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Abstract

New acquisition methods have increased the availability of surface prop-
erty data that capture location-dependent data on feature surfaces. However,
these data are not supported as fully in the geovisualization of the Digital
City as established data categories such as feature attributes, 2D rasters, or
geometry. Consequently, 3D surface properties are largely excluded from the
information extraction and knowledge creation process of geovisualization
despite their potential for being an effective tool in many such tasks. To
overcome this situation, this paper examines the benefits of a better inte-
gration into geovisualization systems in terms of two examples and discusses
technological foundations for surface property support. The main contribu-
tion is the identification of computer graphics techniques as a suitable basis
for such support. This way, the processing of surface property data fits well
into existing visualization systems. This finding is demonstrated through an
interactive prototypic visualization system that extends an existing system
with surface property support. While this prototype concentrates on tech-
nology and neglects user-related and task-related aspects, the paper includes
a discussion on challenges for making surface properties accessible to a wider
audience.
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1. Introduction

Today’s geovisualization systems enable users to work with data from
various basic categories, such as feature attributes, 2D rasters, or multidi-
mensional geometry. These categories fundamentally differ with respect to
domain, usage, and technology. Each phenomenon can be represented in a
Digital City using various data types depending upon performance, precision,
the availability of algorithms or system support, or the availability of data
or capabilities for its capture. Geovisualization systems provide users with
category-specific means for transforming, correlating, and visualizing all data
with the goal of extracting information and knowledge. Highly developed sys-
tems facilitate flexible visualization (Dykes, 2005) that encourages ideation
in a non-predefined ways and enables exploratory data analysis (EDA).

Recently, an additional data category has received increasing attention:
3D surface properties. This category describes data attached to 3D feature
surfaces; i.e., for each surface location, a data value of an arbitrary, but ho-
mogeneous, type can be stored. Surface properties are not limited to the
Earth’s surface but apply to any 3D feature, such as buildings or bridges.
The simplest surface property is a constant value assigned to the feature’s
entire surface. Usually, surface properties provide location-dependent, vary-
ing values. Typically, such a property is sampled regularly and stored as a
collection of 2D rasters along with one unique mapping function per surface
patch (e.g., a polygon). A surface property covers the complete surface and
maps a unique raster portion to each surface patch (Figure 1). Some surface
properties can be described procedurally; i.e., there is a function that com-
putes the property value given the surface location. This applies, for exam-
ple, to surface-based simulations, even though the computational efforts for
on-demand evaluation may be prohibitively high. Surface properties fit into
the well-established coverages concept (Open Geospatial Consortium, 2000).
The difference between surface properties and existing coverage implemen-
tations, such as (massive) georeferenced 2D rasters, is the highly fragmented
spatial domain.

New techniques enable the cost-effective acquisition of surface properties
even for massive data sets. Examples are realistic and fully textured virtual
3D cities available in Google Earth or Bing Maps, such as Munich (Germany),
Zurich (Switzerland), Manhattan (NY, USA), and others. There are various
sources capable of producing data in this category:

• Remote sensing, e.g., facade textures from oblique imagery (Früh et al.,

2



2D raster(s)

Mapping 
functions

3D geometry

Figure 1: Schematic view of a raster-based surface property. Each surface patch is mapped
to an associated unique raster area.

2004; Lorenz and Döllner, 2006),

• Physical simulation, e.g., photovoltaic potential (Šúri and Hofierka,
2004) or radio network coverage (Maciel et al., 1993),

• Spatial analysis, e.g., solar envelopes (Morello and Ratti, 2009), or
architectural metrics such as vista quality, or building facade visibility.

Increasing data availability has been acknowledged with the inclusion of
3D surface properties in CityGML (Gröger et al., 2008), the international
standard of the Open Geospatial Consortium (OGC) for exchanging and
storing virtual 3D city models. Naturally, surface properties should also be
part of the information and knowledge extraction process (Gahegan, 2005)
that drives geovisualization. Some potential benefits of integrating surface
properties include the following:

• More precise phenomenon representation, e.g., finer granularity, or less
abstraction of surface-related phenomena.

• Improved data access, e.g., the direct usage of surface properties gen-
erated by special-purpose software in geovisualization systems without
the need for conversion to other data categories.

• Improved analysis techniques, e.g., access to more precise data, access
to additional data, or incorporation of more complex analytical models.
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Figure 2: The visualization pipeline (modified from Wood et al. (2005) and Spence (2000)).

For successful integration into geovisualization and EDA, systems must
provide support in terms of specialized means for transforming, correlat-
ing, and visualizing surface properties. However, geovisualization systems
rarely support this data category. Some systems provide very limited ca-
pabilities in terms of 2D textures being applied to 3D geometry solely for
display purposes. This approach assigns a passive role to surface properties
and is insufficient for enabling their effective use. This paper aims to im-
prove the support for surface properties and thus has two major objectives.
First, we present reasons for their integration into geovisualization systems,
and second, we discuss relevant technical foundations. We demonstrate our
approach through a highly interactive prototype.

What is sufficient system support? Visualization systems enable users
to adapt, or interact with, a visualization within bounds determined by the
author and the system itself. These systems are conceptually based on the
visualization pipeline, which describes the data flow from raw data to fi-
nal visualization. This paper uses the pipeline presented in Wood et al.
(2005), which is a variation of the original Upson/Haber-McNabb model.
This pipeline consists of five stages (Figure 2):

1. Data management
2. Data assembly
3. Visual mapping
4. Rendering
5. Display

According to interaction categorizations for information visualization (Chi
and Riedl, 1998) or cartographic visualization (Persson et al., 2006), all in-
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teraction facilities or operations available in a system can be assigned to one
of these stages or to transformations between consecutive stages. From a
technical point of view, interaction is the selection of operations and the ma-
nipulation of parameters. From the user’s point of view, interaction is the
result of a mapping of an intent or task to accessible system capabilities (Yi
et al., 2007). For sufficient support, visualization systems must provide ac-
cess to a set of operations, which is either focused on given tasks (Andrienko
et al., 2005) or comprehensive for flexible visualization. As a result, users
should be able to reach their goals. Of the two main aspects of support,
namely, access to operations (that is, the user interface) and the operations
themselves, this paper focuses on operations.

For well-established data categories of Digital City representations, such
as feature attributes, 2D raster data, or 2D/3D geometry, a wide selection
of operations has been described in the literature and/or exists in both sci-
entific and commercial systems. Examples can be found in many standards
issued by the Open Geospatial Consortium (OGC). They include the Web
Feature Service (Data management; Vretanos, 2005b), Filters (Data assem-
bly; Vretanos, 2005a), and Symbology Encoding (Visual mapping; Müller,
2005). Other operations include 3D navigation (Rendering) and 3D printing
(Display). An important aspect is merging data from different categories,
e.g., selecting 2D lines based on an associated attribute.

Surface properties require a similarly rich set of operations. In this paper,
we discuss the usage of surface properties with respect to other data cate-
gories and identify basic properties. Based on these properties, we discuss
similar concepts from the field of computer graphics and investigate their
applicability in a geovisualization environment. As proof of concept, we de-
scribe a prototypic surface property visualization application, which provides
a highly flexible visual mapping. This application is meant to be a test bed
for technology, not a system available to a wide audience. It provides only a
minimalistic user interface that does not shield users from the complexities
of the underlying technology. Starting from this proof of concept, we discuss
technological challenges in completing surface property support in order to
make it an accessible tool for users.

The remainder of this paper is structured as follows. Section 2 provides
two usage scenarios that exemplify the benefits of a tight integration. Section
3 discusses surface property operations and their relation to programmable
graphics cards and provides implementation details of our prototypic geovi-
sualization tool. Section 4 outlines challenges for a more complete integration
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of surface properties into geovisualization systems. The paper concludes with
an outlook in Section 5.

2. Example Usage Scenarios

Two usage scenarios highlight the benefits of a tight integration of surface
properties into the visualization pipeline.

2.1. Photovoltaic Potential Analysis and Visualization

In recent years, renewable energy has become a major topic of interest.
Photovoltaics (PV) represent an important technology for building owners,
as the technology is becoming cheaper. Cost efficiency depends on various
parameters, such as annual insolation, PV panel area, panel orientation, and
occlusion, that is, the percentage of light actually reaching the surface that is
not obstructed. Simulations can determine cost efficiency for a given surface.

There are commercial providers that determine cost efficiency for sin-
gle buildings. They provide a report with a given set of analyses, i.e., a
non-interactive visualization. Alternatively, an increasing number of munic-
ipalities build so-called solar cadastres. The project SUN-AREA (Ludwig
et al., 2008) relies on laser scanning to acquire relevant roof and occlusion
information. It then uses a simulation to determine the PV potential of each
roof surface based on assumptions for panel efficiency. The results are a GIS
and a web-based interactive 2D map (Figure 3) that help building owners
reach a decision.

A shortcoming of many current solar cadastres is the exclusion of walls,
even though they can be suitable for, and should be considered as, can-
didate locations as well. Without surface properties, the PV potential of
walls is hard to represent. With surface properties, its calculation becomes
straightforward. Moreover, surface properties are already used in PV simula-
tion algorithms. First, occlusion is represented as a surface property varying
across the surface. Second, PV panels must be fitted onto potential surfaces
such that non-usable areas like windows remain uncovered. Non-usable areas
can be stored as masks in a surface property. Finally, detailed PV simulation
inherently produces surface properties.

Without visualization tool support, surface properties must be summa-
rized in terms of attribute values before visualization. Retaining surface
properties for visualization instead increases the degree of detail in visual-
ization dramatically. If, in addition, surface properties become as flexible as
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Figure 3: Example of a 2D photovoltaic potential visualization. Solar Boston (City of
Boston, 2009) provides a citywide PV potential analysis as a 2D WebGIS application.
The figure shows the total annual solar radiation available at the rooftop with red hues
indicating higher and yellow hues indicating lower availability. Source: The Boston Re-
development Authority, Solar Boston Program, Office of Digital Cartography and GIS
(ODC&GIS), 2009, Boston, MA, USA.

other object types, new interactive analyses become possible. For example,
the minimum acceptable effective insolation can be varied interactively to
compare different PV installations. If merged with attribute data, analyses
can be focused on buildings of specific type or usage. These analyses do not
require the original PV simulation software but are carried out solely in the
visualization system and thus are available to a much larger audience. Also,
the simulation software does not need to provide a comprehensive visualiza-
tion component, as users can rely on their favorite visualization system for
exploration and further analysis, as long as it supports surface properties.

2.2. Assessment of Residential Quality

Residential quality has become an important criterion for home seekers,
real estate agents, architects, and urban planners. However, it does not have
an objective definition. Instead, there are a large number of factors – both
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objective and subjective – that are supposed to have an influence on residen-
tial quality, including distance to public transport or schools, noise pollution,
light exposition, and the visibility of vegetation and city silhouettes.

Assessing residential quality requires weighting all factors in a subjective
way. A visualization tool may be an appropriate means of enabling those
making decisions to customize these weights (Williamson and Shneiderman,
1992). The resulting visualization enables them to explore residential qual-
ity and compare different weightings. Without surface properties, assessment
granularity is bound to individual objects, i.e., mostly buildings, or to the
Earth’s projected surface. The results are presented either in a virtual 3D
city model or as a 2D map. However, some applications require a finer gran-
ularity, e.g., per apartment or even per room. Established data categories
cannot provide this granularity. Surface properties are capable of storing
room or apartment attributes for a whole building by assigning each room’s
or apartment’s attribute value to the respective surface part. The result is
a discrete, piecewise constant surface property. Moreover, some important
phenomena, such as noise pollution, light exposition, and the visibility of veg-
etation, depend on 3D positions and vary largely across building facades in
a continuous fashion. Hence, they must be represented by surface properties
for reliable results.

In terms of the visualization pipeline, relevant operations for the assess-
ment task mainly belong to the data assembly and visual mapping stage. For
data stored as feature attributes and georeferenced 2D rasters, such opera-
tions are well-defined, e.g., by the OGC Filter standard (Vretanos, 2005a).
The overall approach to the residential quality assessment should not change
if surface properties are incorporated. Thus, comparable data assembly and
visual mapping operations are required for all data categories, including sur-
face properties.

A visualization system with basic surface property support visualizes the
resulting residential quality in terms of color-coded layers on all building
surfaces (Figure 4). Users are enabled to interactively adjust weightings but
need to actively explore the virtual 3D city model to find suitable places. The
accompanying video showcases this approach (Figure 4). Visualization sys-
tems with more advanced support could evaluate the resulting surface prop-
erty and present users with a list of best places, and since the 3D locations
of the places are known, it could draw attention to them with appropriate
visual encodings and provide automatic navigation.

8



Figure 4: Residential quality visualization using surface properties. Users can create
their own weighting and color mapping from all available data sources using small code
fragments. Here, red tones denote suitable places and light orange tones unsuitable places.
The accompanying video shows how this approach may be used.

3. Operations for Surface Properties

Operations are the functional core of interactive geovisualization systems.
A surface property operation applies to an entire covered surface and is con-
ceptually executed once for each cell in each raster of the resulting surface
property. Due to the complex structure of surface properties, three different
categories must be distinguished:

Location-based operations: For each cell, the corresponding 3D location
must be known, e.g., distance calculations to a set of points.

Patch-based operations: For each cell, only the corresponding surface
patch must be known, e.g., the incorporation of attributes of the feature
to which the surface patch belongs.

Property-based operations: The operation does not refer to surface
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patches or 3D locations, e.g., the addition or multiplication of whole
surface properties.

In addition, surface properties can be used together with data from other
categories. There are two usage scenarios:

1. Surface property operations can use other data categories as input.
Conceptually, this requires converting the various categories to surface
properties. Feature attributes apply to an entire feature and thus are
constant for its respective surface. 2D rasters are usually georeferenced.
For a given surface location, the corresponding value can be determined
by projection onto the raster’s reference plane. These two conversions
are employed in the residential quality example (Section 2.2). Geom-
etry handling is more complex and usually relies on rasterization or
ray tracing. For example, occlusion estimation, which is part of the
PV analysis example (Section 2.1), can use shadowing algorithms to
generate an occlusion surface property from feature geometry.

2. Surface properties can be used by operations on other data categories.
For this, they must be reduced to either feature attributes or 2D rasters.
Reduction to attributes requires the aggregation of all surface property
values within a given surface to a single value, usually through statis-
tical functions, such as min, max, or average. Reduction to 2D rasters
requires projection onto the raster’s reference surface.

The concept of surface properties is tightly related to the notion of 2D tex-
ture mapping or, more specifically, unique 2D texture mapping (Lévy et al.,
2002) in computer graphics. Textures are not just image data but rather are
regarded as generic 2D data containers, which makes them a perfect vehicle
for implementing flexible surface properties. In addition, so-called shaders
(Akaine-Möller et al., 2008) allow for the application of arbitrary functions
to each pixel with built-in texture support and thus can serve as a framework
for the aforementioned operations.

For the implementation of efficient surface property operations, we can
rely on existing out-of-core rendering strategies, as the amount of data usually
exceeds the available graphics memory. A number of techniques are available,
such as view-dependent texture atlases (Buchholz and Döllner, 2005; Cignoni
et al., 2007), clipmaps (Tanner et al., 1998), and virtual textures (Mittring,
2008; Barrett, 2008). All techniques share the idea of a texture budget that
is filled only with relevant parts of the texture data. Whenever new data
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becomes relevant, it is loaded from storage into graphics memory, thereby
overwriting currently irrelevant data.

Operations can easily access surface property data if implemented in
shaders, since texture access is a core feature of shaders and includes a
wide variety of mapping and filtering options. Shaders can also access non-
texture data such as attributes. As shaders are executed on graphics hard-
ware, the application itself must load all required data into graphics memory.
Shader output is a color or numerical value. Shaders are written in high-
level programming languages similar to C and impose few limitations on
implementable algorithms. The most important limitation is separation; the
shader code is executed or invoked once for each output value in a massively
parallel fashion. That is, all invocations conceptually run independently at
the same time, prohibiting the exchange of information, e.g., for saving re-
dundant computations. If operations require such an exchange, they must
be split into parts where each part produces a complete intermediate surface
property, which then serves as input for the next part. A consequence of
this separation is the limited ability to perform aggregation operations for
entire surface patches or features. Each shader invocation would need to read
the entire surface property and calculate the result itself, thereby performing
highly redundant computations. It is much more efficient to pre-compute
such operations outside the shader and only provide the result for further
use (Section 3.2).

To provide proof for the applicability of computer graphics techniques,
we implement a software prototype. Chi and Riedl (1998) propose three
different implementation choices for operations: (1) inside the visualization
system, (2) inside a data management system (DBMS), and (3) in a sepa-
rate analytical engine. All three choices can make use of computer graphics
technology. We opt for the visualization system because it is most accessible
to us and already contains a real-time computer graphics environment for
interactive visualizations as a basis for our implementation. The described
system concentrates on the technological framework, rather than on usability
or specific tasks, and consequently does little to hide the underlying graphics
concepts. In other words, if surface properties are to be made available to a
wider audience, they need to be integrated into standard geovisualization or
geoinformation systems. Such an integration requires the exploration of the
remaining two implementation options as well as the design of methods to
access surface property operations through more familiar interfaces such as
toolboxes, queries, or dialogs. Such issues are discussed in Section 4.
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3.1. Implementation

Our prototypic visualization tool concentrates on the visual mapping of
surface properties in virtual 3D city models that contains all data categories.
It provides basic operations for the visual exploration of 3D city models, such
as the loading of data sets or 3D navigation. It does not contain fixed surface
property operations but provides direct access to the shader code for users
to implement application- and task-specific operations. A major aspect is
the merging of surface properties with other data categories. For this aspect,
all available data are provided to the shader. The incorporation of surface
properties into operations with respect to other data categories has not yet
been implemented. Aggregation operations are also not implemented yet.
Both are discussed in Section 4.

The tool uses Autodesk LandXplorer (Autodesk Inc., 2009), the Virtual
Rendering System (VRS; Döllner and Hinrichs, 2002), and OpenGL as graph-
ics API. Shaders are written in GLSL (Rost, 2006), the OpenGL Shading
Language. A key functionality is providing all data contained in the virtual
3D city model to the shader. The different data categories are treated as
follows:

Feature Attributes: Feature attributes of acceptable type are collected
into arrays that are then copied to graphics memory. Acceptable types
include integers, floating point numbers, booleans, and vectors. Strings
currently cannot be processed in a straightforward manner in GLSL and
are excluded.

2D Rasters: 2D rasters are directly stored in textures if they do not ex-
ceed a hardware-dependent dimension limit. If they do, a texturing
technique for massive texture data (Döllner and Baumann, 2000) is
used.

2D and 3D Geometry: Geometry is used for rendering and requires tes-
sellation of surface patches into triangles. Each triangle is augmented
with a patch ID and a feature ID that can be used to load respective
attributes during shader execution. Additionally, mapping functions
for each surface property and 2D raster are added.

Surface Properties: This prototype focuses on raster-based surface prop-
erties. They are considered textures and preprocessed for out-of-core
rendering based on the massive texturing technology available in the
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Figure 5: Data flow in our visualization tool with surface property support.

LandXplorer library. During rendering, the out-of-core technique en-
sures the availability of required surface property data.

After loading all data, shader code is generated that provides easy access
to all data such that the prototype can be quickly configured in real-time
with operation code. Figure 5 shows the application architecture and data
flow. Within the shader, additional properties such as local lighting or 3D
location are made available. The specification of operations through shader
code is demonstrated in the accompanying video (Figure 4).

During rendering, the shader is executed for each pixel in which a surface
is visible; i.e., operations are not applied to all cells available in a surface
property but to all contributing pixels in the current view. This typically re-
duces the number of shader invocations and enables interactive frame rates.
A disadvantage of this approach is aliasing, since surface property resolu-
tion(s) and pixel resolution do not match in most views. Advanced texture
filtering capabilities and anti-aliasing through multi-sampling help reduce
this problem. Both features are provided by the graphics hardware and have
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no effect on the shader code. Users may merely notice some slowdown during
rendering.

The integration of surface properties does not require major changes to
the original geovisualization system architecture. The most significant addi-
tions are the exposition of the shader to the user, which includes shader frame
generation, and the provision of attribute data to the shader. The remain-
ing architecture is taken directly from the Autodesk LandXplorer platform.
Hence, our approach allows for surface properties to be added to existing
geovisualization systems with minimal effort. Moreover, our system imme-
diately benefits from technology for handling massive data sets and scales
as well as the original visualization system. A less prototypic surface prop-
erty support requires additional components for improved user interface and
complex operations. We expect them to fit well into our architecture.

The performance of this architecture is mainly influenced by the data-
loading rate. Rendering requires all necessary data to reside in graphics
memory. Out-of-core algorithms hide load latencies by reverting to coarser
resolutions (both for texture and geometry) until optimal data is available.
This ensures interactive frame rates, even if data comes from a comparatively
slow source such as a remote database. Typically, prefetching further reduces
latencies. However, if large parts of the view change, e.g., due to rapid view
point movements or dynamic texture data, latency hiding fails, and rendering
must wait for data transfer from storage to graphics memory. Examples for
dynamic texture data are time-varying sequences and simulation results with
time-varying parameters. If no (or an insignificant amount of) data need to
be transferred to graphics memory, rendering can fully utilize the GPU. In
particular, dynamic processes such as distances to moving objects, which are
computed on the GPU, have almost no influence on the frame rate.

3.2. Limitations

Some aspects of computer graphics technology impose limitations on our
approach. The current programming model for graphics hardware imposes
strict limitations on memory access. While random reads are possible, ran-
dom writes are not. Each shader invocation can write to predefined memory
locations only, which restricts the class of implementable algorithms. Such
restrictions are softened from hardware generation to hardware generation
but still require unusual approaches to the implementation of some opera-
tions. Effectively, current graphics hardware is limited to the raster part of
surface properties, i.e., operations that have a raster of a surface property
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as output. If surface properties are to be used in operations on other data
categories, such as feature attributes, or if the reference geometry of a surface
property is to be changed, the described architecture must be extended by an
additional processor that resides in the visualization tool. Examples of such
operations include object selection based on surface property values, which
requires the computation of a single boolean value from the surface property
data of an entire feature, and the identification of visually similar buildings,
which requires the projection of the respective surface property data onto a
common reference geometry.

4. Challenges for Surface Property Integration

While the implementation of surface property operations may rely on
existing technology, there are many more challenges that must be addressed
before sufficient surface property support is reached. In the following section,
we present a non-exhaustive list of open questions for further research. We
group this list by subject.

Operations The most important question in this subject involves which
operations are appropriate for surface properties. Since surface properties
relate to both geometry and rasters, both domains could be sources for po-
tential operations. For example, geometric buffering operations might prove
useful. Similarly, raster-based segmentation operations might apply to sur-
face properties as well. In addition, new kinds of operations might emerge
from the tight link between both domains in surface properties. Currently,
the lack of well-defined complex and powerful operations hinders the effec-
tive use of surface properties beyond simple examples. An example of a
complex operation is the transfer of a surface property to a new reference
surface. Such an operation could be useful for processing surface properties
with similar but not identical reference surfaces.

Similarly, effective ways of including surface properties into well estab-
lished operations on other data types must be explored. For example, the
request of all apartments within a 15 minute walk to a train station could
additionally ask for a good vegetation visibility. If the vegetation visibility
is provided as surface property, this property must be reduced to a binary
answer that faithfully reflects the “good visibility” condition. Various ap-
proaches can be though of, such as minimum and average visibility. Criteria
for the selection of a reduction approach must be determined.

15



As pointed out earlier, computer graphics already provide a large amount
of technology for the implementation of surface property operations. How-
ever, some problems cannot be solved in a straightforward manner and re-
quire other means besides computer graphics. It is necessary to identify
operations that cannot be implemented, can partly be implemented, and/or
can be implemented but are inefficient using graphics technology. For these
operations, alternative implementations must be developed.

Operation access Operation access has been excluded from the scope
of this paper. Nevertheless, it is an important aspect for developing sufficient
support. While direct access to shader code as used in our prototype pro-
vides high flexibility, it requires in-depth knowledge and programming skills
by the user. Dykes (2005) identifies a broad range of choices for operation
access, such as GUIs, scripting, and code libraries, that differ in skill require-
ments, flexibility, and the level of interactivity. All choices expose complex
operations in terms of black boxes and hide the actual low level implementa-
tion. For sufficient support, many of these access methods must be covered,
yet operation access is orthogonal to operations, since the same operation
implementation can be exposed to the user through multiple interfaces.

Implementation frameworks From the three implementation options
proposed by Chi and Riedl (1998), we have described the implementation
within the visualization system. The other two options, namely, within a
DBMS and within a separate analytical engine, can make use of computer
graphics technology as well, which makes surface properties available to a
much larger group of applications. This includes visualization tools that do
not contain operations for surface properties themselves but are capable of
displaying textured city models. Depending on the implementation choice,
GIS and plain database tools can readily use surface properties for data
analysis.

Operation implementation in a non-visualization environment does not
require the full architecture of an interactive visualization system. For ex-
ample, out-of-core algorithms are not needed. Instead, efficient streaming
algorithms for transferring input data to and results from the graphics hard-
ware are necessary. Such algorithms are well known in the GPGPU (gen-
eral purpose programming on GPUs) community. If graphics hardware is
not readily available, a suitable operation framework must be provided in
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software; starting points could be image processing libraries or software 3D
renderers.

Geovisualization Our prototype implementation does not incorporate
more complex aspects of 3D geovisualization. For example, it disregards is-
sues of scale (Butkiewicz et al., 2008). Distant objects receive a small amount
of screen space, which may be too small for presenting information. For the
task of change detection, Butkiewicz et al. (2008) propose the use of ad-
ditive splatting to highlight changes. In other contexts, levels of detail or
generalization (Chang et al., 2008) are used. A canonical solution has not
been described yet. Similarly, scale-aware visualization with surface proper-
ties requires solutions, which are derived from the intentions and priorities
of specific users.

The issue of scale is a special case of the general problem of surface
property display. Geovisualization has developed effective strategies for vi-
sually communicating spatial information, which mostly rely on the degrees
of freedom as described by Bertin’s visual variables (Bertin, 1983). Surface
properties differ from other data categories in their density and the feature
surface they occupy. Both influence the availability of visual variables and
may require the development of new visualizations.

5. Conclusions

Surface properties represent a generic, multi-functional data category for
Digital City applications and systems. Whilst not novel in their own right,
new acquisition methods such as automatic facade texture creation and gen-
erative methods such as 3D visual analysis and simulation have brought
surface properties to the attention of a larger audience. This paper has
demonstrated applications of surface properties for two scenarios, namely,
photovoltaic potential analysis and residential quality assessment, which can
be systematically designed and implemented based on surface property con-
cepts. In general, surface properties have the potential for increasing ex-
pressiveness and detail in simulations and analyses as well as for capturing
real-world phenomena using digital city models. To take advantage of their
potential and to make effective use of them, surface property concepts can
be flexibly adapted to given contexts and tasks.

To make effective use of surface properties in geovisualization and EDA,
visualization systems and applications require efficient implementations of
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surface properties. This paper has focused on the implementation of opera-
tions as part of the visualization pipeline. The paper has presented ways in
which computer graphics technology can be used as a basis for implementa-
tion, most of all for geovisualization, but also in the context of more general
geoinformation systems. In particular, the successful integration of surface
properties into applications and systems does not require major changes to
the software architecture but the addition of orthogonal functional compo-
nents. Starting from this basis, other aspects must be explored including
operation access, implementation frameworks, and visualization aspects.

In the long term, surface properties should be supported in geovisualiza-
tion and geoinformation systems in ways comparable to the current support
available for attributes, 2D rasters, and geometry. Most likely, surface prop-
erties will become a core functionality of future Digital City systems, as
they appear to be a system feature that relates to generic and multi-purpose
functionality.
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