surface controls the flow of water and mass over
the landscape. Modifications to the surface geometry of the land redirect water
and mass flows influencing ecosystems, crop growth, the built environment, and
many other phenomena dependent on water. We used Tangible Landscape to
explore the relationship between overland flow patterns and landscape topography
by manually changing the landscape model, while getting near real-time feedback
about changing flow patterns. We coupled Tangible Landscape with a sophisticated
dam breach model to investigate flood scenarios after a dam breach.

7.1 Foundations in Flow Modeling

Water flow over complex terrain can be described by a bivariate form of the shallow
water continuity equation. The continuity equation can be coupled with momentum
(Navier-Stokes) equations to simulate flooding due to dam failure.

7.1.1 Overland Flow

For shallow water flow the spatial variation in velocity with respect to depth can be
neglected and the overland water flow during a rainfall event can be approximated
by the following bivariate continuity equation (Julien et al. 1995):

∂h

∂t
+ ∇ · (h v) = ie (7.1)

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_7

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_7&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_7

108 7 Surface Water Flow Modeling

where:

h is the depth of overland flow in m
t is the time in s
v is the flow velocity vector v = (vx, vy) in m/s
ie is the rainfall excess rate (rainfall − infiltration − vegetation intercept) in m/s.

If we assume that the dynamic friction slope of the water surface can be approx-
imated by the static bare ground slope the flow velocity can be estimated by the
Manning’s equation:

v = 1

n
h2/3|s|1/2s0 (7.2)

where:

n is the Manning’s coefficient expressed here with units m− 1
3 s

s is the negative elevation gradient −∇z = −(fx, fy) of the bare ground surface
|s| is the magnitude of elevation gradient (slope, see Sect. 6.1.3)
s0 is the unit vector in the flow direction (the negative elevation gradient

direction).

For steady state water flow and a steady rainfall excess rate the continuity equation
has the following form:

∂h/∂t = 0 −→ ∇ · (h v) = ie (7.3)

We introduce a diffusion-like term proportional to ∇2[h5/3] to incorporate the
diffusive wave effects in at least an approximate way. The spatially distributed,
steady overland water flow is then expressed as follows:

− ε

2
∇2[h5/3)] + ∇ · (h v) = ie (7.4)

where ε is a spatially variable diffusion coefficient. The diffusion term, which
depends on h5/3 instead of h, makes the equation (Eq. (7.4)) linear in the function
h5/3 which enables us to solve it by the Green’s function method using a stochastic
technique referred to as a path sampling method (Mitasova et al. 2004).

The path sampling method is based on the duality between the particle and field
representations of spatially distributed phenomena. In this concept the density of
particles in a space defines a field and vice versa, i.e. a field is represented by
particles with a corresponding spatial distribution. Using this duality, processes
can be modeled as the evolution of fields or the evolution of spatially distributed
particles (Mitasova et al. 2004).

The flow evolution (accumulation process) can be also interpreted as an approx-
imation of a dynamical solution for shallow water flow, in which velocity is mostly
controlled by terrain slope and surface roughness rather than water depth and
friction slope. Therefore the change of velocity over time at a given location is

7.1 Foundations in Flow Modeling 109

negligible. The robustness of the path sampling method enables us to simulate
complex, spatially variable conditions and efficiently explore flow patterns for a
wide range of landscape configurations. This method is implemented in GRASS
GIS as the module r.sim.water.

7.1.2 Dam Breach Flooding

Surface water flow and flooding due to a dam breach are also represented by the
shallow water flow equation. For this application, however, we assume that there
is no rainfall and the only source is water from the reservoir. In order to ensure
a realistic representation given a large mass of moving water the shallow water
continuity equation:

∂h

∂t
+ ∇ · (h v) = 0 (7.5)

is coupled with the momentum (Navier-Stokes) equation of fluid motion (Cannata
and Marzocchi 2012):

∂hvx

∂t
+ ∂hv2

x

∂x
+ ∂hvxvy

∂y
= Sx (7.6)

∂hvy

∂t
+ ∂hvyvx

∂x
+ ∂hv2

y

∂y
= Sy (7.7)

where S = (Sx, Sy) is the source vector (water flowing from the lake):

Sx = −gh

(

∂zw

∂x
+ n2vx |v|

h4/3

)

Sy = −gh

(

∂zw

∂y
+ n2vy |v|

h4/3

)

(7.8)

and

g is the gravitational acceleration in m s−2

zw is the water level expressed as elevation above sea level in m

n is the Manning’s roughness coefficient expressed here with units m− 1
3 s

|v| is the flow velocity magnitude |v| = (v2
x + v2

y)
1/2 in m s.

The resulting partial differential equations are hyperbolic and non-linear and
therefore must be solved numerically. The finite volume method with an upwind
conservative scheme proposed by Ying et al. (2004) is used to solve the equations
on a regular grid making the model suitable to GIS-based implementation. Green’s
theorem is used to obtain the discrete equations. The numerical method explicitly

http://grass.osgeo.org/grass72/manuals/r.sim.water.html

110 7 Surface Water Flow Modeling

solves the governing equations in two separate steps. First, the continuity equa-
tion 7.5 is evaluated deriving the water depth at time t + Δt . Then these values are
used in the source term (Eq. (7.8)) to solve the momentum equations (7.6), (7.7)
and evaluate the flow velocities at time t + Δt . More details about the numerical
solution can be found in Cannata and Marzocchi (2012). The model is implemented
in GRASS GIS as an add-on module r.damflood.

7.2 Case Study: The Impact of Development on Surface
Water Flow

Development on North Carolina State University’s Centennial Campus raises
concerns about the impact of stormwater runoff during construction. We used
Tangible Landscape to explore how grading potential construction sites would
change overland flow and to test the design of stormwater control measures.

In this case study we worked with the same area and physical model used in
Sect. 6.2.1. To familiarize ourselves with the basic hydrologic conditions of this site
we computed flow accumulation and delineated watershed boundaries. First, we set
the computational region to match our study area and the resolution to 1 m and then
we ran the least cost path flow tracing implemented in the module r.watershed to
derive the flow accumulation raster and watersheds. We set the threshold for the
approximate size of the watershed areas to 1000 grid cells and we converted the
areas to a vector representation so that we could display the watershed boundaries:

g.region n=223765 s=223015 e=638450 w=637700 res=1 -p
r.watershed elevation=dem accumulation=flow_accum \

basin=watersheds threshold=1000
r.to.vect input=watersheds output=watersheds type=area

The resulting map that combines the flow accumulation raster with the vector
representation of watershed boundaries and contours was then projected over the
model in Fig. 7.1a.

To explore the potential impact of new development we graded sites for new
apartment buildings with flat slopes and constructed an access road (see Fig. 6.7d).
We carved a narrow culvert to allow water to flow under the road. By calculating
flow accumulation and watersheds for the modified topography (Fig. 7.1b) we could
immediately see that the watershed boundaries in the developed area changed
significantly due primarily to the new road acting as an artificial watershed
boundary.

Flow accumulation derived by the module r.watershed is based on the least cost
path algorithm and is not designed to represent water depth and the pooling of water
in depressions. Therefore, we used the shallow water flow model implemented in
the module r.sim.water to simulate the overland flow depth during a storm event
for the current conditions and after the grading. We first derived the components
of elevation surface gradient ∇z = (fx, fx) (the parameters dx, dy in the module

http://grass.osgeo.org/grass72/manuals/addons/r.damflood.html
http://grass.osgeo.org/grass72/manuals/r.watershed.html
http://grass.osgeo.org/grass72/manuals/r.watershed.html
http://grass.osgeo.org/grass72/manuals/r.sim.water.html

7.2 Case Study: The Impact of Development on Surface Water Flow 111

Fig. 7.1 Flow accumulation and watershed boundaries computed with r.watershed and projected
over the sand model: (a) the result for the initial topography, (b) the flow pattern and watershed
boundaries after the terrain modifications shown in Fig. 6.7

r.slope.aspect) and then ran the water flow simulation with the rainfall excess value
of 150 mm/h:

r.slope.aspect elevation=scan dx=scan_dx dy=scan_dy
r.sim.water elevation=scan dx=scan_dx dy=scan_dy \

rain_value=150 depth=depth

The resulting water depth maps were projected over the model with the initial terrain
conditions and then in near real time as the terrain was modified with the final water
depth pattern shown in Fig. 7.2b. Note that we have used an extremely high value
of rainfall excess to provide rapid maps of water depth as the model was modified.
Once we have the final design we can run the simulation with a selected storm and
obtain realistic water depth estimates.

http://grass.osgeo.org/grass72/manuals/r.watershed.html
http://grass.osgeo.org/grass72/manuals/r.slope.aspect.html

112 7 Surface Water Flow Modeling

Fig. 7.2 Water depth computed with r.sim.water: (a) derived for initial topography and (b) after
the terrain modifications shown in Fig. 6.7, (c) a detailed view of the modified water flow

We can also run the module r.sim.water in a dynamic mode (-t flag) and project
the evolution of water depth during the storm event as an animation using the
GRASS GIS animation tool.

7.3 Case Study: Dam Breach

The Lake Raleigh dam, located within our Centennial Campus study area, broke in
September of 1996 after Hurricane Fran. In this case study we simulated how flood
water would spread across the current landscape if the dam was breached again. We
also modified the terrain to explore how different morphologies would influence the
spread of flooding. We used the add-on r.damflood, which was designed specifically
to simulate dam breaches and analyze the subsequent flooding.

http://grass.osgeo.org/grass72/manuals/r.sim.water.html
http://grass.osgeo.org/grass72/manuals/r.sim.water.html
http://grass.osgeo.org/grass72/manuals/addons/r.damflood.html

7.3 Case Study: Dam Breach 113

Fig. 7.3 An overview of Lake Raleigh’s surroundings with the dam highlighted in red. The digital
elevation model on which the orthophoto is draped was created by fusing the latest 2014 data with
the lake bathymetry data from 2001

Fig. 7.4 Detailed view of the sand model in the dam location: (a) the current conditions with a
stream and greenway below the dam; (b) sculpting the sand model to remove the road for the
second scenario

7.3.1 Site Description and Input Data Processing

Figure 7.3 shows the terrain and the recent orthophotograph (downloaded using
module r.in.wms) of our Lake Raleigh study area including the dam. The stream
flowing out from the lake merges with the stream coming from the south in the area
just below the dam, which is actively used for recreation such as disc golf, running
and cycling (Fig. 7.4a).

We CNC routed a base model and a mold of the bare ground surface from
MDF based on a lidar-derived DEM. The model scale is approximately 1:2400
without vertical exaggeration. We used the mold to cast a malleable layer of polymer
enriched sand on top of the terrain model to create a tangible interface for exploring
various dam breach flooding scenarios.

http://grass.osgeo.org/grass72/manuals/r.in.wms.html

114 7 Surface Water Flow Modeling

The dam breach simulation requires several input layers including the elevation
raster that describes the lake bathymetry and the surrounding topography, the depth
of the lake water, the Manning’s roughness coefficient, and the geometry of the dam
breach. The elevation raster was created by fusing the latest DEM based on the
2014 lidar survey with a DEM from the 2001 survey, which we used as a proxy for
the lake bathymetry. The 2001 survey captured the topography when the lake was
drained after the dam failure in 1996. We considered the 2001 DEM in the lake area
a suitable approximation of the current lake bathymetry.

The lake depth raster was computed with the module r.lake using the fused DEM
as an input. This module fills an area with water for a designated elevation level
starting from a given seed point and outputs a map of the water depth for the flooded
area. We determined that the current water level elevation for the Lake Raleigh was
85 m by querying the DEM along the outline of the lake. We selected an arbitrary
point inside the lake as a seed point. While r.lake assigns null values to the cells
outside of the filled area, r.damflood requires zero values outside of the lake, so we
converted null values to zeros with the r.null module and limited the flooded area to
the lake mask:

g.region n=224026 s=223007 e=639480 w=637798 res=3 -p
r.lake elevation=lake_bottom_dem water_level=85 \

lake=lake_depth_tmp coordinates=638792,223659
r.null map=lake_depth_tmp null=0
r.mapcalc "lake_depth = if(lake_mask, lake_depth_tmp, 0)"

The Manning’s roughness coefficient influences the speed of water. It depends
on landcover and varies between 0 and 1 with higher values resulting in slower
flows. To derive Manning’s coefficients we could for example reclassify a landcover
map. In our example for simplicity’s sake we created a raster map with a uniform
Manning’s value:

r.mapcalc "manning = 0.01"

Finally, the module r.damflood requires a dam breach raster which represents the
height of the breach from the top of the dam. To obtain this raster we scanned the
model with the dam. Then we carved a breach into the dam and rescanned the model.
We computed the difference using the function defined in code snippet in Sect. 6.2.2.
We used a vertical limit of 1 m to avoid detecting differences due to noise from
scanning:

adjust_scan('scan_before', 'scan_after', 'scan_adjusted')
gscript.mapcalc("breach = if(scan_before - scan_adjusted > 1,

scan_before - scan_adjusted, 0)")

7.3.2 The Impact of the Road on Flooding

For our first flood simulation we used the current conditions. A major road with a
culvert crosses the stream below the dam. We carved a culvert into the sand model
by removing a narrow channel of sand from the road and scanned this model to
provide input for our simulation.

http://grass.osgeo.org/grass72/manuals/r.lake.html
http://grass.osgeo.org/grass72/manuals/r.lake.html
http://grass.osgeo.org/grass72/manuals/addons/r.damflood.html
http://grass.osgeo.org/grass72/manuals/r.null.html
http://grass.osgeo.org/grass72/manuals/addons/r.damflood.html

7.3 Case Study: Dam Breach 115

Since our sand model does not incorporate the lake bathymetry we had to
combine the fused DEM that includes the bathymetry with the scan. We then ran
the r.damflood module with the input map layers and set the simulation parameters
such as the length of the simulation, the time step for creating output maps, and the
computational time step. Since the simulation is computationally intensive it may
take several minutes to compute depending on the settings and resolution.

r.mapcalc "scan_combined = if(lake_mask > 0, lake_bottom_dem, \
scan_adjusted)"

r.damflood elev=scan_combined lake=lake_depth dambreak=breach \
manning=manning h=flood timestep=0.1 tstop=1000 deltat=10

The series of output raster maps generated by the simulation can be registered
in the GRASS GIS Temporal Framework and then visualized using module
g.gui.animation. The results for the current conditions are shown in Fig. 7.5. Clearly,
the road creates a significant obstacle for the spread of water and causes pooling
below the dam. Contained by the road the water floods upstream areas to the west.

In the next simulation we were interested in the conditions before the road was
built in 2004. We simply removed the road (Fig. 7.4b) and then rescanned and
recomputed the simulation (Fig. 7.6). Removing the road changes the flow pattern
and as a result water spreads freely at lower depth thus impacting a larger area, but
potentially reducing risk.

Fig. 7.5 The flood simulation with current conditions

Fig. 7.6 The flood simulation after the road has been removed

http://grass.osgeo.org/grass72/manuals/r.damflood.html
http://grass.osgeo.org/grass72/manuals/g.gui.animation.html

116 7 Surface Water Flow Modeling

7.4 Case Study: Stormwater Runoff Control Design with
Flow Outside the 3D Model Area

In this case study we simulate stormwater runoff in an agricultural field and use
Tangible Landscape to design runoff control measures. We use this case study to
introduce modeling of processes extending beyond the 3D physical model. The
boundaries of the physical model and its scale define the spatial extent of our
interactions on the landscape. These boundaries often do not match the boundaries
of the physical processes, such as water flow, which accumulates within watersheds.
The effects of our interventions on the physical model affect water flow downstream
beyond of the boundaries of the model. Similarly if water flow is modeled without
considering surface runoff within the watershed, yet beyond the boundaries of the
model, then the amount of water in the landscape will be underestimated. In the
following case study we use smooth fusion (Petrasova et al. 2017) to combine a
lidar-based DEM of entire watershed with continuous scans of a 3D physical model
that is actively being modified.

7.4.1 Site Description and the Physical Model

The study area is located at the Lake Wheeler Road Field Laboratory of North Car-
olina State University (NCSU), Raleigh (Fig. 7.7). The area is used for agricultural
research, dedicated to the production of grain crops for animal feed. In this case
study, we use the physical model of the agricultural field to design stormwater runoff
control measures to reduce concentrated flow causing gully erosion.

Fig. 7.7 The study area with extent of the physical model outlined in red and the watershed
outlined in blue

7.4 Case Study: Stormwater Runoff Control Design with Flow Outside the 3D. . . 117

We manually built a physical model from polymer enriched sand based on the
2015 lidar data at 1:420 scale and 4 times vertical exaggeration, to facilitate scanning
and interaction. We used projected contours and the color-coded difference of the
scanned and real DEM, while building the model to ensure sufficient accuracy.

7.4.2 Surface Runoff Modeling

To simulate water flow within the entire studied watershed we merged the scanned
DEM of the physical model with the lidar-based DEM covering the entire water-
shed. Smooth fusion was essential for ensuring that the simulated water flows onto
and off of the physical model (Petrasova et al. 2017). It is implemented in GRASS
GIS add-on r.patch.smooth:

g.extension r.patch.smooth

Module r.patch.smooth assumes input DEMs have the same resolution and are
aligned properly, therefore we first resample the lidar DEM to align with the scanned
DEM. We selected a smoothing distance of 15 m to smoothly blend both DEMs.

g.region raster=lidar align=scan
r.resample.interp input=lidar output=lidar_resampled \

method=bilinear
r.patch.smooth input_a=scan input_b=lidar_resampled \

output=fused smooth_dist=15

We then continuously ran the water flow simulation using r.sim.water on the
merged DEM over the watershed including the physical model. We modeled the
steady state flow assuming uniform rainfall excess rate of 30 mm per hour, and
uniform Manning’s coefficient of 0.15. The simulation ran at resolution of 0.85 m,
which is given by the resolution of the scanner multiplied by the model scale.

We then started to modify the physical model using sculpting tools and our hands
to fill the actively eroding rill and divert flow to the edge of the field, while the new
water flow pattern was being projected over the modified sand model. Furthermore,
we built a series of checkdams to prevent erosion by reducing water flow velocity
during rainstorm events. Figure 7.8 shows the simulated water flow before and after
the change projected over the physical model. We can observe how water flows
smoothly onto and off of the sand model due to the blending where the DEMs
overlap.

http://grass.osgeo.org/grass72/manuals/addons/r.patch.smooth.html
http://grass.osgeo.org/grass72/manuals/r.patch.smooth.html
http://grass.osgeo.org/grass72/manuals/r.sim.water.html

118 7 Surface Water Flow Modeling

Fig. 7.8 A physical model of landscape with projected orthophoto, 20 cm contours, and simulated
water flow depth in meters: (a) the original landscape with an eroding rill and (b) the landscape
after our modifications

References

Cannata, M., & Marzocchi, R. (2012). Two-dimensional dam break flooding simulation: A GIS-
embedded approach. Natural Hazards, 61(3), 1143–1159.

Julien, P. Y., Saghafian, B., & Ogden, F. L. (1995). Raster-based hydrologic modelling of spatially-
varied surface runoff. Water Resources Bulletin, 31(3), 523–536.

Mitasova, H., Thaxton, C., Hofierka, J., McLaughlin, R., Moore, A., & Mitas, L. (2004). Path
sampling method for modeling overland water flow, sediment transport, and short term terrain
evolution in open source GIS. Developments in Water Science, 55, 1479–1490.

Petrasova, A., Mitasova, H., Petras, V., & Jeziorska, J. (2017). Fusion of high-resolution dems for
water flow modeling. Open Geospatial Data, Software and Standards, 2(1), 6.

Ying, X., Khan, A. A., & Wang, S. S. (2004). Upwind conservative scheme for the Saint Venant
equations. Journal of hydraulic engineering, 130(10), 977–987.

Chapter 8
Soil Erosion Modeling

Overland water flow can detach exposed soil and transport it over large distances,
leading to soil loss and sediment deposition across landscape. Soil erosion can be
effectively controlled by modifying topography to reduce concentrated overland
flow or by planting vegetation to reduce soil detachment and transport. We
used Tangible Landscape to analyze distribution of soil erosion and deposition
potential in a small watershed and to design conservation measures by changing
topography and planting vegetation in vulnerable locations. We iteratively adjusted
and optimized our design based on real-time feedback from erosion and deposition
maps projected over the modified 3D model. This feedback helped us to evaluate
the effectiveness of our designs and develop better solutions.

8.1 Soil Erosion and Deposition Modeling

Soil erosion and sediment transport in landscapes is controlled by rainfall, topog-
raphy, land cover, soil properties and conservation measures. It is a complex,
multiscale process that is not fully understood and is challenging to predict (Jetten
et al. 2003). Several models have been developed to capture and predict this process
at various levels of complexity and spatial and temporal resolutions.

The Simplified Erosion/Deposition Model (SEDM) estimates sediment transport
across a complex landscape and predicts the resulting pattern of erosion and
deposition using the idea originally proposed by Moore and Burch (1986). The
model assumes that the sediment flow rate can be approximated by sediment
transport capacity and the net erosion and deposition is transport capacity limited.
Under these assumptions, the net erosion and deposition can be estimated as a
change in sediment flow rate along the hillslope (Mitasova et al. 2013). The model
is then easy to implement using map algebra and standard flow accumulation tools
available in GRASS GIS.

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_8&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_8

120 8 Soil Erosion Modeling

SEDM combines the Universal Soil Loss Equation parameters (Wischmeier and
Smith 1978) and upslope contributing area per unit width A to estimate the sediment
flow T :

T ≈ RKCPAm(sin β)n (8.1)

where:

T is the sediment flow rate in kg m−1 s−1

R is the rainfall factor in MJ mm (ha h)−1

K is the soil erodibility factor in ton h (MJ mm)−1

A is the upslope contributing area per unit width in m
β is the steepest slope angle
C is the dimensionless land-cover factor
P is the dimensionless prevention-measures factor.

The net erosion/deposition D in kg m−2 s−1 is then computed as a divergence of
sediment flow, equivalent to the net rate of change of the sediment mass flowing
from the given grid cell (Mitasova et al. 2013):

D = ∇ · (T s0) = ∂(T cos α)

∂x
+ ∂(T sin α)

∂y
(8.2)

where s0 = (cos α, sin α) is the unit vector of the steepest slope direction (flow
direction equivalent to the direction of negative gradient −∇z) given by the aspect
angle α (see Sect. 6.1.3).

The exponents m, n in the Eq. (8.1) control the relative influence of the water
and slope terms and reflect the impact of different types of flow. The typical range
of values is m = 1.0−1.6, n = 1.0−1.3 with the higher values reflecting the pattern
for prevailing rill erosion with more turbulent flow when erosion sharply increases
with the amount of water. Lower exponent values close to m = n = 1 better reflect
the pattern of the compounded, long term impact of both rill and sheet erosion and
averaging over a long term sequence of large and small events (Mitasova et al. 2013).
The relatively simple equations used in SEDM make it suitable for erosion modeling
with real-time feedback when exploring erosion control alternatives with Tangible
Landscape.

8.2 Case Study: Designing Erosion Control Measures

Soil erosion in agricultural areas can be controlled by modifying topography
(e.g. building terraces in steep terrain) or by planting protective vegetative cover.
Sediment transport from the fields can be reduced by constructing checkdams in
convergent flow areas and building sedimentation ponds. We explored how various
conservation practices impacted net erosion and deposition in a small watershed in
the North Carolina Piedmont.

8.2 Case Study: Designing Erosion Control Measures 121

Fig. 8.1 Small agricultural watershed study site: sand model with projected orthophoto and
overland water flow computed by the module r.sim.water

Fig. 8.2 Small agricultural watershed study site after a large storm with runoff and sediment
transport in a convergent flow area

8.2.1 Site Description and 3D Model Properties

Our 25 ha case study area is a small watershed located within North Carolina State
University’s experimental agricultural and turf research fields (McLaughlin et al.
2001) (Fig. 8.1). Most of the watershed is used for rotating crops and turf with some
areas left bare after harvest. Large storms can lead to significant runoff (Fig. 8.2)
and flooding of the service road requiring mitigation and repairs.

http://grass.osgeo.org/grass72/manuals/r.sim.water.html

122 8 Soil Erosion Modeling

We used lidar data to compute a bare ground DEM at 1m resolution and used
it to CNC route a mold for the DEM of the study area. The physical 3D model
was then cast in kinetic sand at approximately 1 : 2000 horizontal scale with 3-
times vertical exaggeration. The physical model served as a tangible interface for
exploring how effective changes in topography and land cover are in reducing net
erosion and deposition.

8.2.2 Erosion Modeling While Modifying Topography

We assumed a uniform rainfall factor R = 4595 MJ mm (ha h yr)−1 as well
as uniform soils and land cover with the soil erodibility factor K = 0.02634
ton ha h (ha MJ mm)−1 and the land cover factor C = 0.01 (grass). The topographic
factor exponents were set to m = n = 1 to represent prevailing sheet flow. Since we
used uniform values for the R-, K- and C-factors, the spatial pattern of erosion and
deposition depends solely upon the terrain slope and shape as well as the upslope
contributing area. The resulting map represents topographic potential for erosion
and deposition.

In the following workflow we first computed the slope and aspect maps of the
scanned model. Then we computed the flow accumulation map and combined it
with the slope and the R-, K- and C-factors using map algebra to estimate the
sediment flow rate (see Eq. (8.1)).1 Finally, we computed the divergence of the
sediment flow vector field (see Eq. (8.2)) with the add-on module r.divergence to
generate the erosion-deposition map and assigned it a custom color ramp:

r.slope.aspect elevation=scan aspect=scan_aspect \
slope=scan_slope

r.flow elevation=scan flowaccumulation=scan_flowacc
r.mapcalc "scan_sedflow = 4595. * 0.02634 * 0.01 * \

scan_flowacc * sin(scan_slope)"
r.divergence magnitude=scan_sedflow direction=scan_aspect \

output=scan_usped
r.colors map=scan_usped rules=color_erdep.txt

The divergent, non-linear color ramp was specified in a plain text file
color_erdep.txt as:

0% 100 0 100 #dark magenta, erosion
-100 magenta
-10 red
-1 orange
-0.1 yellow
0 200 255 200 #light green, stable
0.1 cyan
1 aqua
10 blue
100 0 0 100 #dark blue, deposition
100% black

1For a general case when m, n and resolution are not set to 1 see the erosion modeling tutorial:
https://ncsu-geoforall-lab.github.io/erosion-modeling-tutorial/grassgis.html.

http://grass.osgeo.org/grass72/manuals/addons/r.divergence.html
https://ncsu-geoforall-lab.github.io/erosion-modeling-tutorial/grassgis.html

8.2 Case Study: Designing Erosion Control Measures 123

Fig. 8.3 Soil erosion and deposition maps projected over the 3D model: (a) result for initial
terrain conditions and (b) after grading the terrain and creating two berms to control the impact of
concentrated water flow. Yellow through red indicates the topographic potential for erosion, while
light through dark blue represents sediment deposition

The resulting soil erosion and deposition map was projected over the model
(Fig. 8.3). The model predicts that there is a topographic potential for high erosion
due to convergent flow in the middle of the watershed and along the boundary of the
agricultural field. To reduce the potential for gully formation we iteratively modified
the model to create two berms in the upper part of the watershed, while observing
the change in the erosion and deposition pattern projected over the model (Fig. 8.3).

124 8 Soil Erosion Modeling

8.2.3 Reducing Erosion by Modifying Land Cover

Dense vegetation cover, such as tall grasses or dense forest can reduce soil erosion
and sediment transport by reducing rainfall excess and surface runoff. Vegetation
intercept and higher infiltration rates limit the amount of rain that can reach the soil
surface, detach it, and transport it across the landscape. These effects are represented
in SEDM by the land cover C-factor (see Eq. (8.1)).

We explored the effectiveness of various configurations of protective vegetated
cover using colored felt pieces to represent different shapes and types of vegetation
patches and a dirt road. Spatial pattern of topographic potential for erosion and
deposition, predicted by SEDM, shows the highest rates of erosion in the central
valley of the watershed (Fig. 8.3). To prevent formation of a gully in this area
we experimented with various designs of vegetated swales and buffers. To do
this we placed felt patches over the physical model and observed the resulting
erosion and deposition patterns (Fig. 8.4a). The felt patches were detected and
classified based on their color into four different classes using Python function

Fig. 8.4 Soil erosion and deposition modeling with protective land cover: (a) cutting out and
placing pieces of colored felt to modify the land cover, (b) detecting shape and color of the felt
patches and recoding to C-factor, (c) erosion and deposition pattern with uniform landcover, (d)
erosion and deposition pattern with the modified, spatially variable land cover with forest, grass
and a dirt road. Dark green felt (forest) and light green (grass) reduced erosion rates and increased
the spatial extent of deposition. The grey felt (dirt road), however, introduced increased erosion

References 125

classify_colors defined in Sect. 4.4. These classes are then recoded into C-
factor classes using the following text file recode_cfactor.txt and module
r.recode:

1:1:0.001
2:2:0.01
3:3:0.05
4:4:0.5

r.recode input=classes output=cfactor rules=recode_cfactor.txt

In the resulting C-factor raster map value 0.001 represents forest (dark green felt),
0.01 grass (light green felt), 0.05 fields (bare sand surface), and 0.5 road (grey felt).
Erosion and deposition rates were then computed using the following workflow:

r.slope.aspect elevation=scan aspect=scan_aspect \
slope=scan_slope

r.flow elevation=scan flowaccumulation=scan_flowacc
r.mapcalc "scan_sedflow = 4595. * 0.02634 * cfactor * \

scan_flowacc * sin(scan_slope)"
r.divergence magnitude=scan_sedflow direction=scan_aspect \

output=scan_usped
r.colors map=scan_usped rules=color_erdep.txt

The workflow is the same as in the previous section, except for the replacement of
the constant C-factor=0.01 with a cfactor raster map.

References

Jetten, V., Govers, G., & Hessel, R. (2003). Erosion models: Quality of spatial predictions.
Hydrological Processes, 17(5), 887–900.

McLaughlin, R. A., Rajbhandari, N., Hunt, W. F., Line, D. E., Sheffield, R. E., & White, N. M.
(2001). The sediment and erosion control research and education facility at North Carolina
State University. In Proceedings of the International Symposium on Soil Erosion Research for
the 21st Century, Honolulu, HI, USA, 3–5 January 2001 (pp. 40–41). American Society of
Agricultural and Biological Engineers.

Mitasova, H., Hofierka, J., Harmon, R., Barton, M., & Ullah, I. (2013). GIS-based soil erosion
modeling. In J. Shroder & M. Bishop (Eds.), Treatise on geomorphology, remote sensing and
GIScience in geomorphology (Vol. 3, pp. 228–258). San Diego: Academic.

Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the universal soil
loss equation. Soil Science Society of America Journal, 50, 1294–1298.

Wischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses: A guide to conservation
planning [USA]. Agriculture handbook - United States. Department of Agriculture. (USA).
Washington: United States Department of Agriculture.

http://grass.osgeo.org/grass72/manuals/r.recode.html

Chapter 9
Viewshed Analysis

Viewshed (visibility) analysis is used in many different fields for both practical and
aesthetic applications. It can play an important role when planning new buildings or
roads especially in urban settings where obstructed views may raise safety concerns.
In recreation areas views of beautiful landscapes are highly valued and protected
with great passion. Visibility analysis is also crucial when planning location of
monitoring cameras or communication towers in order to maximize coverage. With
the increasing availability of high-resolution digital elevation models (DEMs) and
digital surface models (DSMs) derived from lidar visibility analysis is becoming
more accurate, broading the range of its applications. We used Tangible Landscape
to analyze viewsheds on North Carolina State University’s (NCSU) Centennial
Campus from different observer positions and explored how future development
would affect the viewsheds. We introduced object recognition to collaboratively
designate observer positions.

9.1 Line of Sight Analysis

Line-of-sight analysis is used to map visible areas. If the line of sight between point
A and point B does not intersect the terrain then these points are mutually visible
(Fig. 9.1). More precisely, with the slope of the line between A and B defined as
(zB − zA)/dAB where z is the height and d is the horizontal distance, points A
and B are considered visible to each other if the line does not cross any location C
such that the slope of AC is larger than the slope of AB. The viewshed of A on a
raster DEM is the set of all cells of the DEM that are visible from A. The height of
the observer A above terrain has significant influence on the viewshed extent. The
observer height can be changed to model the view of a standing person, the view
from a multi-story building, or the view from the top of a cell tower. The resulting

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_9

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_9&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_9

128 9 Viewshed Analysis

B

A
C

Fig. 9.1 Line of sight analysis: point B is not visible from point A because the line of sight
between A and B has a smaller slope tan αAB than the line of sight between A and C

viewshed can be represented for example as a binary raster (containing only 0 and
1s) or a raster with the values of vertical angles with regard to the viewpoint.

Viewsheds from multiple locations can be computed and combined as the sum
of binary viewsheds into a cumulative viewshed (Wheatley 1995) that allows us
to assess the overall visibility of a place from selected locations. The concepts of
visibility analysis have been applied to diverse geospatial applications. For exam-
ple landform identification using geomorphons combines visibility analysis with
computer vision (Jasiewicz and Stepinski 2013) (see Sect. 6.1.3). Several terrain
relief visualization techniques take advantage of visibility analysis to highlight
subtle terrain features. For example sky-view factor—the visible part of the sky
unobscured by relief—can be used to render topographic relief as if it was diffusely
illuminated in order to clearly visualize the relative height of features. Sky-view
factor uses openness as a proxy for uniform diffuse illumination (Zakšek et al.
2011). It is implemented in GRASS GIS as the add-on module r.skyview. Haverkort
et al. (2009) describe an efficient method implemented in the module r.viewshed for
computing viewsheds on a raster DEM using a technique called line sweeping.

9.2 Case Study: Viewsheds Around Lake Raleigh

We used object recognition with Tangible Landscape to explore different viewsheds
on NCSU’s Centennial Campus by placing markers representing observer positions
on a physical model of the landscape. We also evaluated how changes to the
topography, the forest canopy, and the buildings would impact these viewsheds.

9.2.1 Site Description and Model

Our study area shown in Fig. 9.2 is the Lake Raleigh landscape on NCSU’s
Centennial Campus. Key features of the landscape include Lake Raleigh Woods

http://grass.osgeo.org/grass72/manuals/addons/r.skyview.html
http://grass.osgeo.org/grass72/manuals/r.viewshed.html

9.2 Case Study: Viewsheds Around Lake Raleigh 129

Fig. 9.2 Lake Raleigh study site: a lidar-based DSM with an orthophoto draped over the surface

in the southwest, the Chancellor’s house and State Club in the south, and the Hunt
Library in the northwest.

We CNC routed a base model and a mold of the landscape surface from
MDF based on a lidar-derived DEM and DSM. Both models are approximately
1 : 2400 scale without vertical exaggeration. We used the base and the mold to
cast a malleable layer of polymer enriched sand representing the forest canopy and
buildings on top of the terrain model.

9.2.2 Visibility Analysis on DSM Using Markers

We modeled the views from different locations by placing markers on the model
for Tangible Landscape to detect and recognize. Using the marker detection method
described in Sect. 4.3 the position of each marker was registered as a vector point
and its coordinates were then used as an input for automated computation of
viewshed from this location.

We explored viewsheds from different points of interests such as the Chancellor’s
house, the North Shore neighborhood, the Hunt Library’s observation deck, the
lakeside pier, and the middle of the lake. The viewsheds were computed on
the lidar-derived DSM. To identify the markers we first scanned the model and
saved the scanned raster. We continued scanning while placing the markers at
the locations of interest (Fig. 9.3). The markers were then identified and stored
as vector points. We used the following workflow to compute the viewsheds and
assign the desired color scheme. In this case visible areas are highlighted in
yellow.

130 9 Viewshed Analysis

Fig. 9.3 Placing a marker to (a) identify a viewpoint and (b) project computed viewshed

coordinates = gscript.read_command('v.out.ascii',
input='markers', separator=',').strip().splitlines()

for i, line in coordinates:
output = 'viewshed_%s' % i
coordinate = [float(c) for c in line.split(',')[0:2]]
gscript.run_command('r.viewshed', flags='b',

input='elevation', output=output,
observer_elevation=1.75, coordinates=coordinate)

gscript.run_command('r.null', map=output, setnull=0)
gscript.write_command('r.colors', map=output, rules='-',

stdin='1 yellow')

The viewsheds computed from different marker positions are shown in Fig. 9.4. The
best views of the lake are from the Hunt Library’s observation deck and the lakeside
pier.

9.2.3 Modeling Viewsheds from a New Building

In the previous section we computed viewsheds on the lidar-derived DSM. In this
section we used the scanned surface to model viewsheds on a modified landscape.
We explored a scenario in which we built a hotel planned on the southeastern side
of the lake and assessed the viewshed from the new hotel in Fig. 9.5a (the new hotel
was later built in 2017, see Fig. 9.6).

We began by sculpting the new building in sand. Then we scanned and saved
the modified sand surface. We placed a marker that was automatically detected and
digitized as a viewpoint. We computed the viewshed using the base scan rather
than the newer scan with the marker because the marker would act as an obstacle
blocking the observer’s view. Figure 9.5c shows the viewshed from the southwest
side of the new hotel. The hotel is oriented to benefit the most from lake views.
Since the hotel is a tall building it is visible from many places around the lake such
as Hunt Library (Fig. 9.5d).

9.2 Case Study: Viewsheds Around Lake Raleigh 131

Fig. 9.4 Viewsheds computed on lidar-based DSM from viewpoints at (a) the North Shore
neighborhood, (b) Hunt Library’s observation deck, (c) a lakeside pier, (d) and a canoe on the
lake

Fig. 9.5 Modeling viewsheds from a new building: (a) sculpting a new hotel in sand, (b) digitizing
a viewpoint, and evaluating viewsheds from (c) the hotel and (d) the library

132 9 Viewshed Analysis

Fig. 9.6 View of the new hotel building from Lake Raleigh dam (December 2017)

References

Haverkort, H., Toma, L., & Zhuang, Y. (2009). Computing visibility on terrains in external memory.
Journal of Experimental Algorithmics, 13, 5:1.5–5:1.23.

Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – A pattern recognition approach to
classification and mapping of landforms. Geomorphology, 182, 147–156.

Wheatley, D. (1995). Cumulative viewshed analysis: A GIS-based method for investigating
intervisibility, and its archaeological application. In Archaeology and geographical information
systems: A European perspective (pp. 171–185). London: Taylor & Francis.

Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky-view factor as a relief visualization technique.
Remote Sensing, 3(2), 398–415.

Chapter 10
Trail Planning

The design of a walking or hiking trail is based on fine scale topographic conditions
and varied criteria specific to the particular context such as aesthetics, views, con-
struction cost, and environmental sensitivity. As a result trail planning is typically
a product of expert knowledge, field surveys, and creative design decisions—
often made on site. However, when high resolution data is available geospatial
modeling can be used to identify routes optimized for travel time and suitability. To
design trails with Tangible Landscape we can hand place waypoints on a physical
model and then the optimal network connecting the waypoints is computed in near
real-time. This approach—hand placing tangible waypoints and computationally
networking the waypoints—combines creative, collaborative decision making with
mathematical optimization. In this chapter we explain the theory and methodology
for designing trails with Tangible Landscape and then discuss a case study, the
design of hiking trail scenarios for Lake Raleigh Woods, North Carolina.

10.1 Trail Design Methodology

Our approach for designing trail networks with Tangible Landscape combines the
creative identification and siting of key waypoints like trailheads and scenic spots
with computationally optimized routing between these points. With Tangible Land-
scape we can place tangible markers by hand to automatically digitize waypoints.
This allows us to work intuitively, feel the slopes and curvature with our hands, and
easily collaborate.

To find the optimal routes we compute the least cost path between pairs of
waypoints over the terrain and a cost surface as a function of walking energetics.
First we create a cost surface that represents friction—the additional time required
to cross a cell. Next we designate waypoints, points through which we want the trail
to pass. For each unique pair of waypoints we use the r.walk module to compute the

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_10

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_10&domain=pdf
http://grass.osgeo.org/grass72/manuals/r.walk.html
https://doi.org/10.1007/978-3-319-89303-7_10

134 10 Trail Planning

anisotropic cumulative cost of walking between these points across the terrain and
the friction surface based on Naismith’s rule for hiking times. Then we compute the
least cost path between those points across this cumulative cost surface. All of the
least cost paths are combined into a network of potential routes. Finally we solve
the traveling salesman problem to identify the best route across this network.

10.1.1 Least Cost Path Analysis

With least cost path analysis we can determine the most cost-effective route between
a source and destinations on a cost surface. The cost surface is a raster representing
cost for traversing a cell and can be derived as a function of distance, slope, land
cover or other relevant criteria. To find the least cost path between locations we need
to compute a cumulative cost surface where each cell contains the lowest cumulative
cost of traversing the space between each cell and the specified location. We also
need to generate a movement direction raster tracing the movements that created the
cumulative cost surface.

First we compute the walking cost raster using Naismith’s rule for walking times
(Naismith 1892) with further adjustments (Aitken 1977; Langmuir 1984) of the cost
for specific slope intervals. Considering only the elevation surface the cost to walk
across a grid cell, expressed as time T in seconds is computed as follows:

T = a · �S + b · �Hu + c · �Hmd + d · �Hsd (10.1)

where:

�S is the horizontal distance in m
�H is the height difference in m
a is the time in seconds it takes to walk for 1 m on flat surface
b is the additional walking time in seconds, per meter of elevation gain �Hu

on uphill slopes
c is the additional walking time in seconds, per meter of elevation loss �Hmd

on moderate downhill slopes (this value is typically negative)
d is the additional walking time in seconds, per meter of elevation loss �Hsd

on steep downhill slopes

Up to a specific slope value threshold, walking downhill is faster; after that it
becomes more difficult and adds to the time needed to cross the cell. The slope
value threshold (slope factor) derived from experiments is −0.2125 corresponding
to 12° downslope (tan 12° = 0.2125).

10.1 Trail Design Methodology 135

Taking into account land cover conditions the total cost Ttotal in seconds is
estimated as a linear combination of movement and friction costs using the
dimensionless weight λ:

Ttotal = T + λ · F · �S (10.2)

where F is the friction in s/m. It represents the additional time in seconds that it takes
to walk 1 m within a given cell due to its land cover conditions. The friction map may
simply be a landcover map that has been recoded as time costs. If landcover data
is not available at an appropriate resolution or if there are other important factors
that need to be considered, the friction map can be created through map overlay
analysis. Parameters such as soils, hydrology, roads, and existing trails can then be
incorporated into the cost surface using the friction map.

We used the total cost surface given by Eq. (10.2) to compute a cumulative cost
surface where each cell contains the lowest cumulative cost of traversing the space
between each cell in the region and the target location. The movement direction
raster is also generated tracing the movements that created the cumulative cost
surface. We can then compute least cost path between any point in the study area
and the target location based on the cumulative cost raster and movement directions
raster.

10.1.2 Network Analysis

Using least cost path analysis it is possible to create many combinations of routes
between the given waypoints. This can result in a large number of connections and
potential trails. We can use network analysis to find a trail loop that goes through
all given waypoints in an optimal order, avoiding connections with high costs
(Fig. 10.1). The solution for this well-known optimization problem—the traveling
salesman problem (TSP)1—is implemented in the module v.net.salesman, which
uses a heuristic algorithm yielding a good solution in a reasonable amount of time.

10.1.3 Trail Slope Extraction

When planning trails we are typically interested in the average and maximum slope
of a trail. However, the extracted values are the slope values in the direction of
steepest slope rather than in the direction of the trail. To compute that, we need to

1See: https://en.wikipedia.org/wiki/Travelling_salesman_problem.

http://grass.osgeo.org/grass72/manuals/v.net.salesman.html
https://en.wikipedia.org/wiki/Travelling_salesman_problem

136 10 Trail Planning

Fig. 10.1 The traveling salesman problem applied to a network of potential trails. Black lines
represent potential routes. The red line is the most cost-effective combination of routes that
connects all of the waypoints

know the direction of the trail, which can be derived from its vector representation.
The slope along the trail βt can then be computed as the steepest slope β (see
Eq. (6.5)) multiplied by the cosine of the angle between the direction of the trail
αt and the steepest slope direction α (i.e. aspect, see Eq. (6.6)):

tan βt = tan β cos(α − αt) (10.3)

The difference is visible in Fig. 10.2 where part of a trail along a contour line has
very low slope values along the trail, but has higher slope values in the direction of
the steepest slope. Both types of slope computation can be useful depending upon
our objectives. When building and maintaining a trail we may be interested in the
steepness of the terrain in that area, while a hiker may be more interested in the
directional slope of a trail.

10.2 Case Study: Designing a Recreational Trail

We used Tangible Landscape to design alternative trail scenarios for Lake Raleigh
Woods on North Carolina State University’s Centennial Campus. This old growth
woodland on the south shore of Lake Raleigh is rich in biodiversity with approx-

10.2 Case Study: Designing a Recreational Trail 137

Fig. 10.2 The difference between the trail slope extracted (a) in the direction of the steepest terrain
slope and (b) in the direction of the trail (in degrees)

imately 200 species of vascular plants and regionally important stands of mesic
mixed hardwood and dry-mesic oak-hickory forest (Blank et al. 2010). Informal
hiking and mountain biking trails have caused significant disturbance in the woods
and erosion along the lakefront. A formal trail system could concentrate people on
low-impact routes and thus conserve the landscape while enhancing opportunities
for recreation.

10.2.1 Input Data Processing

We derived a bare earth DEM and DSM with buildings and vegetation from a lidar
survey acquired in 2013. Then we CNC routed 1 : 1500 scale models of the DEM,
the DSM, and their inverses (see Sect. 3.4.4). We used the inverse models as molds
for casting polymeric sand models.

We created the friction map—a required input for computing the cost surface—
by computing the average friction cost for each cell from a set of friction maps
based on the recoded rasterized maps of buildings, hydrology, floodplains, roads,
soils, and trails with r.series using the average function.

First we converted all of the necessary vector maps to raster. Before converting
linear features we set the resolution to 3 m in order to give these features reasonable
widths.

http://grass.osgeo.org/grass72/manuals/r.series.html

138 10 Trail Planning

g.region n=224134 s=223005 w=637732 e=639085 res=1 -p

v.to.rast input=lake_raleigh output=lake_raleigh use=val
v.to.rast input=chancellors output=chancellors use=val
v.to.rast input=buildings output=buildings use=val
v.to.rast input=floodplain output=floodplain use=val
v.to.rast input=hydrology_areas output=hydrology_areas use=val
v.to.rast input=trail_areas output=trails use=val
v.to.rast input=roads output=roads use=val

g.region res=3
v.to.rast input=greenways output=greenways use=val
v.to.rast input=streets output=streets use=val
v.to.rast input=hydrology output=hydrology use=val
g.region res=1

In order to limit processing to publicly accessible areas we made a composite
map of inaccessible areas by combining maps of private land, buildings, and the
lake using r.mapcalc2 and then created an inverted mask from this map.

r.mapcalc "masking = if((buildings ||| chancellors ||| \
lake_raleigh), 1, null())"

r.mask -i raster=masking

Next, we recoded all maps as friction (time penalties—additional time it takes to
walk 1 m), and then overlaid the maps using r.mapcalc and r.series.

r.mapcalc "hydro = if(isnull(hydrology_areas ||| hydrology), \
1, 10)"

r.mapcalc "flood = if(isnull(floodplain), 1, 10)"
r.mapcalc "paths = if(isnull(trails ||| greenways), 10, 1)"
r.mapcalc "transit = if(isnull(streets ||| roads), 1, 10)"

r.series input=flood,hydro,paths,transit,soils output=friction \
method=average

r.colors -n map=friction color=ryg
r.mask -r

The resulting friction map is shown in Fig. 10.3.

10.2.2 Computing the Trail Using the Least Cost Path

In our case study we computed least cost paths between waypoints to create a
trail network. Least cost paths were computed for each combination of two points.
The following code snippet shows how such a network can be generated.For each

2Note that | | | is a symbol for logical OR which ignores NULL values and treats them as logical
false.

http://grass.osgeo.org/grass72/manuals/r.mapcalc.html
http://grass.osgeo.org/grass72/manuals/r.mapcalc.html
http://grass.osgeo.org/grass72/manuals/r.series.html

10.2 Case Study: Designing a Recreational Trail 139

Fig. 10.3 The friction map in seconds per meter created by combining layers of buildings,
hydrology, floodplains, roads, and trails

waypoint we called the function trail defined below, which computes a raster
representing the cumulative cost (time) from this waypoint and then multiple least
cost paths from the remaining waypoints.

def trail(elevation, friction, walk_coeff, lambda_,
slope_factor, point_from, points_to, vect_paths):
create cumulative cost surface based on walking time
gscript.run_command('r.walk', flags='k',

elevation=elevation, friction=friction,
lambda_=lambda_, walk_coeff=walk_coeff,
slope_factor=slope_factor,
start_coordinates=point_from,
stop_coordinates=points_to, output='tmp_walk',
outdir='tmp_walk_dir')

compute least cost path to other points
for i in range(len(points_to)):

gscript.run_command('r.drain', flags='d',
input='tmp_walk', direction='tmp_walk_dir',
output='tmp_drain', drain=vect_paths[i],
start_coordinates=points_to[i], overwrite=True)

remove temporary maps
gscript.run_command('g.remove', type=['raster', 'vector'],

name=['tmp_walk', 'tmp_walk_dir', 'tmp_drain'],
flags='f')

140 10 Trail Planning

This is repeated for all waypoints except the last.

def trails_combinations(elevation, friction, walk_coeff,
lambda_, slope_factor, points, vector_routes):
import itertools

coordinates = gscript.read_command('v.out.ascii',
input=points, format='point', separator=',').strip()

coords_list = []
for coords in coordinates.split():

coords_list.append(coords.split(',')[:2])

combinations = itertools.combinations(coords_list, 2)
combinations = [list(group) for k, group in

itertools.groupby(combinations, key=lambda x: x[0])]

i = k = 0
vector_routes_list = []
for points in combinations:

i += 1
point_from = ','.join(points[0][0])
points_to = [','.join(pair[1]) for pair in points]
vector_routes_list_drain = []
for each in points_to:

vector_routes_list_drain.append('route_path_' +
str(k))

k += 1
vector_routes_list.extend(vector_routes_list_drain)

trail(elevation, friction, walk_coeff, lambda_,
slope_factor, point_from, points_to,
vector_routes_list_drain)

gscript.run_command('v.patch', input=vector_routes_list,
output=vector_routes)

The path, however, is only computed for combinations that were not covered in
previous steps in order to reduce computation time. This means that the least cost
path is only computed in one direction. The direction matters because the speed of
walking uphill and downhill differs. Therefore, the walking coefficients and slope
factor of r.walk should be adjusted to affect uphill and downhill speed equally. This
can be achieved by setting the slope factor to zero and using the same absolute
number for coefficients b and d.

10.2.3 Finding the Optimal Trail

Using the least cost path analysis we created all of the combinations of routes
between waypoints. This can result in a large number of connections and potential
trails. Therefore we used network analysis to find a trail loop that goes through

http://grass.osgeo.org/grass72/manuals/r.walk.html

10.2 Case Study: Designing a Recreational Trail 141

all our waypoints in an optimal order avoiding connections with high costs. This
optimization problem—the traveling salesman problem (TSP)—can be solved using
the module v.net.salesman.

All GRASS GIS network analysis modules require a network vector map
containing connected lines (arcs) and points (nodes). This vector map can be
prepared using the module v.net which topologically connects the given points (our
waypoints) and lines (our trail combinations). Since we wanted to route the trail
through all our waypoints we found the categories of all waypoints in the network
and then passed them to module v.net.salesman:

def trails_salesman(trails, points, output):
gscript.run_command('v.net', input=trails, points=points,

output='tmp_net', operation='connect', threshold=10)
cats = gscript.read_command('v.category', input='tmp_net',

layer=2, option='print').strip().split()
gscript.run_command('v.net.salesman', input='tmp_net',

output=output, center_cats=','.join(cats), arc_layer=1,
node_layer=2)

remove temporary map
gscript.run_command('g.remove', type='vector',

name='tmp_net', flags='f')

The final computation combines above defined functions and takes the scanned
DEM and the detected points as input:

trails_combinations('scan', friction='friction',
walk_coeff=[0.72, 6, 0, 6], lambda_=0.5, slope_factor=0,
points='markers', vector_routes='route_net')

trails_salesman(trails='route_net', points='markers',
output='route_salesman')

Examples of outputs are shown in Figs. 10.1 and 10.4.

Fig. 10.4 A trail network around Lake Raleigh

http://grass.osgeo.org/grass72/manuals/v.net.salesman.html
http://grass.osgeo.org/grass72/manuals/v.net.html
http://grass.osgeo.org/grass72/manuals/v.net.salesman.html

142 10 Trail Planning

10.2.4 Mapping Trail Slopes

The simplest way to map the slope of a trail is to rasterize the trail using v.to.rast
and then use r.mapcalc to extract the slope values from a slope raster computed with
the module r.slope.aspect:

r.slope.aspect elevation=dem slope=slope
v.to.rast input=trail output=raster_trail type=line use=cat
r.mapcalc "trail_slope = if(raster_trail, slope)"

This extracts the slope values in the direction of the steepest slope. To compute
the slope in the direction of the trail we first need to rasterize its vector representation
by deriving raster values from the vector direction. The slope along the trail can then
be computed as the slope multiplied by the cosine of the angle between the direction
of the trail and the steepest slope (i.e. aspect):

r.slope.aspect elevation=dem slope=slope aspect=aspect
v.to.rast input=trail output=raster_trail_dir type=line use=dir
r.mapcalc "trails_slope_dir = abs(atan(tan(slope) * cos(aspect \

- raster_trail_dir)))"

10.2.5 Alternative Trail Scenarios

We designed the initial trail scenario for Lake Raleigh Woods by placing markers
at key points of interest—potential trailheads and scenic viewpoints (for more
information about marker detection see Sect. 4.3). The siting of trailheads was
informed by a previous 1 : 2500 scale study of potential routes around the entire lake
(Fig. 10.4). We used realtime viewshed analysis to evaluate potential viewpoints
(Fig. 10.5a). To test the viewsheds we cast the DSM in polymeric sand, carved
clearings in the woodland canopy for viewpoints, placed markers to designate the
viewpoints, and computed the viewsheds. We also computed the slope along the
trail so that we could critique the routes (Fig. 10.5b).

Our trail needed to cross three large gullies with steep slopes. In the initial trail
scenario the route follows the contours and ridge lines to avoid the gullies with their
challenging slopes. This route formed two loops that intersected at the mouth of

http://grass.osgeo.org/grass72/manuals/v.to.rast.html
http://grass.osgeo.org/grass72/manuals/r.mapcalc.html
http://grass.osgeo.org/grass72/manuals/r.slope.aspect.html

10.2 Case Study: Designing a Recreational Trail 143

Fig. 10.5 Trail analytics: (a) the viewshed from a waypoint with areas visible represented in
orange, (b) the slope along the trail

the central gully near the lakefront with moderately steep slopes (Fig. 10.6a). We,
however, wanted to experiment and see what a route with a single loop would look
like so we built bridges across the gullies (Fig. 10.6b). The trail rerouted across the
bridges to form a single, shorter loop with a lower average slope (Fig. 10.6c).

144 10 Trail Planning

Fig. 10.6 Iteratively designing trail scenarios for Lake Raleigh Woods: (a) the initial route for
a trail in Lake Raleigh Woods, (b) building bridges to reroute the trail across gullies with steep
slopes, (c) the updated route for the trail across the new bridges

References 145

References

Aitken, R. (1977). Wilderness Areas in Scotland. PhD thesis, University of Aberdeen.
Blank, G., Rudder, C., Dombrowski, A., Cser, H., Lawler, M., Kollar, C., et al. (2010). General

management plan for Lake Raleigh Woods. Technical report, College of Natural Resources,
North Carolina State University, Raleigh.

Langmuir, E. (1984). Mountaincraft and leadership. Edinburgh: The Scottish Sports Council.
Naismith, W. W. (1892). Excursions. Cruach Ardran, Stobinian, and Ben More. Scottish Moun-

taineering Club Journal, 2(3), 136.

Chapter 11
Solar Radiation Dynamics

Solar radiation (insolation) is the primary driving force for Earth’s atmospheric,
biophysical, and hydrologic processes. Knowing the amount of radiation at different
geographic locations at different times is therefore necessary in many fields
including energy production, agriculture, meteorology, ecology, and urban planning.
We modeled direct solar radiation and cast shadows in an urban setting to show how
different spatial configurations of buildings change the amount of sunlight available
throughout the day and the year.

11.1 Solar Radiation Modeling

Solar radiation modeling is critical for the optimal site selection of solar power
plants (Carrion et al. 2008; Janke 2010) and for placing photovoltaic systems in
often complex urban environments (Freitas et al. 2015; Hofierka and Kaňuk 2009;
Jakubiec and Reinhart 2013). In urban design dynamic solar radiation simulations
are used to study the effect of urban geometry and building configurations on
solar access and shading conditions in order to get insight into the “urban canyon”
phenomenon (Arnfield 1990; Lobaccaro and Frontini 2014).

On a global scale solar radiation depends spatially and temporally on the
orientation of the Earth relative to the Sun. At a local scale solar radiation is
influenced by topography (i.e. an elevation surface’s inclination, orientation, and
shadows), atmospheric conditions, and surface properties such as land cover. We
can analyze the spatial distribution and dynamics of solar radiation and cast shadows
using the equations that relate the sun position to the geometry of the terrain surface
(Hofierka and Suri 2002). The clear-sky solar radiation model applied in this chapter
is based on work undertaken for the development of the European Solar Radiation
Atlas (Scharmer and Greif 2000; Page et al. 2001; Rigollier et al. 2000). We
include here only the equations for direct solar radiation—beam irradiance—which

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_11

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_11&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_11

148 11 Solar Radiation Dynamics

is influenced by the local topography. For a complete set of equations see Hofierka
and Suri (2002). The diffuse and reflected components as well as atmospheric
parameters can be also found in Rigollier et al. (2000).

First we compute position of the Sun in the sky as a function of time and location
on Earth. The Sun declination angle depends on the day number (1 to 365 or 366):

δ = arcsin(0.3978 sin(j ′ − 1.4 + 0.0355 sin(j ′ − 0.0489))) (11.1)

where δ is the Sun declination angle in radians and j ′ is expressed as day angle in
radians:

j ′ = 360◦ · j/365.25, j = 1, 2, . . . , 365 (366) (11.2)

The position of the Sun in respect to a horizontal plane is defined by the solar altitude
and solar azimuth. The solar altitude angle γs is a function of the solar hour angle
ω, the solar declination angle δ and the latitude ϕ of the given location:

sin γs = cos ϕ cos δ cos ω + sin ϕ sin δ (11.3)

Given that the solar hour angle ω changes at 15◦ per hour and equals zero at noon it
can be computed from local solar time t in decimal hours on the 24 h clock:

ω = 15◦ · (t − 12) (11.4)

The solar azimuth angle αs (a horizontal angle between the sun and meridian
measured from east) can be expressed as a function of the solar altitude angle γs ,
the solar declination angle δ, and the latitude ϕ of the given location:

cos αs = (sin ϕ sin γs − sin δ)/ cos ϕ cos γs (11.5)

sin αs = cos δ sin ω/ cos γs (11.6)

The position of the Sun in respect to an inclined plane with slope β and aspect α

(e.g., a hillslope or a building roof) is described by a solar incidence angle ν:

cos ν = cos γs sin β cos(αs − α) + sin γs cos β (11.7)

To estimate the duration of solar radiation we compute the sunrise and sunset angle
ωr,s over a horizontal plane:

cos ωr,s = − tan ϕ tan δ (11.8)

and the corresponding time of sunrise Tsr and sunset Tss in hours is then:

Tsr = 12 − ωr,s/15◦ Tss = 12 + ωr,s/15◦ (11.9)

11.2 Case Study: Solar Irradiation in Urban Environment 149

The sunrise/sunset angle over a south-facing inclined plane (for a location in the
northern hemisphere) is computed as follows:

cos ω′
r,s = − tan(ϕ − β) tan δ, ω′′

r,s = min(ωr,s , ω
′
r,s) (11.10)

where ω′′
r,s is the sunrise and sunset angle over the inclined plane. More general

equations can be found in Hofierka and Suri (2002).
Solar irradiation analysis has been implemented in GRASS GIS by Hofierka

and Suri (2002) in the module r.sun. In addition to the direct solar irradiation
described above the module incorporates diffuse and reflected irradiation and cast
shadows. The module r.sun works in two modes. In the first mode it computes the
solar incident angle in degrees and solar irradiance values in W m−2 for a specific
instance in time. In the second mode it computes the daily sum of solar irradiation
in Wh m−2 day−1 and the duration of the direct irradiation. To compute a series of
direct irradiance maps for a given day with a selected time interval we use the add-
on r.sun.hourly, which calls r.sun in a convenient loop. Similarly we use the add-on
r.sun.daily to compute daily sums of direct irradiation for the entire year.

11.2 Case Study: Solar Irradiation in Urban Environment

In this case study we studied how different spatial configuration of buildings
changed direct solar radiation and cast shadows dynamics throughout the day.
We placed wooden blocks of different shapes and sizes representing hypothetical
buildings on a flat surface with an approximate scale of 1 : 300. We located this
abstract site north of Raleigh, North Carolina at latitude 36°. We examined two
building configurations—one with four medium-sized houses with gabled roofs and
the other with three medium-sized houses with gabled roofs and one tall building
with a flat roof (Fig. 11.1a, b).

Fig. 11.1 Two configurations of buildings at approximately 1 : 300 scale viewed from the south:
(a) four medium sized houses, (b) one of the houses is replaced by a tall building. Figure (c) shows
the DSM and contours derived from a scan and projected over buildings

http://grass.osgeo.org/grass72/manuals/r.sun.html
http://grass.osgeo.org/grass72/manuals/r.sun.html
http://grass.osgeo.org/grass72/manuals/addons/r.sun.hourly.html
http://grass.osgeo.org/grass72/manuals/r.sun.html
http://grass.osgeo.org/grass72/manuals/addons/r.sun.daily.html

150 11 Solar Radiation Dynamics

11.2.1 The Impact of Building Configuration on Cast Shadows

We compared the shadows cast by the buildings in both configurations during sum-
mer and winter solstice. After scanning the scenes we used the add-on r.sun.hourly
to derive binary raster time series of cast shadows from 6:00 to 22:00 (local solar
time) with a 30-min time step. We had to specify the selected date as a day of year
number. For example if we pick the summer solstice in 2015 we can easily compute
the day of year using the Python datetime module:

import datetime
datetime.datetime(2015, 6, 21).timetuple().tm_yday

which gives us the number 172.
Running the following commands results in a time series of binary rasters with

zeros representing cast shadow based on the direct (beam) radiation. The time series
is registered in a spatio-temporal dataset and can be easily rendered as an animation
and projected over the physical model.

r.slope.aspect elevation=scan aspect=aspect slope=slope
r.sun.hourly -t -b elevation=scan aspect=aspect slope=slope \

start_time=6 end_time=22 time_step=0.5 day=172 year=2015 \
beam_rad_basename=shadows_summer

g.gui.animation strds=shadows_summer

By changing the day parameter to 356 we obtained the time series of cast
shadows for the winter solstice. Figure 11.2 compares the cast shadows at 16:30 and
19:00 (local solar time) during the summer and winter solstice for the two different
building configurations.

There is a clear difference in the length of cast shadows during winter and
summer. The orientation of the cast shadows at the time close to sunset changes
during the year as shown in Fig. 11.2a, c. During the summer the Sun sets below the
horizon later (after 19:00) far to the northwest, while it sets earlier (after 16:30) and
far to the southwest during winter. As a result the house in the southeast corner only
has a view of the sunset during part of the year as the summer view is blocked by
another building.

By adding a tall building to the scene we cast more shadow in the space between
the houses and on houses in the east. Depending upon the season one of the houses
on the east side becomes shadowed by the high building sooner than the other.

11.2.2 The Impact of Building Configuration on Direct Solar
Irradiation

Cast shadows give us information about the availability of direct solar radiation
at a particular time on particular days. However, we are often interested in the
cumulative solar irradiation, which tells us the amount of solar energy received on
a given surface during a given time interval. Such information can then be used to
assess the suitability of a location for solar energy applications.

http://grass.osgeo.org/grass72/manuals/addons/r.sun.hourly.html

11.2 Case Study: Solar Irradiation in Urban Environment 151

Fig. 11.2 A comparison of cast shadows viewed from south. The first and second rows show two
different building configurations. The first and second columns show cast shadows at 16:30 local
solar time during the winter (a), (d) and summer solstice (b), (e), respectively. The third column
(c), (f) shows cast shadows at 19:00 local solar time during the summer solstice. A figure for winter
solstice at 19:00 is not shown as it would be after sunset

To compute direct solar irradiation for individual days we called the add-on
r.sun.daily with parameters similar to those we used for r.sun.hourly. We specified
the first and last day of the year resulting in 365 daily irradiation maps. Additionally
by specifying the beam_rad parameter we computed the sum of all of the daily
maps. Again we can animate the time series projected over the scene to get more
insight into the spatial patterns of solar radiation over the course of a year.

r.slope.aspect elevation=scan aspect=aspect slope=slope
r.sun.daily -t elevation=scan aspect=aspect slope=slope \

start_day=1 end_day=365 day_step=1 \
beam_rad=radiation_year_sum \
beam_rad_basename=radiation_day_sum

g.gui.animation strds=radiation_day_sum

Figure 11.3 shows direct solar irradiation in Wh m−2 day−1 during the winter
solstice, spring equinox, and summer solstice with a common color ramp. The color
ramp was specified in a plain text file solar_color.txt as:

100% red
70% yellow
0% gray

and then this color ramp was set for the entire time series:

t.rast.colors input=radiation_day_sum rules=solar_color.txt

http://grass.osgeo.org/grass72/manuals/addons/r.sun.daily.html
http://grass.osgeo.org/grass72/manuals/addons/r.sun.hourly.html

152 11 Solar Radiation Dynamics

Fig. 11.3 Direct solar irradiation in Wh m−2 day−1 during: (a) the winter solstice, (b) spring
equinox, and (c) summer solstice

Fig. 11.4 Solar irradiation patterns in March for two different building configurations

Figure 11.4a shows the solar irradiation on a particular day in March in order
to compare the cumulative solar irradiation for the two building configurations. In
the first scenario there is variable irradiation in the space between the buildings as
a result of the interaction between the spatial configuration of the buildings and the
dynamic solar geometry. In the second scenario the pattern is even more pronounced
because the street gets less direct sunlight. The slope of the buildings’ roofs affects
the amount of irradiation as a visual comparison of the color of the flat and tilted
roofs clearly demonstrates. Furthermore, the shadow cast by the tall building has
lowered the irradiation values on part of the roof of the southeastern house.

References

Arnfield, A. (1990). Street design and urban canyon solar access. Energy and Buildings, 14(2),
117–131.

Carrion, J. A., Estrella, A. E., Dols, F. A., Toro, M. Z., Rodríguez, M., & Ridao, A. R.
(2008). Environmental decision-support systems for evaluating the carrying capacity of land
areas: Optimal site selection for grid-connected photovoltaic power plants. Renewable and
Sustainable Energy Reviews, 12(9), 2358–2380.

References 153

Freitas, S., Catita, C., Redweik, P., & Brito, M. (2015). Modelling solar potential in the urban
environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915–
931.

Hofierka, J., & Kaňuk, J. (2009). Assessment of photovoltaic potential in urban areas using open-
source solar radiation tools. Renewable Energy, 34(10), 2206–2214.

Hofierka, J., & Suri, M. (2002). The solar radiation model for open source GIS: Implementation
and applications. In Proceedings of the Open Source GIS-GRASS Users Conference (pp. 1–19).

Jakubiec, J. A., & Reinhart, C. F. (2013). A method for predicting city-wide electricity gains from
photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations.
Solar Energy, 93, 127–143.

Janke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable
Energy, 35(10), 2228–2234.

Lobaccaro, G., & Frontini, F. (2014). Solar energy in urban environment: How urban densification
affects existing buildings. Energy Procedia, 48, 1559–1569.

Page, J., Albuisson, M., & Wald, L. (2001). The European solar radiation atlas: A valuable digital
tool. Solar Energy, 71(1), 81–83.

Rigollier, C., Bauer, O., & Wald, L. (2000). On the clear sky model of the ESRA – European solar
radiation atlas – With respect to the Heliosat method. Solar Energy, 68(1), 33–48.

Scharmer, K., & Greif, J. (2000). The European solar radiation atlas, vol. 2: database and
exploitation software. Paris: Presses de l’Écolle des Mines.

Chapter 12
Wildfire Spread Simulation

Forest fires, whether naturally occurring or prescribed, are potential risks for
ecosystems and human settlements. These risks can be managed by monitoring
the weather, prescribing fires to limit available fuel, and creating firebreaks. With
computer simulations we can predict and explore how fires may spread. We can
explore scenarios and test different fire management strategies under different
weather conditions. Using Tangible Landscape and the GRASS GIS wildfire toolset
we simulated several wildfire scenarios. We tested different configurations of
firebreaks on the physical model and evaluated their effectiveness.

12.1 Fire Spread Modeling Methods

Fire spread across landscapes is a complex, highly dynamic process influenced by
weather, topography, and fuel. The fire spread models predict the rate of fire spread
and fire perimeter growth using a combination of physical principles such as energy
conservation and empirical parameters derived from observations and experimental
data. For reviews of physical and empirical models of fire spread and methods of
implementing fire simulation please refer to Sullivan (2009a,b,c).

12.1.1 Input Data

The fuel model is one of the most important input variables for fire simulation.
Albini (1976) and Anderson (1982) describe 13 classes of fuel (Table 12.1), which
differ in fuel loads and the distribution of fuel particle size classes. The size of
individual pieces of fuel influences the fire; heat is absorbed faster by small twigs
due to their large surface to volume ratio. The moisture content of the fuel affects

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_12

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_12&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_12

156 12 Wildfire Spread Simulation

Table 12.1 The fuel model
by Anderson (1982) describes
13 classes of fuel

Fuel class Description

Grass and grass-dominated

1 Short grass (1 foot)

2 Timber (grass and understory)

3 Tall grass (2.5 feet)

Chaparral and shrub fields

4 Chaparral (6 feet)

5 Brush (2 feet)

6 Dormant brush, hardwood slash

7 Southern rough

Timber litter

8 Closed timber litter

9 Hardwood litter

10 Timber (litter and understory)

Slash

11 Light logging slash

12 Medium logging slash

13 Heavy logging slash

the amount of heat needed to ignite the fuel. The smaller the fuel size, the faster the
fuel dries out and becomes more combustible.

The slope of the terrain and the speed and direction of the wind control the
rate of spread and direction of the fire. Steeper slopes cause faster ignition in the
upslope direction. This rule has been observed and quantified in several laboratory
experiments (Viegas 2004; Weise and Biging 1996; Silvani et al. 2012).

Wind is specified by speed and direction at a given height. Unlike the slope of the
terrain, wind is difficult to characterize due to its variability in space and time and
spatially and temporally averaged values are used in the models. Sparks and embers
can be carried great distances by strong winds; this process known as spotting allows
fire to spread beyond firebreaks (Albini 1983).

12.1.2 Fire Spread Algorithm

In our simulation we used the GRASS GIS modules r.ros and r.spread, implemented
by Xu (1994), to compute the rate of spread and simulate the spread of fire.

The rate of spread computation is based on the BEHAVE model (Andrews 1986).
The inputs are the fuel model, fuel moisture, wind speed and direction, and terrain
slope and aspect. The rate of spread is computed using the following equation:

R = IRξ(1 + ΦW + ΦS)

ρbεQig

(12.1)

http://grass.osgeo.org/grass72/manuals/r.ros.html
http://grass.osgeo.org/grass72/manuals/r.spread.html

12.2 Case Study: Controlling Fire with Firebreaks 157

where:

R is the rate of spread in m/s
IR is the reaction intensity in kW/m
ξ is the propagating flux ratio
ΦW is the wind coefficient
ΦS is the slope factor
ρb is the oven-dry fuel per cubic meter of fuel bed in kg/m3

ε is the effective heating number
Qig is the heat of preignition in kJ/kg.

For a detailed description of the underlying mathematical model and an explanation
of the input data refer to Rothermel (1972).

The module r.spread uses Huygens’ principle to simulate elliptically anisotropic
spread where each cell center is a potential origin of spread and the local spread is
ellipsoidal (Anderson et al. 1982). The sizes and orientations of the ellipses vary
by cell. Local wind and slope directions determine the orientation of ellipses. The
module r.spread uses a specific implementation of the least cost path algorithm.

We used the GRASS GIS module r.fire.spread to call the modules r.ros and
r.spread streamlining the fire spread computation and visualization. With this
module we can use temporally variable input conditions and export the fire
spread for each time step so that we can animate the simulation with the module
g.gui.animation.

12.2 Case Study: Controlling Fire with Firebreaks

With Tangible Landscape we can intuitively create new fire management scenarios,
rapidly testing how different sizes, shapes, and placements of firebreaks affect
the spread of fire. To test different management strategies we simulated how a
fire might spread across NCSU’s Centennial Campus and tried to contain it by
creating firebreaks of different sizes and alignments. In this case study we modeled a
phenomenon—fire spread—that started outside the extent of the physical model, but
spread towards the model (Fig. 12.1). Once the fire spread onto the model we could
interact with it by creating firebreaks. Geospatial models and simulations need not
be constrained to the boundary of the physical model, i.e. the extent of the tangible
user interface. The processing extent can extend beyond the interactive area (see
e.g., Sect. 7.4) allowing us to work across scales.

We built a malleable physical model of the tree canopy by casting polymeric
sand. To build the molds for casting we interpolated a digital elevation model (DEM)
and a digital surface model (DSM) from the 2013 lidar data and then CNC routed
the DEM and the inverse of the DSM. Then we cast a layer of sand representing the
tree canopy between the two molds. Since this layer of sand represents tree canopy
and thus fuel availability we could model clearcutting simply by removing sand.
Thus we were able to intuitively design firebreaks by carving into the sand layer

http://grass.osgeo.org/grass72/manuals/r.spread.html
http://grass.osgeo.org/grass72/manuals/r.spread.html
https://github.com/ncsu-geoforall-lab/r.fire.spread
http://grass.osgeo.org/grass72/manuals/r.ros.html
http://grass.osgeo.org/grass72/manuals/r.spread.html
http://grass.osgeo.org/grass72/manuals/g.gui.animation.html

158 12 Wildfire Spread Simulation

Fig. 12.1 The study area on Centennial Campus: (a) an orthophotograph with highlighted
Trailwood Drive and Chancellor’s House and (b) available fuel map projected over the table with
the tangible 3D model

and reducing the fuel load. Please refer to Sect. 9.2.1 for a more detailed description
of the site and model.

12.2.1 Data Preparation

To simulate fire spread we prepared several input raster layers for the module
r.ros including the data about terrain, wind, fuel, and moisture conditions. We also
specified the coordinates of location where the fire started.

Terrain Terrain slope influences the speed of spread and aspect influences the
spread direction. After we set the region to our study area we derived the slope
and aspect raster maps from the provided DEM:

g.region n=224134 s=222501 e=639326 w=637211 res=3
r.slope.aspect elevation=elevation slope=slope aspect=aspect

The DEM is also used as input for computing the maximum spotting distance.

Wind Wind has two components—midflame velocity and direction—and both can
be spatially variable. In this case we used the prevailing wind speed and direction
obtained from the nearest weather station through the State Climate Office of North
Carolina.1 The module r.ros requires velocity in feet per minute so the wind velocity
data acquired from the State Climate Office of North Carolina must be converted
from meters per second to feet per minute (to convert multiply by a factor of
approximately 197). Wind direction is typically reported by the direction from which
it originates, clockwise from the north. The module r.ros, however, requires the “to”
direction (also clockwise from north). To simulate spatial variability we applied a

1State Climate Office of North Carolina: www.nc-climate.ncsu.edu/.

http://grass.osgeo.org/grass72/manuals/r.ros.html
http://grass.osgeo.org/grass72/manuals/r.ros.html
http://grass.osgeo.org/grass72/manuals/r.ros.html
www.nc-climate.ncsu.edu/

12.2 Case Study: Controlling Fire with Firebreaks 159

random effect, for example, using the module r.surf.gauss to produce a raster map
of Gaussian deviates with a specified mean and standard deviation:

r.surf.gauss output=wind_speed_avg mean=542 sigma=30
r.surf.gauss output=wind_dir mean=75 sigma=20

Fuel The module r.ros uses Anderson’s 13 standard fire behavior fuel models.
Fuel data layers at 30 m resolution for the USA are publicly accessible via the
LANDFIRE website.2 Most of our study site falls into fuel classes 8 and 9, i.e.
timber litter (Fig. 12.1b).

Moisture Since fuel moisture data were not readily available for our site we
generated the required, spatially variable raster maps of 1-h fuel moisture and live
fuel moisture percentage for dry conditions:

r.surf.gauss output=moisture_1h mean=10 sigma=5
r.surf.gauss output=moisture_live mean=20 sigma=5

Starting Location The starting sources of the fire are represented as raster cells
and can be created by digitizing points or importing coordinates from a file and
converting them to a raster. We provided the fire starting location in a text file with
the point coordinates (for example 638097,222934) and converted them to a
raster with the module v.to.rast:

v.in.ascii input=source.txt output=source separator=comma
v.to.rast input=source output=source type=point use=cat

12.2.2 Scenario with Multiple Firebreaks

In our first scenario the fire started near Trailwood Drive and was drawn to the
northeast by a southwesterly wind. The fire jumped over the road and quickly spread
towards the Chancellor’s House (Fig. 12.2).

Using the following workflow we simulated and then animated the spread of the
fire. The output raster maps generated by this workflow represent the time needed
for fire to reach each cell from the starting source in minutes. To better visually
represent the spread of the fire we used a red-yellow-gray color ramp, stretched to
the maximum value of each output raster. To prepare the suggested color ramp we
saved the color rules in a plain text file fire_colors.txt:

0% 50:50:50
60% yellow
100% red

2LANDFIRE: http://www.landfire.gov/.

http://grass.osgeo.org/grass72/manuals/r.surf.gauss.html
http://grass.osgeo.org/grass72/manuals/r.ros.html
http://grass.osgeo.org/grass72/manuals/v.to.rast.html
http://www.landfire.gov/

160 12 Wildfire Spread Simulation

Fig. 12.2 The spread of the fire without intervention

To run the simulation we called the module r.ros once and then r.spread with the
desired time lag parameter specifying the length of the simulation. To see the
intermediate states we can run the module r.spread multiple times and assign our
color ramp to the resulting spread raster map:

r.ros model=fuel moisture_1h=moisture_1h \
moisture_live=moisture_live velocity=wind_speed_avg \
direction=wind_dir slope=slope aspect=aspect \
elevation=elevation base_ros=out_base_ros \
max_ros=out_max_ros direction_ros=out_dir_ros \
spotting_distance=out_spotting

r.spread -s base_ros=out_dir_ros max_ros=out_max_ros \
direction_ros=out_dir_ros start=source \
spotting_distance=out_spotting wind_speed=wind_speed_avg \
fuel_moisture=moisture_1h output=spread_1 lag=20

r.spread -s -i base_ros=out_dir_ros max_ros=out_max_ros \
direction_ros=out_dir_ros start=spread_1 \
spotting_distance=out_spotting wind_speed=wind_speed_avg \
fuel_moisture=moisture_1h output=spread_2 lag=20

r.spread ...

r.null map=spread_1 setnull=0
r.colors map=spread_1 rules=fire_colors.txt

http://grass.osgeo.org/grass72/manuals/r.ros.html
http://grass.osgeo.org/grass72/manuals/r.spread.html
http://grass.osgeo.org/grass72/manuals/r.spread.html

12.2 Case Study: Controlling Fire with Firebreaks 161

Fig. 12.3 Creating a firebreak by (a) manually removing sand and then (b) scanning and detecting
the change

Alternatively we can use the module r.fire.spread, which conveniently wraps the
previous sequence of commands into a single command:

r.fire.spread -s start=source times=0 end_time=1600 \
time_step=20 output=spread model=fuel \
moisture_1h=moisture_1h moisture_live=moisture_live \
direction=wind_dir slope=slope aspect=aspect \
elevation=elevation speed=wind_speed_avg

After simulating the initial spread of the fire we attempted to prevent fire from
spreading towards Chancellor’s House by creating firebreaks. First we scanned the
model to save the unmodified state. Next we manually removed sand (representing
canopy) from the location where we want to have a firebreak (see Fig. 12.3a). We
scanned the modified model and vertically matched the new scan to the unmodified
scan using the function defined in code snippet (see Sect. 6.2.2). We derived the
new fuel raster layer based on the difference between the two scans introducing no
data values into the copy of the original fuel model using a simple raster algebra
expression:

adjust_scan('scan_before', 'scan_after', 'scan_adjusted')
gscript.mapcalc("changed_fuel = if(scan_before - scan_adjusted

> 0, null(), fuel)")

We repeated our simulation using the new fuel raster layer. The resulting fire
spread in Fig. 12.4 shows that our attempt was only a partial success. While we
significantly slowed the spread of the fire, potentially giving firefighters more time
to act, the fire jumped over the firebreak and started to spread towards Chancellor’s
House suggesting that a wider firebreak would be needed. With more precise data
about fire behavior we could control and limit the spotting effect in the simulation.

In our second scenario we added another firebreak to protect the neighborhood
north of Lake Raleigh. The lake creates a natural barrier that constrains the spread of
the fire. To protect the community to the north we extended this barrier by creating

https://github.com/ncsu-geoforall-lab/r.fire.spread

162 12 Wildfire Spread Simulation

Fig. 12.4 The spread of the fire after creating a firebreak

Fig. 12.5 The simulation with additional firebreak: (a) the creation of a new firebreak by removing
sand and (b) the result of the new simulation

an additional firebreak starting on western shore of the lake (Fig. 12.5a). After we
rescanned the model and reran the simulation, we found that the additional firebreak
was only locally effective—while the fire was significantly slowed, it would have
eventually reached the neighborhood.

References 163

References

Albini, F. A. (1976). Estimating wildfire behavior and effects. Technical report, Intermountain
Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture.

Albini, F. A. (1983). Potential spotting distance from wind-driven surface fires. Technical report,
Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of
Agriculture.

Anderson, D. H., Catchpole, E. A., De Mestre, N. J., & Parkes, T. (1982). Modelling the spread of
grass fires. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics,
23, 451–466.

Anderson, H. E. (1982). Aids to determining fuel models for estimating fire behavior. Technical
report, Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department
of Agriculture.

Andrews, P. L. (1986). BEHAVE: Fire behavior prediction and fuel modeling system – BURN
subsystem, Part 1 (p. 130). Ogden: USFS.

Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels.
Technical report, Intermountain Forest and Range Experiment Station, Forest Service, U.S.
Department of Agriculture.

Silvani, X., Morandini, F., & Dupuy, J.-L. (2012). Effects of slope on fire spread observed through
video images and multiple-point thermal measurements. Experimental Thermal and Fluid
Science, 41, 99–111.

Sullivan, A. L. (2009a). Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-
physical models. International Journal of Wildland Fire, 18(4), 349–368.

Sullivan, A. L. (2009b). Wildland surface fire spread modelling, 1990–2007. 2: Empirical and
quasi-empirical models. International Journal of Wildland Fire, 18(4), 369–386.

Sullivan, A. L. (2009c). Wildland surface fire spread modelling, 1990–2007. 3: Simulation and
mathematical analogue models. International Journal of Wildland Fire, 18(4), 387–403.

Viegas, D. X. (2004). Slope and wind effects on fire propagation. International Journal of Wildland
Fire, 13(2), 143–156.

Weise, D. R., & Biging, G. S. (1996). Effects of wind velocity and slope on flame properties.
Canadian Journal of Forest Research, 26(10), 1849–1858.

Xu, J. (1994). Simulating the Spread of Wildfires Using a Geographic Information System and
Remote Sensing. PhD dissertation, Rutgers University, New Brunswick.

Chapter 13
Coastal Modeling

In this chapter we discuss how to simulate inundation and flooding in coastal
landscapes, explain workflows for developing storm surge and sea level rise
scenarios, and present two case studies. The first case study explores storm surge
and dune breach impacts for two populated barrier islands. One of these studies is
designed as a simple educational game. The second study is a design—informed
by flood and erosion modeling—for resilient, sustainable guest housing at a coastal
research institute.

13.1 Modeling Potential Inundation

Severe precipitation, storm surge and sea level rise often cause extensive inundation
and flooding of coastal landscapes. This complex process depends upon topography
and bathymetry, tides, sea level surge, waves, wind, and rainfall. The spatial extent
of flooding caused by storm surge can be approximated by “spreading” the observed
or predicted water level throughout the landscape (Clinch et al. 2012). We can spread
the given water level from predefined seed(s) located in the ocean using a 3 × 3
moving window to find all grid cells that are below the specified elevation (i.e., water
level) and are connected with the seed(s) location. This approach respects the terrain
barriers, so if a foredune protects a low lying area, this area will not be flooded even
if the water level exceeds its elevation. This simplified algorithm assumes that the
water spreads at an infinite speed and thus instantly floods everything that it can
reach. Therefore, this method is best used to map the maximum possible extent of
inundation assuming that there are no changes in topography during the process.

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_13

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_13&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_13

166 13 Coastal Modeling

13.2 Case Study: Simulating Barrier Islands Flooding

We explored the impact of topography on inundation and flooding at two barrier
islands in North Carolina: the Jockey’s Ridge sand dune complex in Nags Head on
the Outer Banks and at Bald Head Island in the southern region of the state coast.
We used molds to build 3D sand models of the study areas. Then we carved breaches
into the foredunes of our sand models and ran the storm surge simulations to identify
which homes in these two areas were most vulnerable to flooding.

13.2.1 Storm Surge Flooding at Jockey’s Ridge Sand Dunes

The study area stretched across the entire width of the barrier island and included
the beach, foredune, numerous buildings, roads, large sand dunes, maritime forest,
and soundside shore (Fig. 13.1). We derived a 1 m resolution bare earth digital
elevation model (DEM) and a digital surface model (DSM) with buildings and
vegetation for this area from a 2009 lidar survey. Then we cast a polymeric
sand model of the DEM from a CNC routed mold at approximately 1 : 2000
scale. We projected an orthophotograph (downloaded using module r.in.wms),
elevation data, the shoreline, and building footprints to provide context. Based
on the building footprints we added massing models of the buildings to our
sand model.

To study the potential impacts of a hurricane we simulated storm surge at
increasing levels from 1 m to 4 m using the add-on module r.lake.series. We
breached the foredune at a point where it has been compromised by the construction

Fig. 13.1 The Jockey’s Ridge dune complex in Nags Head, North Carolina

http://grass.osgeo.org/grass72/manuals/r.in.wms.html
http://grass.osgeo.org/grass72/manuals/addons/r.lake.series.html

13.2 Case Study: Simulating Barrier Islands Flooding 167

Fig. 13.2 Sand model of the Jockey’s Ridge area with projected orthophoto and predicted flooding
during storm surge with a foredune breach

Fig. 13.3 Flooding simulations for one of the explored future scenarios at the Jockey’s Ridge area
for (a) 1 m and (b) 2 m storm surge water level (as measured above the 0 m vertical datum)

of a boardwalk for beach access and compared the extent of flooding at different
surge levels (Fig. 13.2). Then we explored various future development scenarios,
including adding new buildings, raising road elevation and additional dune construc-
tion while adjusting the scenarios based on the projected flooding extent feedback
(Fig. 13.3).

r.lake.series elevation=elev_2009_1m output=flood \
start_water_level=1 end_water_level=4 water_level_step=0.1 \
coordinates=913525,249507

g.gui.animation strds=flood

168 13 Coastal Modeling

Fig. 13.4 Sand model of a beach, homes and dunes at a Bald Head Island community used in our
case study. Orthophoto is projected over the sand model

13.2.2 Exploring Storm Surge Protection

The second study area included a 700 m long stretch of the beach, foredunes,
homes, neighborhood roads, coastal dunes, and maritime forest in Bald Head Island
(Fig. 13.4). We derived a 1 m resolution bare earth DEM and a DSM with buildings
and vegetation from a 2014 lidar survey and then we cast a polymeric sand model of
the DEM from a CNC routed mold at approximately 1 : 1000 scale with four times
vertical exaggeration. We projected an orthophotograph and building footprints over
the model to provide context for the simulations.

To assess vulnerability of homes to flooding caused by foredune breaches
we removed sand from foredunes at various locations, based on the presence of
boardwalks, access roads or observed dune degradation. Then we simulated storm
surge at increasing levels from 1 m to 4 m using the module r.lake and extracted the
homes that were flooded at the simulated level (Fig. 13.5).

The following Python code snippet computes the flooding for 3 m storm surge
and then it extracts buildings that were flooded. We first use raster representation of
the map layer buildings to identify the categories of those that were flooded and
then we use the vector map layer buildings to extract the footprints so that they
can be projected in a different color on the model surface (Fig. 13.5b):

level = 3 # storm surge level in map units
coordinates = [703760, 11470] # seed coordinates for r.lake
gscript.run_command('r.lake', elevation='scan',

water_level=level, lake='flood')
extract flooded homes
lines = gscript.read_command('r.univar', flags='t',

map='flood', zones='buildings').strip()
if lines:

cats = [l.split('|')[0] for l in lines.splitlines()[1:]]
gscript.run_command('v.extract', input='buildings',

output='flooded_homes', flags='t', cats=','.join(cats))

http://grass.osgeo.org/grass72/manuals/addons/r.lake.html

13.3 Case Study: Designing Resilient Coastal Architecture 169

Fig. 13.5 Coastal game: (a) adding sand to protect the homes, (b) simulated flood with 57 flooded
homes

Fig. 13.6 Coastal storm surge educational game: successful solution designed by game partici-
pants

We have implemented this case study as a simple educational game, where the
participants have a limited amount of sand and time to build protection against
the storm surge assuming that the foredunes are relatively weak and can breach
at any location. There is not enough sand available to completely rebuild the dunes
and/or widen and raise the beach, therefore a smart strategy is needed to protect at
least some homes. The breach location is then randomly generated (blue arrow in
Fig. 13.5b), the model is modified at this location, while it is being scanned and a
new DEM with the designed protections and a breach is computed. The flooding at
a given water level is simulated and the result is projected over the model along with
the footprints of homes, with the flooded homes highlighted in red (Fig. 13.5b). One
of the successful solutions for a given breach created by a participant at a public
event takes advantage of existing topography (Fig. 13.6).

13.3 Case Study: Designing Resilient Coastal Architecture

Two architecture students—David Koontz and Faustine Pastor—used Tangible
Landscape to site a series of residential pavilions (Fig. 13.7) for visitors staying
at the UNC Coastal Studies Institute on Roanoke Island, North Carolina as part

170 13 Coastal Modeling

Fig. 13.7 The students’ design for a series of pavilions for the UNC Coastal Studies Institute on
Roanoke Island: (a) a rendering of the proposed design for a residential pavilion, (b) a masterplan
of the UNC Coastal Studies Institute with the proposed residential pavilions. Images by David
Koontz and Faustine Pastor

of a joint architecture-engineering studio. They used storm surge and water flow
simulations to inform the selection of building sites. Then they spaced pilings for
the buildings and adaptively graded a biofiltration swale based on near real-time
feedback about water flow, sediment flux, and erosion-deposition.1

The UNC Coastal Studies Institute—the site for the studio—is a research institute
on Roanoke Island in the Outer Banks of North Carolina. Students in this North
Carolina State University studio course led by Professors Joe DeCarolis, David Hill,
and Ranji Ranjithan were tasked with designing sustainable housing for guests and
researchers visiting the institute.2 The site is at risk of inundation from sea level rise
and storm surge and is in a sensitive back-barrier salt marsh.

Given the risk of flooding David and Faustine used Tangible Landscape to
visualize different levels of inundation and test the vulnerability of potential building
sites. They placed basswood massing models of buildings on a cast sand model of
the landscape and then used the module r.lake to simulate 4 m storm surge and check
if their buildings would stay dry (Fig. 13.8). In their design the buildings would
be raised on piers and connected by boardwalks over a bioswale. They simulated
water flow to find the right spacing for the piers over swale. Then they adaptively
graded the swale using feedback from water flow, erosion-deposition, and sediment

1Watch the video on Youtube: https://youtu.be/PbbzWymGvLo.
2Read more about the studio on the Coastal Dynamics Design Lab website: http://design.ncsu.edu/
coastal-dynamics-design-lab/.

http://grass.osgeo.org/grass72/manuals/r.lake.html
https://youtu.be/PbbzWymGvLo
http://design.ncsu.edu/coastal-dynamics-design-lab/
http://design.ncsu.edu/coastal-dynamics-design-lab/

Reference 171

Fig. 13.8 Students using water flow and flood simulations to adaptively inform the placement of
a series of pavilions for the Coastal Studies Institute on Roanoke Island, NC: (a) siting buildings
by hand on an artificial ridge, (b) studying the flow of water around the buildings and (c) testing
whether the buildings stay dry with 4 m storm surge

Fig. 13.9 Students using (a) water flow, (b) erosion-deposition, and (c) sediment flux simulations
to space structural piers and adaptively grade a biofiltration swale for the Coastal Studies Institute
on Roanoke Island, NC

flux simulations, sculpting the channel so that water and sediment flowed towards a
bioretention pond (Fig. 13.9).

Reference

Clinch, A. S., Russ, E. R., Oliver, R. C., Mitasova, H., & Overton, M. F. (2012). Hurricane Irene
and the Pea Island breach: prestorm site characterization and storm surge estimation using
geospatial technologies. Shore & Beach, 80(2), 38–46.

Chapter 14
Landscape Design

In this chapter we demonstrate how tangible geospatial modeling can be coupled
with virtual reality as a tangible immersive environment for landscape design. In
a tangible immersive environment spatial scientists and landscape architects can
rapidly, collaboratively design new landscapes balancing aesthetic and environmen-
tal factors. As a case study we use Tangible Landscape to create different scenarios
for a park with landforms, hydrological systems, planting, a trail network, and a
shelter. Real-time immersive visualizations rendered in Blender help us to judge the
aesthetics of the park and refine our designs. In this case study we synthesize the
concepts and workflows introduced in previous chapters, including Chaps. 4, 5, 7
and 10.

14.1 Integrating Tangible and 3D Modeling Methods

Designing a park is a complex process in which many functional and aesthetic
aspects must be considered and evaluated by experts from different domains (Mol-
nar 2015). In this chapter we demonstrate how a tangible immersive environment
can improve the design process through intuitive, real-time tangible interactions
and photo-realistic renderings that help experts collaborate, experiment, assess their
work, and make tradeoffs. By integrating the tangible and 3D modeling methods
described in previous chapters in a single case study we can experiment and rapidly
create scenarios for a new park.

The system setup in Fig. 14.1 has several components allowing for different types
of tangible interaction—sand model for hand sculpting, pieces of colored felt for
planting, markers for designing a trail, marker for siting a shelter, and direction
marker for exploring views. The setup also provides feedback about the design
quantitative and aesthetic properties through the projection of map layers on the

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7_14

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89303-7_14&domain=pdf
https://doi.org/10.1007/978-3-319-89303-7_14

174 14 Landscape Design

Fig. 14.1 For the design case study the Tangible Landscape setup included: 1) a hand sculpted
model of the landscape, 2) a computer display showing the 3D model in Blender’s viewport, 3)
an Oculus DK2, 4) a projected dashboard with quantitative feedback, 5) pieces of colored felt
representing patches of vegetation, 6) a marker for siting the shelter, 7) markers for siting trail
waypoints, 8) and a direction maker for siting viewpoints

model and a simple dashboard on the table, a computer display with 3D model
rendered in Blender, and a head-mounted display.

The design process consisted of several stages—modifying topography, planting
vegetation, placing a picnic shelter, and designing a trail to the shelter (Table 14.1).
At each stage we used different interaction methods with different set of analyses,
which were prepared in advance using Tangible Landscape Activities functionality
(see Sect. 2.2.4 and GitHub wiki page1). The code and data for running similar
landscape design study is available online.2

Modifying Topography In the first step—sculpting the surface of the model as
topography—our feedbacks were projected contours and the pattern of overland
flow (see Chap. 7). Lakes were modeled separately as filled terrain depressions using
the module r.fill.dir, which is normally used to create a depressionless DEM for flow
routing algorithms. By subtracting the original scan from the filled DEM, we obtain
the filled depressions representing lakes:

r.fill.dir input=scan output=output direction=tmp_dir
extract depressions, filter shallow depressions
r.mapcalc "ponds = if(output-scan > 0.2, output-scan, null())"
r.colors map=ponds color=water

1https://github.com/tangible-landscape/grass-tangible-landscape/wiki/Working-with-Activities.
2https://github.com/tangible-landscape/tangible-landscape-applications/tree/master/planting.

http://grass.osgeo.org/grass72/manuals/r.fill.dir.html
https://github.com/tangible-landscape/grass-tangible-landscape/wiki/Working-with-Activities
https://github.com/tangible-landscape/tangible-landscape-applications/tree/master/planting

14.1 Integrating Tangible and 3D Modeling Methods 175

Table 14.1 Overview of design stages and their associated interaction modes, feedback types,
analyses in GRASS GIS and relevant sections of this book

Mode Interaction Feedback Analysis Section

Topography Scultping Projection on the
model, hydrology
dashboard, 3D
rendering

r.contour, r.sim.water, r.fill.dir 7.2

Planting Colored felt Biodiversity dashboard,
3D rendering

r.li 4.4

Shelter Markers 3D rendering 4.3

Trail Markers Projection of slope and
profile, 3D rendering

r.slope.aspect, r.profile 10.2.4

3D views Direction marker 3D rendering,
head-mounted display

4.6

We computed the area and average depth of the lake on-the-fly and these values
were visualized graphically on a projected dashboard (Fig. 14.1). As described in
Sect. 5.5.1 the new topography and lakes were exported as GeoTIFFs to Blender
where they were rendered in a viewport with predefined materials (Sect. 5.5.4).

Planting Using interaction method described in Sect. 4.4 (and specifically function
classify_colors) we used pieces of colored felt to plant trees and shrubs. In
the calibration phase we matched four colors to tree species—with red representing
red oaks, orange representing shrubs, green representing pines, and blue represent-
ing willows. After cutting out pieces of felt and detecting them, we created patches
of rectangular meshes for each tree species that are then draped over the scanned
terrain and exported to Blender as 3D Shapefiles (Sect. 5.5.1). In this way the bottom
of the rendered trees in the 3D model align with the topography.

classify_colors(new='patches', group=color)
find out which categories of species are detected
cats = gscript.read_command('r.describe', map='patches',

flags='1ni').strip()
for cat in cats.splitlines():

mask each category
gscript.run_command('r.mask', raster='patches',

maskcats=cat, overwrite=True)
create a regular 2D vector mesh within the masked area
gscript.run_command('r.to.vect',

input='scanned_topography', output=cat + '_2d',
type='area', flags='svt')

drape 2D mesh over scanned topography to get 3D mesh
gscript.run_command('v.drape', input=cat + '_2d',

output=cat + '_3d', elevation='scanned_topography')
gscript.run_command('v.out.ogr', input=cat + '_3d',

output=cat + '_3d.shp', format='ESRI_Shapefile',
lco='SHPT=POLYGONZ')

gscript.run_command('r.mask', flags='r')

http://grass.osgeo.org/grass72/manuals/r.contour.html
http://grass.osgeo.org/grass72/manuals/r.sim.water.html
http://grass.osgeo.org/grass72/manuals/r.fill.dir.html
http://grass.osgeo.org/grass72/manuals/r.li.html
http://grass.osgeo.org/grass72/manuals/r.slope.aspect.html
http://grass.osgeo.org/grass72/manuals/r.profile.html

176 14 Landscape Design

In Blender, we used particle systems (explained in Sect. 5.5.2) to visualize the patch
as a grove of the given tree species with randomly distributed trees. Similarly, we
used colored markers to represent individual trees on the landscape.

To assess landscape structure of our scenarios we computed several biodiversity
metrics that quantitatively describe the pattern, distribution, and shape of vegetation
patches in the landscape. These metrics were projected as a dashboard of charts
below the model as additional feedback (Fig. 14.4a). The landscape metrics include
number of patches, mean shape index, Shannon’s diversity index, and shape index
(Baker and Cai 1992), and are implemented in a set of GRASS GIS modules
named r.li.

Siting a Shelter To site a shelter we used a colored wooden block, and detected its
position based on the difference between a saved scan before placing the shelter and
the current scan (Sect. 4.3). A 3D model of a shelter is then rendered in Blender at
that position.

Designing a Trail We designed a trail between two defined locations (park
entrance and shelter) by placing markers representing waypoints along the trail. We
used a technique defined in Chap. 10, but modified it to first calculate the optimal
order of marked points from the entrance to the shelter based on their euclidean
distance. This is accomplished with the TSP-solving algorithm by defining the
distance between the start and end point as 0 and then removing that segment of
the trail. After the order is determined, the least cost path is computed between
successive pairs of points using modules r.walk and r.drain. Then the slope along
the complete trail is derived (see Sect. 10.2.4), the vertical profile of the trail is
computed with module r.profile and plotted on a dashboard, and the route is 3D
rendered as a boardwalk in Blender.

3D Rendering of Views At each stage of the design process we can explore
the views on the landscape from human perspective by placing and orienting the
direction marker. When the direction marker is detected (Sect. 4.6) we export it as a
line to Blender, which interprets it as a change in camera and renders the new view
on the screen.

The real-time viewport rendering used throughout the process has a sufficient
degree of realism for rapid decision-making (Sect. 5.5.3). At any point in the
design process, however, we can compute full renderings for selected views of the
landscape. These full, high-resolution renderings are more photorealistic and help
us to make well-considered judgments about the aesthetics. They are also useful
for presenting the final design scenarios to others. Additionally, we can view the
resulting landscape from human perspective using head-mounted displays.

http://grass.osgeo.org/grass72/manuals/r.li.html
http://grass.osgeo.org/grass72/manuals/r.walk.html
http://grass.osgeo.org/grass72/manuals/r.drain.html
http://grass.osgeo.org/grass72/manuals/r.profile.html

14.2 Case Study: Designing a Park 177

Fig. 14.2 Study area with the highlighted physical model extent, vertically exaggerated twice

14.2 Case Study: Designing a Park

Using the above described workflows we designed two scenarios of future park close
to NCSU campus and compared them using the metrics, site plans, and perspective
views.

14.2.1 Site Description and Model

Our 7.7 ha case study area shown in Fig. 14.2 is located between NCSU Centennial
Campus and Dorothea Dix Park, and is mostly covered by dense shrubs, making the
area inaccessible for any recreational activities. For our case study, we assumed that
the local vegetation would be completely removed and replaced with select species
of trees and shrubs. The two main roads that cross our study area—the multi-lane
Centennial Parkway to the west and the low-traffic Blair Road to the south—provide
the main access to Dix park from the NC State campus.

We hand sculpted the physical model with the aid of projected contours and
the dynamically computed, color-coded difference (Sect. 3.1). Given the local
topography and model’s scale of 1 : 500, we vertically exaggerated the model twice
to simplify physical interaction.

14.2.2 Scenario 1

In the first scenario we used the existing depression in south-west part of our area to
create an approximately 0.5-ha lake (Fig. 14.3a). Using the excavated soil, we raised

178 14 Landscape Design

Fig. 14.3 In the first scenario designers (a) collaboratively sculpted the landscape to create ponds
and artificial mounds. Then, they (b), (d) used the wooden marker to (c), (e) explore various views

the west banks of the lake to create a protective barrier to reduce noise coming
from Centennial Parkway. The resulting undulating topography along Blair Road
(Fig. 14.3a)—crossing our study area from west to east—provides interesting views
for visitors (Fig. 14.3c and e). We preserved the drainage ditch along Blair Road and
channeled overland water flow into the lake.

Next we planted trees and shrubs, while considering the location of the shelter
and the entrance to the park on the east side. We planted red oaks and shrubs sparsely
along Blair Road to buffer the park from the road (Fig. 14.4a), while offering
pleasant, welcoming views to the visitors arriving at the entrance. With blue markers
we planted individual willow trees along the banks of the lake. We also used cut-out
patches of felt to create denser, continuously vegetated planting areas.

14.2 Case Study: Designing a Park 179

Fig. 14.4 In the first scenario the designers (a) cut out and placed felt pieces on the tangible
model to (b) develop planting strategies, which they evaluated with the biodiversity metrics shown
on the dashboard. Then, (c, d) they sited the shelter and (e) placed wooden markers to (f) route
the boardwalk. Finally they (g) used the direction marker to generate (h) 3D renderings of various
viewpoints

180 14 Landscape Design

After several design iterations (Fig. 14.4c), we placed the shelter on the north
shore of the lake with unobstructed views over the water to the south and a grove of
pines to the north (Fig. 14.4f). The mixed group of pines and red oaks in the middle
of the park visually divides the east and west regions.

Finally, based on the existing parking place on the east side, we designed the trail
from the entrance by placing markers and computing least cost path between these
waypoints (Fig. 14.4e). The beginning point of the trail was the entrance and the end
point was the shelter. In order to take the slope along the trail into consideration,
we projected the profile of the trail below the model (Fig. 14.4e). The trail is then
rendered in Blender as a boardwalk (Fig. 14.4h).

14.2.3 Scenario 2

After the first scenario, we restored the landscape to its original form. For the next
design we decided to preserve most of the original topography, but create two
smaller lakes (Fig. 14.5a). We built the shelter on top of a new mound so that it
would have a prominent location with commanding views of the lakes (Fig. 14.5b).
In contrast with previous scenario, we defined the park entrance at the corner of
Centennial Parkway and Blair Road. The park trail connects the new entrance to the
shelter. We routed it around the lakes to offer nice views, while reducing the slope
along the trail.

In order to maintain open the views of the lakes from the shelter, we planted low
shrubs in the middle of the park. We planted a colorful mix of species including
red oaks and pines around the borders of the park to attract visitors from outside
(Fig. 14.5f) and make the views from the shelter richer and more diverse.

Figure 14.5g shows the final result rendered in an abstract way, using low-poly
visualization (see Sect. 5.7.1 for more details). We then used a head-mounted display
to evaluate the 360° view from the shelter (Fig. 14.5h).

14.2.4 Evaluation of Scenarios

With Tangible Landscape we were able to rapidly develop multiple scenarios for a
park—the first focused on a single large lake, the second on the journey through
the landscape. With scenarios we can compare and contrast different ideas, solicit
feedback from other designers, stakeholders, and the general public, and continue to
refine our design. We compared and critiqued our two scenarios using the metrics,
site plans, and perspective views shown in Fig. 14.6. With the metrics (Fig. 14.6a,b)
and trail profiles (Fig. 14.6c,d) we can quantitatively compare the designs. The first
scenario had significantly more water, while the second had gentler slopes along
the trail and a more diverse landscape structure with more patches, more complex
shapes, and more diverse distribution of plant species. The profile shows that the

14.2 Case Study: Designing a Park 181

Fig. 14.5 In the second scenario designers (a) sculpted the landscape to create two ponds and an
artificial mound. Next, they (b) sited the shelter on top of the mound and designed a trail to connect
it to the park entrance. Then, they (c) planted trees, (d) reviewed planting from a birds-eye view,
and (e) explored various (f) realistic and (g) abstract views rendered both on the screen and (h) in
the head-mounted display

182 14 Landscape Design

Fig. 14.6 A comparison of two design scenarios in terms of: (a),(b) hydrological and landscape
metrics; (c),(d) trail profile; (e),(f) site plan (North up, scale ∼1/10,000 m); and rendered views
(g),(h) from the park entrance; (i),(j) from the lakes towards the shelter; and (k),(l) from the shelter
to the lakes. PNU number of patches, MSI mean shape index, SDI Shannon diversity index, SI
shape index

References 183

trails in both designs are too steep and need to be regraded at the entrance to the
park. The trail in first scenario also has too steep a slope near the shelter. With
the perspective views (Fig. 14.6e–l) we can subjectively judge the aesthetics of the
scenarios. The first scenario used undulating landforms interspersed with trees and
shrubs as a border for the park (Fig. 14.6g) and used specimen trees for visual
interest within the park (Fig. 14.6i). The second scenario was designed to enclose the
park with trees (Fig. 14.6h) and frame the wide, open views within (Fig. 14.6j). The
first scenario has more interesting topography and picturesque views with specimen
trees, while the second scenario is more walkable and ecologically diverse.

References

Baker, W. L., & Cai, Y. (1992). The r.le programs for multiscale analysis of landscape structure
using the GRASS geographical information system. Landscape Ecology, 7(4), 291–302.

Molnar, D. (2015). Anatomy of a park: essentials of recreation area planning and design. Long
Grove, IL: Waveland Press.

Appendix A

A.1 Applications of Tangible Landscape

In this section we briefly describe additional applications of Tangible Landscape that
we, our students, and our colleagues have developed. For each project we explain
the aim, used methods and studied processes.

A.1.1 Modeling Avalanches in High Tatras

Eva Stopkova modeled snow avalanches in the High Tatras mountain range in
Slovakia (Stopková 2007, 2008). Avalanche potential is closely related to landscape
topography so Stopkova built a physical model of her study area in High Tatras
in order to visualize the spatial pattern of topographic parameters and landforms
(Fig. A.1). She was able to project the results of avalanche danger assessment over
the model, but she was not able usefully compute the assessment using the modified
and scanned physical model. The scanned models were not accurate enough for
practical applications due to their small scale and the steepness of their slopes.
Modeling avalanches with Tangible Landscape would require a larger physical
model at a larger map scale. CNC routing can be used to precisely and efficiently
fabricate the size of model needed for such an application.

A.1.2 Visualizing the Evolution of Oregon Inlet

Liliana Velasquez Montoya created a projection augmented sand model of Oregon
Inlet where she was modeling how storms drive the morphological evolution
of barrier islands. To visualize and present the results of her research Montoya

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7

185

https://doi.org/10.1007/978-3-319-89303-7

186 Appendix A

Fig. A.1 A sand model of High Tatras in Slovakia augmented with a projection of the landforms
computed by the module r.geomorphon; a legend and a diagram of the landform types are projected
on the table beside the model

Fig. A.2 A sand model of Oregon Inlet with a projected video showing its formation and evolution
along with a graph of wave height changing over time

projected a video depicting the evolution of the inlet in response to storm events
onto a sand model. She built the sand model to physically represent the present 3D
form of the inlet. Since the sand model was not dynamic it only matched the end of
animation. This was a useful mode of representation as the model acted as a datum
that helped us compare the present and past morphology of the inlet. Since the small
sand model was only large enough to show the most active part of the inlet she also
projected the surrounding coastal landscape (Fig. A.2).

A.1.3 Designing Disaster Relief Housing for Rodanthe

Logan Free designed disaster relief shelters for an emergency ferry terminal at
Rodanthe on the Outer Banks of North Carolina. The ferry terminal is used for
evacuation and relief when there are disasters like hurricanes or bridge failures. Free
was tasked with designing temporary housing structures and a community service

http://grass.osgeo.org/grass72/manuals/r.geomorphon.html

Appendix A 187

center for disaster recovery at the ferry terminal. To identify vulnerable hotspots and
select safe sites for the shelters he built a sand model of the site and used Tangible
Landscape with the module r.lake to simulate the potential extent of storm surge
flooding (Fig. A.3).

A.1.4 Simulating Landscape Change in Charlotte

Douglas A. Shoemaker created a model of a small watershed in Charlotte,
North Carolina to test how the FUTure Urban-Regional Environment Simulation
(FUTURES) framework could be integrated with Tangible Landscape. FUTURES
uses a stochastic patch growing algorithm to simulate urban growth and land use
change (Meentemeyer et al. 2013). It has been integrated with GRASS GIS as the
add-on module r.futures (Petrasova et al. 2015). Shoemaker used the raster digitizer
tool in the GRASS GIS GUI to designate a site for development and change the land
cover. He also sculpted the sand to grade the topography for the new development.
Then he ran FUTURES to explore how the new development would influence
longterm landscape change in the watershed-scale study area (Fig. A.4).

Fig. A.3 Simulating storm surge at the Rodanthe emergency ferry terminal on the Outer Banks
of North Carolina: (a) the mean high water level on the sound side of the island and (b) the
approximate water level during high storm surge

Fig. A.4 Landscape change modeling for a watershed in Charlotte, North Carolina: (a) a sand
model of the terrain at the Charlotte study area augmented with a projected shaded relief to enhance
perception of relief; (b) using a mouse and the digitizer tool to draw a polygon to designate a
development area

http://grass.osgeo.org/grass72/manuals/r.lake.html
http://grass.osgeo.org/grass72/manuals/addons/r.futures.html

188 Appendix A

Fig. A.5 Reconstructing a paleolake and a terrain model used for cell tower planning. (a) A
reconstruction of a paleolake in the Galuut Valley, Mongolia showing the landforms computed
by r.geomorphon. (b) A physical model used to site cell towers in Athens county, Ohio

A.1.5 Reconstructing a Paleolake in Mongolia

Gantulga Bayasgalan used a sand model to reconstruct a paleolake in the Galuut
Valley in central southwest Mongolia. He modeled alternative reconstructions
of the landscape in sand and used Tangible Landscape to compute the flow
accumulation pattern, geomorphological features, and several other characteristics
for each landscape configuration (Fig. A.5a).

A.1.6 Cell Tower Planning in Athens County

Jesse Boyd used Tangible Landscape to site cell towers in Athens county, Ohio.
To find good sites for cell towers, Boyd tested different spatial configurations by
placing markers representing cell towers on a physical model of the landscape
(Fig. A.5b). Since topography blocks cellular signals he used viewshed analysis to
estimate cellular coverage. He experimented with different cell tower heights by
changing the observer elevation parameter of the module r.viewshed.

A.1.7 Monitoring Coastal Erosion

Tristan Dyer used terrestrial lidar data to monitor coastal erosion on a beach near
the US Army Corps of Engineers’ Field Research Facility in Duck on the Outer
Banks of North Carolina. Coastal erosion can be visually and tactilely explored by
building a sand model for each lidar survey. Dyer scanned a transect of the beach
with a terrestrial lidar system, interpolated the lidar point cloud as a DEM, and
then built a sand model with the aid of Tangible Landscape to quickly prototype
and visualize the landform (Fig. A.6a). A sequence of these models would show the
morphological evolution of the beach.

http://grass.osgeo.org/grass72/manuals/r.geomorphon.html
http://grass.osgeo.org/grass72/manuals/r.viewshed.html

Appendix A 189

Fig. A.6 Sand models used to study beaches and streams. (a) A sand model of a beach in Duck,
North Carolina used to study beach erosion. (b) A sand model of a valley in North Carolina
Piedmont used to study how beaver dams influence stream flow and morphology

A.1.8 Exploring Impacts of a Beaver Dam

Karl W. Wegmann and his students used Tangible Landscape to study how beaver
dams affect streams in North Carolina. They used Tangible Landscape to model the
morphology and flow of a stream with and without beaver dams. First they built a
sand model of a segment of the existing stream with beaver dams and studied its
topographical parameters and hydrological processes. Then they sculpted the sand
model and computed different water flow scenarios to study how the stream could
have been without beaver dams (Fig. A.6b).

In this application we merged the scanned elevation model with a DEM of the
surrounding landscape to put the modeled area into its broader context and account
for water flowing from the entire contributing watershed. The water flow simulation
was then run over the entire area so that the water from the contributing watersheds
would fill the stream.

A.1.9 Modeling the Potential Impacts of a Coal Ash Pond Spill

Matthew Horvath (2014, Spill impacts from coal ash pond using GRASS GIS,
Unpublished poster) studied the potential impacts of spills from the Cape Fear Plant
coal ash ponds near Moncure, North Carolina. Horvath built a sand model for a study
area near the Cape Fear river and used Tangible Landscape with the add-on module
r.damflood to simulate a breach in a coal ash pond (Fig. A.7). Artificial landforms
kept the simulated spread of contaminated surface water from reaching the nearby
Cape Fear river.

http://grass.osgeo.org/grass72/manuals/addons/r.damflood.html

190 Appendix A

Fig. A.7 Making a breach in a coal ash pond (a) and simulating the spread of contaminated
water (b)

Fig. A.8 Iteratively sculpting a landform in sand to generate time-series data: (a) the initial state
followed by (b) changing the position and shape of the landform

A.1.10 Testing a Landform Migration Algorithm

Petras et al. (2015) used Tangible Landscape to test the behavior of a newly
developed algorithm for describing landform migration. The algorithm maps the
horizontal migration of complex landforms as gradient fields based on the analysis
of contour evolution. The gradient field is a vector field representing the movement
and deformation of contours. It can be used to quantify the rate and direction of
landform migration at any point in space and time. Data for testing algorithms is
usually computer generated. In this case, however we wanted to create simplified,
yet realistic abstractions of landforms that would allow us to clearly model and
visualize landform migration. It was easier to make these abstract landforms by
hand than on the computer. To create test data in a controlled environment we built
sand models by hand to represent a moving landform. Using Tangible Landscape we
sculpted and scanned a model of the initial terrain and then sculpted and scanned a
model of the terrain after it had migrated to create an elevation time-series (Fig. A.8).

Appendix A 191

Fig. A.9 Using object recognition to digitize polygons and pixels representing treatment areas
in order to computationally steer (a) Sudden Oak Death in Sonoma Valley, California, and (b)
termites spread simulation in Fort Lauderdale, Florida

A.1.11 Managing the Spread of Sudden Oak Death in Sonoma
Valley

In collaboration with Francesco Tonini and Douglas A. Shoemaker we used
Tangible Landscape to test the effectiveness of different treatment scenarios for
controlling the spread of Sudden Oak Death in Sonoma Valley, California (Tonini
et al. 2017). We used a stochastic model to simulate the spread of Sudden Oak
Death and Tangible Landscape to visualize the spread and designate new treatment
areas. We CNC routed a large (1 m × 1 m) MDF model of the terrain and coated
it with magnetic paint. To make markers that would hold in place on the complex
topography we attached adhesive magnetic strips to the base of basswood markers.
We used the markers to collaboratively draw polygons representing treatment areas
with Tangible Landscape (Fig. A.9a). The polygons reduced the host species of
the disease on aligned pixels thus influencing the next run of the simulation. Each
treatment area was automatically assigned a label with its area. The sum of all of
the treatment areas was dynamically displayed on a simple dashboard. The disease
spread simulation was written in the R (R Core Team 2013) statistical programing
language and environment.

A.1.12 Participatory Modeling Workshop for Managing
Sudden Oak Death in Oregon

In collaboration with Devon A. Gaydos, Richard C. Cobb, and Ross K. Meente-
meyer leveraging experience from the previous Sudden Oak Death work (Tonini
et al. 2017) we held a participatory modeling workshop at Oregon Department
of Forestry in Salem, Oregon with study area near the coast in Curry County,
Oregon. We again used the aforementioned stochastic model to simulate the spread

192 Appendix A

of Sudden Oak Death disease. Tangible Landscape was the tool to visualize the
disease spread and designate new treatment areas. We CNC routed six tiles creating
a 120 cm × 80 cm model. The tiles were from high density foam and hollow to
make them light for traveling. The model used custom projection which was rotated
90◦ to accommodate rectangular shape of Kinect’s field of view and the study area
elongated in north-south direction. We used red felt to represent treatment areas
which were then used to modify the tree density inputs for the spread model. We
used two separate USB buttons next to the physical model to run the spread model
and to view different stochastic results. The results were pushed to a web-based
dashboard which was recording global statistics for each run. An additional desktop
dashboard was providing quick feedback about the cost of currently proposed
treatment. More than ten participants worked with us designing and experimenting
with various spatial combinations of treatments while cutting and combining the
pieces of felt.

A.1.13 Managing the Spread of Termites in Fort Lauderdale

In collaboration with Francesco Tonini we used Tangible Landscape as a spatial
decision support tool for collaboratively managing the spread of termites in Dania
Beach, Fort Lauderdale, Florida. We used pixel-based object recognition to interact
with a stochastic simulation of the spread of termites. Placing a marker on a flat
surface with a projected grid changed a value on the corresponding pixel in the
simulation input—a raster index of termite habitat (Fig. A.9b).

A.1.14 Tangible Exploration of Subsurface Data

Using Tangible Landscape we explored the 3D distribution of the percentage of
subsurface moisture (Petrasova et al. 2014) measured in Kinston, North Carolina
and represented as a GRASS GIS 3D raster (GRASS Development Team 2015). By
digging into the sand model with our hands we could explore underground as if we
were at an excavation site. As we dug into the sand the cross-section of the scanned
surface with the 3D raster representing soil properties was projected in real-time
(Fig. A.10). We also projected additional GIS layers (such as an orthophotograph,
elevation contours, and flow accumulation) over the model to provide spatial context
and gain further insights into soil moisture distribution and its relation to the
landscape.

Additionally, in combination with marker detection from Sect. 4.3 we can create
and visualize vertical profiles or soil core samples. This method is an intuitive and
natural way of exploring subsurface data and it represents an alternative to more
abstract 3D computer visualization tools.

Appendix A 193

Fig. A.10 Exploring subsurface moisture by (a) removing sand and (b) projecting the cross-
section of a scanned surface with the 3D raster of moisture

A.2 Data Sources

Throughout the book we use various data sources. Here is a list of the most useful
data sources for the study areas presented in the book.

A.2.1 Sample Data for This Book

NCSU GeoForAll Lab

http://geospatial.ncsu.edu/osgeorel/data.html

A.2.2 US Lidar Data

United States Interagency Elevation Inventory

http://coast.noaa.gov/inventory/

Earth Explorer

http://earthexplorer.usgs.gov/

Digital Coast

http://coast.noaa.gov/dataviewer/

Open Topography

http://www.opentopography.org/

http://geospatial.ncsu.edu/osgeorel/data.html
http://coast.noaa.gov/inventory/
http://earthexplorer.usgs.gov/
http://coast.noaa.gov/dataviewer/
http://www.opentopography.org/

194 Appendix A

A.2.3 US Digital Elevation Models

National Elevation Dataset on the National Map Viewer

https://viewer.nationalmap.gov/basic/

A.2.4 US Orthoimagery

USGS NAIP Orthoimagery web mapping service

https://services.nationalmap.gov/arcgis/services/USGSNAIPPlus/MapServer/
WMSServer

USGS NAIP Orthoimagery on the USGS Earth Explorer

https://earthexplorer.usgs.gov/

A.2.5 US Soil Surveys

USDA Web Soil Survey

http://websoilsurvey.sc.egov.usda.gov

A.2.6 US Fire Modeling Data

LANDFIRE

http://www.landfire.gov/

A.2.7 Global Datasets

GRASS GIS community list of global datasets

http://grasswiki.osgeo.org/wiki/Global_datasets

A.2.8 NC Climate Data

State Climate Office of North Carolina

http://www.nc-climate.ncsu.edu/

https://viewer.nationalmap.gov/basic/
https://services.nationalmap.gov/arcgis/services/USGSNAIPPlus/MapServer/WMSServer
https://services.nationalmap.gov/arcgis/services/USGSNAIPPlus/MapServer/WMSServer
https://earthexplorer.usgs.gov/
http://websoilsurvey.sc.egov.usda.gov
http://www.landfire.gov/
http://grasswiki.osgeo.org/wiki/Global_datasets
http://www.nc-climate.ncsu.edu/

Appendix A 195

Fig. A.11 Starting GRASS GIS

A.3 Starting with GRASS GIS

To run examples from this book we provide a dataset which can be downloaded from
the NCSU GeoForAll Lab website.1 Once the downloaded dataset is unzipped we
create a directory grassdata in our home directory and place the dataset there.
Then we start GRASS GIS and a start up dialog in Fig. A.11 appears on screen.
In the upper text field we specify the path to our grassdata directory. Then we
should be able to see Location nc_spm_tl containing several Mapsets. We select
Mapset practice1 and press the Start button.

After opening the Layer Manager and Map Display windows we display the
raster map elevation as shown in Fig. A.12. To execute commands from this
book presented in boxes with green background we paste the commands into the
Console tab as shown in Fig. A.13a and press Enter. The Python code in boxes with
blue background can be executed in the Python tab (Fig. A.13b) or in any Python
shell running in a GRASS GIS session.

1http://geospatial.ncsu.edu/osgeorel/data.html.

http://geospatial.ncsu.edu/osgeorel/data.html

196 Appendix A

Fig. A.12 Display raster map elevation: click on Add raster map layer button in toolbar, select
elevation from drop-down list, and press OK

Fig. A.13 GRASS GIS modules can be run from (a) the Console tab using command line syntax
or from the (b) Python tab using Python syntax

References 197

More instructions how to use GRASS GIS GUI are available on the official
GRASS GIS introduction page2 and in the GRASS GIS GUI manual.3

References

GRASS Development Team (2015). 3D raster data in GRASS GIS. Retrieved August 13, 2015,
from http://grass.osgeo.org/grass70/manuals/raster3dintro.html.

Meentemeyer, R. K., Tang, W., Dorning, M. A., Vogler, J. B., Cunniffe, N. J., & Shoemaker, D. A.
(2013). FUTURES: multilevel simulations of emerging urban-rural landscape structure using
a stochastic patch-growing algorithm. Annals of the Association of American Geographers,
103(4), 785–807.

Petras, V., Mitasova, H., & Petrasova, A. (2015). Mapping gradient fields of landform migration
(pp. 173–176). Poznań, Poland: Bogucki Wydawnictwo Naukowe, Adam Mickiewicz Univer-
sity in Poznań - Institute of Geoecology and Geoinformation.

Petrasova, A., Harmon, B., Mitasova, H., & White, J. (2014). Tangible exploration of subsurface
data. In Poster presented at 2014 Fall Meeting, 15–19 Dec. San Francisco, CA: AGU.

Petrasova, A., Petras, V., Shoemaker, D. A., Dorning, M. A., & Meentemeyer, R. K. (2015). The
integration of land change modeling framework FUTURES into GRASS GIS 7. In Geomatics
Workbooks n 12 – “FOSS4G Europe Como 2015”.

R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. http://www.R-project.org/.

Stopková, E. (2007). Modelovanie oblastí vzniku lavín s využitím GIS. In Sborník studentské
konference GISáček.

Stopková, E. (2008). Predikcia lavínového nebezpečenstva s využitím GIS. Bachelor’s thesis,
Slovak University of Technology in Bratislava.

Tonini, F., Shoemaker, D., Petrasova, A., Harmon, B., Petras, V., Cobb, R. C., et al. (2017). Tangible
geospatial modeling for collaborative solutions to invasive species management. Environmental
Modelling & Software, 92, 176–188.

2http://grass.osgeo.org/grass72/manuals/helptext.html.
3http://grass.osgeo.org/grass72/manuals/wxGUI.html.

http://grass.osgeo.org/grass70/manuals/raster3dintro.html
http://www.R-project.org/
http://grass.osgeo.org/grass72/manuals/helptext.html
http://grass.osgeo.org/grass72/manuals/wxGUI.html

Index

Symbols
3D modeling, 3
3D print, 15
3D printing, 43
3D raster, 30, 66, 192

A
Aegis Hyposurface, 7
animation, 23, 112, 150
ARES, 14
aspect, 97, 120, 122, 136, 142, 148, 158
augmented architectural interface, 4, 5, 10
augmented clay interface, 4, 5, 7, 11, 12, 65
Augmented Reality Sandbox, 13, 15
augmented sandbox interface, 4, 6, 7, 13, 65

B
bathymetry, 114
BEHAVE model, 156
binning, 36, 39, 96
Blender, 77
Blender GIS, 81

C
CAD, 1, 3, 49, 52
calibration, 33, 34, 95
CAM, 48, 52
casting, 137, 157
CityScope, 10
clay, 44
clearcutting, 157

CLI, 3, 31
CNC, 15, 43, 50
Collaborative Design Platform, 10
color ramp, 104, 151, 159
command line interfaces, 3
contour models, 43, 48, 50
CRS, 81
cumulative cost surface, 134, 135
curvature, 97, 104

D
dam breach, 109, 114
declination angle, 148
Delaunay triangulation, 47
DeltaSand, 45
DEM, 11, 33, 46, 95, 102, 113, 129, 137
deposition, 119
diffusion coefficient, 108
diffusive wave, 108
direction marker, 74, 175, 176
divergence, 120
DSM, 47, 60, 129, 137
dynamic shape displays, 4

E
EEG, 14
Efecto Mariposa, 13
elliptically anisotropic spread, 157
embodied interaction, 4
EPSG code, 81
erosion, 117, 119, 170
exaggeration, 35, 57

© The Author(s) 2018
A. Petrasova et al., Tangible Modeling with Open Source GIS,
https://doi.org/10.1007/978-3-319-89303-7

199

https://doi.org/10.1007/978-3-319-89303-7

200 Index

F
FEELEX, 8
felt, 65, 70, 124, 175, 178, 192
finite volume method, 109
fire, 194
fire spread, 155
firebreaks, 157
flooding, 109, 112, 165, 166
flow accumulation, 110
flow tracing, 110
flow velocity, 108
friction, 135
fuel, 155

G
g.extension, 41, 105
g.gui.animation, 115, 157
geographic information system, 3, 30
geomorphons, 97, 99, 128
georeferencing, 33, 35
GIS, 1, 3, 15
GitHub, 18
grading, 110
graphical user interfaces, 3
GRASS GIS, 11
Green’s function, 108
Green’s theorem, 109
GUI, 1, 3

H
Hakoniwa, 14
HMD, 77
human-computer interaction, 1, 9
hydrologic conditions, 110

I
i.gensigset, 70
i.group, 70
i.smap, 70
i.superpixels.slic, 70
ignition, 156
Illuminating Clay, 7, 11, 13, 15
image segmentation, 70
inFORM, 9
Inner Garden, 14
interpolation, 36, 39, 67, 96
IVE, 77

K
Kinect, 9, 13–15, 23, 26, 29, 33, 35, 36
Kinetic Sand, 45

L
LANDFIRE, 159, 194
landform, 105, 186, 188–190
landforms, 99
laser cutting, 48
least cost path, 110, 133, 134, 157, 176,

180
Lego, 10
libfreenect2, 33
lidar, 24, 47, 48, 56, 188, 193
line-of-sight, 127
linear regression, 102

M
Manning’s equation, 108
Manning’s roughness coefficient, 114
map overlay analysis, 135
MDF, 50
momentum equation, 109

N
Naismith’s rule, 134
Northrop Grumman Terrain Table, 8
NURBS, 48

O
object recognition, 43, 65
object tracking, 9
overland water flow, 107

P
partial derivatives, 98
partial differential equations, 109
particles, 108
path sampling method, 108
Phoxel-Space, 13
physical model, 3, 43, 66
PocoPoco, 14
Point Cloud Library, 33
polynomial approximation, 98
polystyrene foam, 51
polyurethane foam, 52
profile curvature, 98
projection-augmented, 4, 15
Python, 31, 39

Q
quadtree, 97

Index 201

R
R, 191
r.contour, 175
r.damflood, 110, 112, 114, 115, 189
r.divergence, 122
r.drain, 68, 176
r.fill.dir, 89, 174, 175
r.fire.spread, 157, 161
r.futures, 72, 73, 187
r.geomorphon, 99, 101, 105, 186, 188
r.in.kinect, 36, 40, 41
r.in.wms, 113, 166
r.info, 57
r.lake, 114, 168, 170, 187
r.lake.series, 166
r.li, 175, 176
r.mapcalc, 32, 73, 138, 142
r.null, 114
r.out.gdal, 82
r.param.scale, 99, 104
r.patch.smooth, 117
r.profile, 175, 176
r.recode, 125
r.ros, 156–160
r.series, 137, 138
r.sim.water, 16, 109, 110, 112, 117, 121, 175
r.skyview, 128
r.slope.aspect, 104, 111, 142, 175
r.spread, 156, 157, 160
r.sun, 149
r.sun.daily, 149, 151
r.sun.hourly, 149–151
r.surf.contour, 47
r.surf.gauss, 159
r.viewshed, 128, 188
r.volume, 74
r.walk, 133, 140, 176
r.watershed, 110, 111
r3.cross.rast, 67
random effect, 159
Rapid Landscape Prototyping Machine, 14
rapid prototyping, 17
rate of spread, 156
Recompose, 8
Relief, 8
RenShape, 52
ridges, 105
RST, 47

S
sand, 44
SandScape, 7, 13
SandyStation, 13

scale, 56
sediment transport, 119
seed point, 114
shaded relief, 74, 187
shallow water continuity equation, 107
shape changing interface, 4, 5, 7–9, 17
sky-view factor, 128
SLIC, 70
slope, 97, 122, 148, 158
smoothing, 35, 39, 97
solar incident angle, 149
solar irradiance, 149
solar irradiation, 149
solar radiation, 147
spatial thinking, 3
spline, 96
spotting, 156
spring equinox, 151
subsurface, 67
summer solstice, 150, 151
supervised classification, 70

T
tangential curvature, 98
TanGeoMS, 11, 12, 15
Tangible CityScape, 9
Tangible Landscape, 1, 2, 15, 17
thermoforming, 55
time-of-flight, 15, 24
TIN, 47
topographic parameters, 97
training areas, 70
transport capacity, 119
traveling salesman problem, 134, 135, 141, 176
tree canopy, 157
TUI, 1, 2, 9, 15

U
Universal Soil Loss Equation, 120
Urp, 10
user study, 17

V
v.generalize, 47, 90
v.in.lidar, 59
v.info, 57
v.net, 141
v.net.salesman, 135, 141
v.out.ogr, 82
v.surf.rst, 47, 96, 97
v.to.rast, 142, 159

202 Index

v.vol.rst, 67
vacuuming forming, 55
valleys, 105
vertical shift, 102
viewshed, 74, 127, 142
visibility, 127
VR, 79

W
water level, 114, 165
watershed, 110

waypoints, 133, 180
wildfire, 68, 155
wind, 156, 158
winter solstice, 150, 151

X
XenoVision Mark III Dynamic Sand Table, 8

Z
zonal statistics, 71

	Preface
	Contents
	Acronyms
	1 Introduction
	1.1 Tangible User Interfaces
	1.2 Tangible Geospatial Modeling
	1.2.1 Shape Changing Interfaces
	1.2.2 Augmented Architectural Interfaces
	1.2.3 Augmented Clay Interfaces
	1.2.4 Augmented Sandbox Interfaces

	1.3 Tangible Landscape
	1.3.1 Developing Tangible Landscape

	1.4 The Organization of This Book
	References

	2 System Configuration
	2.1 Hardware
	2.1.1 3D Scanner
	2.1.2 Projector
	2.1.3 Computer Requirements
	2.1.4 Physical Setup

	2.2 Software
	2.2.1 GRASS GIS
	2.2.2 GRASS GIS Python API
	2.2.3 Scanning Module r.in.kinect
	2.2.4 Tangible Landscape Plugin for GRASS GIS
	2.2.5 Tangible Landscape Plugin Installation

	References

	3 Building Physical 3D Models
	3.1 Handmade Models
	3.2 Digitally Fabricated Models
	3.2.1 Digital Models
	3.2.2 Laser Cutting
	3.2.3 CNC Routing
	3.2.4 3D Printing

	3.3 Molding and Casting
	3.4 Workflows
	3.4.1 Selecting a 3D Model Scale
	3.4.2 Sculpting a Malleable Model from Lidar Data
	3.4.3 CNC Routing a Topographic Model from ContourData
	3.4.4 CNC Routing Topographic and Surface Models from Lidar Data
	3.4.5 3D Printing Topographic and Surface Models from Lidar Data
	3.4.6 Casting a Malleable Topographic Model with a CNC Routed Mold Derived from Lidar Data

	References

	4 Tangible Interactions
	4.1 Modes of Interaction
	4.2 3D Sculpting of Surfaces and Volumes
	4.3 Detecting Markers
	4.4 Detecting Color and Shape
	4.5 Combining Color and Elevation
	4.6 Direction Marker
	References

	5 Real-Time 3D Rendering and Immersion
	5.1 Blender
	5.2 Hardware and Software Requirements
	5.3 Software Architecture
	5.4 File Monitoring
	5.5 3D Modeling and Rendering
	5.5.1 Handling Geospatial Data
	5.5.2 Object Handling and Modifiers
	5.5.3 3D Rendering
	5.5.4 Materials

	5.6 Workflows
	5.7 Realism and Immersion
	5.7.1 Realism
	5.7.2 Virtual Reality Output

	5.8 Tangible Landscape Add-on in Blender
	References

	6 Basic Landscape Analysis
	6.1 Processing and Analyzing the Scanned DEM
	6.1.1 Creating DEM from Point Cloud
	6.1.2 Interpolation with the RST Function
	6.1.3 Analyzing the DEM

	6.2 Case Study: Topographic Analysis of Graded Landscape
	6.2.1 Site Description and 3D Model Properties
	6.2.2 Basic Workflow with DEM Differencing
	6.2.3 The Impact of Model Changes on Topographic Parameters
	6.2.4 Changing Landforms

	References

	7 Surface Water Flow Modeling
	7.1 Foundations in Flow Modeling
	7.1.1 Overland Flow
	7.1.2 Dam Breach Flooding

	7.2 Case Study: The Impact of Development on SurfaceWater Flow
	7.3 Case Study: Dam Breach
	7.3.1 Site Description and Input Data Processing
	7.3.2 The Impact of the Road on Flooding

	7.4 Case Study: Stormwater Runoff Control Design with Flow Outside the 3D Model Area
	7.4.1 Site Description and the Physical Model
	7.4.2 Surface Runoff Modeling

	References

	8 Soil Erosion Modeling
	8.1 Soil Erosion and Deposition Modeling
	8.2 Case Study: Designing Erosion Control Measures
	8.2.1 Site Description and 3D Model Properties
	8.2.2 Erosion Modeling While Modifying Topography
	8.2.3 Reducing Erosion by Modifying Land Cover

	References

	9 Viewshed Analysis
	9.1 Line of Sight Analysis
	9.2 Case Study: Viewsheds Around Lake Raleigh
	9.2.1 Site Description and Model
	9.2.2 Visibility Analysis on DSM Using Markers
	9.2.3 Modeling Viewsheds from a New Building

	References

	10 Trail Planning
	10.1 Trail Design Methodology
	10.1.1 Least Cost Path Analysis
	10.1.2 Network Analysis
	10.1.3 Trail Slope Extraction

	10.2 Case Study: Designing a Recreational Trail
	10.2.1 Input Data Processing
	10.2.2 Computing the Trail Using the Least Cost Path
	10.2.3 Finding the Optimal Trail
	10.2.4 Mapping Trail Slopes
	10.2.5 Alternative Trail Scenarios

	References

	11 Solar Radiation Dynamics
	11.1 Solar Radiation Modeling
	11.2 Case Study: Solar Irradiation in Urban Environment
	11.2.1 The Impact of Building Configuration on CastShadows
	11.2.2 The Impact of Building Configuration on Direct Solar Irradiation

	References

	12 Wildfire Spread Simulation
	12.1 Fire Spread Modeling Methods
	12.1.1 Input Data
	12.1.2 Fire Spread Algorithm

	12.2 Case Study: Controlling Fire with Firebreaks
	12.2.1 Data Preparation
	12.2.2 Scenario with Multiple Firebreaks

	References

	13 Coastal Modeling
	13.1 Modeling Potential Inundation
	13.2 Case Study: Simulating Barrier Islands Flooding
	13.2.1 Storm Surge Flooding at Jockey's Ridge Sand Dunes
	13.2.2 Exploring Storm Surge Protection

	13.3 Case Study: Designing Resilient Coastal Architecture
	Reference

	14 Landscape Design
	14.1 Integrating Tangible and 3D Modeling Methods
	14.2 Case Study: Designing a Park
	14.2.1 Site Description and Model
	14.2.2 Scenario 1
	14.2.3 Scenario 2
	14.2.4 Evaluation of Scenarios

	References

	Appendix A
	A.1 Applications of Tangible Landscape
	A.1.1 Modeling Avalanches in High Tatras
	A.1.2 Visualizing the Evolution of Oregon Inlet
	A.1.3 Designing Disaster Relief Housing for Rodanthe
	A.1.4 Simulating Landscape Change in Charlotte
	A.1.5 Reconstructing a Paleolake in Mongolia
	A.1.6 Cell Tower Planning in Athens County
	A.1.7 Monitoring Coastal Erosion
	A.1.8 Exploring Impacts of a Beaver Dam
	A.1.9 Modeling the Potential Impacts of a Coal AshPond Spill
	A.1.10 Testing a Landform Migration Algorithm
	A.1.11 Managing the Spread of Sudden Oak Death in Sonoma Valley
	A.1.12 Participatory Modeling Workshop for Managing Sudden Oak Death in Oregon
	A.1.13 Managing the Spread of Termites in Fort Lauderdale
	A.1.14 Tangible Exploration of Subsurface Data

	A.2 Data Sources
	A.2.1 Sample Data for This Book
	A.2.2 US Lidar Data
	A.2.3 US Digital Elevation Models
	A.2.4 US Orthoimagery
	A.2.5 US Soil Surveys
	A.2.6 US Fire Modeling Data
	A.2.7 Global Datasets
	A.2.8 NC Climate Data

	A.3 Starting with GRASS GIS
	References

	Index

