PythonTutorial

Alan Gauld

22 January 2006

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

PythonTutorial

Table of Contents

LearningtO Program . ..ottt et ettt e e e e 1
What do | nesd to be aprogramimer? o 8
What IS ProgramimMing?ottt et e e e e e e e e e e 10
GEUNG SATedo 19
SIMPIE SBUENCESottt 23
DA ..o 30
MOFE SEOUBNCES . . o . ottt e ettt e e e e et e e e e e e e 64
Loopingtheloopo 71
A LittleBit Of Style 80
UL L 88
ConditionalSo 98
Functionsand MOdUIESt 109
FleHandlingo 126
TedHandling . =y drimmeg - R o mrmpm o e Y e 143
Error Handling 14
N IS 0B0ES . . . ottt ettt e e e e e 164
RegUIar EXPIreSSIONSttt 171
L5 = 181
EVEnt DRVEN PrOgraImIS oottt e ettt e e e e e e e e 206
Introduction to GUI Programimingo oo ettt e 213
RECUISION . .. 233
Introduction to Functional Programmingt 238
A GBI TUAY . . oot e 250
PYNON N PIactioeo 272
Workingwith Dataaseso 275
Working withthe Operating Systemot e 302
REEEN0ES . . oo 334
Jan 22, 2006

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

L earning to Program

by Alan Gauld

Stop Press!

TheWeb Site

Wel come to the new Learning to Program web tutor!

A minor calamity with my PC has resulted in melosing al my email for the last 4 years
(sincel installed XP') for the account | use for dealing with translators. | thought |
was taking backups but they were of the old pre-XP folders... Theresult is that if you
are atranslator and sent me any info in the last 6 months or so | probably don't have
any record of it. Not even your email address! So if anyoneis currently working on a
translation can they drop me a note at the btinternet address please?

Ohyes, and if you still need to see the old version of thetutor, its still available here.

The Book

Latest news on my book is that it has moved to print-on-demand. Basically this means
that copies are only printed when firm orders are received from retailers. Logically this
means you are less likely to see it in the shops but you can still place an order and it
will be ddlivered, it just takes alittle longer is all.

The book is now significantly different to the new web site although the basics remain
the same. It is stuck at Python version 1.5 and doesn't have the new material, although
it has extra examples of its own plus severa extra chapters compared to the web site.
These include an additional case study for an OO games framework. (A fully
commented version of the framework is available on the Useless Python website as

hmgui.zip.)

Y ou can order the book on Amazon by clicking here. Most of the other online
bookshops have it in stock too.

Thereis aso a Japanese version available from the Japanese branch of my publishers.

D:\DOC\HomePagettutor\tutintro.htm Page 1 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

I now have a web site set up listing errata and providing opportunitiesto send
feedback and questions. Please pay avisit if you've bought the book!

The Future

As | said above there will be several new topics added as part of a completely new
section looking at practical applications of programming. Thisis in response to many
requests from readers who say - "OK, Now | know how to program, but what exactly
can | do with my new found skills?"

Thereis a Polish translation underway and the Czech version is being updated to
reflect the new version. As ever, Petr has been my most exacting reviewer and | thank
him for his many corrections. Any remaining errors are entirely my fault!

The book is stagnant I'm afraid, but once | get the new topics written | might sound
the publishers out about a second edition updating it to the latest version of Python,
whatever that will be by then, and adding the new material. But don't hold your breath
waiting on that one...

Non English Editions now available!

Martin Pozzi was thefirst to translate the tutor (into Spanish) and he has now been
followed by several others. The following versions are available:

| L anguage | Translator

|Czech version |Petr P

|German |Bruno Schaefer
|Korean |j ohnsonj
Italian LLuca Fini

|Portugueﬁe |Wi |son Edgar
Spanish Martin Pozzi

The tutors above are all usable but at different stages of completeness compared to the
web site. That's because they reflect the state of the web site at the time of translation.
The Czech onein particular is very professionally presented including a very attractive

D:\DOC\HomePagettutor\tutintro.htm Page 2 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

appearance. | was so impressed with the style that | have used Petr's stylesheets as the
basis for this new English version. Hopefully I'll get round to changing the other
language editions too.

| think all of the translators deserve a vote of thanks for their efforts in putting this
together. It's always better to read a translation of an old tutorial than to struggle
reading a new onein aforeign language! If anyone el se wishes to do a translation, or
update any of the existing ones, just send me an email.

As mentioned above there is a Japanese version of my book available too.

New Stuff

I'm planning a bunch of new topics on applying Python to real-world problems. The
new topics are proving to be much more time consuming than expected. I've just
finished one on databases and | think network programming and web topics are likely
to be next on thelist.

Latest news is that there are two new translators working on a new improved Spanish
editrion and a Polish edition. Watch this space...

Download Archive Format Change

I'll be posting both zip and tgz versions of the site from time to time. | don't promise
that they will be perfectly up to date but I'll try not to let them get too far adrift. If you
want the latest then check the online version.

Linux users can download the tar/gzip version.

Windows users should be able to use that version too since winzip and the freeware
archiver Quick Zip by Joseph Leung can both cope with tgz format. I'll aso be using
tgz format for the non English versions, just look at the bottom of the contents frame
for alink.

D:\DOC\HomePagettutor\tutintro.htm Page 3 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

Finally I have made a basic PDF version available too, it doesn't have any fancy
navigation features like bookmarks and it won't be updated as often as the zip/tgz files
(because its much more work to do so!). But if you like PDF its here.

And Palm Users Too...

One Palm user has created a Palm doc file of the old site. | haven't had a chanceto try
it yet but offer it here for those who want it. If anyone has problems with this one then
you're on your own, it's unsupported. But hopefully it will be useful to someone. If
you don't have a Palm doc reader you can find a choice of freeware ones at this site.

Introduction - What, Why, Who etc.
Why am | writing this?

The reason | am creating this tutorial is that there seems to be very little for the absolute
beginner to programming on the Web. Y et the Internet and the Web encourage interest
in computers and that interest naturally leads to a desire to "take control”, which means
learning to program!

Why me? Wdll | am a professional programmer who came to programming from an

€l ectronic engineering background. | have used (and continue to use) several computer
languages and don't have any personal interest in promoting any particular tool or
language. Oh, and when | started, nobody e se seemed to be doing it! Since then several
other tutors for beginners have appeared, but this one seems to have acquired enough of
afan basethat I'll keep it going.

What will | cover

Asmuch as| can. | will cover the basic theory of computer programming - what it is,
some of its history and the basic techniques needed to solve problems. | will not be
teaching esoteric techniques or the details of any particular programming language, in
fact I'll be using severa different languages, since | believe its important to realize that
different languages do different things well. That said, the mgjority of the course will be
in the language called Python.

Who should read it?

D:\DOC\HomePagettutor\tutintro.htm Page 4 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

Put another way: what do | expect the reader to know already?

| expect the reader of this tutorial to be an experienced user of a computer system,
probably MS DOS, Windows or Unix although others should be able to copetoo. | aso
expect them to understand some very basic mathematical concepts such as geometric
coordinates, sets, and basic agebra. These are all important in todays programming
environments, and many programming concepts are based on these ideas. However the
depth of knowledge needed is very low and if you do find the math getting too hard, you
can usually just skip over afew paragraphs, try the code as it is and hopefully the penny
will drop even if the math still confuses you.

One thing you should know is how to run commands from your operating system's
command prompt. In Windows this is variously known as a DOS box, the MS DOS
Window or MS-DOS Prompt. Basically it's a black window with a white text prompt
that usually says C:\WINDOWS> and you can start it by going to the Start->Run dialog
and typing COMMAND into the entry box and hitting OK. If you use Linux then you
should know all about terminal windows and on MacOS you can run the Terminal
program under Mac OS X (which is found in the Applications->Utilities fol der).

| will not be covering issues like how to create or copy text files, how to install
software, or the organization of files on a computer storage system. Frankly if you need
to know those things you probably are not at the stage of being able to program,
regardless of your desire to do so. Find atutorial for your computer first, then when
you're confident with the above concepts revisit this site.

Why Python?

Python happens to be a nice language to learn. Its syntax is simple and it has some very
powerful features built into the language. It supports lots of programming styles from
the very simple through to state of the art Object Oriented techniques. It runs on lots of
platforms - Unix/Linux, MS Windows, Macintosh etc. It also has a very friendly and
helpful user community. All of these are important features for a beginner's language.

Python however is not just a beginner's language. As your experience grows you can
keep on using Python either as an end in itself or as arapid prototyping language. There
are afew things that Python is not well suited to, but these are comparatively few and
far between.

D:\DOC\HomePagettutor\tutintro.htm Page 5 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

| will al'so use VBScript and JavaScript as alternatives. The reason for thisis to show
that the same basic techniques apply regardless of the language details. Once you can
program in one language you can easily pick up a new one in afew days. Why those
languages? Well, for a start they have very different styles to Python so form a useful
contrast, and more prosaically if we accept that most Web surfers who are also
beginners are using PCs with Microsoft Windows installed, there is a programming
environment built in to the operating system called Windows Scripting Host which has
support for VBScript and JScript (which is Microsoft's variant of JavaScript). In
addition anyone using Microsoft's web browser can a so use these languages within their
browser, and in fact JavaScript should work in almost any browser. Well only look at
how to run VBScript and JavaScript inside a browser, investigating WSH I'll leave as an
exercise for the interested Windows user!

Other resources

There are other Web sites trying to do this in other languages (and in the time since |
originally created this site a few other Python sites have appeared). There are also lots of
tutorials for those who already know how to program but want to learn a new language.
This section contains links to some of those that | think are worthwhilel

* Theofficial Python language website with online documentation, |atest
downl oads etc.

* Theofficia Perl web site- Perl is anatural competitor to Python in capability but
is, | think, harder to learn.

* JavaScript. is the source for information about JavaScript.

* If you don't much like my style aweb site with similar amsis the How to think
like a Computer Scientist produced by Jeff Elkner who uses Python in his high
School classes. It seems alittle bit |ess comprehensive than mine, but maybe I'm
just biased :-)

* Sincel first wrote this tutor a whole bunch of non programmer's tutorials have
appeared and they are listed on the Python web site, so you can take your pick.
Most of them focus on just getting you programming in Python so they don't
explain so much of the jargon as | do, nor do they explain the Computer Science
theory like Jeff does. Y ou can find the page here.

Next Contents

If you have any ideas on how to improve this tutorial

D:\DOC\HomePagettutor\tutintro.htm Page 6 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Learning to program 22/01/2006

pleasefed freeto contact me

¥

D:\DOC\HomePagettutor\tutintro.htm Page 7 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Wheat do | nead to be a programmer? 22/01/2006

What do | need?

|What will we cover?

The character and mindset of a programmer, the programming environments used in
the tutor.

Generally

In principle you don't need anything to do this course other than an Internet enabled
computer - which | assume you have if you are reading this in thefirst place! The other
thing that is useful is theright mind set to program. What | mean by that is an innate
curiosity about things, coupled to alogical way of thinking. These are both essential
reguirements for a successful programmer.

The curiosity factor comes into play in looking for answers to problems and being
willing to dig around in sometimes obscure documents for ideas and information needed
to complete atask.

Thelogical thinking comes into play because computers are intrinsically stupid. They
can't really do anything except add single digits together and move bytes from one place
to another. Luckily for us some talented programmers have written lots of programs to
hide this basic stupidity. But of course as a programmer you may well get into a new
situation where you have to face that stupidity in its raw state. At that point you have to
think for the computer. Y ou have to figure out exactly what needs to be done to your
data and when.

So much for the philosophy! However if you want to get the best from the tutorial you
will want to follow along, either typing in the examples by hand or cutting and pasting
from the Web page into your text editor. Then you can run the programs and see the
results. To do that you will need to have Python installed on your system (and for the
VB Script/JScript examples you'll need a browser capable of running those languages.
Almost any modern browser can run JavaScript.)

Python

Python version 2.3 is the | atest release at the time of writing. The Python download is
quite big (about 9Mb for the Windows binary version) but it does include al the
documentation and lots of tools, some of which welll ook at later in the tutorial.

D:\DOC\HomePagettutor\tutneeds.htm Page 8 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Wheat do | nead to be a programmer? 22/01/2006

For Linux/Unix you can get the source and build it - see your sys admin!! It also comes
pre-built (and pre-installed) in most Linux distributions these days and packaged

versions (for Red Hat, Mandrake, Suse and Debian) can be found too. In fact you may
well find that many of the systems admin tools you use on Linux are actually written in

Python.
The master download site for Python is:

http://www.python.org/download

VBScript and JavaScript

As | said earlier most browsers can run JavaScript without any problems. VBScript will
only work in Microsoft's Internet Explorer. Y ou don't need to install anything for these
languages, either you have them (on Windows boxes) or you don't (JavaScript only on
Linux). The only thing to watch out for is that some paranoid system administrators
occasionally turn off the scripting feature of the browser for security purposes, but since
SO many web sites use JavaScript nowadays that's pretty unlikely.

And that's it. Bring your brain, a sense of humor and start programming....

| Points to remember

* You need logical thinking and curiosity to program
* Python, JavaScript and VB Script(on Windows only) are al freely available

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagettutor\tutneeds.htm Page 9 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

What is Programming?

|What will we cover?

An introduction to the terminology of computing plus some history and a brief look at
the structure of a computer program.

Back to Basics
Computer Programming is the art of making a computer do what you want it to do.

At the very simplest levd it consists of issuing a sequence of commands to a computer
to achieve an objective. In the Microsoft world MS DOS users used to create text files
with lists of commands called BAT files. These simply executed the sequence of
commands as a BATCH, hence the name. Y ou can still produce these in Windows
environments today but in practice they are rarely seen.

For example you might be producing a document (such as this tutorial) which comprises
lots of separate files. Y our word processor may produce backup copies of each fileas it
saves anew version. At the end of the day you may want to put the current version of
the document (all the latest files) into a 'backup’ directory/folder. Finaly, to tidy up,
delete al the backup files ready to start work the next day. A simple BAT fileto do this
would be:

COPY *. HTM BACKUP
DEL *. BAK

If the file were called SAVE.BAT then at the end of each day | could simply type SAVE
at a DOS prompt and the files would be saved and backups deleted. Thisis a program.

Note: Users of Linux or other operating systems have their own versions of these files
often known as shell scripts. Unix shell scripts are much more powerful than DOS BAT

files, and support most of the programming techniques that we will be discussing in this
course.

L et me say that again

D:\DOC\HomePag&tutor\tutwhat.htm Page 10 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

If you were alittle daunted by that, please don't be. A computer programis simply a set
of instructions to tell a computer how to perform a particular task. It's rather like a
recipe: a set of instructions to tell a cook how to make a particular dish. It describes the
ingredients (the data) and the sequence of steps (the process) needed to convert the
ingredients into the cake or whatever. Programs are very similar in concept.

A little history

Just as you speak to afriend in alanguage so you 'speak’ to the computer in alanguage.
The only language that the computer understands is called binary and there are several
different dialects of it - which is why that cool iMac program won't run on your PC and
viceversa. Binary is unfortunately very difficult for humans to read or write so we have
to use an intermediate language and get it translated into binary for us. Thisisrather like
watching the American and Russian presidents talking at a summit meeting - One speaks
in English, then an interpreter repeats what has been said in Russian. The other repliesin
Russian and the interpreter again repeats the sentence, this timein English.

Surprisingly enough the thing that translates our intermediate language into binary is
also called an interpreter. And just as you usually need a different interpreter to translate
English into Russian than you do to translate Arabic into Russian so you need a different
computer interpreter to translate Python into binary from the one that translates
VBScript into binary.

The very first programmers actually had to enter the binary codes themselves, thisis
known as machine code programming and is incredibly difficult. The next stage was to
create atranslator that simply converted English equivalents of the binary codes into
binary so that instead of having to remember that the code 001273 05 04 meant add
5 to 4 programmers could now write ADD 5 4. Thisvery simpleimprovement made
life much simpler and these systems of codes were redlly the first programming
languages, one for each type of computer. They were known as assembler languages
and Assembler programming is still used for afew specialized programming tasks today.

Even this was very primitive and still told the computer what to do at the hardware level
- move bytes from this memory location to that memory location, add this byte to that
byte etc. It was still very difficult and took alot of programming effort to achieve even
simple tasks.

D:\DOC\HomePag&tutor\tutwhat.htm Page 11 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

Gradually computer scientists developed higher level computer languages to make the
job easier. Thiswas just as well because at the same time users were inventing ever
more complex jobs for computers to solve! This competition between the computer
scientists and the usersis still going on and new languages keep on appearing. This
makes programming interesting but also makes it important that as a programmer you
understand the concepts of programming as well as the pragmatics of doing it in one
particular language.

I'll discuss some of those common concepts next, but we will keep coming back to them
as we go through the course.

The common features of all programs

A long time ago a man called Edsger Dijkstra came up with a concept called structured
programming. This said that al programs could be structured in the following four

ways:

® Sequences of instructions:

Step |
v
Step 2
v
Step 3
v
Step 4

Here the program flows from one step to the next in strict sequence.

® Branches;

D:\DOC\HomePag&tutor\tutwhat.htm Page 12 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

Path 1

Test
Condition

Step 1

Path 2

Here the program reaches a decision point and if the result of the test is true then
the program performs the instructions in Path 1, and if false it performs the
actionsin Path 2. Thisis aso known as a conditional construct because the
program flow is dependent on the result of atest condition.

* Loops.

Test
Condition

¥
Repeated Steps

In this construct the program steps are repeated continuously until some test
condition is reached, at which point control then flows past the loop into the
next piece of program logic.

D:\DOC\HomePag&tutor\tutwhat.htm Page 13 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

®* Modules;

Step 1

:

-~

S[E-p 2
¢ |

Step 3 |

:

Step 4

Shared Module

Here the program performs an identical sequence of actions several times. For
convenience these common actions are placed in a module, which is akind of
mini-program which can be executed from within the main program. Other
names for such amodule are: sub-routine, procedure or function.

Along with these structures programs al so need a few more features to make them
useful:

* Data(wetakeacloser look at datain the Raw Materials topic.)

® Operations (add, subtract, compare etc.
- we also take alook at the operations we can perform on datain the Raw
Materiastopic.)

* Input/Output capability (e.g. to display results
- we look at how to read datain the "Talking to the User" topic.)

Once you understand those concepts and how a particular programming language
implements them then you can write a programin that language.

Let'sclear up some ter minology

D:\DOC\HomePag&tutor\tutwhat.htm Page 14 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

We already said that programming was the art of making a computer do what you want,
but what is a program?

In fact there are two distinct concepts of a program. Thefirst is the one perceived by the
user - an executablefilethat isinstalled and can be run repeatedly to perform a task. For
exampl e users speak of running their "word processor program”. The other concept is
the program as seen by the programmer, thisis the text file of instructions to the
computer, written in some programming language, that can be translated into an
executable file. So when you talk about a program always be clear about which concept
you mean.

Basically a programmer writes a program in a high level language which is interpreted
into the bytes that the computer understands. In technical speak the programmer
generates source code and the interpreter generates object code. Sometimes object code
has other names like: P-Code, binary code or machine code.

Theinterpreter has a couple of names, one being the interpreter and the other being the
compiler. These terms actually refer to two different techniques of generating object
code from source code. It used to be the case that compilers produced object code that
could be run on its own (an executable file - another term) whereas an interpreter had to
be present to run its program as it went along. The difference between these termsis
now blurring however since some compilers now require interpreters to be present to do
afinal conversion and some interpreters simply compile their source code into
temporary object code and then execute it.

From our perspective it makes no real difference, we write source code and use atool to
allow the computer to read, translate and executeit.

The structure of a program

The exact structure of a program depends on the programming language and the
environment that you run it on. However there are some general principles:

* A loader - every program needs to be loaded into memory by the operating
system. The loader does this and is usually created by the interpreter for you.

* Datadefinitions - most programs operate on data and somewhere in the source
code we need to define exactly what type of data we will be working with.
Different languages do this very differently.

* Statements - these are the core of your program. The statements actually
mani pul ate the data we define and do the cal culations, print the output etc.

D:\DOC\HomePag&tutor\tutwhat.htm Page 15 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

Most programs follow one of two structures:
Batch programs

These are typically started from a command line (or automeatically via a scheduler utility)
and tend to follow a pattern of:

Initialize

v

Fead Data

v

Process Data

y

Chatput Eesults

That is, the program will typically start off by setting its internal state, perhaps setting
totals to zero, opening the needed files etc. Onceit is ready to start work it will read
data either from the user by displaying prompts on a screen or from a data file. Most
commonly a combination is used whereby the user provides the name of the datafile and
thereal datais read from the file. Then the program does the actual data processing
involving math or data conversion or whatever. Finally the results are produced, either
to a screen display or, perhaps, by writing them back to afile.

All the programs we write in the early parts of this tutorial will be batch style programs.

Event driven programs

D:\DOC\HomePag&tutor\tutwhat.htm Page 16 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

What is programming? 22/01/2006

Most GUI systems (and embedded control systems - like your Microwave, camera etc)
are event driven. That is the operating system sends events to the program and the
program responds to these as they arrive. Events can include things a user does - like
clicking the mouse or pressing a key - or things that the system itself does like updating
the clock or refreshing the screen.

Event driven programs generally look like:

Initialisation

Event o Teenfe Core
Loop Cveats > Functionality

o] — U1 255 1]

Finalisation

In this configuration the program again starts off by setting up its internal state, but then
control is handed off to the event loop - which is usually provided by the operating
environment (sometimes referred to as the runtime). The program then waits for the
event loop to detect user actions which it translates to events. These events are sent to
the program to deal with one at atime. Eventually the user will perform an action that
terminates the program, at which point an Exit Event will be created and sent to the
program.

D:\DOC\HomePag&tutor\tutwhat.htm Page 17 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Wheat is programming? 22/01/2006

We look at event loops and event driven programming in the " Advanced Topics' section
and again in the GUI programming topic.

Pointsto remember

* Programs control the computer

* Programming languages allow us to 'speak’ to the computer at alevel that is
closer to how humans think than how computers 'think'

* Programs operate on data

* Programs can be either Batch oriented or Event driven

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePag&tutor\tutwhat.htm Page 18 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Getting Started 22/01/2006

Getting Started

|What will we cover?

|How to start Python and what an error message |ooks like - just in case...

For the next set of exercises | will assume you have a properly installed version of
Python on your computer. If not, go fetch the latest version from the Python web
site and follow theinstall instructions for your platform.

Now from a command prompt type pyt hon and the Python prompt should appear
looking something like this:

Python 2.3 (#46, Jul 29 2003, 18:54:32) [MSC v. 1200 32 bit (Intel)] on w n32
Type "hel p", "copyright", "credits" or "license" for nore information.
>>>

Alternatively you might find a shortcut to something called IDLE, or the Python GUI, in
your start menus. If you start IDLE instead of the command line version you will get a
similar prompt but in awindow of its own and with some pretty font colors! Danny Y oo
has written a pretty good IDLE Tutorial to get you started with IDLE and |

recommend you pay it avisit if you want to stick with it rather than the basic command
prompt. It duplicates some of the early material here but repetition of the basicsis no
bad thing!

The full manual for IDLE is found here. For now I'd recommend you stick with Danny's
tutor.

Oneinteresting thing about IDLE isthat it isitself a Python program, so it's a very good
demonstration of just what is possible using Python

If you got your version of Python from ActiveState or if you downloaded the Windows
specific extensions (the winall package), you also have access to another GUI
programming environment, very similar to IDLE but perhaps a little more polished,
called Pythonwin. Either Pythonwin or IDLE make far better programming
environments than the standard DOS prompt, but at the very beginning | prefer to use
the most basic tools to focus on the underlying principles rather than the toys.

A word about error messages

D:\DOC\HomePageitutor\tutstart.htm Page 19 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Getting Started 22/01/2006

If you type in the commands as we go through them then sooner or later you will get an
error message. It will look something like this:

>>> print 'fred + 7
Traceback (nost recent call last):
File "<input>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

Don't worry about the exact meaning here just look at the structure.

The'>>> print ..." lineis the erroneous command

The next 2 lines are describing where the error occurred:

"line 1 in ?' meanslinel inthe command we aretyping. If it were alonger
program stored in a source file the <i nput > would be replaced by the file name.

The' TypeError..."' linetdlsyouwhat theinterpreter thinks is wrong and sometimes
therewill be a caret character(”) pointing to the part of the line that Python thinks is at
fault.

Unfortunately this will often be wrong, usually the error is earlier in theline, or even in
the (one or two) lines immediately preceding where Python saysit is - remember
computers are dumb!

Use the error information to figure out what's happening. Remember it's most likely to
be you at fault not the computer. Remember again that computers are dumb. Probably
you just mistyped something or forgot a quote sign or something similar. Check
carefully.

In case you are wondering, the mistake I made was trying to add a number to a
character string. You're not allowed to do that so Python objected and told me there
was a TypeError. You'll need to wait till we get to the topic on the Raw Materials to
understand what types are all about....

Whichever approach you've decided to take, command prompt or IDLE (or Pythonwin)
we are ready to start creating some very simple Python programs.

JavaScript

D:\DOC\HomePageitutor\tutstart.htm Page 20 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Getting Started 22/01/2006

To create JavaScript programs in a browser we need to do a bit more work. We need to
create an HTML file which we can load into aweb browser. An HTML fileisreally just
aplain text file which you can create in Notepad or any other text editor. Thefilewill
look like this:

<htm >

<body>

<scri pt | anguage="JavaScri pt">
docunment . wite('Hello Wrld\n');
</script>

</ body>
</htm >

The bit between <scri pt...>and </ scri pt>isour program. | won't be showing al
the HTML tags every timein this tutorial so you need to copy that file each time as a
template and then replace everything between the script tags with the code you want to
try out.

VBScript

VBScript is essentialy the same as JavaScript with the single difference that you replace
the name "JavaScript” in thel anguage= bit with, surprisingly enough, "VBScript".
Likethis:

<htm >

<body>

<script |anguage="VBScript">
MsgBox "Hello World"
</script>

</ body>
</htm >

Once again the bit between the<scr i pt > tags is the program.

D:\DOC\HomePageitutor\tutstart.htm Page 21 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Getting Started 22/01/2006

VBScript and JavaScript errors

In both VBScript and JavaScript you will get adialog box pop up telling you the line
number of an error. Therewill also be afairly inscrutable error message. As with
Python, treat the line number as a rough guide rather than an exact pointer. After finding
and fixing the error you will need to reload (or refresh) the page in your web browser.

OK, Whichever language you choose you are ready to start.

| Points to remember

* Start python by typing python at a command prompt

* Error messages are nothing to be scared of, read them carefully, they usually
give a clue as to why you got them.

* Butit'sonly aclue.. if in doubt check the lines immediately before the
reported line.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePageitutor\tutstart.htm Page 22 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

Simple Sequences

| What will we cover?

Single commands

The use of Python as a calcul ator

Using parentheses to get the correct result
Using format strings to print complex output
How to quit Python from within a program.

A simple sequence of instructions is the most basic program you can write. The simplest
seguence is one containing a single command. We will try out some of these now. The
heading will describe what you should type at the '>>>' Python prompt, the following
paragraph will explain what happens.

>>> print 'Hello there!’

Thepri nt command istheway to get Python to display its results to you. In this caseit
is printing the sequence of charactersH, e, I, 1,0, ,t,h, e, r, e, !. Suchaseguence
of charactersis known in programming circles as a string of characters or a character
string or just aplain string.

You signify astring by surrounding it in quotes. In Python you can use ether single

guotes(as above) or double quotes: "a string . This allows you to include one type of
quote within a string which is surrounded by the other type - useful for apostrophes:

>>> print "Monty Python's Flying Circus has a' withinit..."
It's not just characters that can be printed:
>>>print 6+ 5

Here we have printed the result of an arithmetic operation - we added six and five.
Python recognized the numbers as such and the plus sign and did the sum for us. It then
printed the result.

So straight away you have a use for Python: it's a handy 'pocket calculator'! Try afew
more sums. Use some other arithmetic operators:

D:\DOC\HomePagettutor\tutsegl.htm Page 23 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

® subtract (-)
* multiply (*)
* divide (/)

We can combine multiple expressions like this:

>>> print ((8 * 4) + (7 - 3)) [(2 + 4)

Notice the way | used parentheses to group the numbers together. What happens if you
type the same sequence without the parentheses? This is because Python will evaluate
the multiplication and division before the addition and subtraction. This is usually what
you would expect mathematically speaking but it may not be what you expect as a
programmer! All programming languages have rules to determine the sequence of
evaluation of operations and thisis known as operator precedence. You will need to
look at the reference documentation for each language to see how it works. With
Python it's usually what logic and intuition would suggest, but occasionally it won't be...

As agenera ruleit's safest to include the brackets to make sure you get what you want
when dealing with long series of sums like this.

One other thing to note:

>>> print 5/2

results in awhole number (integer) result (i.e. 2). Thisis because Python sees that the
numbers are whole numbers and assumes you want to keep them that way. If you want
decimal fractions as a result simply write one number as a decimal:

>>> print 5/2.0
2.5

Python sees the 2.0 and realizes that we are happy dealing with fractions (referred to as
real numbers or floating point in computing parlance), so it responds with a fractional
result. In the most recent versions of Python you can change this behavior to always
produce real numbers from a division by adding this line to the top of your program:

>>> from __future__ inport division

D:\DOC\HomePagettutor\tutsegl.htm Page 24 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

(Note, that's two underscores on each side of f ut ur e)

Its likely that this will be the standard type of division in some future version of Python
but for now you have to specifically tell Python that you want it turned on.

If you want to keep with whole numbers you can find the remainder by using the %sign
like adivision operator. Python will print the remainder:

>>> print 7/2
3
>>> print 79%
1
>>> print 7%
3

% is known as the modulo or mod operator and in other languages is often seen as
MOD or similar.

Experiment and you will soon get the idea.
>>>print 'Thetotal is: ', 23+45

Y ou've seen that we can print strings and numbers. Now we combine the two in one
print statement, separating them with a comma. We can extend this feature by
combining it with a useful Python trick for outputting data called a format string:

>>> print "The sumof %l and % is: %" % (7,18, 7+18)

In this command the format string contains ‘%' markers within it. The letter 'd' after the
% tells Python that a'decima number' should be placed there. The values tofill in the
markers are obtai ned from the val ues inside the bracketed expression following the %
sign on its own.

There are other |etters that can be placed after the % markers. Some of these include:

%s - for string

%x - for hexadecimal number

%0.2f - for areal number with a maximum of 2 decimal places
%04d - pad the number out to 4 digits with 0's

D:\DOC\HomePagettutor\tutsegl.htm Page 25 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

The Python documentation will give lots more...

In fact you can print any Python object with the print command. Sometimes the result
will not be what you hoped for (perhaps just a description of what kind of object it is)
but you can always print it.

>>>import sys

Now thisis astrange one. If you'vetried it you'll seethat it apparently does nothing. But
that's not really true. To understand what happened we need to ook at the architecture
of Python (for non Python programmers, bear with me there will be a similar mechanism
available to you too!)

When you start Python there are a bunch of commands availableto you called built-ins,
because they are built in to the Python core. However Python can extend the list of
commands available by incorporating extension modules. - It's a bit like buying a new
tool in your favourite DI'Y shop and adding it to your toolbox. Thetool isthesys part
and thei nport operation puts it into the toolbox.

In fact what this command does is makes avail able a whole bunch of new 'tools' in the
shape of Python commands which are defined in afile called 'sys.py’. Thisis how Python
is extended to do all sorts of clever things that are not built in to the basic system. You
can even create your own modules and import and use them, just like the modules
provided with Python when you installed it.

So how do we use these new tool s?
>>>sys.exit()

Whoops! What happened there? Simply that we executed the exi t command defined in
the sys module. That command causes Python to exit. (Note: Normally you exit Python
by typing the End Of File(EOF) character at the >>> prompt - CTRL-Z on DOS or
CTRL-D on Unix)

Noticethat exi t had 2 brackets after it. That's because exit is a function defined in sys
and when we call a Python function we need to supply the parentheses even if there's
nothing inside them!

Try typing sys.exit without the brackets. Python responds by telling you that exit isa
function rather than by executing it!

D:\DOC\HomePagettutor\tutsegl.htm Page 26 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

Onefinal thing to notice is that the last two commands are actually only useful in
combination. That is, to exit from Python other than by typing EOF you need to type:

i mport sys
sys.exit()

Thisis a sequence of two commands! Now we're getting closer to real programming....
Using JavaScript

Unfortunately in JavaScript thereis no easy way to type the commands in and see them
being executed immediately as we have been doing with Python. However we can type
all of the simple commands we used above into asingle HTML fileand load it into a
browser. That way we will see what they ook like in JavaScript:

<ht M ><body>

<scri pt | anguage="JavaScri pt">

docunent. wite(' Hello therel
");

docunent. wite("Monty Python\'s Flying Circus has a \' within it
");
document . write(6+5);

docunent. wite("
");

docunent.wite(((8 * 4) + (7 - 3)) [(2 + 4));
docunent. wite("
");

docunent.wite(5/2);

docunent. wite("
");

document . wite(5 %2);

</script>

</ body></htm >

And the output should look like this:

Notice that we had to write
 to force anew line. That's because JavaScript writes
its output as HTML and HTML wraps lines into as wide a line as your browser window
will alow. To force aline break we have to use the HTML symbol for a new line which
iIS
.

And VBScript too...

D:\DOC\HomePagettutor\tutsegl.htm Page 27 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

Like JavaScript we have to create a file with our VBScript commands and openitina
browser. The commands that we have seen, written in VBScript look like this:

<ht M ><body>

<scri pt | anguage="VBScri pt">

MsgBox "Hello There!"

MsgBox "Monty Python's Flying Circus has a ' init"
MsgBox 6 + 5

MsgBox ((8 * 4) + (7 - 3)) / (2 + 4)

MsgBox 5/ 2

MsgBox 5 MOD 2

</script>

</ body></htm >

And the output should consist of lots of dialog boxes each presenting the output from
one line of the program.

One point to note is that you cannot start a string using a single quote in VB Script

(Well seewhy in alater topic) although you can include single quotes inside double
guoted strings. To include a double quote inside a double quoted string we have to use a
function called Chr which returns the character for a given ASCII character code. I'ts all
very messy but an example should show how it works:

<script | anguage="VBScri pt">

Dim qt

gt = Chr(34)

MsgBox gt & "Go Away!" & qt & " he cried"
</script>

Note that you can find out the ASCII code for any character by using the Character
Map applet in Windows, or by visiting this web site and looking up the decimal value
or, as alast resort, by using the following bit of JavaScript(!) and replacing the double
guote character with the character you want:

<scri pt | anguage="JavaScri pt">

var code, chr ="'"";

code = chr. char CodeAt (0);

document . wite("
The ASCI|I code of " + chr +" is " + code);
</script>

D:\DOC\HomePagettutor\tutsegl.htm Page 28 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Simple sequences 22/01/2006

Don't worry about what it means just yet, we'll get to it eventually for now just use it
should you be forced to find out an ASCII value.

That's our first look at programming, it wasn't too painful was it? Before we continue
though we need to take alook at the raw materials of programming, namely data and
what we can do with it.

| Points to remember

Even a single command is a program

Python does math almost the way you'd expect

To get afractional result you must use a fractional number

Y ou can combine text and numbers using the %format operator
Quit withi nport sys; sys.exit()

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagettutor\tutsegl.htm Page 29 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

The Raw Materials

What will we cover?

What Datais

What Variables are

Data Types and what to do with them
Defining our own data types

I ntroduction

In any creative activity we need three basic ingredients: tools, meterials and techniques.
For example when | paint the tools are my brushes, pencils and pal ettes. The techniques
arethings like ‘washes’, wet on wet, blending, spraying etc. Finally the materials are the
paints, paper and water. Similarly when | program, my tools are the programming
languages, operating systems and hardware. The techniques are the programming
constructs that we discussed in the previous section and the material is the datathat |
manipulate. In this chapter we look at the materials of programming.

Thisis quite along section and by its nature you might find it a bit dry, the good newsis
that you don’'t need to read it all at once. The chapter starts off by looking at the most
basic data types available, then moves on to how we handle collections of items and
finally looks at some more advanced material. It should be possible to drop out of the
chapter after the collections material, cover a couple of the following chapters and then
come back to this one as we start to use the more advanced bits.

Data

Datais one of those terms that everyone uses but few really understand. My dictionary
defines it as:

"facts or figures fromwhich conclusions can be inferred; information™

That's not too much help but at least gives a starting point. Let’s see if we can clarify
things by looking at how datais used in programming terms. Datais the “ stuff”, the raw
information, that your program manipul ates. Without data a program cannot perform
any useful function. Programs manipulate data in many ways, often depending on the
type of the data. Each data type also has a number of operations - things that you can do

D:\DOC\HomePagetutor\tutdata.htm Page 30 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

toit. For example we ve seen that we can add numbers together. Additionisan
operation on the number type of data. Data comes in many types and we'll look at each
of the most common types and the operations available for that type:

Variables

Datais stored in the memory of your computer. Y ou can liken this to the big wall full of
boxes used in mail rooms to sort the mail. You can put aletter in any box but unless the
boxes are label ed with the destination address it’s pretty meaningless. Variables are the
labels on the boxes in your computer's memory.

Knowing what data looks likeis fine so far as it goes but to manipulate it we need to be
ableto access it and that’s what variables are used for. In programming terms we can
create instances of data types and assign themto variables. A variableis areferenceto a
specific area somewhere in the computers memory. These areas hold the data. In some
computer languages a variable must match the type of data that it points to. Any attempt
to assign the wrong type of data to such a variable will cause an error. Some
programmers prefer this type of system, known as static typing because it can prevent
some subtle bugs which are hard to detect.

Variable names follow certain rules dependent on the programming language. Every
language has its own rules about which characters are allowed or not allowed. Some
languages, including Python and JavaScript, take notice of the case and are therefore
called case sensitive languages, others, like VBScript don't care. Case sensitive
languages require alittle bit more care from the programmer to avoid mistakes, but a
consistent approach to naming variables will help alot. One common style which we will
use alot isto start variable names with alower case |etter and use a capital |etter for
each first letter of subsequent words in the name, like this:

aVeryLongVari abl eNaneW t hCapi t al i sedStyl e

We won't discuss the specific rules about which characters arelegal in our languages but
if you consistently use a style like that shown you shouldn't have too many problems.

In Python a variabl e takes the type of the data assigned to it. It will keep that type and
you will bewarned if you try to mix datain strange ways - like trying to add a string to a
number. (Recall the example error message? It was an example of just that kind of

error.) We can change the type of data that a variable points to by reassigning the
variable.

D:\DOC\HomePagetutor\tutdata.htm Page 31 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

>>>q =7 # ¢ is now a nunber

>>> print q

>>> ¢ = "Seven" # reassign q to a string
>>> print q

Seven

Note that g was set to point to the number 7 initially. It maintained that value until we
made it point at the character string " Seven" . Thus, Python variables maintain the type
of whatever they point to, but we can change what they point to simply by reassigning
thevariable. At that point the original datais 'lost' and Python will erase it from memory
(unless another variable points at it too) thisis known as garbage collection.

Garbage collection can be likened to the mail room clerk who comes round oncein a
while and removes any packets that are in boxes with no labels. If he can't find an owner
or address on the packets he throws them in the garbage. Let’s take alook at some
examples of data types and see how al of this fits together.

VBScript and JavaScript variables

Both JavaScript and VBScript introduce a subtle variation in the way we use variables.
Both languages require that variables be declared before being used. Thisis a common
feature of compiled languages and of strictly typed languages. Thereis a big advantage
indoing thisin that if aspelling error is made when using a variable the translator can
detect that an unknown variable has been used and flag an error. The disadvantage is, of
course, some extra typing required by the programmer.

VBScript

In VBScript the declaration of avariableis done viathe Di mstatement, which is short
for Dimension. Thisis athrowback to VBScript's early roots in BASIC and in turn to
Assembler languages before that. 1n those languages you had to tell the assembler how
much memory a variable would use - its dimensions. The abbreviation has carried
through from there.

A variable declaration in VBScript looks like this:

Di m aVari abl e

D:\DOC\HomePagetutor\tutdata.htm Page 32 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Once declared we can proceed to assign values to it just like we did in Python. We can
declare several variables in the one Di mstatement by listing them separated by commeas:

Di m aVari abl e, another, aThird

Assignment then looks like this:

aVari able = 42
another = "This is a nice short sentence.”
aThird = 3.14159

Thereis another keyword, Let that you may occasionally see. Thisis another
throwback to BASIC and because it's not really needed you very rarely seeit. In case
you do, it's used like this:

Let avVariable = 22

| will not beusing Let inthistutor.

JavaScript

In JavaScript you declare variables with thevar keyword and, like VB Script, you can
list several variablesin asinglevar statement:

var aVari abl e, another, aThird;

JavaScript also allows you to initialize (or define) the variables as part of the
var statement. Likethis:

var aVariable = 42;
var another = "A short phrase", aThird = 3. 14159;

This saves alittle typing but otherwise is no different to VBScript's two step approach
to variables. Hopefully this brief look at VB Script and JavaScript variables has
demonstrated the difference between declaration and definition of variables. Python
variables are declared by defining them.

Primitive Data Types

D:\DOC\HomePagetutor\tutdata.htm Page 33 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Primitive data types are so called because they are the most basic types of data we can
manipul ate. More complex data types are really combinations of the primitive types.
These are the building blocks upon which al the other types are built, the very
foundation of computing. They include |etters, numbers and something called a boolean

type.
Character Strings

We've aready seen these. They areliterally any string or sequence of characters that can
be printed on your screen. (In fact there can even be non-printable control
characterstoo).

In Python, strings can be represented in several ways:
With single quotes:

"Here is a string'

With double quotes:

"Here is a very simlar string"

With triple double quotes:

Here is a very long string that can
if we wish span several lines and Python wll
preserve the lines as we type them.."""

One special use of the latter formis to build in documentation for Python functions that
we create ourselves - well seethislater.

Y ou can access theindividual charactersin astring by treating it as an array of
characters (see arrays below). There are also usually some operations provided by the
programming language to help you manipulate strings - find a sub string, join two
strings, copy one to another etc.

It is worth pointing out that some languages have a separate type for characters
themselves, that is for asingle character. In this case strings are literaly just collections
of these character values. Python by contrast just uses a string of length 1 to store an
individual character, no special syntax is required.

D:\DOC\HomePagetutor\tutdata.htm Page 34 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

String Operators

There are a number of operations that can be performed on strings. Some of these are
built in to Python but many others are provided by modules that you must import (as we
did with sys in the Simple Sequences section).

String operators

|Operator | Description
|Sl +S2 |Concatenalion of S1 and S2
|Sl * N |N repetitions of S1

We can seethese in action in the following examples:

>>> print 'Again and ' + 'again' # string concatenation
Agai n and again
>>> print 'Repeat ' * 3 # string repetition

Repeat Repeat Repeat

>>> print 'Again' + (‘and again ' * 3) # conmbine '+ and '*'
Agai n and agai n and agai n and again

We can a'so assign character strings to variables:

>>> sl = 'Again '

>>> s2 = 'and again '

>>> print sl + (s2 * 3)

Agai n and agai n and agai n and again

Notice that the last two examples produced the same output.

There arelots of other things we can do with strings but we'll ook at those in more
detail in alater topic after we've gained a bit more basic knowledge.

VBScript String Variables

In VBScript al variables are called variants, that is they can hold any type of data and
VBScript tries to convert it to the appropriate type as needed. Thus you may assign a
number to avariable but if you useit as a string VBScript will try to convert it for you.

D:\DOC\HomePagetutor\tutdata.htm Page 35 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

In practice thisis similar to what Python's print command does but extended to any
VBScript command. You can give VBScript a hint that you want a numeric value
treated as a string by enclosing it in double quotes:

<script = "VBScript">
MyString = "42"
MsgBox MyString
</script>

We can join VBScript strings together, a process known as concatenation, using the
& operator:

<script = "VBScript">
MyString = "Hello" & "World"
MsgBox MyString

</script>

JavaScript Strings

JavaScript strings are enclosed in elther single or double quotes. In JavaScript you must
declare variables before we use them. Thisis easily done using thevar keyword. Thus
to declare and define two string variables in JavaScript we do this:

<scri pt="JavaScri pt">
var aString, another;

aString = "Hello ";

anot her = "Worl d";

docunent . wite(aString+anot her)
</script>

Finally JavaScript also alows us to create String objects. We will discuss objects alittle
later in this topic but for now just think of String objects as being strings with some
extra features. The main differenceis that we create them slightly differently:

<scri pt="JavaScri pt">

var aStringQoj, another;

aString String("Hello ");

anot her String("wWrld");
docunent.wite(aString + another);
</script>

D:\DOC\HomePagetutor\tutdata.htm Page 36 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Integers

Integers are whole numbers from a large negative val ue through to alarge positive
value. That's an important point to remember. Normally we don’t think of numbers
being restricted in size but on a computer there are upper and lower limits. The size of
this upper limit is known as MAXINT and depends on the number of bits used on your
computer to represent a number. On most current computers and programming
languages it's 32 bits so MAXINT is around 2 billion (however VBScript is limited to
about +/-32000).

Numbers with positive and negative val ues are known as signed integers. Y ou can also
get unsigned integers which are restricted to positive numbers, including zero. This
means there is a bigger maximum number available of around 2 * MAXINT or 4 billion
on a 32 bit computer since we can use the space previously used for representing
negative numbers to represent more positive numbers.

Because integers arerestricted in sizeto MAXINT adding two integers together where
thetotal is greater than MAXINT causes the total to be wrong. On some
systems/languages the wrong valueis just returned as is (usually with some kind of
secret flag raised that you can test if you think it might have been set). Normally an error
condition is raised and either your program can handle the error or the program will exit.
VB Script and JavaScript both adopt this latter approach. Recent versions of Python are
alittle different in that from version 2.3 onwards Python will automatically convert an
integer into something called a Long Integer, which is a Python specific feature allowing
virtualy unlimited size integers. We don't get these for free of course, they come at the
cost of much slower processing speed - but at least you know your cal culations will
complete, eventually. And of course speed in computer terms is relative, unless you are
doing alot of processing of these long integers you probably won't notice the differencel
You cantell along integer because Python prints it with atraining ‘L', like this:

>>> 1234567 * 3456789
>>> 4267637625363L

Note that we didn't use the print statement here, if we had the 'L’ would be hidden.
Python has two ways of displaying results, the printed versionis usualy prettier, i.e.
easier to read, but the plain value as used here sometimes has more detail. Try typing in
the exampl es in the previous topic without the print statements and see how many subtle

D:\DOC\HomePagetutor\tutdata.htm Page 37 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

differences in presentation you can spot. In general | will use the print statement, partly
because most languages insist on it and I'm trying to get you used to good general
practice not just Python's cozy way of doing things.

Arithmetic Operators

We've aready seen most of the arithmetic operators that you need in the 'Simple
Sequences' section, however to recap:
Python Arithmetic Operators

|Operator Example| Description

M +N /Addition of M and N

|M -N |Subtraction of N fromM

M * N Multiplication of M and N

' 'Division, either integer or floating point result depending on the

M/N types of M and N. If either M or N are real numbers(see below)
the result will bereal.

|M % N |Modu|o: find the remainder of M divided by N

|M** N |Exponentiation: M to the power N

We haven't seen the last one before so let’s ook at an example of creating some integer
variables and using the exponentiation operator:

>>> j1 = 2 # create an integer and assign it to il
>>> |2 = 4

>>> |3 = 2**4 # assign the result of 2 to the power 4 to i3
>>> print i3

16

VBScript Integers

As| said earlier VBScript integers are limited to alower value of MAXINT
corresponding to a 16 bit value, namely about +/- 32000. If you need an integer bigger
than that you can use al ong integer which is the same size as a standard Python
integer. Thereis also abyt e typewhich is an 8 bit number with a maximum size of 255.
In practice you will usualy find the standard integer type sufficient.

D:\DOC\HomePagetutor\tutdata.htm Page 38 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

All the usual arithmetic operators are supported.
JavaScript Numbers

It will be no surpriseto discover that JavaScript too has a numeric type. It tooisan
object as well describe later and its called a Number, original eh?:-)

A JavaScript number can also be Not a Number or NaN. Thisis aspecial version of the
Number object which represents invalid numbers, usually the result of some operation
which is mathematically impossible. The point of NaN isthat it allows us to check for
certain kinds of error without actually breaking the program. JavaScript aso has specia
number versions to represent positive and negative infinity, arare featurein a
programming language. JavaScript number objects can be either integers or redl
numbers, which we look at next.

Real Numbers

These are fractions. They can represent very large numbers, much bigger than
MAXINT, but with less precision. That is to say that 2 real numbers which should be
identical may not seem to be when compared by the computer. This is because the
computer only approximates some of the lowest details. Thus 4.0 could be represented
by the computer as 3.9999999.... or 4.000000....01. These approximations are close
enough for most purposes but occasionally they become important! If you get a funny
result when using real numbers, bear thisin mind.

Real numbers, also known as Floating Point numbers have the same operations as
integers with the addition of the capability to truncate the number to an integer value.

Python, VB Script and JavaScript all support real numbers. In Python we create them by
simply specifying a number with adecimal point in it, as we saw in the simple
sequences topic. In VBScript and JavaScript thereis no clear distinction between
integers and real numbers, just use them and mostly the language will pretty much sort
itself out OK.

Complex or Imaginary Numbers

If you have a scientific or mathematical background you may be wondering about
complex numbers? If you haven't you may not even have heard of complex numbers, in
which case you can safely jump to the next heading because you don't need them!

D:\DOC\HomePagetutor\tutdata.htm Page 39 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Anyhow some programming languages, including Python, provide built in support for
the complex type while others provide a library of functions which can operate on
complex numbers. And before you ask, the same applies to matrices too.

In Python a complex number is represented as:

(real +i magi naryj)

Thus a simple complex number addition looks like:

>>> M= (2+4))
>>> N = (7+6])
>>> print M+ N
(9+10j)

All of the integer operations also apply to complex numbers.

Neither VBScript nor JavaScript offer support for complex numbers.

Boolean Values- True and False

This strange sounding type is named after a 19th century mathematician, George Boole
who studied logic. Like the heading says, this type has only 2 values - either true or

false. Some languages support Boolean values directly, others use a convention
whereby some numeric value (often 0) represents fal se and another (often 1 or -1)
represents true. Up until version 2.2 Python did this, however since version 2.3 Python
supports Boolean values directly, using the values True and False.

Boolean val ues are sometimes known as "truth values' because they are used to test
whether something is true or not. For exampleif you write a program to backup all the
filesin adirectory you might backup each file then ask the operating system for the
name of the next file. If there are no morefilesto saveit will return an empty string.

Y ou can then test to see if the name is an empty string and store the result as a boolean
value (Trueif it is empty, Falseif it isn't). You'll see how we would use that result later
on in the course.

Boolean (or Logical) Operators

|Operator Example|Deﬂ:ription Effect

D:\DOC\HomePagetutor\tutdata.htm Page 40 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

AandB /AND Trueif A,B are both True, False otherwise.
Trueif either or both of A,B aretrue. Falseif both

AorB OR A and B arefalse

|A == |Equa|ity |True if Aisequal toB

Al=B

or Inequality (Trueif A isNOT equal to B.

A<>B

not B |Negation Trueif B isnot True

Note: the last one operates on asingle value, the others all compare two val ues.
VBScript, like Python has a Boolean type with the values True and False.

JavaScript also supports a Boolean type but this time the values are true and false (note,
with alowercasefirst |etter).

Finally the different languages have slightly different names for the Bool ean type
internally, in Python it is bool, in VBScript and JavaScript it is Boolean. Most of the
time you won't need to worry about that because we tend not to create variabl es of
Boolean types but simply use the results in tests.

Collections

Computer science has built a whol e discipline around studying collections and their
various behaviors. Sometimes collections are called containers. In this section we will
look first of al at the collections supported in Python, VBScript and JavaScript, then
we'll conclude with a brief summary of some other collection types you might come
across in other languages.

List

Weareall familiar with listsin everyday life. A list isjust a sequence of items. We can
add items to alist or remove items from the list. Usually, wherethelist is written paper
we can't insert itemsin the middle of alist only at the end. However if thelistisin
electronic format - in aword processor say - then we can insert items anywhere in the
list.

D:\DOC\HomePagetutor\tutdata.htm Page 41 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

We can also search alist to check whether something is already in the list or not. But
you have to find the item you need by stepping through the list from front to back
checking each item to seeif it's the item you want. Lists are a fundamental collection
type found in many modern programming languages.

Python lists are built into the language. They can do all the basic list operations we
discussed above and in addition have the ability to index the e ements inside the list. By
indexing | mean that we can refer to alist element by its sequence number (assuming the
first element starts at zero!).

In VBScript there are no lists as such but other collection types which we discuss | ater
can simulate their features.

In JavaScript there are no lists as such but almost everything you need to do with alist
can be done using a JavaScript array which is another collection type that we discuss a
little later.

List operations

Python provides many operations on collections. Nearly all of them apply to Lists and a
subset apply to other collection types, including strings which are just a specia type of
list - alist of characters. To create and access alist in Python we use square brackets.
You can create an empty list by using a pair of square brackets with nothing inside, or
create a list with contents by separating the values with commas inside the brackets:

>>> aglist = []

>>> another = [1, 2, 3]
>>> print anot her

[1, 2, 3]

We can access the individual € ements using an index number, where thefirst dement is
0, inside square brackets. For example to access the third element, which will be index
number 2 since we start from zero, we do this:

>>> print another| 2]
3

We can also change the values of the elements of alist in asimilar fashion:

D:\DOC\HomePagetutor\tutdata.htm Page 42 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

>>> another[2] =7
>>> print anot her
[1, 2, 7]

Notice that the third element (index 2) changed from 3 to 7.

Y ou can use negative index numbers to access members from the end of thelist. Thisis
most commonly done using -1 to get the last item:

>>> print another|-1]
-

We can add new dements to the end of alist using the append() operator:

>>> ali st.append(42)
>>> print ali st
[42]

We can even hold one list inside another, thus if we append our second list to thefirst:

>>> agli st. append(anot her)
>>> print ali st
[42, [1, 2, 7]]

Notice how theresult isalist of two elements but the second dement isitsdf alist (as
shown by the[]’s around it). We can now access the element 7 by using a double index:

>>> print aList[1][2]
-

Thefirst index, 1, extracts the second d ement which isin turn alist. The second index,
2, extracts the third d ement of the sublist.

This nesting of lists one inside the other is extremely useful since it effectively allows us
to build tables of data, likethis:

>>> rowl [1, 2, 3]

>>> ro\/\Q 1 aI , 1 bl , 1 CI]
>>> table = [rowl, row2]
>>> print table

D:\DOC\HomePagetutor\tutdata.htm Page 43 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

[[1,23],

[IaI’ I’ICI]
>>> el enent2 =

b]
tabl e[0] [1]

We could use this to create an address book where each entry was alist of name and
address details. For example, hereis such an address book with two entries:

>>> addressBook = [
["Fred', "9 Some St',' Anytown', '0123456789'],
['Rose', '"11 Nother St', 'SonePlace', '0987654321']

oo]
>>>
Notice that we constructed the nested list all on oneline. That is because Python sees
that the number of opening and closing brackets don't match and keeps on reading input
until they do. This can be a very effective way of quickly constructing complex data

structures while making the overall structure - alist of listsin this case - clear to the
reader.

As an exercise try extracting Fred's tel gphone number - eement 3, from the first row -
remembering that the indexes start at zero. Also try adding a few new entries of your
own using the append() operation described above.

Note that when you exit Python your data will be lost, however you will find out how to
preserve it once we reach the topic on files.

The opposite of adding elementsis, of course, removing them and to do that we use the
del command:

>>> del aList][1]
>>> print ali st
[42]

If we want to join two lists together to make one we can use the same concatenation
operator ‘+' that we saw for strings:

>>> newlLi st = aLi st + anot her
>>> print newli st
[42, 1, 2, 7]

D:\DOC\HomePagetutor\tutdata.htm Page 44 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Noticethat thisis slightly different to when we appended the two lists earlier, then there
were 2 elements, the second being alist, this time there are 4 e ements because the
elements of the second list have each, individually been added to newLi st . Thistimeif
we access dement 1, instead of getting a sublist, as we did previously, we will only get
1 returned:

>>> print newkist[1]
1

We can also apply the multiplication sign as a repetition operator to populate alist with
multiples of the same value:

>>> zerolList = [0] * 5
>>> print zeroli st
[0, O, O, O, O]

We can find the index of a particular ement in alist using thei ndex() operation, like
this.

>>> print [1,3,5,7].index(5)
2
>>> print [1,3,5,7].index(9)

Traceback (nost recent call last):
File "", line 1, in ?
Val ueError: list.index(x): x not in |ist

Notice that trying to find the index of something that's not in the list results in an error.
We will look at ways to test whether something isin alist or not in alater topic.

Finally, we can determine the length of alist using the built-in1 en() function:

>>> print | en(aList)

1

>>> print |en(newList)
4

>>> print |en(zerolist)
5

Neither JavaScript nor VBScript directly support alist type although as we will see later
they do have an Array type that can do many of the things that Python's lists can do.

D:\DOC\HomePagetutor\tutdata.htm Page 45 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Tuple

Not every language provides a tuple construct but in those that do it’s extremely useful.
A tupleisredly just an arbitrary collection of values which can be treated as a unit. In
many ways atupleislikealist, but with the significant difference that tuples are
immutable which is to say that you can’t change them nor append to them once created.
In Python, tuples are simply represented by parentheses containing a comma separated
list of values, like so:

>>> aTuple = (1,3,5)

>>> print aTupl e[1] # use indexing like a |ist
3
>> aTuple[2] =7 # error, can't change a tuple’s elenents
Traceback (innernost |ast):
File "", line 1, in ?

aTuple[2] =7
TypeError: object doesn't support item assignment

The main things to remember are that while parentheses are used to define the tuple,
square brackets are used to index it and you can’'t change a tuple once its created.
Otherwise most of the list operations also apply to tuples.

Finally, although you cannot change a tuple you can effectively add members using the
addition operator because this actually creates anew tuple. Likethis:

>>> tupl = (1,2,3)

>>> tup2 = tupl + (4,) # comma to make it a tuple rather than integer
>>> print tup2

(1,2,3,4)

If we didn't use the trailing comma after the 4 then Python would have interpreted it as
the integer 4 inside parentheses, not as atrue tuple. But since you can't add integers to
tuplesit resultsin an error, so we add the commato tell Python to treat the parentheses
as atuple. Any time you need to persuade Python that a single entry tupleredllyisa
tuple add atrailing comma as we did here.

Neither VBScript nor JavaScript have any concept of tuples.

Dictionary or Hash

D:\DOC\HomePagetutor\tutdata.htm Page 46 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

In the same way that aliteral dictionary associates a meaning with a word a dictionary
type contains a val ue associated with a key, which may or may not be a string. The value
can be retrieved by ‘indexing’ the dictionary with the key. Unlike a literal dictionary, the
key doesn’'t need to be a character string (although it often is) but can be any immutable
type including numbers and tuples. Similarly the val ues associated with the keys can
have any kind of datatype. Dictionaries are usually implemented internally using an
advanced programming technique known as a hash table. For that reason a dictionary
may sometimes be referred to as a hash. This has nothing to do with drugs! :-)

Because access to the dictionary values is via the key, you can only put in eements with
unique keys. Dictionaries are immensely useful structures and are provided as a built-in
type in Python although in many other languages you need to use a module or even build
your own. We can use dictionaries in lots of ways and welll see plenty examples |ater,
but for now, here's how to create a dictionary in Python, fill it with some entries and
read them back:

>>> dct = {}

>>> dct[' bool ean'] "A value which is either true or false"
>>> dct['integer'] "A whol e nunber”

>>> print dct[' bool ean']

A value which is either true or false

Notice that we initialize the dictionary with braces, then use square brackets to assign
and read the values.

Just as we did with lists we can initialize a dictionary as we cregte it using the following
format:

>>> addressBook = {

"Fred" : ['"Fred', '9 Sonme St',' Anytown', '0123456789'],
"Rose' : ['Rose', '11 Nother St', 'SonmePlace', '0987654321']
o)

>>>
The key and value are separated by a colon and the pairs are separated by commas. This
time we have made our address book out of a dictionary which is keyed by name and
stores our lists as the values. Rather than work out the numerical index of the entry we
want we can just use the nameto retrieve al the information, like this:

D:\DOC\HomePagetutor\tutdata.htm Page 47 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

>>> print addressBook[' Rose']

['Rose', '"11 Nother St', 'SonePlace', '0987654321']
>>> print addressBook[' Fred'][3]

0123456789

In the second case we indexed the returned list to get only the telephone number. By
creating some variables and assigning the appropriate index values we can make this
much easier to use:

>>> pane =
>>> street
>>> town =
>>> tel =3

1

NIl O

And now we can use those variables to find out Rose's town:

>>> print addressBook[' Rose'][t own]
SomePl ace

Noticethat whereas' Rose' was in quotes because the key is a string, thet own is not
becauseit is a variable name and Python will convert it to the index value we assigned,
namdy 2. At this point our Address Book is beginning to resemble a usabl e database
application, thanks largely to the power of dictionaries. It won't take a lot of extra work
to save and restore the data and add a query prompt to allow us to specify the data we
want. We will do that as we progress through the other tutorial topics.

Dueto their internal structure dictionaries do not support very many of the collection
operators that we've seen so far. None of the concatenation, repetition or appending
operations work. To assist us in accessing the dictionary keys there is an operation that
we can use, keys(), which returns alist of al the keysin adictionary. For example to
get alist of all the names in our address book we could do:

>>> print addressBook. keys()
["Fred',' Rose']

Note however that dictionaries do not store their keys in the order in which they are
inserted so you may find the keys appear in a strange order, indeed the order may even
change over time. Don't worry about that, you can still use the keys to access your data
and the right value will still come out OK.

D:\DOC\HomePagetutor\tutdata.htm Page 48 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

VBScript Dictionaries

VBScript provides a dictionary object which offers similar facilities to the Python
dictionary but the usage is slightly different. To create a VBScript dictionary we haveto
declare avariable to hold the object, then create the object, finally we can add entries to
the new dictionary, likethis:

Dimdict ' Create a variable.

Set dict = CreateQoject("Scripting.Dictionary")
dict.Add "a", "Athens" ' Add some keys and itens.
di ct. Add "b", "Bel grade"

dict.Add "c", "Cairo"

Noticethat the Cr eat eObj ect function specifies that we are creating a

"Scripting. Dictionary" object, thatisaDi cti onary object fromthe VBScript's
Scri pti ng module. Don't worry too much about that for now, we'll discussit in more
depth when we look at objects later in the tutor. Hopefully you can at |least recognize
and recall the concept of using an object from a modul e from the simpl e sequences topic
earlier. The other point to noticeis that we must use the keyword Set when assigning
an object to avariable in VBScript.

Now we access the data like so:

item=dict.Item("c") ' Cet the item
dict.Item"c") = "Casablanca” ' Change the item

There are also operations to remove an item, get alist of all the keys, check that a key
exists etc.

Hereis complete but simplified version of our address book examplein VVBScript:

<scri pt | anguage=VBScri pt >

Di m addr essBook

Set addressBook = CreateCbject("Scripting.Dictionary")

addr essBook. Add "Fred", "Fred, 9 Sonme St, Anytown, 0123456789"
addr essBook. Add "Rose", "Rose, 11 Nother St, SonePl ace, 0987654321"

MsgBox addressBook. I ten(" Rose")
</script>

D:\DOC\HomePagetutor\tutdata.htm Page 49 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Thistime, instead of using alist, we have stored all the data as a single string. We then
access and print Rose's details in a message box.

JavaScript Dictionaries

JavaScript doesn't really have a dictionary object of its own, although if you are using
Internet Explorer you can get access to the VBScript Scri pti ng. Di cti onary object
discussed above, with al of the samefacilities. But sinceit's really the same object |
won't cover it further here. Finally JavaScript arrays can be used very much like
dictionaries but well discuss that in the array section bel ow.
If you're getting a bit fed up, you can jump to the next chapter at this point.
Remember to come back and finish this one when you start to come across types
of data we haven't mentioned so far.

Other Collection Types
Array or Vector

The array is one of the earlier collection types in computing history. It is basically alist
of items which are indexed for easy and fast retrieval. Usually you have to say up front
how many items you want to store. It is this fixed size feature which distinguishes it
fromthe list data type discussed above. Python supports arrays through a module but it
is rarely needed because the built in list type can usually be used instead. VB Script and
JavaScript both have arrays as a data type, so let's briefly look at how they are used:

VBScript Arrays

In VBScript array is afixed length collection of data accessed by a numerical index. Itis
declared and accessed likethis:

D m AnArray(42) A 43! el enent array
AnArray(0) = 27 ' index starts at O
AnArray(1) = 49

nyVariable = AnArray(1) ' read the val ue

Note the use of the Di mkeyword. This dimensions the variable. Thisisaway of teling
VB Script about the variable, if you start your script with OPTI ON EXPLI CI T VBScript
will expect you to Di many variables you use, which many programming experts believe

D:\DOC\HomePagetutor\tutdata.htm Page 50 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

is good practice and |eads to more reliable programs. Also notice that we specify the last
valid index, 42 in our example, which means the array actually has 43 & ements because
it starts at 0.

Notice also that in VB Script we use parentheses to dimension and index the array, not
the square brackets used in Python and, as we'll soon see, JavaScript.

As with Python lists we can declare multiple dimensional arrays to modd tables of data,
for our address book example:

Dm MyTable(2,3) ' 3 rows, 4 colums

MyTabl e(0,0) = "Fred" ' Populate Fred's entry
MyTabl e(0,1) = "9 Sone Street”

MyTabl e(0, 2) = "Anyt own"

MyTabl e(0,3) = "0123456789"

MyTabl e(1,0) = "Rose" ' And now Rose. ..
...and so on...

Unfortunately there is no way to populate the data all in one go as we did with Python's
lists, we have to popul ate each field one by one. If we combine VB Scripts dictionary
and array capability we get amost the same usability as we did with Python. It looks like
this.

<scri pt | anguage=VBScri pt>
Di m addr essBook
Set addressBook = CreateCbject("Scripting.Dictionary")

D m Fred(3)

Fred(0) = "Fred"
Fred(1) = "9 Sone St"
Fred(2) = "Anytown"
Fred(3) = "0123456789"

addr essBook. Add " Fred", Fred

MsgBox addressBook.ltem("Fred")(3) ' Print the Phone Nunber
</script>

Thefinal aspect of VBScript arrays that | want to consider is the fact that they don't
need to befixed in sizeat al! However this does not mean we can just arbitrarily keep
adding elements as we did with our lists, rather we can explicitly resize an array. For this
to happen we need to declare a Dynamic array which we do, quite simply by omitting
thesize likethis:

D:\DOC\HomePagetutor\tutdata.htm Page 51 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Dim DynArray() ' no size specified

Toresizeit we use the ReDi mcommand, like so:

<script | anguage="VBScri pt">

Di m DynArray()

ReDi m DynArray(5) ' Initial size =5

DynArray(0) = 42

DynArray(4) = 26

MsgBox "Before: " & DynArray(4) ' prove that it worked
Resize to 21 elenents keeping the data we al ready stored

ReDi m Preserve DynArray(20)

DynArray(15) = 73

MsgBox "After Preserve: " & DynArray(4) & " " & DynArray(15)' dd and new st

' Resize to 51 itens but lose all data

Redi m DynArray(50)

MsgBox "After: " & DynArray(4) & " Oops, Wwere did it go?"

</script>

As you can seethisis not so convenient as alist which adjusts its length automatically,
but it does give the programmer more control over how the program behaves. This level
of control can, amongst other things improve security since some viruses can exploit
dynamically re-sizable data stores.

JavaScript Arrays

Arrays in JavaScript arein many ways a misnomer. They are called arrays but are
actually a curious mix of the features of lists, dictionaries and traditional arrays. At the
simplest level we can declare anew Array of 10 items of some type, like so:

var items = new Array(10);

We can now popul ate and access the e ements of the array like this:

items[4] = 42;
items[7] = 21;
var aValue = itens[4];

However JavaScript arrays are not limited to storing a single type of value, we can
assign anything to an array e ement:

D:\DOC\HomePagetutor\tutdata.htm Page 52 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

items[9] = "A short string”;
var nsg = itens[9];

Also we can creste arrays by providing alist of items, like so:

var noreltens = new Array("one","two","three", 4,5, 6);
aVal ue = noreltens| 3];
nsg = noreltens[0];

Another feature of JavaScript arrays is that we can determine the length through a
hidden property called | engt h. We access the length like this:

var size = itens.|ength;

Notice that once again the syntax for this uses an nane. pr oper ty format and is very
like calling a function in a Python module but without the parentheses.

As usual, JavaScript arrays start indexing at zero. However JavaScript array indexes are
not limited to numbers, we can use strings too, and in this case they become al most
identical to dictionaries! We can also extend an array by simply assigning avalueto an
index beyond the current maximum, we can see these features in use in the following
code segment:

itenms[42] = 7,

norel tens["foo"] = 42;

nmsg = noreltens["fo0"];

Finally, let's look at our address book example again using JavaScript arrays.
<scri pt | anguage="JavaScri pt">

var addressBook = new Array();

addr essBook["Fred"] = "Fred, 9 Sonme St, Anytown, 0123456789";
addr essBook["Rose"] = "Rose, 11 Nother St, SonePl ace, 0987654321";

document . wri t e(addr essBook. Rose) ;
</script>

Notice that we access the key as if it were a property likel engt h.

D:\DOC\HomePagetutor\tutdata.htm Page 53 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Stack

Think of a stack of trays in arestaurant. A member of staff puts a pile of clean trays on
top and these are removed one by one by customers. The trays at the bottom of the
stack get used last (and least!). Data stacks work the same way: you push an item onto
the stack or pop one off. The item popped is always the last one pushed. This property
of stacksis sometimes called Last In First Out or LIFO. One useful property of stacksis
that you can reverse alist of items by pushing the list onto the stack then popping it off
again. Theresult will be the reverse of the starting list. Stacks are not built in to Python,
VBScript or JavaScript. Y ou have to write some program code to implement the
behavior. Lists are usually the best starting point since like stacks they can grow as
needed.

Bag

A bag is a collection of items with no specified order and it can contain duplicates. Bags
usually have operators to enable you to add, find and remove items. In our languages
bags arejust lists.

Set

A set has the property of only storing one of each item. Y ou can usually test to seeif an
itemisin aset (membership). Add, remove and retrieve items and join two sets together
in various ways corresponding to set theory in math (eg union, intersect etc). VBScript
and JavaScript do not implement sets directly but you can approximate the behavior
fairly easily using dictionaries.

Since Python version 2.3 sets are supported via the sets module, although this
functionality is considered experimental and from version 2.4 will be built in to the
Python core language.

The basic usage until thenislikethis:

>>> jnport sets

>>> A = sets.Set() # create an enpty set
>>> B = sets.Set([1,2,3]) # a 3 el ement set
>>> C = sets. Set([3,4,5])

>>> D = sets. Set([6,7,8])

>>> # Now try out sone set operations

>>> B. uni on(Q)

Set([1,2,3,4,5])

D:\DOC\HomePagetutor\tutdata.htm Page 54 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

>>> B.intersection(CQ)

Set ([3])

>>> B.issuperset(sets. Set([2]))
True

>>> sets. Set([3]).issubset (0O
True

>>> C.intersection(D) == A
True

There are quite a number of other set operations but these should be enough for now.
Queue

A queueis rather like a stack except that thefirst iteminto a queueis also thefirst item
out. Thisisknown as First In First Out or FIFO behavior. Thisis usualy implemented
using alist or array.

There's awhole bunch of other collection types but the ones we have covered are the
main ones that you are likely to come across. (And in fact we'll only be using a few of
the ones we've discussed in this tutor, but you will see the others mentioned in articles
and in programming discussion groups!)

Files

As a computer user you should be very familiar with files - they form very basis of
nearly everything we do with computers. It should be no surprise then, to discover that
most programming languages provide a specia file type of data. However files and the
processing of them are so important that | will put off discussing themtill later when
they get a whol e topic to themselves.

Datesand Times

Dates and times are often given dedicated types in programming. At other times they are
simply represented as a large number (typically the number of seconds from some
arbitrary date/time!). In other cases the data typeis what is known as a complex type as
described in the next section. This usually makes it easier to extract the month, day,

hour etc. We will take a brief ook at using the Python t i me modulein alater topic.
Both VBScript and JavaScript have their own mechanisms for handling time but | won't
be discussing them further.

Complex/User Defined

D:\DOC\HomePagetutor\tutdata.htm Page 55 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Sometimes the basic types described above are inadequate even when combined in
collections. Sometimes, what we want to do is group severa bits of data together then
treat it as asingleitem. An example might be the description of an address:

a house number, a street and atown. Finally there's the post code or zip code.

Most languages allow us to group such information together in arecord or structure or
with the more modern, object oriented version, aclass.

VBScript

In VBScript such arecord definition looks like:

Cl ass Address
Publ i ¢ HsNunber
Public Street
Publ i c Town
Publ i ¢ Zi pCode
End C ass

The Publ i ¢ keyword simply means that the data is accessible to the rest of the
program, it's possible to have Pr i vat e datatoo, but we'll discuss that later in the
course.

Python

In Python it's only alittle different:

>>>cl| ass Address:
def __init__(self, Hs, St, Town, Zip):
sel f. HsNunber = Hs
self.Street = St
sel f. Town = Town
sel f. Zi pCode = Zip

That may look alittle arcane but don't worry I'll explain what the def

_init__(...) andsel f bits mean in the section on object orientation. One thing to
note is that there are two underscoresat eachendon __init __. ThisisaPython
convention that we will discuss later. Also you need to use the spacing shown above, as
welll explain later Python is a bit picky about spacing. For now just make sure you copy
the layout above.

D:\DOC\HomePagetutor\tutdata.htm Page 56 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Some peopl e have had problems trying to type this example at the Python prompt. At
the end of this chapter you will find a box with more explanation, but you can just wait
till we get the full story later in the courseif you prefer. If you do try typing it into
Python then please make sure you copy the indentation shown. As you'll seelater
Python is very particular about indentation levels.

The main thing | want you to recognizein all of thisis that we have gathered several
pieces of data into a single structure.

JavaScript

JavaScript provides a slightly strange name for its structure format, namely f unct i on!
Now functions are normally associated with operations not collections of data however
in JavaScript's case it can cover either. To create our address object in JavaScript we do
this.

function Address(Hs, St, Town, Zi p)

{
this. HSNum = Hs;
this.Street = St;
this. Town = Town;
t hi s. Zi pCode = Zip;
}

Once again the end result is agroup of data items that we can treat as a single unit.
Accessing Complex Types

We can assign a complex data type to a variable too, but to access the individual
fields of the type we must use some special access mechanism (which will be defined by
the language). Usually thisis a dot.

Using VBScript

To consider the case of the address class we defined above we would do thisin
VBScript:

Di m Addr
Set Addr = New Address

D:\DOC\HomePagetutor\tutdata.htm Page 57 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Addr . HsNunber = 7

Addr. Street = "High St"
Addr. Town = " Anyt own"
Addr . Zi pCode = "123 456"

MsgBox Addr.HsNumber & " " & Addr. Street & " " & Addr. Town

Herewefirst of all Dimension anew variable, Addr , using Di mthen we use the

Set keyword to create a new instance of the Addr ess class. Next we assign values to
the fields of the new address instance and finally we print out the address in a Message
Box.

And in Python

And in Python, assuming you have already typed in the class definition above:

Addr = Address(7,"H gh St","Anytown", "123 456")
print Addr.HsNunber, Addr.Street, Addr.Town

Which creates an instance of our Addr ess type and assigns it to the variable addr . In
Python we can pass the field values to the new object when we create it. We then print
out the HsNunber and St r eet fields of the newly created instance using the dot
operator. You could, of course, create several new Address instances each with their
own individual values of house number, street etc. Why not experiment with this
yourself? Can you think of how this could be used in our address book example from
earlier in thetopic?

JavaScript too

The JavaScript mechanismis very similar to the others but has a couple of twists, as
well see in a moment. However the basic mechanism is straightforward and the one |
recommend you use:

var addr = new Address(7, "H gh St", "Anytown", "123 456");

docunent.wite(addr. HSNum + " " + addr.Street + " " + addr. Town);

One final mechanism that we can use in JavaScript isto treat the object like a dictionary
and use thefield name as a key:

docunent . wite(addr['HsNum] + " " + addr[' Street'] + " " + addr['Town']);

D:\DOC\HomePagetutor\tutdata.htm Page 58 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

| can't really think of any good reason to use this form other than if you were to be given
the field name as a string, perhaps after reading afile or input from the user of your
program (we'll see how to do that later too).

User Defined Operators

User defined types can, in some languages, have operations defined too. Thisisthe basis
of what is known as object oriented programming. We dedicate a whol e section to this
topic later but essentially an object is a collection of data € ements and the operations
associated with that data, wrapped up as a single unit. Python uses objects extensively in
its standard library of modules and also allows us as programmers to create our own
object types.

Object operations are accessed in the same way as data members of a user defined type,
viathe dot operator, but otherwise look like functions. These special functions are called
methods. We have aready seen this with the append() operation of alist. Recall that
to useit we must tag the function call onto the variable name:

>>> | jstObject =[] # an enpty |i st

>>> | j st Obj ect. append(42) # a nethod call of the |list object
>>> print |istOoject

[42]

When an object type, known as aclass, is provided in a Python modul e we must import
the module (as we did with sys earlier), then prefix the object type with the module
name when creating an instance that we can storein a variable (while still using the
parentheses, of course). We can then use the variable without using the modul e name.

Wewill illustrate this by considering a fictitious modul e meat which provides a Spam
class. Weimport the module, create an instance of Spam, assigning it the name
my Spamand then use my Spamto access its operations and data like so:

>>> jnport meat

>>> mySpam = neat. Spanm() # create an instance, use nodul e nane
>>> mySpam slice() # use a Spam operation

>>> print nySpamingredients # access Spam data

{"Pork":"40% , "Ham':"45% , "Fat":"15% }

D:\DOC\HomePagetutor\tutdata.htm Page 59 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

In the first line we import the (non-existent!) module neat into the program. In the
second line we use the meat modul e to create an instance of the Spam class - by calling
itasif it wereafunction! In thethird line we access one of the Spam class's operations,
slice(), treating the object (nmySpam) asif it were amodule and the operation werein
the module. Finally we access some data from within the my Spamobject using the same
modul e like syntax.

Other than the need to create an instance, there’s no real difference between using
objects provided within modules and functions found within modules. Think of the
object name simply as a label which keeps related functions and variables grouped
together.

Another way to look at it is that objects represent real world things, to which we as
programmers can do things. That view is where the original idea of objects in programs
came from: writing computer simulations of real world situations.

Both VBScript and JavaScript work with objects and in fact that's exactly what we have
been using in each of the Address examples above. We have defined a class and then
created an instance which we assigned to a variable so that we could access the
instance's properties. Go back and review the previous sections in terms of what we've
just said about classes and objects. Think about how classes provide a mechanism for
creating new types of datain our programs by binding together the data and operations
of the new type.

Python Specific Operators

In this tutor my primary objectiveis to teach you to program and although | use Python
in the tutor there is no reason why, having read this, you couldn’t go out and read about
another language and use that instead. Indeed that’s exactly what | expect you to do
since no single programming language, even Python, can do everything. However
because of that objective | do not teach all of the features of Python but focus on those
which can generally be found in other languages too. As aresult there are several
Python specific features which, while they are quite powerful, | don’t describe at all, and
that includes special operators. Most programming languages have operations which
they support and other languages do not. It is often these 'unique’ operators that bring
new programming languages into being, and certainly are important factorsin
determining how popular the language becomes.

D:\DOC\HomePagetutor\tutdata.htm Page 60 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

For exampl e Python supports such relatively uncommon operations as list slicing (
spani X: Y]) for extracting a section (or slice) out from the middle of alist(or string, or
tuple) and tupleassignment (X, Y = 12, 34) which allows usto assign multiple
variable values at onetime.

It also has the facility to perform an operation on every member of a collection using its
map() function which we describe in the Functional Programming topic. There are
many more, it’s often said that " Python comes with the batteries included”. For details
of how most of these Python specific operations work you'll need to consult the Python
documentation.

Findly, it's worth pointing out that although | say they are Python specific, that is not to
say that they can’'t be found in any other languages but rather that they will not all be
found in every language. The operators that we cover in the main text are generally
availablein someformin virtually al modern programming languages.

That concludes our look at the raw materials of programming, let’s move onto the more
exciting topic of technique and see how we can put these materials to work.

Mor e information on the Address example

Although, as | said earlier, the details of this example are explained later, some readers
have found difficulty getting the Python example to work. This note gives aline by line
explanation of the Python code. The complete code for the example looks like this:

>>> c| ass Addr ess:
def __init__ (self, Hs, St, Town, Zip):
sel f. HsNunber = Hs
self.Street = St
sel f. Town = Town
sel f. Zip_Code = Zp

>>> Addr = Address(7,"High St","Anytown", "123 456")
>>> print Addr.HsNunmber, Addr. Street

Hereis the explanation:

>>> c| ass Address:

D:\DOC\HomePagetutor\tutdata.htm Page 61 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Thecl ass statement tells Python that we are about to define a new type called, in this
case, Addr ess. The colon indicates that any indented lines following will be part of
the class definition. The definition will end at the next unindented line. If you are using
IDLE you should find that the editor has indented the next line for you, if working at a
command line Python prompt in an MS DOS window then you will need to manually
indent the lines as shown. Python doesn't care how much you indent by, just so long as
it is consistent.

def _ init_ (self, Hs, St, Town, Zip):

The first item within our class is what is known as a method definition. One very
important detail is that the name has a double underscore at each end, this is a Python
convention for names that it treats as having special significance. This particular
methodiscalled __i nit__ andisaspecial operation, performed by Python, when we
create an instance of our new class, we'll seethat shortly. The colon, as before, simply
tells Python that the next set of indented lines will be the actual definition of the
method.

sel f. HsNunber = Hs

This line plus the next three, al assign values to theinternal fields of our object. They
areindented fromthe def statement to tell Python that they constitute the actual
definition of the__i ni t __ operation.The blank line tells the Python interpreter that
the class definition is finished so that we get the >>> prompt back.

>>> Addr = Address(7,"High St","Anytown","123 456")

This creates a new instance of our Address type and Python uses the

__init__ operation defined above to assign the values we provide to the internal
fields. Theinstanceis assigned to the Addr variable just like an instance of any other
data type would be.

>>> print Addr.HsNunber, Addr. Street

D:\DOC\HomePagetutor\tutdata.htm Page 62 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Data 22/01/2006

Now we print out the values of two of theinternal fields using the dot operator to
access them.

As | said we cover al of thisin more detail later in the tutorial. The key point to take
away is that Python allows us to create our own data types and use them pretty much
like the built in ones.

Pointsto remember

* Variables refer to data and may need to be declared before being defined.

* Data comes in many types and the operations you can successfully perform will
depend on the type of data you are using.

* Simple data types include character strings, numbers, Boolean or ‘truth’ values.

* Complex data types include collections, files, dates and user defined data types.

* There are many operators in every programming language and part of learning
anew language is becoming familiar with both its data types and the operators
availablefor those types.

* The same operator (e.g. addition) may be available for different types, but the
results may not be identical, or even apparently rel ated!

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutdata.htm Page 63 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

More Sequences and Other Things

What will we cover?

We introduce a new tool for entering Python programs.

We review the use of variables to store information until we need it.
We discuss comments and why they are needed

We combine longer sequences of commands to perform a task.

OK, Now we know how to type simple single entry commands into Python and have
started to consider data and what we can do with it. In doing so we typed in afew
longer sequences of 5-10 lines. We are getting close to being able to writereally quite
useful programs but with one big snag: every time we exit Python we |ose our programs.
If you have been doing the VBScript or JavaScript examples you will see that you have
stored those examples in files and so can run them repeatedly, we need to do the same
with Python. | already mentioned that we can do this using any text editor, like notepad
or pico, say, and saving thefile with a .py file extension. Y ou can then run the file from
the command prompt as described in the Getting Started topic. However, thereis an
easier way.

Thejoy of being IDLE

When you installed Python you also installed a useful application, itself writtenin
Python, called IDLE. IDLE iswhat is known as an I ntegrated Devel opment
Environment, that isto say it includes severa tools that help the programmer al
wrapped up in asingle application. | won't be looking at IDLE in depth here, but the
two features that | want to highlight are the fact that it provides an enhanced version of
the Python >>> prompt, complete with syntax highlighting (That is, displaying different
features of the language in different colours) and other nice features, plus a nice Python
specific text editor which allows you to run your programs directly from within IDLE.

| strongly recommend that, if you haven't already done so, you give IDLE atry. The
best place to start, once you find the right way to start IDLE on your Operating System,
istovisit Danny Yoo's excellent tutorial.

Thereisaso afull tutorial on using IDLE on the Python web site under the IDLE topic.

D:\DOC\HomePag&ttutor\tutseg2.htm Page 64 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

If you are using MS Windows there is yet another option in the form of

PythonWin which you can download as part of the win32all package. This gives access
to all the Windows MFC low level programming functions and importantly, a very good
aternative to IDLE. Pythonwin only works in Windows but is, in my opinion, slightly
superior to IDLE. On the other hand IDLE is standard with Python so more people tend
to useit and it works on most platforms. Whichever you choosg, it's nice to be given a
choicel

Finally, if you prefer a simple approach, you can find several text editors that support
programming in Python in various ways. The vim editor provides syntax highlighting
(colouring of key words etc), emacs has afull editing mode for Python and Sciteisa
very lightweight editor that provides Python syntax highlighting and other nice features.

If you go down the text editor route you will likely find it most convenient to have three
windows open on your screen at once:

1. The editor where you type in and save your source code

2. A Python session where you try things out at the >>> prompt before adding
them to your program in the editor and

3. An operating system command prompt used to run the program to test it.

Y our author personally prefers the 3 window approach, but most beginners seem to
prefer the all-in-one style of IDLE or Pythonwin. The choiceis entirely up to you.

And if you are using JavaScript or VBScript | recommend using one of the editors
mentioned above and a suitable web browser, say Internet Explorer, opened at thefile
you are working on. To test changes just hit the Reload button in the browser.

A quick comment

One of the most important of programming tools is one that beginners often fed is
useless on first acquai ntance - comments. Comments are just lines in the program which
describe what's going on. They have no effect whatsoever on how the program operates,
they are purely decorative. They do, however, have an important role to play - they tell
the programmer what's going on and more importantly why. Thisis especially important
if the programmer reading the codeisn't the one who wroteiit, or, it's along time since
he/she wrote it. Once you've been programming for awhile you'll really appreciate good
comments. | have actually been adding comments to some of the code fragments that
you've seen already, they were the blue bits of the lines with a# (Python) or

D:\DOC\HomePag&ttutor\tutseg2.htm Page 65 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

" (VBScript) symbol in front of them. From now on I'll be commenting the code
fragments that | write. Gradually the amount of explanatory text will diminish as the
explanation appears in comments instead.

Every language has a way of indicating comments. In VBScript it's REM(for Remark)
or, more commonly, asingle quote' at the beginning of a comment. Everything after
the marker isignored:

REM Thi s never gets displayed
nei ther does this
nmsgBox "This gets displ ayed”

Y ou might recognize REM if you have ever written any MSDOS batch files, since they
use the same comment marker.

Note that the use of a single quote as a comment marker is the reason you can't start a
string with asingle quote in VBScript - VBScript thinks it's a comment!

Pythonusesa # symbol asits comment marker. Anything followinga # isignored:

\Y
X

12 # give v the value 12
v*v # x is v squared

Incidentally thisis very bad commenting style. Y our comment should not merely state
what the code does - we can see that for ourselves! It should explain why it's doing it:

3600 # 3600 is numof secs in an hour
t*3600 # t holds elapsed tinme in hours, so convert to secs

\Y
S

These are much more hel pful comments.

Finally JavaScript uses adouble slash: / / as a comment marker. Once again, everything
after the marker gets ignored.

Some languages allow multi-line comments between a pair of markers, but this can lead
to some obscure faults if the terminating marker is not correctly input. JavaScript allows
multi-line comments by using the pair of markers: / * followed by */, likethis:

<scri pt | anguage="JavaScri pt">

D:\DOC\HomePag&ttutor\tutseg2.htm Page 66 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

docunent.wite("This gets printed\in");
/1 A single |ine comrent

/* Here is a multi line comment. It continues fromthis line
down into this line and even

onto this third Iine. It does not appear in the script output.
It is terminated by a mirror inmage of the opening marker */

docurment .wite("And so does this");
</script>

The important point about comments is that they are there to explain the code to anyone
who tries to read it. With that in mind you should explain any mysterious sections - such
as apparently arbitrary values used, or complex arithmetic formulae etc. And remember,
the puzzled reader might be yourself in a few weeks or months time!

Seguences using variables

We introduced the concept of variables in the Raw Materials topic topic. There we said
they were labels with which we marked our data for future reference. We saw some
examples of using variables too in the various list and address book examples. However
variables are so fundamentally important in programming that | want to do a quick recap
of how we use variables before moving onto new things.

Now, either in IDLE or at Python Prompt(>>>) in the DOS (or Unix) command
window, try typing this:

>> vy = 7
>>> w = 18
>>> X =V o+ W # use our variables in a calcul ation

>>> print X

What's happening hereis that we are creating variables (v, w, x) and manipulating
them. It's rather like using the Mbutton on your pocket calculator to store aresult for
later use.

We can make this prettier by using aformat string to print the result:

>>> print "The sumof %l and % is: %" % (v, w, X)

D:\DOC\HomePag&ttutor\tutseg2.htm Page 67 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

One advantage of format strings is that we can store them in variabl es too:

>>> s = "The sumof % and % is: %"
>>> print s % (v,w, X) # useful if printing sane output with different valu

This makes the print statement much shorter, especially when it contains many val ues.
However it also makes it more cryptic so you have to use your judgment to decide
whether very long lines are more or |ess readabl e than a stored format value. If you keep
the format string beside the print statement, as we did here, then it's not too bad. Finally
one other thing that helpsis to name your variables in such away that they explain what
they are used for. For example instead of calling the format string s | could have called
it sunfFor mat , so that the code looked likethis:

>>> sunfFormat = "The sumof %l and % is: %"
>>> print sunfFormat % (v, w, X) # useful if printing sane output with differ

Now, in a program with several different format strings in use, we could more easily tell
which format is being printed. Meaningful variable names are always a good ideaand I'll
try to use meaningful names where possible. Up until now our variables haven't had
much meaning to convey!

Order matters

By now you might be thinking that this sequence construct is a bit over-rated and
obvious. You would beright in so far asit's fairly obvious, but it's not quite as simple as
it might seem. There can be hidden traps. Consider the case where you want to
‘promote’ all the headingsin an HTML document up alevel:

Now in HTML the headings are indicated by surrounding the text with
<H1>text</ H1> for level 1 headings,

<H2>text</ H2> for level 2 headings,

<H3>text</ H3> for level 3 headings and so on.

The problem is that by the time you get to level 5 headings the heading text is often
smaller than the body text, which looks odd. Thus you might decide to promote all
headings up one levd. It's fairly easy to do that with a simple string substitution in a text
editor, substitute '<H2' with '<H1' and '</H2' with '</H1' and so on.

D:\DOC\HomePag&ttutor\tutseg2.htm Page 68 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

Consider though what happens if you start with the highest numbers - say H4 -> H3,
then do H3 -> H2 and finally H2 -> H1. All of the headings will have moved to H1!
Thus the order of the sequence of actionsis important. The sameisjust as trueif we
wrote a program to do the substitution (which we might well want to do, since
promoting headings may be a task we do regularly).

We've seen several other examples using variables and sequences in the Raw Materials
topic - particularly the various address book examples. Why not think up a few
examples for yourself? Once you've done that we'll move on to a case study that we will
build on as we move through the tutorial, improving it with each new technique we
learn.

A Multiplication Table

I'm now going to introduce a programming exercise that we will develop over the next
few chapters. The solutions will gradually improve as we learn new techniques.

Recall that we can type long strings by enclosing themin triple quotes? Let's use that to
construct a multiplication table:

>>> g = """

1x 12 = %

2 x 12 = %

3 x 12 = %

4 x 12 = %l

be careful - you can't put comrents inside
>>> # strings, they'Il beconme part of the string!
>>> print s % (12, 2*12, 3*12, 4*12)

By extending that we could print out the full 12 timestablefrom1to 12. But istherea
better way? The answer isyes, let's seewhat it is.

| Points to remember

IDLE is across platform development tool for writing Python programs.
* Comments can make programs clearer to read but have no effect on the
operation of the program
* Variables can store intermediate results for later use

Previous Next Contents

D:\DOC\HomePag&ttutor\tutseg2.htm Page 69 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

More Sequences 22/01/2006

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePag&ttutor\tutseg2.htm Page 70 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

L ooping - Or theart of repeating onesalf!

| What will we cover?

®* How to use loops to cut down on repetitive typing.
* Different types of loop and when to use them.

In the last exercise we printed out part of the 12 times table. But it took alot of typing
and if we needed to extend it, it would be very time consuming. Fortunately thereis a
better way and it's where we start to see the real power that programming languages
offer us.

FOR Loops

What we are going to do is get the programming language to do the repetition,
substituting a variable which increases in value each time it repeets. In Python it looks
likethis:

>>>for i in range(1, 13):
print "% x 12 = %" % (i, i*12)

Note 1: Weneed ther ange(1, 13) to specify 13 becauser ange() generates fromthe
first number up to, but not including, the second number. This may seem somewhat
bizarre at first but there are reasons and you get used to it.

Note 2: Thef or operator in Python is actually a foreach operator in that it applies the
subsequent code sequence to each member of a collection. In this case the collection is
thelist of numbers generated by r ange() . You can prove that by typing pri nt
range(1, 13) at the python prompt and seeing what gets printed.

Note 3: Thepri nt lineisindented or spaced further in than thef or line aboveit. That
isavery important point sinceit's how Python knows that the pri nt is the bit to repest.
There can be more than a single line indented too, Python will repest all of the lines that
areindented for each item in the collection. Also, it doesn't matter how much
indentation you use so long as it's consistent.

D:\DOC\HomePagettutor\tutloops.htm Page 71 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

Note 4: In the interactive interpreter you need to hit return twice to get the program to
run. Thereason is that the Python interpreter can't tell whether thefirst oneis another
line about to be added to the loop code or not. When you hit Enter a second time
Python assumes your finished entering code and runs the program.

So how does the program work? Let's step through it.
First of al, python uses the range function to create alist of numbers from 1 to 12.

Next python makesi equal to thefirst valuein thelist, in this case 1. It then executes
the bit of code that is indented, using the valuei = 1:

print "od x 12 = %" % (1, 1*12)

Python then goes back to thef or lineand setsi to the next valuein thelist, thistime 2.
It again executes the indented code, this timewith i = 2:

print "vd x 12 = %" % (2, 2*12)

It keeps repesting this sequence until it hasseti to al thevaluesin thelist. At that point
it moves to the next command that is not indented - in this case there aren't any more
commands so the program stops.

Here'sthe sameloop in VBScript:

The simplest VBScript loop construct is called aFor . . . Next loop, and is used as
shown:

<script |anguage = "VBScript">

For | =1 To 12

MsgBox | & " x 12 =" & 1*12
Next
</script>

Thisis much more explicit and easier to see what is happening. Thevalueof | varies
from 1 through to 12 and the code before the Next keyword is executed. In this case it
just prints the result in a dialog box as we've seen before. The indentation is optional but
makes the code easier to read.

D:\DOC\HomePagettutor\tutloops.htm Page 72 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

Note however that although the VBScript appears more obvious, the Python versionis
ultimately more flexible as well see in a moment.

And in JavaScript

JavaScript uses af or construct that is common in many programming languages, being
modeled on C. It looks likethis:

<Scri pt Language = "JavaScript">

for (i=1; i <= 12; i++){
docurment . write(i + " x 12 =" + i*12 + "
");
1

</ Scri pt>

Note: This construct has 3 parts inside the parentheses:

® aninitializng part:i = 1 executed just once, before anything else,

* atestpart:i <= 12 whichis executed before each iteration and

® anincrement part: i ++ which is shorthands for "increment i by 1", and is
executed after each iteration.

Notice al so that JavaScript encloses the repeated code (the loop body) in braces{} and
although that is all that is needed, technically speaking, it is considered good practiceto
indent the code inside the braces too, just to improve readability.

The loop body will only execute if the test part is true. Each of these parts can contain
arbitrary code but the test part must eval uate to a boolean value.

Mor e about the Python for construct

The Python for loop iterates over a sequence. A Sequence in Python, lest you forgot, is
either astring, alist or atuple. So we can write for loops that act on any of those. Let's
try printing the letters of a word one by one using a for loop with a string:

>>> for ¢ in '‘word : print c

Notice how the |etters were printed, one per line. Notice too that where the body of the
loop consists of asingle line we can add it on the same line after the colon(:). The colon
iswhat tells Python that there's a block of code coming up next.

D:\DOC\HomePagettutor\tutloops.htm Page 73 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

We can also iterate over atuple:

>>> for word in ('one',"wrd , "after', 'another'): print word

This time we got each word on aline. Of course we could put them all on one line using
the comma-at-the-end-trick. Simply putting a comma at the end of a print statement
prevents Python from printing a new line character so that the next print statement
carries on where the previous one | eft off.

>>> for word in (‘one', '"word , "after', '"another'): print word,

See how the words now appear as asingle line?

We have already seen f or with alist (becauser ange() generatesalist) but for
completeness we will do it explicitly:

>>> for itemin ['one', 2, 'three']: print item

Thereis one caveat when using foreach style loops like this. The loop gives you a copy
of what was in the collection, you can't modify the contents of the collection directly. So
if you need to modify the collection you have to use an awkward kludge involving the
index of the collection, likethis:

myList =11, 2,3, 4]

for index in range(len(nyList)):
nyList[index] +=1

print myLi st

That will increment each entry in nmyLi st . If we had not used the index trick we would
simply have incremented the copied items but not changed the original list.

The other gotcha with for loops is that you can't del ete items from the col lection that
you are iterating over, otherwise the loop will get confused. It's a bit like the old cartoon
character cutting off the branch of atree while sitting on it! The best way to deal with

D:\DOC\HomePagettutor\tutloops.htm Page 74 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

this situation is to use a different kind of 1oop, which we are going to discuss next.
However to understand how to remove e ements safely we need to wait until we cover
yet another topic, that of branching, so we will explain this subject when we get there.

In version 2.2 of Python some new tricks were added to make for loops even more
powerful but we'll cover them later. Meanwhile it's worth noting that VB Script and
JavaScript each have loop constructs for |ooping over the e ementsin a collection. |
won't discuss them in detail here, but the VBScript construct is f or

each...in... andtheJavaScript versionisfor...in... Youcanlook themupin
the relevant help pages if you want to see the details.

WHILE Loops

FOR loops are not the only type of looping construct available. Which is just as well,
since FOR loops require us to know, or be able to calculate in advance, the number of
iterations that we want to perform. So what happens when we want to keep doing a
specific task until something happens but we don't know when that something will be?
For example, we might want to read and process data from afile, but we don't know in
advance how many data items the file contains. We just want to keep on processing data
until we reach the end of thefile. That's possible, but difficult,ina FORloop.

To solve this problem we have another type of loop: the WHILE |oop.

It looks like this in Python:

>>>j =1

>>> while j <= 12:

. print "% x 12 = %" % (j, j*12)
i =] +1

Let's walk through what's happening.

1. Firstweinitiaizej to 1, initidizing the control variable of awhileloop isavery
important first step, and a frequent cause of errors when missed out.

2. Next we execute thewhi | e statement itself, which evaluates a boolean
expression

3. If theresult is Trueit proceeds to execute the indented block which follows. In
our examplej islessthan 12 so we enter the block.

4. We execute the print statement to output the first line of our table.

D:\DOC\HomePagettutor\tutloops.htm Page 75 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

5. Thenext line of the block increments the control variable, j . In this caseit's the
last indented line, signifying the end of the while block.

6. Wego back up to thewhi | e statement and repesat steps 4-6 with our new value
of j .

7. Wekeep on repesting this sequence of actions until j reaches 13.

8. At that point thewhi | e test will return False and we skip past the indented
block to the next line with the same indentation as the whi | e statement.

9. Inthis casethere are no other lines so the program stops.

By now that should fed pretty straightforward. Just one thing to point out - do you see
the colon (:) at the end of thewhi | e (and f or) lines above? That just tells Python that
there's a chunk of code (a block) coming up. As well seein a moment, other languages
have their own ways of telling the interpreter to group lines together, Python uses a
combination of the colon and indentation.

VBScript

Let'slook at VBScript's version of the while loop:

<script | anguage="VBScri pt">

DIMJ

J =1

Wiile J <= 12
MsgBox J & " x 12 =" & J*12
J=J+1

Wend

</script>

This produces the same result as before but notice that the loop block is delimited by the
keyword Wend (short for While End obviously!). Other than that it works pretty much
exactly like the Python one.

JavaScript

<scri pt | anguage="JavaScri pt">

j =L

while (j <= 12){
docunment.wite(j," x 12 = ",j*12,"
");
=1+ L
}

D:\DOC\HomePagettutor\tutloops.htm Page 76 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

</script>

As you see the structureis pretty similar just some curly brackets or braces instead of
theWend in VBScript. Note that unlike Python, neither VBScript nor JavaScript need
any indentation, that's purely to make the code more readable.

Finally its worth comparing the JavaScript for and while loops. Recall that the for [oop
looked likethis:

for (j=1, j<=12; j++){....}

Now, that is exactly the same structure as the while loop, just compressed into one line.
Theinitializer, the test condition and the loop modifier are all there clearly seen. Soin
fact a JavaScript for loop is simply awhileloop in a more compact form. It would be
possible to do without the for loop completely and only have while loops, and that's
exactly what some other languages do.

More Flexible L oops

Coming back to our 12 times table at the beginning of this section. The loop we created
isall very wel for printing out the 12 times table. But what about other values? Can you
modify the loop to make it do the 7 times table say? It should look like this:

>>> for j in range(l,13):
print "% x 7 = %" % (j,]*7)

Now this means we have to change the 12 to a 7 twice. And if we want another value
we have to changeit again. Wouldn't it be better if we could enter the multiplier that we
want?

We can do that by replacing the values in the print string with another variable. Then set
that variable before we run the loop:

>>> multiplier = 12
>>> for j in range(1,13):
print "%l x % = %" % (j, multiplier, j*rmultiplier)

That's our old friend the 12 times table. But now to change to the seven times, we only
need to change the value of 'multiplier'.

D:\DOC\HomePagettutor\tutloops.htm Page 77 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

Note that we have here combined sequencing and |oops. We havefirst asingle
command, rnultiplier = 12 followed, in sequence by af or loop.

L ooping the loop

Let's take the previous exampl e one stage further. Suppose we want to print out all of
thetimes tables from 2 to 12 (1 istoo trivial to bother with). All wereally needtodois
set the multiplier variable as part of aloop, like this:

>>> for multiplier in range(2,13):
for j in range(1,13):
print "%l x % = %" % (j,multiplier,j*multiplier)

Notice that the part indented inside thefirst f or loop is exactly the same loop that we
started out with. It works as follows:

1. Weset multiplier to the first value (2) then go round the second loop.
2. Then we set multiplier to the next value (3) and go round the inner loop again,
3. and soon.

This technique is known as nesting loops.

One snag is that al the tables merge together, we could fix that by just printing out a
separator line at the end of thefirst loop, likethis:

>>> for multiplier in range(2, 13):
for j in range(1,13):
print "%l x % = %" % (j,multiplier,j*multiplier)
print M-------oaoa e "

Note that the second print statement lines up with the second ‘for', it is the second
statement in the loop sequence. Remember, the indenting leve is very important in

Python.

Just for comparisons sake |ets see how that looks in JavaScript too:

<script | anguage = JavaScri pt>
for (multiplier=2; multiplier < 13; nultiplier++){
for (j=1, j <= 12 ; j++){
docunent.wite(j, " x ", multiplier, " =", j*multiplier, "
");

D:\DOC\HomePagettutor\tutloops.htm Page 78 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Looping theloop 22/01/2006

docunent . wite("---------------
");

</script>

Experiment with getting the separator to indicate which tableit follows, in effect to
provide a caption. Hint: Y ou probably want to use the multiplier variable and a Python
format string.

Other loops

Some languages provide more looping constructs but some kind of f or and whi | e are
usually there. (Modula 2 and Oberon only provide whi | e loops since while loops can
simulatef or loops - as we saw above.) Other loops you might see are:

do-while
Same as a while but thetest isat the end so the loop always executes at |east
once.

repeat-until
Similar to above but thelogic of thetest isreversed.

GOTO, JUMP, LOORP etc
Mainly seen in older languages, these usually set a marker in the code and then
explicitly jump directly to that marker.

Pointsto remember

® FORIoops repeat a set of commands for a fixed number of iterations.
® I LE loops repeat a set of commands until some terminating condition is met.
They may never execute the body of the loop if the terminating condition is
falseto start with.
® Other types of loops exist but FOR and WHI LE are nearly always provided.
* Pythonfor loopsarereally f or each loops - they operate on alist of items.
* Loops may be nested one inside another.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagettutor\tutloops.htm Page 79 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

Coding Style

What will we cover?

* Several new usesfor comments
* How to layout code using indentation to improve readability
* Anintroduction to the use of modules for storing our programs

Comments

I've already spoken about comments in the ‘More Sequences' section. However there are
some other things we can do with comments and I'll enlarge on those here:

Version history information

It is good practice to create afile header at the start of each file. This should provide
detail s such as the creation date, author, date of |ast change, version and a general
description of the contents. Often alog of changes. This block will appear as a
comment:

HHHBHHBHH R R R R

Modul e: Spam py

Aut hor: A J. Gaul d

Date: 1999/ 09/ 03

Version: Draft 0.4

Thi s nodul e provi des a Spam cl ass whi ch can be

combi ned with any other type of Food object to create
i nteresting neal combi nations.

HHHBHHBHH AR R R R

Log:

1999/ 09/ 01 AJG - File created

1999/ 09/ 02 AJG - Fixed bug in pricing strategy

1999/ 09/ 02 AJG - Didit right this tine!

1999/ 09/ 03 AJG - Added broiling nethod(cf Change Req #1234)
HHHBHHBHH AR R R H R

i mport sys, string, food

D:\DOC\HomePageitutor\tutstyle.htm Page 80 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

Thus when you first open afileit should contain a nice summary of what thefileis for,
whats changed over time and who did it and when. Thisis particularly important if you
are working on ateam project and need to know who to ask about the design or the
changes. There are version control tools available that can help automate the production
of some of this documentation, but they are outside the scope of this tutorial.

Notethat | put the description in between two sets of triple quotes. Thisis a Python
specific trick known as a documentation string that makes the description availableto
Pythons built-in hel p function as we'll see shortly.

Commenting out redundant code

This technique is often used to isolate a faulty section of code. For example, assume a
program reads some data, processes it, prints the output and then saves the results back
to the datafile. If theresults are not what we expect it would be useful to temporarily
prevent the (erroneous)data being saved back to the file and thus corrupting it. We
could simply delete the relevant code but a less radical approach is simply to convert the
lines into comments like so:

data = readData(datafil e)
for itemin data:
resul ts. append(cal cul ateResult(item)
printResults(results)
HEHH T

Comrent out till bug in cal culateResult fixed
for itemin results:
dat aFil e. save(item

HEHBH IR R
print 'Programterm nated

Once the fault has been fixed we can simply del ete the comment markers to make the
code active once more. Some editing tools, including IDLE, have menu options to
comment out a selected block of code, and to uncomment it |ater.

Documentation strings

All languages allow you to create comments to document what a function or module

does, but afew, such as Python and Smalltalk, go one stage further and alow you to

document the function in away that the |anguage/environment can use to provide

interactive help while programming. In Python thisis done using the
"""docunentation""" stringstyle

D:\DOC\HomePageitutor\tutstyle.htm Page 81 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

cl ass Spam
"""A nmeat for conbining with other foods

It can be used with other foods to make interesting neals.
It comes with lots of nutrients and can be cooked using many
di fferent techni ques"""

def __init_ (self):

print Spam __doc__

Note: We can access the documentation string by printing thespecial __doc___
variable. Modules, Functions and classes/methods can al have documentation strings.
For exampletry:

i mport sys
print sys.__doc__

Since Python version 2.2 thereis also ahel p() function within Python that will search
for and print out any helpful documentation on a Python symbol. For example to see the
help on sys. exi t we can do this at the Python prompt:

>>> jnport sys
>>> help (sys.exit)
Hel p on built-in function exit:

exit(...)
exit([status])

Exit the interpreter by raising Systenkxit(status).
If the status is omtted or None, it defaults to zero (i.e., success).
If the status is nuneric, it will be used as the systemexit status.
If it is another kind of object, it will be printed and the system
exit status will be one (i.e., failure).

(END)

To get out of help mode hit the letter 'g'(for quit) when you see then (END) marker. If
more than one page of help is present you can hit the space bar to page through it. If
you are using IDLE, or other IDE, then you likely won't see the (END) marker rather it
will simply display all the text and you need to use the scroll bars to go back and read it.

Block Indentation

D:\DOC\HomePageitutor\tutstyle.htm Page 82 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

Thisis one of the most hotly debated topics in programming. It almost seems that every
programmer has his/her own idea of the best way to indent code. Asit turns out there
have been some studies done that show that at |east some factors are genuingy
important beyond cosmetics - ie they actually help us understand the code better.

The reason for the debate is simple. In most programming languages the indentation is
purely cosmetic, an aid to the reader. (In Python it is, in fact, needed and is essential to
proper working of the program!) Thus:

< script |anguage="VBScript">
For I =1 TO 10
MsgBox |
Next
</script>

Is exactly the same as:

< script |anguage="VBScript">

For | =1 TO 10
MsgBox |

Next

</script>

so far asthe VBScript interpreter is concerned. It's just easier for us to read with
indentation.

The key point is that indentation should reflect the logical structure of the code thus
visually it should follow the flow of the program. To do that it helps if the blocks ook
like blocks thus:

) 9,0,0.0.0,.0.0.9,:0.0,0.9,0,0.9,0,:0.9,0:¢
) 9.9,0.9,0,:9,0,0.9,0,:0.9,9,¢.9.4
) 9.9,0.9,0,:9,0,0.9,0,:0.9,9,¢.9.4
) 9.9,0.9,0,:9,0,0.9,0,:0.9,9,¢.9.4

which reads better than:

D:\DOC\HomePageitutor\tutstyle.htm Page 83 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

) 9,9,:0.9,0,:0.9,0,:0.0,0:¢
) 9,9,0.9,0,0.9,0,0.0,0:¢
XXAKXX

becauseit's clearly al one block. Studies have shown significant improvements in
comprehension when indenting reflects the logical block structure. In the small samples
we've seen so far it may not seem important but when you start writing programs with
hundreds or thousands of lines it will become much more so.

Variable Names

The variable names we have used so far have been fairly meaningless, mainly because
they had no meaning but simply illustrated techniques. In general its much better if your
variable names reflect what you want them to represent. For example in our times table
exercise we used 'multiplier' as the variable to indicate which table we were printing.
That is much more meaningful than simply 'm’ - which would have worked just as well
and been less typing.

Its a trade-off between comprehensibility and effort. Generally the best choiceisto go
for short but meaningful names. Too long a name becomes confusing and is difficult to
get right consistently(for example | could have used
the_table_we_are_printinginsteadof nul tiplier butit'sfar toolong and not
really much clearer.

Saving Your Programs

While the Python interactive interpreter prompt (>>>) is very useful for trying out ideas
quickly, it loses al you type the minute you exit. In the longer term we want to be able
to write programs and then run them over and over again. To do thisin Python we
create atext filewith an extension . py (thisisaconvention only, you could use
anything you like. But it's a good idea to stick with convention in my opinion...). You
can then run your programs from an Operating System command prompt by typing:

$ python spam py

Where spam py isthe name of your Python program file and the $ is the operating
system prompt.

D:\DOC\HomePageitutor\tutstyle.htm Page 84 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

The other advantage of using files to store the programs is that you can edit mistakes
without having to retype the whole fragment or, in IDLE, cursor al the way up past the
errors to reselect the code. IDLE supports having afile open for editing and running it
from the 'Edit|Run modul € menu.

From now on | won't normally be showing the >>> prompt in examples, I'll assume
you are creating the programs in a separate file and running them either within IDLE or
from a command prompt (my personal favourite).

Note for Windows users

Under Windows you can set up afile association for filesending . py within
Explorer. Thiswill allow you to run Python programs by simply double clicking the
filésicon. This should already have been done by theinstaller. Y ou can check by
finding some .py files and trying to run them. If they start (even with a Python error
message) it's set up. The problem you will likely run into at this point is that the files
will runin a DOS box and then immediately close, so fast you scarcely even see them!
There are a couple of options:

* Thefirst way is simplest and involves putting the following line of code at the
end of each program:

raw_i nput ("Hit ENTER to quit")

Which simply displays the message and waits for the user to hit the ENTER or
Return key. We will discussr aw_i nput () inafuturetopic.

® The second technique uses the Windows Explorer settings. The procedureis
fairly standard but may vary according to the version of Windows you have. |
will describe Windows XP Home.
First sdect a. py fileand go to the Tool s- >Fol der Opti ons menuitem. In
thedialog box select theFi | e Types tab. Scroll down till you find the PY file
type and click on it to select it. Click the Advanced button at the bottom. In
the new dialog select open fromthelist and click Edi t . . . Inthe new dialog
you should seethe Appl i cati on. .. linesay something like:

E: \ PYTHON22\ pyt hon. exe "%d" %

Editittoadda-i after thepyt hon. exe, likethis:

E: \ PYTHON22\ pyt hon. exe -i "%" %

D:\DOC\HomePageitutor\tutstyle.htm Page 85 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

Now close all the dialogs.

Thiswill stop Python from exiting at the end of your program and leave you at
the >>> prompt where you can inspect variable values etc, or just exit manually.
(An alternativetrick is to add a new option called Test alongside Open. This
allows you to Right Click in explorer and choose open to run the program and
it close automatically and choose Test to run the program finishing in Python.
The choiceisyours.)

Notefor Unix users

Thefirst line of a Python script file should contain the sequence #! followed by the
full path of python on your system. Y ou can find that by typing, at your shell prompt:

$ which python
On my system the line looks like:
#! [usr/ | ocal / bin/ pyt hon

Thiswill allow you to run the file without calling Python at the same time (after you set
it to be executable via chmod - but you knew that already I'm surel):

$ spam py

Y ou can use an even more convenient trick on most modern Unix systems (including all
Linux distros) which replaces the path information with / usr / bi n/ env/ pyt hon, like
this:

#!' [usr/ bi n/ env/ pyt hon

That will find where Python isin your path automatically. The only snag is where you
may have two or more different versions of Python installed and the script will only
work with one of them (maybe it uses a brand new language feature, say), in that case
you will be better with the full path technique.

This#! line doesn't do any harm under Windows/Mac either, sinceit just looks like a
comment, So those users can put it in too, if their codeis likely to ever be run on a unix
box.

VBScript & JavaScript

D:\DOC\HomePageitutor\tutstyle.htm Page 86 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Little Bit of Style 22/01/2006

You VBScript and JavaScript users can ignore the above, you've already been saving
your programs as files, it's the only way to get them to work!

Pointsto remember

Comments can be used to temporarily prevent code from executing, whichis
useful when testing or 'debugging’ code.

Comments can be used to provide an explanatory header with version history
of typefile.

Documentation strings can be used to provide run-time information about a
module and the objects withinit.

Indentation of blocks of code hel ps the reader see clearly the logical structure
of the code.

By typing a python program into afileinstead of at the Python '>>>' prompt
the program can be saved and run on demand by typing $ pyt hon

pr ognane. py at the command prompt or by double clicking the filename
within an Explorer window on Windows.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePageitutor\tutstyle.htm Page 87 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

Conversing with the user

What will we cover?

How to prompt the user to enter data and how to read that data once it is entered.
We will show how to read both numerical and string based data.

The concepts of stdin and stdout

We look at command line interfaces and how to read data input as command line
arguments.

So far our programs have only dealt with static data. Data that, if need be, we can
examine before the program runs and thus write the program to suit. Most programs
aren't like that. Most programs expect to be driven by a user, at least to the extent of
being told what file to open, edit etc. Others prompt the user for data at critical points.
This aspect of programming is what is referred to as the User Interface and in
commercial programs designing and building the user interfaceis ajob for specialists
trained in human machine interaction and ergonomics. The average programmer does
not have that luxury so must make do with some common sense, and careful thought
about how users will use the program. The most basic feature of a User Interfaceis
displaying output and we have already covered the most primitive way of doing that via
the Python pri nt command (and JavaScript'swri t e() function aswell asthe
VBScript MsgBox dialog). The next step in User Interface design is to take input
directly from the user. The simplest way to do that is for the program to ask for the
input a run time, the next simplest way is for the user to pass the data in when he or she
starts the program, finally we have graphical user interfaces (GUIs) with text entry
boxes etc. In this topic we look at the first two methods, we introduce GUI
programming much later in the tutor because it is significantly more complex.

Let's see how we can get data from a user in anormal Python interactive session running
in IDLE or an OS terminal. Afterwords well try doing the same in a program.

>>> print raw_input(" Type something: ")

Asyou seeraw_i nput () simply displays the given prompt - "Type something” in this
case - and captures whatever the user types in response. Print then displays that
response. We could instead assign it to a variable:

>>> resp = raw_i nput ("What's your nane? ")

D:\DOC\HomePagetutor\tuti nput.htm Page 88 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

>>> print "Hi, %, nice to neet you" % resp

raw_i nput () hasacousincaledi nput (). Thedifferenceis that

raw_i nput () collects the characters the user types and presents them as a string,
whereasi nput () collects them and tries to form them into a number. For example if
the user types '1','2','3' then input will read those 3 characters and convert them into the
number 123.

Let'susei nput to decide which multiplication table to print:

multiplier = input("Wich nmultiplier do you want? Pick a nunber ")
for j in range(1,13):
print "% x % = %" % (j, rmultiplier, j * multiplier)

Unfortunately theres abig snag to using i nput () . That's becausei nput () doesn't just
evaluate numbers but rather treats any input as Python code and tries to executeit. Thus
a knowledgeabl e but malicious user could type in a Python command that deleted afile
on your PC! For this reason it's better to stick tor aw_i nput () and convert the string
into the data type you need using Python's built in conversion functions. Thisis actually

pretty easy:

>>>mul tiplier = int(raw_input("Wich multiplier do you want? Pick a nunber "

>>>for j in range(1, 13):
print "% x % = %" % (j, rmultiplier, j * multiplier)

Y ou see? Wejust wrapped ther aw_i nput () cal inacdl toi nt (). It has the same
effect as using input but is much safer. There are other conversion functions too so that
you can convert to floats etc as well.

So what about using thisin areal program? Y ou recall the address book examples using
adictionary that we created in the raw materials topic? Let's revisit that address book
now that we can write loops and read input data.

create an enpty address book dictionary
addr essBook = {}

read entries till an enpty string
print

name = raw_i nput (" Type the Nane - |eave blank to finish")
while nane !'= "":

D:\DOC\HomePagetutor\tuti nput.htm Page 89 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

entry = raw_i nput ("Type the Street, Town, Phone. Leave blank to finish")
addr essBook[name] = entry
name = raw_i nput (" Type the Nane - |eave blank to finish")

now ask for one to display
nane = raw_i nput ("Wiich name to display?(blank to finish)")
while nane !'= "":

print nane, addressBook[nane]

nane = raw_i nput ("Wiich name to display?(blank to finish)")

That's our biggest program so far, and although the user interface design is a bit clunky
it does the job. We will see how to improveit in alater topic. Some things to notein this
program are the use of the boolean test in the whi | e loops to determine when the user
wants us to stop. Also note that whereas in the raw materials example we used alist to
store the data as separate fields we have just stored it as asingle string here. That's
because we haven't yet covered how to break down a string into separate fields. Well
cover that in alater topic too. In fact the address book program will be cropping up
from time to time through the rest of the tutorial as we gradually turn it into something
useful.

VBScript Input

In VBScript the InputBox statement reads input from the user thus:

<script | anguage="VBScri pt">

Di m I nput

I nput = | nput Box("Enter your nane")
MsgBox ("You entered: " & Input)
</script>

The | nput Box function simply presents a dialog with a prompt and an entry field. The
contents of the entry field are returned by the function. There are various val ues that you
can pass to the function such as atitle string for the dialog box in addition to the
prompt. If the user presses Cancel the function returns an empty string regardl ess of
what is actually in the entry field.

Hereisthe VBScript version of our Address book example.

<script | anguage="VBScri pt">

Dimdict,name,entry ' Create some vari abl es.

Set dict = CreateQoject("Scripting.Dictionary")

nanme = | nput Box("Enter a nane", "Address Book Entry")

D:\DOC\HomePagetutor\tuti nput.htm Page 90 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

VWil e name <> ""
entry = I nput Box("Enter Details - Street, Town, Phone numnber",
"Address Book Entry")
dict. Add name, entry ' Add key and details.

nane = | nput Box("Enter a nanme","Address Book Entry")
Wend

Now read back the val ues
nane = | nput Box("Enter a nane","Address Book Lookup")
VWil e name <> ""

MsgBox(name & " - " & dict.ltem(name))

nane = | nput Box("Enter a nanme","Address Book Lookup")
Wend
</script>

The basic structure is absolutely identical to the Python program although a few lines
longer because of VBScript's need to pre-declare the variables with Di mand because of
the need for aWend statement to end each |oop.

Reading input in JavaScript

JavaScript presents us with a challenge because it is alanguage primarily used within a
web browser. As such it has no input statement per se, instead we have the choice of
reading from an HTML form element or, in Internet Explorer, using Microsoft's Active
Scripting technol ogy to generate an InputBox dialog like the one used by VB Script. For
variety I'll show you how to use the HTML form technique. If you are unfamiliar with
HTML forms it might be worth finding an HTML reference or tutorial to describe them,
alternatively just copy what | do here and hopefully it will be self explanatory. | will be
keeping it very simple, | promise.

The basic structure of our HTML example will be to put the JavaScript codein a
function, although we haven't covered these yet. For now just try to ignore the function
definition bits.

<scri pt | anguage="JavaScri pt">
function nyProgram)({
alert("We got a value of " + docunent.entry. data. val ue);
}
</script>
<form name="entry' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange='nyProgran()'>

D:\DOC\HomePagetutor\tuti nput.htm Page 91 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

</ fornp

The program just consists of asinglelinethat displays an al ert box (very similar to
VBScript's MsgBox) containing the value from the text field. The form displays a
prompt message (within the <P></ P> pair) and an input fild. The form has a name,
ent ry withinthedocunent context, and thel nput fidd has aname, dat a within the
entry form context. Thus within the JavaScript program we can refer to the value of the
fidd as:

document . entry. dat a. val ue

I'm not going to show the address book example in JavaScript because the HTML
aspects become more complex and the use of functions increases and | want to wait till
we have covered those in their own topic.

A word about stdin and stdout

NOTE: stdinisabit of computer jargon for the standard input device (usually the keyboard).
stdout refers to the standard output device (usually the screen). Y ou will quite often see
references to the term stdin and stdout in discussions about programing. (Thereis athird, less
commonly used term, stderr, which is where al console error messages are sent. Normally
stderr appears in the same place as stdout.) These terms are often called data streams since
data appears as a stream of bytes flowing tom the devices. stdin and stdout are made to |ook
likefiles (well get to those shortly) for consistency with file handling code.

In Python they al livein thesys module and are called sys. st di n and sys. st dout .
raw_i nput () uses stdin automatically and print uses stdout. We can aso read from stdin
and write to stdout directly and this can offer some advantages in terms of fine control of the
input and output. Here is an example of reading from stdin:

i mport sys

print "Type a value: ", # conma prevents new i ne
val ue = sys.stdin.readline() # use stdin explicitly
print val ue

It is amost identical to:

D:\DOC\HomePagetutor\tuti nput.htm Page 92 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

print raw_input("Type a value: ")

The advantage of the explicit version is that you can do fancy things like make st di n point
to areal file so the program reads its input from the file rather than the terminal - this can be
useful for long testing sessions whereby instead of sitting typing each input as requested we
simply let the program read its input from afile. [This has the added advantage of ensuring
that we can run the test repeatedly, sure that the input will be exactly the same each time, and
so hopefully will the output. This technique of repeating previous tests to ensure that nothing
got broken is called regression testing by programmers. |

Finally hereis an example of direct output to sys. st dout that can likewise be redirected to
afile print isnearly equivaent to:

sys.stdout.wite("Hello world\n") # \n= new ine

The main practical usefor thisisto get around the fact that print always puts a space between
the output values, whereas with stdout we can avoid that. Compare the two output linesin
the exampl e bel ow:

i mport sys
for itemin ['one',"is', 1]:
print item # comm suppresses new i ne
print
for itemin ['one',"is',str(1)]: # nust explicitly convert to strings

sys.stdout.wite(item) # no spaces!

Of course we can achieve the same effect using format strings if we know what the data ooks
like but if we don't know what the datawill look liketill runtime then its easier to just send it
to stdout rather than try to build a complex format string at runtime.

Redirecting stdin & stdout

So how do we redirect stdin and stdout to files? We can do it directly within our program
using the normal Python file handling techniques which we will cover shortly, but the easiest
way isto do it via the operating system.

D:\DOC\HomePagetutor\tuti nput.htm Page 93 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

This is how the operating system commands work when we use redirection at the command
prompt:

C>dir
C>dir > dir.txt

Thefirst command prints a directory listing to the screen. The second printsit to afile. By
using the' >' sign wetell the programto redirect st dout tothefiledir. t xt.

We would do the same with a Python program like this:

$ python nyprogram py > result.txt

Which would run nypr ogr am py but instead of displaying the output on screen it would
writeit tothefiler esul t . t xt . We could see the output later using atext editor like
notepad.

To get stdin to point at afile we simply use a < sign rather than a> sign. Here is a complete
example:

First create afilecalled echoi nput . py containing the following code:
i mport sys
inp = sys.stdin.readline()
while inp.strip() !'="":
print inp
inp = sys.stdin.readline()

Note: Thestri p() simply chops off the newline character that is retained when reading
fromstdin, raw_i nput () does that for you as a convenience.

Y ou can now try running that from a command prompt:

$ python echoi nput. py

The result should be a program that echos back anything you type until you enter a blank line.

D:\DOC\HomePagetutor\tuti nput.htm Page 94 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

Now create asimpletext filecalled i nput . t xt containing some lines of text. Run the |ast
program again, redirecting input fromi nput . t xt :

$ python echoi nput.py < input.txt

Python echos back what was in the file. But you might recall that we said that pri nt and
raw_input actually use stdin and stdout internally? That means we can replace the stdin stuff
inechoi nput . py withraw_i nput () likethis:

inp = rawmput()
while inp !="

print inp

inp = raw_i nput ()

\Which is much easier in most cases.

By using this technique with multiple different input files we can quickly and easily test our
programs for a variety of scenarios (for example bad data val ues or types) and dosoina
repeatable and reliable manner. We can a'so use this technique to handle large volumes of
data from afile while still having the option to input the data manually for small volumes
using the same program. Redirecting stdin and stdout is a very useful trick for the
programmer, experiment and see what other uses you can find for it.

There is a known bug in Windows that breaks input redirection. If you start your program by
just typing in the script name, rather than explicitly typing in pyt hon before it, Windows
will not display the results on the console! Thereisaregistry hack to fix thison Microsoft's
web site, although even the hack isn't quite correct! You need to look under HKEY_CURRENT
USER instead of HKEY_LOCAL_MACHI NE as recommended on the web page. My
recommendation isto always explicitly invoke python when dealing with redirected input or
output! [Thanks go to Tim Graber for spotting this and to Tim Peters for telling me about
the registry hack to fix it]

Command Line Parameters

D:\DOC\HomePagetutor\tuti nput.htm Page 95 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

One other type of input is from the command line. For example when you run your text
editor from an operating system command line, like:

$ EDI T Foo.t xt

what happens is that the operating system calls the program called EDIT and passes it
the name of thefileto edit, Foo.txt in this case.So how does the editor read the
filename?

In most languages the system provides an array or list of strings containing the
command line words. Thus thefirst e ement will contain the command itself, the second
element will be thefirst argument, etc. There may aso be some kind of magic variable
(often called something like argc, for "argument count™) that holds the number of
dementsin thelist.

In Python that list is held by the sys module and called ar gv (for "argument values).
Python doesn't need an ar gc type value since the usual | en() method can be used to
find the length of thelist, and in most cases we don't even need that since we just iterate
over thelist using Python's f or loop, likethis:

i mport sys
for itemin sys.argv:
print item
print "The first argunment was:", sys.argv[1]

Note that this only works if you put it in afile (say args.py) and execute it from the
operating system prompt like this:

C.\ PYTHOM PRQJECTS> pyt hon args.py 1 23 fred
args. py

1

23

fred

The first argument was: 1
C:\ PYTHON\ PRQJECTS>

VBScript and JavaScript

D:\DOC\HomePagetutor\tuti nput.htm Page 96 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

[nput 22/01/2006

Being web page based the concept of command line arguments doesn't really arise. If we
were using them within Microsoft's Windows Script Host environment the situation
would be different, and WSH provides a mechanism to extract such arguments from a
WshAr gunent s object populated by WSH at run time.

That's really as far as well go with user input in this course. It's very primitive but you
can write useful programs with it. In the early days of Unix or PCsit's the only kind of
interaction you got. Of course GUI programs read input too and we will ook at how
that's done much later in the tutorial.

Pointsto remember

® Usei nput for reading numbers, r aw_i nput for reading characters/strings.

® Bothi nput andraw_i nput candisplay astring to prompt the user.

* Command line parameters can be obtained from the ar gv list imported from
the sys module in Python, where thefirst itemis the name of the program.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tuti nput.htm Page 97 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

Decisions, Decisions

What will we cover?

® The 3rd programming construct - Branching
* Single branches and multiple branches
* Using Boolean expressions

The 3rd of our fundamental building blocks is branching or conditional statements.
These are simply terms to describe the ability within our programs to execute one of
several possible sequences of code(branches) depending on some condition.

Back in the early days of Assembler programming the simplest branch was a

JUWP instruction where the program literally jumped to a specified memory address,
usually if the result of the previous instruction was zero. Amazingly complex programs
were written with virtually no other form of condition possible - vindicating Dijkstra's
statement about the minimum reguirements for programming. When high level
languages came along a new version of the JUMP instruction appeared called GOTO. In
fact QBASIC, whichis still supplied on the CD ROM with older versions of
Windows(pre XP), still provides GOTO and, if you have QBASIC installed, you can try
it out by typing the following bit of code:

10 PRINT "Starting at |ine 10"

203 =5

30 IF J < 10 GOTO 50

40 Print "This line is not printed"
50 STOP

Notice how even in such a short program it takes a few seconds to figure out what's
going to happen. Thereis no structure to the code, you have to literally figureit out as
you read it. In large programs it becomes impossible. For that reason most modern
programming languages, including Python, VBScript and JavaScript, either don't have a
direct JUMP or GOTO statement or discourage you from using it. So what do we use
instead?

Theif statement

D:\DOC\HomePagetutor\tutbranch.htm Page 98 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

The most intuitively obvious conditional statementisthe if, then, el se construct.
It follows the logic of English in that if some boolean condition (see below for more
about this aspect of things) istrue then a block of statements is executed, otherwise (or
else) adifferent block is executed.

Python

It looks like this in Python:

inmport sys # only to let us exit
print "Starting here”

] =95
if j > 10:

print "This is never printed"
el se:

sys.exit()

Hopefully that is easier to read and understand than the previous GOTO example. Of
course we can put any test condition we like after theif, so long as it evaluates to True
or False, i.e. aboolean value. Try changing the > to a < and see what happens.

VBScript

VBScript looks quite similar:

<script | anguage="VBScri pt">
MsgBox "Starting Here"
DIMJ
J =5
If J > 10 Then
MsgBox "This is never printed"
El se
MsgBox "End of Progrant
End If
</script>

It's very nearly identical, isn't it? The main differenceisthe use of End | f to indicate
the end of the construct.

And JavaScript too

And of course JavaScript hasani f statement too:

D:\DOC\HomePagetutor\tutbranch.htm Page 99 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

<script |anguage="JavaScript">

var j;

i =5

if (j > 10){
docunent.wite("This is never printed");
}

el se {

docunent.wite("End of progran');
</script>

Notice that JavaScript uses curly braces to define the blocks of code insidethei f part
and the el se part. Also the boolean test is contained in parentheses and thereis no
explicit keyword t hen used. On apoint of style, the curly braces can be |ocated
anywhere, | have chosen to line them up as shown purely to emphasize the block
structure. Also if thereis only a single line within the block (as we have here) the braces
can be omitted entirely, they are only needed to group lines together into a single block.

Boolean Expressions

Y ou might remember that in the Raw Materials section we mentioned a Boolean type
of data. We said it had only two values: Tr ue or Fal se. We very rarely create a
Boolean variable but we often create temporary Boolean values using expressions. An
expression is a combination of variables and values combined by operators to produce a
resultant value. In the following example:

if x <5:
print x

x < 5 istheexpression and theresult will be Tr ue if x islessthan 5 and Fal se if xis
greater than or equal to 5.

Expressions can be arbitrarily complex provided they evaluate to asingle final value. In
the case of a branch that value must be either Tr ue or Fal se. However, the definition
of these 2 values varies from language to language. In many languages Fal se isthe
same as 0 or a non-existent value (often called NULL, Ni | or None). Thus an empty list
or string evaluates to false in a Boolean context. Python works this way and this means
we can use awhi | e loop to process alist until thelist is empty, using something like:

whil e aLi st:
do sonet hing here

D:\DOC\HomePagetutor\tutbranch.htm Page 100 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

Orwecanuseani f statement to test whether alist is empty without resorting to the
I en() function likethis:

if aList:
do sonet hing here

Finally we can combine Boolean expressions using Bool ean operators which can often
cut down the number of i f statements we need to write.

Consider this example:

if value > maxi mum

print "Value is out of range!"”
else if value < m ni mum

print "Value is out of range!"”

Notice that the block of code executed is identical. We can save some work, both for us
and for the computer, by combining both of the testsinto a single test like this:

if (value < mninum or (value > maximn:
print "Value is out of range!"

Notice we combined both tests using a boolean or operator. Thisis still asingle
expression because Python evaluates the first set of parentheses, then the second set of
parentheses and finally combines the two cal culated val ues to form the final single value,
either True or False.

Very often if we think carefully about the tests we need to carry out in natural language
we will find ourselves using conjunctions like and, or and not. If so there's a very good
chance we can write a single combined test rather than many separate ones.

Chaining if statements

Y ou can go on to chain these if/then/e se statements together by nesting them oneinside
the other. Hereis an example in Python:

Assune price created previously...
price = int(raw_input("Wat price? "))
if price == 100:

D:\DOC\HomePagettutor\tutbranch.htm Page 101 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

print "I'Il take it!"
el se:
if price > 500:
print "No way Jose!"
el se:
if price > 200:
print "How about throwing in a free nouse mat?"
el se:
print "price is an unexpected val ue!"

Note 1:we used == (that's a double = sign) to test for equality inthefirsti f statement,
whereas we use = to assign values to variables. Using = when you mean to use == is one
of the more common mistakes in programming Python, fortunately Python warns you
that it's a syntax error, but you might need to look closdly to spot the problem.

Note 2: A subtle point to notice is that we perform the greater-than tests from the
highest value down to the lowest. If we did it the other way round the first test, which
would bepri ce > 200 would aways be true and we would never progress to the >
500 test. Similarly if using a sequence of less-than tests you must start at the lowest
value and work up. Thisis another very easy trap to fall into.

VBScript & JavaScript

You can chaini f statementsin VBScript and JavaScript too but asit's pretty self
evident I'll only show aVBScript example here:

<scri pt | anguage="VBScri pt">
DM Price
price = I nputBox("What's the price?")
price = Clnt(price)
If price = 100 Then
MsgBox "I'Il take it!"
El se:
if price > 500 Then
MsgBox "No way Jose!™
el se:
if price > 200 Then
MsgBox "How about throwing in a free nouse mat too?"

el se:
MsgBox "price is an unexpected val ue!"
End If
End If
End If
</script>

D:\DOC\HomePagettutor\tutbranch.htm Page 102 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

The only things to note here are that thereisan End | f statement to match every
| f statement and that we used the VBScript conversion function Cl nt to convert from
the input string value to an integer.

Case statements

One snag with chaining, or nestingi f / el se statements is that the indentation causes
the code to spread across the page very quickly. A sequence of nested
if/elselif/else... issuchacommon construction that many languages provide a
special type of branch for it.

Thisisoftenreferredtoasa Case or Switch statement and the JavaScript version
looks like:

<scri pt | anguage="JavaScri pt">
function doArea(){
var shape, breadth, |ength, area;
shape = docunent . ar ea. shape. val ue;
breadth par sel nt (docunent . ar ea. br eadt h. val ue) ;
I en par sel nt (docunent . area. | en. val ue) ;
switch (shape){
case 'Square':

area = len * len;
alert("Area of " + shape + " =" + area);
br eak;
case 'Rectangle':
area = len * breadth;
alert("Area of " + shape + " =" + area);
br eak;
case 'Triangle':
area = len * breadth / 2;
alert("Area of " + shape + " =" + area);
br eak;
default: alert("No shape matching: " + shape)
3
oo
</script>

<f orm nane="ar ea" >

Length: <input type="text" name="len">

Breadth: <input type="text" nanme="breadth">

Shape: <sel ect nane="shape" size=1 onChange="doArea()">
<option val ue="Squar e" >Squar e

D:\DOC\HomePagettutor\tutbranch.htm Page 103 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

<option val ue="Rect angl e">Rect angl e
<option val ue="Tri angl e">Tri angl e
</ sel ect>
</ fornmp

The HTML form code just allows us to capture the details and then when the user
sdlects a shape it calls our JavaScript function. Thefirst few lines simply create some
local variables and convert the strings to integers where needed. The bold section is the
bit we are really interested in. It selects the appropriate action based on the shape value,
notice, by the way, that the parentheses around shape are required. Each block of code
within the case structure is not marked using curly braces, as you might expect, but is
instead terminated by abr eak statement. The entire set of case statements for the

swi t ch is, however, bound together as a block by a single set of curly braces.

Finally note thefinal conditionisdef aul t which is simply a catch-all for anything not
caught in the preceding Case statements.

Why not seeif you can extend the example to cover circles as well? Remember to add a
new option to the HTML form as well as a new case to the switch.

VBScript Select Case

VBScript has aversion too:

<scri pt | anguage="VBScri pt">

Di m shape, |ength, breadth, SQUARE, RECTANGLE, TRI ANGLE

SQUARE = 0

RECTANGLE = 1

TRI ANGLE = 2

shape = ClInt (Il nput Box("Square(0), Rectangle(1l) or Triangle(2)?"))
| ength = CDbl (I nput Box("Lengt h?"))

breadth = CDbl (I nput Box(" Breadt h?"))

Sel ect Case shape

Case SQUARE
area = length * length
MsgBox "Area = " & area
Case RECTANGLE
area = length * breadth
MsgBox "Area = " & area

Case TRI ANGLE
area = length * breadth / 2
MsgBox "Area = " & area

D:\DOC\HomePagetutor\tutbranch.htm Page 104 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

Case Hl se

MsgBox " Shape not recogni zed"
End Sel ect
</script>

As with the JavaScript example thefirst few lines simply collect the data from the user
and convert it into theright type. The bold Sel ect section shows the VBScript case
construct with each successive Case statement active as a block terminator for the
previous one. Thewhole Sel ect construct is closed withthe End Sel ect statement.
Finally thereisaCase El se clausewhich, likethedef aul t in JavaScript catches
anything not caught in the Cases above.

One other feature worth pointing out is the use of Symbolic Constants instead of
numbers. That is the uppercase variables SQUARE, RECTANGLE and TRI ANGLE are
there simply to make the code easier to read. The uppercase names are simply a
convention to indicate that they are constant values rather than conventional variables,
but VBScript allows any variable name you like.

Python multi-selection

Python does not provide an explicit case construct but rather compromises by providing
anessieri f/ el seif/ el se format:

menu = """

Pick a shape(1-3):
1) Square
2) Rectangl e
3) Triangle

shape = int(raw_i nput (nmenu))
if shape == 1:

length = float(raw_input("Length: "))

print "Area of square =", length ** 2
elif shape == 2:

length = float(raw_input("Length: "))

width = float(raw_i nput("Wdth: "))

print "Area of rectangle =", length * width
elif shape == 3:

length = float(raw_input("Length: "))

width = float(raw_i nput("Wdth: "))

print "Area of triangle =", length * width/2
el se:

D:\DOC\HomePagettutor\tutbranch.htm Page 105 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

print "Not a valid shape, try again”

Notetheuseof el if andthefact that the indentation (all important in Python) does
not change (unlike the nested if statement example). It's aso worth pointing out that
both this technique and the earlier nested if/else example are equally valid, the

el i f techniqueisjust alittle easier to read if there are many tests. Thefinal conditionis
an el se which catches anything not caught by the previous tests, just like the

def aul t inJavaScript and Case El se in VBScript.

VB Script aso provides a slightly more cumbersome version of this technique with
El sel f... Then whichisused in exactly the same way as the Python el i f butis
rarely seen since Sel ect Case iseasier to use.

Putting it all together

So far many of our examples have been pretty abstract. To conclude let's take alook at
an exampl e that uses nearly everything we've learned about so far to introduce a
common programming technique, namely displaying menus for controlling user input.

Hereis the code, followed by a brief discussion:

menu = """
Pick a shape(1-3):
1) Square
2) Rectangl e
3) Triangle
4) Qit
shape = int(raw_i nput (mnmenu))
whi |l e shape != 4:
if shape == 1:
length = float(raw_input("Length: "))
print "Area of square =", length ** 2

elif shape == 2:

length = float(raw_input("Length: "))

width = float(raw_i nput("Wdth:))

print "Area of rectangle =", length * width
elif shape == 3:

length = float(raw_input("Length: "))

width = float(raw_i nput("Wdth:))

print "Area of triangle =", length * width / 2

D:\DOC\HomePagettutor\tutbranch.htm Page 106 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

el se:
print "Not a valid shape, try again”
shape = int(raw_i nput (nmenu))

We've added just three lines (in bold) to the previous Python example but in so doing
have significantly enhanced the usability of our program. By adding a Quit option to the
menu, plus awhile loop we have provided the capability for the user to keep on
calculating sizes of different shapes until she has all the information she needs. Thereis
no need to rerun the program manually each time. The only other line we added was to
repeat ther aw_i nput (menu) shape selection so that the user gets the chance to
change the shape and, ultimately, to quit.

What the program does is create theillusion to the user that the program knows what
they want to do and does it correctly, acting differently depending what they input. In
essence the user appears to be in control, whereas in fact, the programmer isin control
since the he has anticipated al the valid inputs and how the program will react. The
intelligence on display is that of the programmer, not the machine - computers after al
are stupid!

Y ou see how easily we can extend our program just by adding afew lines and
combining sequences (the blocks that calcul ate the area), |oops (the while loop) and
conditionals (the if/dif structure). Dijkstra's three building blocks of programming.
Having covered all three you can, in theory, now go out and program anything, but
there are a few more techniques we can learn to make things a bit easier, so don't rush
off just yet.

M odifying collections from inside loops

We mentioned in the looping topic that modifying a collection from inside aloop was a
difficult thing to do, but never got round to explaining how to do it! The reason is, we
had to wait for branching to be explained first. So hereis the solution:

If we need to modify the elements of a collection in place we can use awhi | e loop to
make the changes as we iterate over it. We can do this because in awhi | e construct we
have explicit control over theindex, unlikethe situation in af or loop wheretheindex is
automatically updated. Let's see how to delete all zeros from alist:

nyList =[1,2,3,0,4,5, 0]
index =0
whil e index < len(myList):

D:\DOC\HomePagetutor\tutbranch.htm Page 107 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Conditiond's 22/01/2006

if nyList[index] == O:
del (nyLi st[index])
el se:
i ndex += 1
print myLi st

The thing to note hereis that we do not increment the index if we remove an item, we
rely on the deletion moving everything up so that the old index value now points at the
next itemin the collection. We useani f / el se branch to control when we increment
the index. It's very easy to make a mistake doing this kind of thing so test your code
carefully. Thereis another set of Python functions which are specifically designed for
manipulating list contents and we look at them in the Functional Programming topicin
the advanced section of the tutorial.

Things to Remember

Usei f/ el se to branch

Theel se isoptiona

Multiple decisions can be represented using aCase ori f/ el i f construct
Boolean expressions return Tr ue or Fal se

Combining menus with Case constructs allows us to build a wide range of user
controlled applications.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagettutor\tutbranch.htm Page 108 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Programming with Modules

| What will we cover?

What modul es are about

Functions as modules

Using module files

Writing our own functions and modul es
An introduction to Windows Script Host

What's a Module?

The 4th eement of programming involves the use of modules. In fact its not strictly
necessary, and using what we've covered so far you can actually write some pretty
impressive programs. However as the programs get bigger it becomes harder and harder
to keep track of what's happening and where. We really need a way to abstract away
some of the details so that we can think about the problems we are trying to solve rather
than the minutiae of how the computer works. To some extent that's what Python,
VBScript and JavaScript already do for us with their built in capabilities - they prevent
us from having to deal with the hardware of the computer, how to read the individual
keys on the keyboard etc.

The idea of programming with modules is to alow the programmer to extend the built
in capabilities of the language. It packages up bits of program into modules that we can
'plug in’ to our programs. The first form of module was the subroutine which was a
block of code that you could jump to (rather like the GOTO mentioned in the branching
section) but when the block completed, it could jump back to wherever it was

called from. That particular style of modularity is known as a procedure or function.
In Python and some other languages the word module has taken on a more specific
meaning which we will ook at shortly, but first let's consider functions a bit more
closdy.

Using Functions

Before considering how to create functions let's look at how we use the many, many
functions that come with any programming language (often called the library).

Weve aready seen some functions in use and listed others in the operators section. Now
we'll consider what these have in common and how we can use them in our programs.

D:\DOC\HomePagetitutor\tutfunc.htm Page 109 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

The basic structure of afunction call is as follows:

aVal ue = soneFuncti on(anArgunent, another, etc...)

That is, the variable aval ue takes on the value obtained by calling a function called
someFunct i on. The function can accept 0 or many arguments which it treats like
internal variables. Functions can call other functions internally. In most programming
languages (although not all), even if there are no arguments, we must still provide the
parentheses when calling a function.

Let's consider some examples in our various languages to see how this works:
VBScript: Mid(aString, start, length)

Thisreturns the next | engt h characters starting at thest art inaStri ng.

<script | anguage="VBScript">
Dmtine

tinme = "MORNI NG EVENI NG AFTERNOON!
MsgBox "Good" & Md(tine, 8, 8)
</script>

This displays "Good EVENING". One feature to note about VBScript is that it does not
reguire parentheses to group the function's arguments, spaces are usually sufficient, as
we have been doing with MsgBox. However if we combine two funxctions (as we do
here) then the inner one must use parentheses, my adviseis: if in doubt, use the
parentheses.

VBScript: Date

This returns the current system date.

<script | anguage="VBScri pt">
MsgBox Dat e
</script>

There's not much more | can say about that, except that there's a whole bunch of other
date functions for extracting the day, week, hour etc.

JavaScript: startString.replace(searchString, newString)

D:\DOC\HomePagetitutor\tutfunc.htm Page 110 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Returns a new string with thesear chSt ri ng replaced by newSt ri ng, in
startString

<scri pt | anguage="JavaScri pt">

var r,s = "A long and w nding road";
docurment . wite("Original =" + s + "
");
r = s.replace("long", "short");
docurment . wite("Result =" + r);
</script>

Note: almost everything in JavaScript is an example of a special type of function called a
method. A method is a function that is associated with an object (as discussed in the
Raw Materials topic and in more detail later). The main thing to note hereis that the
function is "attached" to the string s by the dot operator which means that s is the string
that we will be performing the substitution upon.

This is nothing new. We have been using thewr i t e() method of the docunment object
to display the output from our JavaScript programs (using docunent . wri t e()) since
the beginning of the tutorial, | just haven't explained the reason behind the dual name
format up until now.

Python: pow(x,y)

pow() raisesx to the power y

>>> x =2 # we'll use 2 as our base nunber
>>> for y in range(0, 11):
print pow(x,Yy) # raise 2 to power y, ie 0-10

Here we generate values of y from O to 10 and call the built-in pow() function passing
2 arguments: x and y. On each iteration of the loop the current values of x andy are
substituted into the pow() call and the result is printed.

Note: The Python exponentiation operator, ** is equivalent to the pow() function.

Python: dir(m)

D:\DOC\HomePagetitutor\tutfunc.htm Page 111 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Another useful function built into pythonis di r which, when passed the name of a
module displays al of the exported names within the module - including all of the
variables and functions that you can use. Python comes with |ots of modules, although
we haven't really discussed them up till now. Thedi r function gives back alist of valid
names - often functions - in that module. Try it on the built-in functions:

>>> print dir(__builtins__)

Note 1: bui I ti ns isoneof Python's "magic" words so once again we need to surround
it with double underscores - that's two underscores at each end.

Note 2: Tousedi r () on any other module you need toi npor t the module first
otherwise Python will complain that it doesn't recognize the name.

>>> jnport Ssys
>>> dir(sys)

You will recall that we met the sys module away back in our first sequences topic. In
the output from that last di r you should spot our old friend exi t .

Before doing much else we'd better talk about Python modules in a bit more detail.

Using Modules

Python is an extremdy extensible language in that you can add new capabilities by
i mpor t ing modules. WEe'll see how to create modul es shortly but for now well play
with some of the standard modules that ship with Python.

Sys

We met sys already when we used it to exi t from Python. It has a whole bunch of
other useful functions too, as we saw with the di r function above. To gain access to
thesewe must i nport sys:

i nport sys # make functions avail abl e
print sys.path # show where Python | ooks for nodul es
sys.exit() # prefix with 'sys'

D:\DOC\HomePagetitutor\tutfunc.htm Page 112 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

If we know that we will be using the functions a lot and that they won't have the same
names as functions we have already imported or created then we can do:

fromsys inport * # inport all nanmes in sys
print path # can use w thout specifying prefix 'sys'
exit()

The big danger with this approach is that two modules could define functions with the
same name and then we could only use the second one that we import (because it will
override thefirst). If we only want to use a couple of items then its safer to do it this
way:

fromsys inport path, exit # inport the ones we need
exit() # use without specifying prefix 'sys'

Note that the names we specify do not have the parentheses following them. If that was
the case we would attempt to execute the functions rather than import them. The name
of thefunctionisal that is given.

Finally I'd like to show you a shorthand trick that saves some typing. If you have a
modul e with a very long name we can rename the module when we import it. Hereis an
example:

i mport Sinpl eXMLRPCServer as s
s. Si npl eXMLRPCRequest Handl er ()

Notice that we told Python to consider s to be a shorthand for Si npl e XMLRPCSer ver .
Then to use the functions of the module we only need to type s. which is much shorter!

Other Python modules and what they contain

Y ou can import and use any of Python's modules in this way and that includes modules
you create yourself. We'll see how to do that in a moment. First though, I'll giveyou a
quick tour of some of Python's standard modul es and some of what they offer:

Module name Description I

D:\DOC\HomePagetitutor\tutfunc.htm Page 113 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

sys

Allows interaction with the Python system:

* exit() - exit!

® argv - access command line arguments

® path - access the system modul e search path
® psl - change the '>>>" python prompt!

(O]

Allows interaction with the operating system:

* name - the current operating system, useful for portable programs
® gystem - execute a system command

* mkdir - create adirectory

* getcwd - find the current working directory

re

Allows manipulation of strings with Unix style
regular expressions

® search - find pattern anywhere in string
match - find at beginning only

findall - find al occurences in a string

split - break into fields separated by pattern
sub,subn - string substitution

mat h

Allows access to many mathematical functions:
® sin,cos etc - trigonometrical functions

* log,l0g10 - natural and decimal logarithms
* cdl,floor - celling and floor

® pi, e- natural constants

tinme

time(and date) functions

* time- get the current time (expressed in seconds)
gmtime - convert timein secsto UTC (GMT)
localtime - convert to local time instead

mktime - inverse of localtime

sleep - pause program for n seconds

random

random number generators - useful for games programming!

* randint - generate random integer between inclusive end points
* sample - generate random sublist from a bigger list

® seed - reset the number generator key

D:\DOC\HomePagetitutor\tutfunc.htm Page 114 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

These arejust the tip of the iceberg. There areliterally dozens of modules provided with
Python, and as many again that you can download. (A good source is the Vaults of
Parnassus.) Look at the documentation to find out how to do Internet programming,
graphics, build databases etc.

The important thing to realize is that most programming languages have these basic
functions either built in or as part of their standard library. Always check the
documentation before writing a function - it may already be there! Which leads us nicely
into...

Defining our own functions

OK, so we know how to use the existing functions and modules, but how do we create a
new function? Simply by defining it. That is we write a statement which tells the
interpreter that we are defining a block of code that it should execute, on demand,
elsewherein our program.

VBScript first

So let's create a function that can print out a multiplication table for us for any val ue that
we provide as an argument. In VBScript it looks like:

<script | anguage="VBScri pt">
Sub Ti mes(N)
Dml
For I =1 To 12
MsgBox | & " x " &N&" =" &I * N
Next
End Sub
</script>

So we use the keyword Sub (for Subroutine) and end the definition with End Sub,
following the normal VVBScript block marker style. We provide alist of formal
parameters enclosed in parentheses. The code inside the defined block is just normal
VBScript code with the exception that it treats the parameters as if they were
already-defined local variables.

We can now call the new function likethis;

<script | anguage="VBScri pt">

D:\DOC\HomePagetitutor\tutfunc.htm Page 115 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

MsgBox "Here is the 7 tinmes table..."
Times 7
</script>

Note 1: We defined aparameter called N and passed an argument of 7 . Thelocal
variable N inside the function took the value 7 when we called it. We can define as many
parameters as we want in the function definition and the calling programs must provide
values for each parameter. Some programming languages allow you to define default
values for a parameter so that if no value is provided the function assumes the default.
Well seethisin Python later.

Note 2: We enclosed the parameter, N, in parentheses during function definition but, as
isusual in VBScript we did not need to use parentheses when calling the function.

This function does not return avalue and is really what is called a procedure, whichis,
quite simply, a function that doesn't return a value! VBScript differentiates between
functions and procedures by having a different name for their definitions. Let's look at a
true VBScript function that returns the multiplication table as a single, long string:

<script | anguage="VBScript">
Function TinmesTable (N)

Dml, S
S=N&" tines table" & vbNewLi ne
For | =1 to 12
S=S &I &" x" &N&" =" & I*N & vbNewLi ne
Next

TinmesTable = S
End Function

Dm Ml tiplier

Mul tiplier = InputBox("Wich table would you |ike?")
MsgBox Ti nesTable (Miltiplier)

</script>

It's very nearly identical to the Sub syntax, however notice that you must assign the
result to the function name inside the definition. The function returns as a result
whatever value the function name contains when it exits:

fiﬁesTabIe =S
End Function

D:\DOC\HomePagetitutor\tutfunc.htm Page 116 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

If you don't assign an explicit value the function will return a default value, usually zero
or an empty string.

Notice also that we had to put parentheses around the argument in the MsgBox line.
That's because MsgBox wouldn't otherwise have been able to work out whether
Mul ti plier wasto be printed or passed to itsfirst argument Ti mesTabl e.

Python too

In Python the Times function looks like:

def tinmes(n):
for i in range(1,13):
print "% x % = %" % (i, n, i*n)

Andiscadled like
print "Here is the 9 tinmes table..."
times(9)

Note that in Python procedures are not distinguished from functions and the same name
def isused to define both. The only differenceis that a function which returns avalue
uses ar et ur n statement, likethis:

def tinmesTabl e(n):
S - nn
for i in range(1,13):
s =s +"% x %d = %\n" %(i,n, n*i)
return s

Asyou seeits very simple, just return theresult using ar et ur n statement. (If you don't

have an explicitret urn st atenment Python automatically returns a
default value called None which we usually just ignore.)

We can then sinply print the result of the function |ike so:

print tinmesTable(7)

D:\DOC\HomePagetitutor\tutfunc.htm Page 117 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Al t hough we haven't followed this advice throughout this
tutorial, it is usually best to avoid putting print statenments

i nside functions. Instead get themto return the result and print
that fromoutside the function. That makes your functions nuch
nore reusable, in a wider variety of situations.

Default Val ues

You might recall that | nentioned the use of default val ues
earlier? This refers to a way of providing function paraneters
that, if not passed explicitly, take on a default value. One
sensi bl e use for these would be in a function which returned the
day of the week. If we call it with no value we nean today,

ot herwi se we provide a day nunber as an argunent. Somrething |ike
this:

i mport time

a day val ue of None => today
def dayOf Week(DayNum = None):
match day order to Python's return val ues
days = [' Mbnday', ' Tuesday',
' Wednesday' , ' Thur sday' ,
"Friday', 'Saturday', 'Sunday']

check for the default value
i f DayNum == None:
theTime = tine.localtime(tine.tinme())
DayNum = t heTi ne[6] # extract the day val ue
return days[DayNumnj

Note: We only need to use the tinme nodule if the default
paraneter value is involved, therefore we could defer the inport
operation until we need it. This would provide a slight

per formance i nprovenent if we never had to use the default val ue
feature of the function, but it is so small, and breaks the
convention of inporting at the top, that the gain isn't worth the
extra conf usi on.

Now we can call this with

print "Today is: %" % dayO Week()

renmenber that in conputer speak we start fromO

and in this case we assume the first day is Mnday.
print "The third day is %" % dayOr Week(2)

D:\DOC\HomePagetitutor\tutfunc.htm Page 118 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Counti ng Words

Anot her exanple of a function which returns a value m ght be one
whi ch counts the words in a string. You could use that to
calculate the words in a file by adding the totals for each line
t oget her.

The code for that m ght | ook sonething Iike this:

def numwords(s):
s = s.strip() # renmove "excess" characters
it() #1list with each elenent a word
i st

) # nunber of elenents in list is the nunber of words in

list = s.spl
return len(l

That defines the function, making use of some of the built-in
string nethods which we nentioned in passing in the Raw
Material s chapter.

We woul d use it by doing sonething like this:

for line in file:
total = total + numwords(line) # accumulate totals for each line
print "File had %d words" % tota

Now if you tried typing that in, you'll know that it didn't work.
Sorry! What |'ve done is a commopn design technique which is to
sketch out how I think the code should | ook but not bothered to
use the absolutely correct code. This is sonetinmes known as
Pseudo Code or in a slightly nore formal style Program

Descri ption Language (PDL).

Once we've had a closer look at file and string handling, a
little later in the course, we'll conme back to this exanple and
wite it for real.

JavaScri pt Functions

We can al so create functions in JavaScript, of course, and we do
so using the function command, |ike so:

<scri pt | anguage="JavaScri pt">

var i, val ues;

function tinmes(m {

D:\DOC\HomePagetitutor\tutfunc.htm Page 119 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

var results = new Array();
for (i =1; i <= 12; i++) {
results[i] =1 * m

return results;

/1 Use the function
values = tinmes(8);

for (i=1;i<=12;i++){
docunent.wite(values[i] + "
");

</script>

In this case the function doesn't help nuch, but hopefully you
can see that the basic structure is very sinmilar to the Python
and VBScript function definitions. W' Il see nore conpl ex
JavaScript functions as we go through the tutor. In particular
JavaScri pt uses functions to define objects as well as functions,
whi ch sounds confusing, and indeed can be!

Bef ore we nove on though, nowis a good tine to | ook back at the
JavaScript exanple in Talking to the User, where we used
JavaScript to read input froma web form The code | ooked |ike
this:

<scri pt | anguage="JavaScri pt">

function nyProgram()({
alert("W got a value of

}

</script>

+ docunent . entry. dat a. val ue) ;

<form nane="entry' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange=' nyProgran()'>

</fornp

Looki ng at that we can now see that what we did was define a
JavaScript function called nyProgramand then tell the formto
call that function when the Input field changed. We'll explain
this further in the topic on Event Driven programmi ng

A Wrd of Caution

D:\DOC\HomePagetitutor\tutfunc.htm Page 120 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Functions are very powerful because they allow us to extend the

| anguage, they al so give us the power to change the | anguage buy
defining a new neaning for an existing function (sone |anguages
don't allow you to do this), but this is usually a bad idea

unl ess carefully controlled (we'll see a way to control it in a
m nute). By changi ng the behavior of a standard | anguage function
your code can becone very difficult for other people (or even you
|ater on) to read, since they expect the function to do one thing
but you have redefined it to do another. Thus it is good practice
not to change the basic behavior of built in functions.

One way to get round this limtation of not changing built in

behavi or but still using a meaningful name for our functions is
to put the functions inside either an object or a nodul e which
provides its own |ocal context. W'll |ook at the object approach

inthe OOP topic a little later but for nowlet's see how we go
about creating our own nodul es.

Creating our own nodul es

So far we have seen how to create our own functions and cal

these fromother parts of our program That's good because it can
save us a lot of typing and, nore inportantly, nakes our prograns
easi er to understand because we can forget about sone of the
details after we create the function that hides them (This
principle of wapping up the conplex bits of a programinside
functions is called information hiding for fairly obvious
reasons.) But how can we use these functions in other prograns?
The answer is that we create a nodul e.

Pyt hon Mbdul es

A nodule in Python is nothing special. It's just a plain text
file full of Python programstatenments. Usually these statements
are function definitions. Thus when we type:

i mport sys

we tell the Python interpreter to read that nodul e, executing the
code contained init and nmaking the nanmes that it generated
available to us in our file. It is alnost Iike nmaking a copy the
contents of sys.py into our program |ike a cut n' paste
operation. (its not really like that but the concept is simlar).
In fact in some programmi ng | anguages (noteably C and C++) the
translator literally does copy nodule files into the current
program as required.

D:\DOC\HomePagetitutor\tutfunc.htm Page 121 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

So to recap, we create a nodule by creating a Python file

contai ning the functions we want to reuse in other prograns. Then
we just inport our nodul e exactly Iike we do the standard

nmodul es. Easy eh? Let's do it.

Copy the function belowinto a file by itself and save the file
with the nane tinmestab.py. You can do this using |IDLE or Notepad
or any other editor that saves plain text files. Do not use a
Wird Processing programsince they tend to insert all sorts of
fancy formatting codes that Python will not understand.

def print_table(nultiplier):
print "--- Printing the %l tinmes table ---
for n in range(1,13):
print "%l x % = %" % (n, multiplier, n*rultiplier)

Y multiplier

Now at the Python prompt type:

>>> jnport tinestab
>>> timestab. print_table(12)

Heh presto! You've created a nodule and used it.

Important Note:If you didn't start Python fromthe sane directory
that you stored the tinmestab.py file then Python m ght not have
been able to find the file and reported an error. If so then you
can create an environnment variable called PYTHONPATH that holds a
list of valid directories to search for nodules (in addition to

t he standard nodul es supplied w th Python).

Creating environnent variables is a platform specific operation
whi ch | assune you either know how to do or can find out! For
exanpl e Wndows XP users can use the Start->Help & Support
facility to search for Environment Variables and see how to
create them

Modul es in VBScript and JavaScri pt

VWhat about VBScript? That's nore conplex.... In VBScript itself
and other older varieties there is no real nodul e concept.
Instead, VBScript relies on the creation of objects to reuse code
bet ween projects. We ook at this later in the tutorial. Meantine
you will have to nanually cut n' paste from previ ous projects
into your current one using your text editor

D:\DOC\HomePagetitutor\tutfunc.htm Page 122 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

Note: VBScript's big brother Visual Basic does have a module concept and you can
load a modul e via the Integrated Development Environment (IDE) Fi | e| Open

Modul e. .. menu. There are afew restrictions as to what kind of things you can do
inside a VB module but since we're not using Visual Basic on this course | won't go
into that any further. (Note: thereis (or used to be) a cut down version of Visual Basic
known as the Visual Basic 5.0 Control Creation Edition (VBCCE), available for free
download on Microsoft's website. If you fed like experimenting this page has more
details.

Li ke VBScript, JavaScript does not offer any direct nechanismfor
reuse of code files as nodul es. However there are some exceptions
to these in specialised environnments such as where JavaScript is

used outside of a web page (See the Wndows Script Host box bel ow
for an exanple).

Windows Script Host

So far we have looked at VB Script and JavaScript as languages for programming
within aweb browser. That imposes some restrictions including the lack of away to
include a modul e of reusable code. There is another way to use VB Script (and
JavaScript) within a Windows environment, namely Windows Script Host or WSH.
WSH is Microsoft's technology to enable users to program their PCs in the same way
that DOS programmers used Batch files. WSH provides mechanisms for reading files
and the registry, accessing networked PCs and Printers etc.

In addition WSH v2 includes the ability to include another WSH file and thus provides
reusable modules. It works like this, first create amodule file called
SonmeMbdul e. vbs containing:

Functi on SubtractTvvo(l\I)
Subtract Two = N -
End function

Now create a WSH script file called, say, t est Modul e. wsf , likethis:

<?xm version="1.0" encodi ng="UTF-8"?>

<j ob>

D:\DOC\HomePagetitutor\tutfunc.htm Page 123 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

<script | anguage="VBScript" src="SonmeMdul e.vbs" />
<script | anguage="VBScript">

Di mval ue, result

WEcri pt. Echo "Type a nunber”

val ue = W5cri pt. Stdl n. ReadLi ne

result = Subtract Two(Cl nt(val ue))

WEcri pt. Echo "The result was " &anp; CStr(result)
</script>
</ j ob>

Y ou can run it under Windows by starting a DOS session and typing:

C.\> cscript testMdule. wsf

The structure of the .wsf fileis XML and the program livesinside a pair of

<j ob></j ob> tags, rather like our <HTML></ HTM_> tags. Inside thefirst script tag
references amodulefile called SoneMbdul e. vbs and the second script tag contains
our program which accesses Subt r act Two within the SomeModul e. vbs file. The

. vbs filejust contains regular VBScript code with no XML or HTML tags
whatsoever.

Notice that to concatenate the strings for the Wscr i pt . Echo statement we have to
escape the ampersand (with &anp;) because the statement is part of an XML filéel
Notice too, that we usetheWscr i pt . St di n to read user input, you might recall the
sidebar in the User Input topic that discussed stdin and stdout?

This technique works with JavaScript too, or more correctly with Microsoft's version
of JavaScript called Jcript, simply by changing thel anguage= attribute. In fact you
can even mix languages in WSH by importing a modul e written in JavaScript and using
it in VBScript code, or vice-versal To prove the point, hereis the equivalent WSH
script using JavaScript to access the VBScript module:

<?xm version="1.0" encodi ng="UTF-8"?>
<j ob>

<script | anguage="VBScript" src="SomeMdul e.vbs" />
<script | anguage="JScript">

D:\DOC\HomePagetitutor\tutfunc.htm Page 124 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Functions and Modules 22/01/2006

var value, result;

WEcri pt. Echo(" Type a nunber");

val ue = W5cri pt. Stdl n. ReadLi ne();
result = Subtract Two(parselnt(value));

W5cri pt. Echo("The result was " + result);
</script>
</ j ob>

Y ou can see how closdly related the two versions are, most of the clever stuff is
actually done through the WScript objects and apart from a few extra parentheses the
scripts are very much alike.

| won't use WSH very often in this tutor but occasionally we will delveinto it when it
offers capabilities that | cannot demonstrate using the more restricted web browser
environment. For example the next topic will use WSH to show how we can

mani pul ate files using VB Script and JavaScript. There are a few books available on
WSH if you areinterested, and Microsoft have alarge section of their web site
dedicated to it, complete with sample programs and development tools etc. You'll find
it here: http://msdn.mi crosoft.comv/scripting/

Next we'll take a look at files and text handling and then, as
promi sed, revisit the business of counting words in a file. In
fact we're eventually going to create a nodul e of text handling
functions for our conveni ence.

| Things to remember

Functions are a form of module

Functions return val ues, procedures don't

Python modules normally consist of function definitionsin afile
Create new functions with the def keyword in Python

Use Sub or Functi on in VBScript and f unct i on in JavaScript

Previ ous Contents Next

If you have any questions or feedback on this page send ne nail
at: alan.gaul d@tinternet.com

D:\DOC\HomePagetitutor\tutfunc.htm Page 125 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

Handling Files

What will we cover?

How to open afile

How to read and write to an open file
How to close afile.

Building an address book

Handling binary data files

Handling files often poses problems for beginners although the reason for this puzzles
me slightly. Files in a programming sense are really not very different from files that you
use in aword processor or other application: you open them, do some work and then
close them again.

The biggest differences are that in a program you access thefile sequentially, that is,
you read one line at a time starting at the beginning. In practice the word processor
often does the same, it just holds the entire file in memory while you work on it and then
writes it all back out when you closeit. The other difference is that, when programming,
you normally open the file as read only or write only. Y ou can write by creating a new
file from scratch (or overwriting an existing one) or by appending to an existing one.

One other thing you can do while processing afileis that you can go back to the
beginning.

Files- Input and Output

Let's seethat in practice. We will assume that afile exists called nenu. t xt and that it
holds alist of medls:

spam & eggs
spam & chi ps
spam & spam

Now we will write a program to read the file and display the output - like the 'cat'
command in Unix or the 'type command in DOS.

First open the file to read(r)
inp = file("menu.txt","r")

D:\DOC\HomePagatutor\tutfiles.htm Page 126 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

read the file into a list then print
each item
for line in inp.readlines():
print line
Now cl ose it again
i np. cl ose()

Notel: fil e() takestwo arguments. Thefirst is the filename (which may be passed as
avariableor alitera string, as we did here). The second is the mode. The mode
determines whether we are opening the file for reading(r) or writing(w), and also
whether it's for ASCII text or binary usage - by adding a'b’ tothe'r' or 'w', asin:
open(fn,"rb")

Note 2: Weused thefi | e() function to open thefile, older versions of Python used
the built in function open() instead. The parameters areidentical but since open() is
still the preferred mechanism we will usually use open() however, if you find

file() morelogical then fed freeto usethat instead.

Note 3: Weread and close the file using functions preceded by thefile variable. This
notation is known as method invocation and is another example of Object Orientation.
Don't worry about it for now, except to realize that it's related in some ways to modules.
Y ou can think of afile variable as being a reference to a modul e containing functions
that operate on files and which we automatically import every time we create afile type
variable.

Note 4: We closethefile at the end with thecl ose() method. In Python, files are
automatically closed at the end of the program but it is good practice to get into the
habit of closing your files explicitly. Why? Well, the operating system may not write the
data out to thefile until it is closed (this can boost performance). What this means is that
if the program exits unexpectedly there is a danger that your precious data may not have
been written to thefile! So themoral is: once you finish writing to afile, closeit.

Consider how you could copewith long files. First of all you would need to read the file
onelineat atime (in Python by using r eadl i ne() and awhi | e loop instead of

readl i nes() andaf or loop). You might thenuseal i ne_count variablewhichis
incremented for each line and then tested to see whether it is equal to 25 (for a25 line
screen). If so, you request the user to press a key (enter, say) before resetting

| i ne_count to zero and continuing. You might liketo try that as an excercise...

D:\DOC\HomePagatutor\tutfiles.htm Page 127 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

Since Python version 2.2 it has a so been possibleto treat the fileas alist so you don't
need to user eadl i nes() insideaf or loop, you just iterate over thefile. Let's rewrite
the previous exampl e to see this feature in action:

First open the file to read(r)
inp = open("menu.txt","r")
iterate over the file printing each item
for line in inp:
print |ine
Now cl ose it again
i np. cl ose()

This style also has the advantage that there are no limits of memory as with
readl i nes(), so it combines the advantages of af or loop and the
whi | e/ readl i ne() approach mentioned above.

Redlly that's all thereistoit. You open thefile, read it in and manipulate it any way you
want to. When you're finished you close the file. However thereis one little niggle you
may have noticed in the previous example: the lines read from the file have a

newline character at the end, so you wind up with blank lines using pri nt (which adds
its own newline). To avoid that Python provides a string method called st ri p() which
will remove whitespace, or non-printable characters, from both ends of a string. (It has
cousins which can strip oneend only calledr st ri p and | st ri p too) If we substitute
the print line above with:

for line in inp:
print line.rstrip() #only strip right hand end
Everything should now work just fine.
To create a'copy’ command in Python, we simply open a new file in write mode and
writethelinesto that file instead of printing them. Likethis:

Create the equival ent of: COPY MENU. TXT MENU. BAK

First open the files to read(r) and wite(w)
inp = open("menu.txt","r")
outp = open("nenu. bak", "w")

D:\DOC\HomePagatutor\tutfiles.htm Page 128 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

read file, copying each line to newfile
for line in inp:
outp.wite(line)

print "1 file copied..."

Now cl ose the files
i np. cl ose()
out p. cl ose()

Did you notice that | added a print statement at the end, just to reassure the user that
something actually happened? This kind of user feedback is usually a good idea.

Because we wrote out the same| i ne that we read in there was no problems with
newline characters here. But if we had been writing out strings which we created, or
which we had st r i pped earlier we would have needed to add a newline to the end of
the output string, likethis:

outp.wite(line + '\n") #\n is a newine

Let'slook at how we might incorporate that into our copy program. Instead of simply
copying the menu we will add todays date to the top. That way we can easily generate a
daily menu from the easily modified text file of meals. All we need to do iswrite out a
couple of lines at the top of the new file before copying the menu.txt file, like this:

Create daily nenu based on MENU. TXT

i mport time

First open the files to read(r) and wite(w)
inp = open("menu.txt","r")

outp = open("nmenu. prn”,"w")

Create todays date string
today = tine.localtinme(time.tine())
theDate = tine.strftine("% %8 %", today)

Add Banner text and a bl ank |ine
outp.wite("Menu for %\n\n" %t heDate)

copy each line of nmenu.txt to newfile
for line in inp:
outp.write(line)

D:\DOC\HomePagatutor\tutfiles.htm Page 129 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

print "Menu created for %..." %theDate

Now cl ose the files
i np. cl ose()
out p. cl ose()

Note that we usethet i me moduleto get todays date (ti me. ti ne()) and convert it
into atupleof values (ti nme. | ocal ti me()) which are then used by
time.strftime() toproduce astring which, when inserted into atitle message using
string formeatting, looks like:

Menu for Sunday Septenber 19

Spam & Eggs
Spam &. . .

Although we added two "\n' characters at the end thereis only one blank line printed,
that's because one of them is the newline at the end of thetitleitself. Managing the
creation and removal of newline characters is one of the more irritating aspects of
handling text files.

D:\DOC\HomePagatutor\tutfiles.htm Page 130 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

New lines and Operating Systems

The whole subject of newlines and text files is a murky area of non standard
implementation by different operating systems. These differences have their roots in
the early days of data communications and the control of mechanical tel eprinters.
Basicaly there are 3 different ways to indicate a new line:

1. A Carriage Return (CR) character ('\r')
2. A LineFeed (LF) character ("\n’)
3. A CR/LF pair ('\r\n).

All three techniques are used in different operating systems. MS DOS (and therefore
Windows) uses method 3. Unix (including Linux) uses method 2. Appleinitsorigina
MacOS used method 1, but now uses method 2 since MacOS X isredlly a variant of

Unix.

So how can the poor programmer cope with this multiplicity of line endings? In many
languages she just has to do lots of tests and take different action per OS. In more
modern languages, including Python, the language provides facilities for dealing with
the mess for you. In the case of Python the assi stance comes in the form of the

os module which defines avariable called | i nesep which is set to whatever the
newline character is on the current operating system. This makes adding newlines
easy, andrstri p() takesaccount of the OS when it does its work of removing them,
so really the simple way to stay sane, so far as newlines are concerned is: always use
rstrip() toremovenewlinesfrom lines read from afile and always add

os. | i nesep to strings being written to afile.

That still leaves the awkward situation where afileis created on one OS and then
processed on another, incompatible, OS and sadly, thereisn't much we can do about
that except to compare the end of the linewith os. | i nesep to determine what the
differenceis.

D:\DOC\HomePagatutor\tutfiles.htm Page 131 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

Onefinal twist in file processing is that you might want to append data to the end of an
existing file. One way to do that would be to open thefile for input, read the data into a
list, append the data to the list and then write the whole list out to a new version of the
oldfile. If thefileis short that's not a problem but if the fileis very large, maybe over
100Mb, then you will simply run out of memory to hold the list. Fortunately there's
another mode " a" that we can pass to open() which allows us to append directly to an
existing filejust by writing. Even better, if thefile doesn't exist it will open anew file
just asif you'd specified " w" .

As an example, let's assume we have alog file that we use for capturing error messages.
We don't want to del ete the existing messages so we choose to append the error, like
this:

def | ogError(nsg):
err = open("Errors.log","a")
err.wite(nsg)
err.close()

In the real world we would probably want to limit the size of the file in some way. A
common technique is to create a filename based on the date, thus when the date changes
we automatically create anew fileand it is easy for the maintainers of the system to find
the errors for a particular day and to archive away old error filesif they are not needed.
(Remember, from the menu example above, that thet i me module can be used to find
out the current date.)

The Address Book Revisited

Y ou remember the address book program we introduced during the Raw Materials topic
and then expanded in the Talking to the User topic? Let's start to make it really useful
by saving it to afile and, of course, reading the file at startup. We'll do this by writing
some functions. So in this example we pull together several of the strands that we've
covered in the last few topics.

The basic design will require afunction to read thefile at startup, another to write the
file at the end of the program. We will also create a function to present the user with a
menu of options and a separate function for each menu selection. The menu will allow
the user to:

* Add an entry to the address book
* Remove an entry from the book

D:\DOC\HomePagatutor\tutfiles.htm Page 132 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

* Find and display an existing entry
® Quit the program

L oading the Address Book

filenane = "addbook. dat"

def readBook(book):
i mport os
if os.path.exists(filenane):
store = open(filenane,'r")
for line in store:
nane = line.rstrip()
entry = store.next().rstrip()
book[nane] = entry
store. close()

Noticetheuseof rstri p() toremovethe new-line character from the end of theline.
Also noticethenext () operation to fetch the next line from the file within the loop.
Finally notice that we defined the filename as a module level variable so we can use it
both in loading and saving the data.

Saving the Address Book

def saveBook(book):
store = open(filenane, 'wW)
for name,entry in book.itens():
store.wite(name + '\n')
store.wite(entry + '\n")
store. close()

Notice we need to add a newline character (' \ n') when we write the data.

Getting User Input

def get Choi ce(nenu):
print menu
choice = int(raw_input("Select a choice(1l-4): "))
return choice

Adding an Entry

D:\DOC\HomePagatutor\tutfiles.htm Page 133 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

def addEntry(book):
nane = raw_i nput ("Enter a nane: ")
entry = raw_i nput ("Enter street, town and phone nunber: ")
book[nane] = entry

Removing an entry

def renoveEntry(book):
nane = raw_i nput ("Enter a nane: ")
del (book[nane])

Finding an entry

def findEntry(book):
nane = raw_i nput ("Enter a nane: ")
if nane in book:
print nane, book[nane]
el se: print "Sorry, no entry for: ", name

Quitting the program

Actually | won't write a separate function for this, instead I'll make the quit option the
test in my menu whi | e loop. So the main program will look like this:

def main():
t heMenu = """
1) Add Entry
2) Renove Entry
3) Find Entry
4) Quit and save
t heBook = {}
r eadBook(t heBook)
choi ce = get Choi ce(t heMenu)
whil e choice !'= 4:
if choice == 1:
addEnt r y(t heBook)
elif choice == 2:
renoveEntry(t heBook)
elif choice == 3:
fi ndentry(theBook)
el se: print "Invalid choice, try again”
choi ce = get Choi ce(t heMenu)
saveBook(t heBook)

D:\DOC\HomePagatutor\tutfiles.htm Page 134 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

Now the only thing l&ft to do is call themai n() function when the programis run, and
to do that we use a bit of Python magic likethis:

if _name__ =="_min__
mai n()

This mysterious bit of code alows us to use any python file as amodule by i npor ting
it, or as a program by running it. The differenceis that when the program is imported,
theinterna variable __nane__ is set to the module name but when thefileis run, the
vaueof __name__issetto”__ mmin__". Sneaky, eh?

Now if you type all that code into a new text file and save it as addressbook.py, you
should be able to run it from an OS prompt by typing:

C.\ PRQJECTS> pyt hon addr essbook. py

Or just double click the file in Windows Explorer and it should start up in its own DOS
window, and the window will close when you select the quit option.

Or in Linux;

$ python addr essbook. py

Study the code, seeif you can find the mistakes (I've | eft, at least, two minor bugs for
you to find, there may be more!) and try to fix them. This 60 odd line program s typical
of the sort of thing you can start writing for yourself. There are a couple of things we
can do to improve it which I'll cover in the next section, but even as it standsit'sa
reasonably useful little tool.

VBScript and JavaScript

Neither VBScript nor JavaScript have native file handling capabilities. Thisis a security
feature to ensure no-one can read your files when you innocently load a web page, but it
does restrict their general usefulness. However, as we saw with reusable modul es there
isaway to do it using Windows Script Host. WSH provides aFi | eSyst emobject
which allows any WSH language to read files. We will ook at a JavaScript examplein
detail then show similar code in VBScript for comparison, but as before the key
elements will really be calls to the WScript objects.

D:\DOC\HomePagatutor\tutfiles.htm Page 135 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

Before we can look at the codein detail it's worth taking time to describe the

Fi | eSyst emObject Model. An Object Model is a set of related objects which can be
used by the programmer. The WSH Fi | eSyst emobject model consists of the

FSO object, a number of Fi | e objects, including the Text Fi | e object which we will
use. There are also some hel per objects, most notable of which is, for our purposes, the
Text St r eamobject. Basically we will create an instance of the FSO object, then useit
to create our Text Fi | e objects and from these in turn create Text St r eamobjects to
which we can read or write text. The Text St r eamobjects themsel ves are what we
actually read/write from the files.

Typethefollowing codeinto afilecalledt est Fil es. js andrunitusingcscri pt as
described in the earlier introduction to WSH.

Opening afile

To open afilein WSH we create an FSO object then create a TextFile object from that:

var fileNane, fso, txtFile, outFile, |ine;

/[l Get file nane

fso = new ActiveXObject("Scripting.FileSystenbject");
WBcri pt. Echo("What file name? ");

fileName = WBcript. Stdln. Readline();

/] open inFile to read, outFile to wite

inFile = fso. OpenTextFile(fileNanme, 1); // node 1 = Read
fileName = fil eNane + ".BAK"

outFile = fso.CreateTextFil e(fil eName);

Reading and Writing afile

/! 1oop over file till it reaches the end
while (!linFile. AtEndOF Stream){
line = inFile.ReadLi ne();
W5cri pt. Echo(li ne);
outFile.WiteLine(line);
}
Closing files

inFile.close();

D:\DOC\HomePagatutor\tutfiles.htm Page 136 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

outFile.close();
And in VBScript

Savethefollowing ast est FI | es. ws and then run it using:

cscript testfiles.ws

Or dternatively, put the bit between thescri pt tagsinto afilecaled

test Fi | e. vbs and run that instead. The . ws format allows you to mix JavaScript and
VBScript code in the samefile by simply using multiple scri pt tags, should you want
to...

<?xm version="1.0"7?>

<j ob>
<scri pt | anguage="VBScri pt">
Dmfso, inFile, outFile, inFileName, outFileNane
Set fso = CreateObject("Scripting.FileSystenthject")

W5cri pt. Echo "Type a filenane to backup”
i nFi | eNane = Wscri pt. Stdl n. ReadLi ne

out Fil eNanme = inFil eNane &anp; ".BAK"

' open the files

Set inFile = fso. QpenTextFil e(inFil eNanme, 1)
Set outFile = fso.CreateTextFil e(outFil eNane)

' read the file and wite to the backup copy

Wil e not inFile. At EndOF Stream
line = inFile.ReadLine
outFile.WiteLine(line)

Wend

" close both files

i nFile.d ose

out Fil e. C ose

WEcri pt. Echo inFil eNane &anp; " backed up to "

</script>
</ j ob>

Handling Non-Text Files

D:\DOC\HomePagatutor\tutfiles.htm Page 137 of 340

CuuDuongThanCong.com

&anp; out Fi | eNane

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

Handling text is one of the most common things that programmers do, but sometimes
we need to process raw binary datatoo. Thisis very rarely donein VBScript or
JavaScript so | will only be covering how Python does it.

Opening and Closing Binary Files

The key difference between text files and binary files is that text files are composed of
octets, or bytes, of binary data whereby each byte represents a character and the end of
thefileis marked by a special byte pattern, known generically as end of file, or eof. A
binary file contains arbitrary binary data and thus no specific value can be used to
identify end of file, thus a different mode of operation is required to read thesefiles. The
end result of thisis that when we open a binary file in Python (or indeed any other
language) we must specify that it is being opened in binary mode or risk the data being
read being truncated at thefirst eof character that Python finds in the data. The way we
do thisin Python isto add a'b’ to the mode parameter, likethis:

binfile = file("aBinaryFile.bin","rb")

The only difference from opening atext fileis the mode value of " r b" . Y ou can use any
of the other modes too, simply add a'b’: " wb" to write, "ab" to append.

Closing abinary fileis no different to atext file, simply call thecl ose() method of the
open file object:
binfile.close()

Because the file was opened in binary mode thereis no need to given Python any extra
information, it knows how to close thefile correctly.

Data Representation and Storage

Before we discuss how to access the data within a binary file we need to consider how
datais represented and stored on a computer. All datais stored as a sequence of
binary digits, or bits. These bits are grouped into sets of 8 or 16 called bytes or

words respectively. (A group of 4 is sometimes called anibble!) A byte can be any one
of 256 different bit patterns and these are given the values 0-255.

D:\DOC\HomePagatutor\tutfiles.htm Page 138 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

The information we manipulate in our programs, strings, numbers etc must al be
converted into sequences of bytes. Thus the characters that we use in strings are each
allocated a particular byte pattern. There were originally several such encodings, but
the most common is the ASCII (American Standard Coding for Information
Interchange). Unfortunately pure ASCII only caters for 128 values which is not
enough for non English languages. A new encoding standard known as Unicode has
been produced, which can use data words instead of bytes to represent characters, and
allows for over 65000 characters. A subset of Unicode called UTF-8 corresponds
closdy to the earlier ASCII coding such that every valid ASCII fileisavalid UTF-8
file, although not necessarily the other way around. Python by default supports ASCI|
and by pre-pending a u in front of a string we can tell Python to treat the string as
Unicode. (Although we also need to tell Python which encoding isin useor it will be
confused.)

In the same way numbers need to be converted to binary codings too. For small
integersit is simple enough to use the byte values directly, but for numbers larger than
255 (or negative numbers, or fractions) some additional work needs to be done. Over
time various standard codings have emerged for numerical data and most
programming languages and operating systems use these. For example, the American
Institute of Electrical and Electronic Engineering (IEEE) have defined a number of
codings for floating point numbers.

The point of all of thisis that when we read a binary file we have to interpret the raw
bit patterns into the correct type of datafor our program. It is perfectly possible to
interpret a stream of bytes that were originally written as a character string as a set of
floating point numbers. Or course the original meaning will have been lost but the bit
patterns could represent either. So when we read binary data it is extremely important
that we convert it into the correct data type.

The Struct Module

D:\DOC\HomePagatutor\tutfiles.htm Page 139 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

To encode/decode binary data Python provides a module called st r uct , short for
structure. st r uct works very much like the format strings we have been using to print
mixed data. We provide a string representing the data we are reading and apply it to the
byte stream that we are trying to interpret. We can aso use struct to convert a set of
data to a byte stream for writing, either to abinary file (or even a communicationsline!).

There are many different conversion format codes but we will only use the integer and
string codes here. (You can look up the others on the Python documentation for the

st ruct module.) The codes for integer and string arei , and s respectively. The

st ruct format strings consist of sequences of codes with numbers pre-pended to
indicate how many of the items we need. The exception is the s code where the
prepended number means the length of the string. For example 4s means a string of four
characters (note 4 characters not 4 strings!).

Let's assume we wanted to write the address details, from our Address Book program
above, as binary data with the street number as an integer and therest asa string (Thisis
abad ideain practice since street "numbers" sometimes include | etters!). The format
string would look like:

"i34s' # assuming 34 characters in the address!
To cope with multiple address lengths we could write a function to create the binary
string likethis:

def fornmat Addr ess(address):
split breaks a string into a list of 'words'

fields = address.split()

nunber = int(fields[0])

rest ="' '".join(fields[1:])

format = "i%s" %l en(rest) #create the format string

return struct. pack(format, nunber, rest)

So we used a string method - spli t () - (more on themin the next topic!) to split the
address string into its parts, extract the first one as the number and then use another
string method, j oi n to join the remaining fields back together. The length of that string
is the number we need in the st r uct format string. Phew!

D:\DOC\HomePagatutor\tutfiles.htm Page 140 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

f or mat Addr ess() will return a sequence of bytes containing the binary representation
of our address. Now that we have our binary data | et's see how we can write that to a
binary file and then read it back again.

Reading & Writing Using Struct

Let's create a binary file containing a single address line using the
f or mat Addr ess() function defined above. We need to open thefile for writing in
"wb' mode, encode the data, writeit to the file and then close thefile. Let's try it:

i mport struct

f =file(' address.bin',' wh')

data = "10 Sone St, Anytown, 0171 234 8765"

bi ndata = format Address(dat a)

print "Binary data before saving: ", repr(bindata)
f.wite(bindata)

f.close()

Y ou can check that the datais indeed in binary format by opening addr ess. bi nin
notepad. The characters will be readable but the number will not look like 10!

To read it back again we need to open the filein 'rb* mode, read the data into a sequence
of bytes, close thefile and finally unpack the data using a struct format string. The
question is how do wetell what the format string looks like? In this case we know it
must be like the one we created in f or mat Addr ess(), namely' i Ns' whereN isa
variable number. How do we determine the value of N?

The struct module provides some hel per functions that return the size of each data type,
so by firing up the Python prompt and experimenting we can find out how many bytes of
data we will get back for each data type:

>>> jnport struct

>>> print struct.calcsize('i')
4

>>> print struct.calcsize('s')
1

Ok, we know that our datawill comprise 4 bytes for the number and one byte for each
character. So N will be the length of the data minus 4. Let's try using that to read our
file

D:\DOC\HomePagatutor\tutfiles.htm Page 141 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

FileHandling 22/01/2006

i mport struct
f =file(' address.bin','rb")
data = f.read()

f.close()

fmString = "i %ds" % (len(data) - 4)

nunber, rest = struct.unpack(fm String, data)
address =" ".join((str(nunber),rest))

print "Address after restoring data:", address

And that's it on binary datafiles, or at least as much as I'm going to say on the subject.
As you can see using binary data introduces several complications and unless you have a
very good reason | don't recommend it. But at least if you do need to read a binary file,
you can do it (provided you know what the data represented in the first place of
coursel)

| Things to remember

Open files before using them

® Files can usualy only be read or written but not both at the same time
® Python'sreadl i nes() function reads al thelinesin afile, while
readl i ne() only reads oneline at atime, which may help save memory.
® Closefiles after use,

® Binary files need the mode flag to end in 'b'

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagatutor\tutfiles.htm Page 142 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

Manipulating Text

What will we cover?

How to split lines of text into character groups

How to search for strings of text within other strings
How to replace text within a string

How to change case of characters

Handling text is one of the most common things that programmers do. As aresult there
arelots of specific tools in most programming languages to make this easier. In this
section we will look at some of these and how we might use them in performing typical
programming tasks.

Some of the most common tasks that we can do when working with text are:

splitting lines of text into character groups
searching for strings of text within other strings
replacing text within a string

changing case of characters

We will ook at how to do each of these tasks using Python and then briefly consider
how VBScript and JavaScript handle text processing.

Python takes a slightly ambiguous approach to processing text as of version 2.3. Thisis
because in early versions of Python all string manipulation was done via a module full of
functions and useful constants. In Python version 2.0 string methods were introduced
which duplicated the functions in the module, but the constants were still there. This
position has remained through to version 2.3 but work is underway to remove the need
for theold st ri ng module completely. In this topic we will only look at the new object
oriented approach to string manipulation, if you do want to try out the modul e then feel
free to read the Python modul e documentation.

Splitting strings

D:\DOC\HomePageitutor\tuttext.htm Page 143 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

Thefirst task we consider is how to split a string into its constituent parts. Thisis often
necessary when processing files since we tend to read afile line by line, but the data may
well be contained within segments of the line. An example of thisis our Address Book
example, where we might want to access the individual fields of the entries rather than
just print the whole entry.

The python method we use for thisiscalled spl it () anditisused likethis:

>>> aString = "Here is a (short) String"
>>> print aString.split()
['Here', "is', "a', '(short)', "String']

Notice we get alist back containing the words within aSt ri ng with all the spaces
removed. The default separator for ' * . split () iswhitespace (ie. tabs, newlines and
spaces). Let'stry using it again but with an opening parenthesis as the separator:

>>> print aString.split(' (")
['Here is a ', '"short) String']

Notice the difference? There are only two eementsin the list this time and the opening
parenthesis has been removed from the front of * short) ' . That's an important point to
noteabout ' ' . split (), that it removes the separator characters. Usually that's what
we want, but just occasionally well wish it hadn't!

Thereisasoa' ' .joi n() method which cantakealist (or indeed any other kind of
seguence) of strings and join them together. One confusing featureof * * . j oi n() is
that it uses the string on which we call the method as the joining characters. You'll see
what | mean from this example:

>>> | st = ["here',"is',"a ,'list',"of', " words']
>>> print '-+-'.join(lst)
here-+-is-+-a-+-1ist-+-of-+-words

>>> print ' '.join(lst)

here is a list of words

It sort of makes sense when you think about it, but it does look weird when you first see
it.

Counting words

D:\DOC\HomePageitutor\tuttext.htm Page 144 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

Let'srevisit that word counting program | mentioned in the functions topic. Recall the
Pseudo Code looked like:

def numaords(aString):
list = split(aString) # list with each elenent a word
return len(list) # return nunber of elenents in |ist

for line in file:
total = total + numwrds(line) # accumulate totals for each line
print "File had %d words" % total

Now we know how to get the lines from the file let's consider the body of the

numaor ds() function. First we want to create alist of words in aline. That's nothing
more than applying thedefault ' ' . split () method. Referring to the Python
documentation we find that the builtin function | en()) returns the number of eementsin
alist, which in our case should be the number of words in the string - exactly what we
want.

So thefinal codelooks like:

i mport string

def numaords(aString):
st = aString.split() # split() is a nethod of the string object aString
return len(lst) # return nunber of elenments in the |ist

e("menu.txt","r")

inp = fil
| =0 # initializer to zero; also creates variable

tota
for line in inp:

total = total + numwrds(line) # accumulate totals for each line
print "File had %d words" % total

i np. cl ose()

That's not quite right of course because it counts things like an ampersand character as a
word (athough maybe you think it should...). Also, it can only be used on asinglefile
(menu.txt). But it's not too hard to convert it to read the filename from the command
line(argv[1])orvia raw_i nput () aswesaw inthe Talking to the user section. |
leave that as an exercise for the reader.

Sear ching Text

D:\DOC\HomePageitutor\tuttext.htm Page 145 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

The next common operation we will look at is searching for a sub-string within alonger
string. Thisis again supported by a Python string method, this time called

" . find() It'sbasicuseisquite simple, you provide a search string and if Python finds
it within the main string it returns the index of thefirst character of the substring, if it
doesn't find it, it returns -1:

>>> aString = "here is along string with a substring inside it"
>>> print aString.find('long")

10

>>> print aString.find('oxen')

-1

>>> print aString.find('string')

15

Thefirst two examples are straightforward, the first returns the index of the start of

"I ong' and the second returns - 1 because' oxen' does not occur insideaSt ri ng.
The third example throws up an interesting point, namely that find only locates the

first occurrence of the search string, but what do we do if the search string occurs more
than oncein the original string?

One option is to use the index of the first occurrence to chop the original string into two
pieces and search again. We keep doing this until we get a-1 result. Likethis:

aString = "Bow wow says the dog, how many o's are in this string?"
count = 0

index = aString.find('ow)

while index !'= -1:

count +=1
tenp = aString[index + 1:] # use slicing
i ndex = tenp.find('ow)
print "W found % occurrences of "ow in %" % (count, aString)

Here we just counted occurrences, but we could just as well have collected the index
results into alist for later processing.

Thefi nd() method can speed this process up alittle by using a one of its extra
optional parameters. That is, a start location within the original string:

aString = "Bow wow says the dog, how many o's are in this string?"
count = 0
index = aString.find('ow) # use default start

D:\DOC\HomePageitutor\tuttext.htm Page 146 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

while index !'= -1:
count += 1
start = index + 1

index = aString.find('ow, start) # set new start
print "W found % occurrences of '"ow in %" % (count, aString)

This solution removes the need to create a new string each time, which can be a slow

processif the string islong. Also, if we know that the substring will definitely only be
within thefirst so many characters(or we aren't interested in later occurrences) we can
specify both a start and stop value, like this:

#1limt search to the first 20 chars
aString = "Bow wow says the dog, how many ow s are in this string?"
print aString.find('ow, 0, 20)

To complete our discussion of searching there are a couple of nice extra methods that
Python provides to cater for common search situations, namely ' ' . start swi t h() and
"' . endswi t h() . From the names alone you probably can guess what these do. They
return True or False depending on whether the original string starts with or ends with
the given search string, likethis:

>>> print "Python rocks!".startswith("Perl")
Fal se

>>> print "Python rocks!".startswi th('Python')
True

>>> print "Python rocks!".endsw th(' sucks!")
Fal se

>>> print "Python rocks!".endswi th('cks!")
True

Notice the boolean result. After al, you already know where to look if the answer is
True! Also noticethat the search string doesn't need to be a compl ete word, a substring
isfine. You can aso provideast art and st op position within the string, just like

"' . find() toeffectively test for astring at any given location within astring. Thisis
not a feature that is used much in practice.

And finally for a simple test of whether a substring exists anywhere within another string
you can use the Python i n operator, likethis:

>>> if 'foo' in 'foobar': print 'True'
True

D:\DOC\HomePageitutor\tuttext.htm Page 147 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

>>> if 'baz' in 'foobar': print 'True'
>>> if 'bar' in 'foobar': print 'True'
True

That's al I'll say about searching for now, let's look at how to replace text next.
Replacing text

Having found our text we often want to change it to something else. Again the Python
string methods provide a solution withthe' ' . repl ace() method. It takes two
arguments: a search string and a replacement string. The return value is the new string
as aresult of the replacement.

>>> aString = "Mary had a little lanmb, its fleece was dirty!"
>>> print aString.replace('dirty',"'white')
"Mary had a little lanb, its fleece was white!"

One interesting difference between' ' . fi nd() and' ' . r epl ace isthat replace, by
default, replaces all occurrences of the search string, not just the first. An optional
count argument can limit the number of replacements:

>>> aString = "Bow wow wow said the little dog"
>>> print aString.replace('ow,'ark')

Bark wark wark said the little dog

>>> print aString.replace('ow,"ark',1) # only one
Bark wow wow said the little dog

It is possible to do much more sophisticated search and replace operations using
something called aregular expression, but they are much more complex and get awhole
topic to themsaves in the "Advanced" section of the tutorial.

Changing the case of characters
Onefinal thing to consider is converting case from lower to upper and vice-versa. This

isn't such a common operation but Python does provide some helper methods to do it
for us:

>>> print "M Xed Case".|ower()
m xed case
>>> print "M Xed Case". upper()

D:\DOC\HomePageitutor\tuttext.htm Page 148 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

M XED CASE

>>> print "M Xed Case".swapcase()
m XED cASE

>>> print "M Xed Case".capitalize()
M xed case

>>> print "TEST".isupper()

True

>>> print "TEST".i sl ower ()

Fal se

Notethat' ' . capitalize() capitalizesthe entire string not each word within it. Also
note the two test functions (or predicates) ' ' . i supper () and' ' .i sl ower().
Python provides a whole bunch of these predicate functions for testing strings, other
useful testsinclude ' ' .isdigit(),'"' .isalpha() and''.isspace(). Thelast
checks for al whitespace not just literal space characters!

We will be using many of these string methods as we progress through the tutorial, and
in particular the Grammar Counter case study uses several of them.

Text handling in VBScript

Because VB Script descends from BASIC it has aweelth of builtin string handling
functions. In fact in the reference documentation | counted at least 20 functions or
methods, not counting those that are simply there to handle Unicode characters.

What this means is that we can pretty much do all the things we did in Python using
VBScript too. I'll quickly run through the options below:

Splitting text

We start with the Spl i t function:

<script | anguage="VBScri pt">

Dms

Dim | st

s = "Here is a string of words”
st = Split(s) returns an array
MsgBox | st (1)

</script>

As with Python you can add a separator value if the default whitespace separation isn't
what you need.

D:\DOC\HomePageitutor\tuttext.htm Page 149 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

Also as with Python thereis aJoi n function for reversing the process.
Searching for and replacing text

Searching isdonewith I nSt r, short for "In String”, obviously.

<scri pt | anguage="VBScri pt">

Dms,n

s = "Here is a long string of text”

n =1nStr(s, "long")

MsgBox "long is found at position: " & CStr(n)
</script>

The return value is normally the position within the original string that the substring
starts. If the substring is not found then zero is returned (this isn't a problem because
VBScript startsitsindices at 1, so zero is not avalid index). If either stringisaNul | a
Nul | is returned, which makes testing error conditions a bit more tricky.

As with Python we can specify a sub range of the original string to search, using a start
value, likethis:

<script | anguage="VBScri pt">

Dms,n

s = "Here is a long string of text”
n=1nStr(6, s, "long") ' start at position 6
MsgBox "long is found at position: " & CStr(n)
</script>

Unlike Python we can al so specify whether the search should be case-sensitive or not,
the default is case-sensitive.

Replacing text is done with the Repl ace function. Likethis:

<script | anguage="VBScri pt">

Dms

s = "The quick yellow fox junped over the | og"
MsgBox Repl ace(s, "yellow', "brown")

</script>

D:\DOC\HomePageitutor\tuttext.htm Page 150 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

We can provide an optional final argument specifying how many occurrences of the
search string should be replaced, the default is all of them. We can also specify a start
position asfor I nSt r above.

Changing case

Changing case in VBScript is donewith UCase and LCase, thereis no equivaent of
Python's capitalize method.

<script | anguage="VBScri pt">
Dms

s = "M Xed Case"

MsgBox LCase(s)

MsgBox UCase(s)

</script>

And that's all I'm going to cover in thistutorial, if you want to find out more check the
VBScript help filefor thelist of functions.

Text handling in JavaScript

JavaScript is the least well equipped for text handling of our three languages. Even so,
the basic operations are catered for to some degree, it is only in the number of "bells &
whistles" that JavaScript suffers in comparison to VBScript and Python. JavaScript
compensates somewhat for its limitations with strong support for regular
expressions(which we cover in alater topic) and these extend the apparently primitive
functions quite significantly, but at the expense of some added compl exity.

Like Python JavaScript takes an object oriented approach to string manipulation, with
all the work being done by methods of the St ri ng class.

Splitting Text

Splitting text isdone using the spl i t method:

<scri pt | anguage="JavaScri pt">

var alist, aString = "Here is a short string";
aList = aString.split(" ");

docunent..wite(aList[1]);
</script>

D:\DOC\HomePageitutor\tuttext.htm Page 151 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

Notice that JavaScript requires the separator character to be provided, thereis no
default value. The separator is actually aregular expression and so quite sophisticated
split operations are possible.

Sear ching Text

Searching for text in JavaScript is doneviathesear ch() method:

<scri pt | anguage="JavaScri pt">

var aString = "Round and Round the ragged rock ran a rascal";
docunent.wite("ragged is at position: " + aString.search("ragged"));
</script>

Once again the search string argument is actually a regular expression so the searches
can be very sophisticated indeed. Notice, however, that there is no way to restrict the
range of the original string that is searched by passing a start position (although this can
also be simulated using regular expression tricks).

JavaScript provides another search operation with slightly different behaviour called
mat ch(), | don't cover the use of mat ch here.

Replacing Text

To do areplace operation we use ther epl ace() method.

<scri pt | anguage="JavaScri pt">

var aString = "Hunpty Dunpty sat on a cat";
document . .wite(aString. replace("cat","wall"));
</script>

And once again the search string can be a regular expression, you can begin to see the
pattern | suspect! The replace operation replaces all instances of the search string and,
sofar as| cantell, thereis no way to restrict that to just one occurence without first
splitting the string and then joining it back together.

Changing case

Changing caseis performed by two functions: t oLower Case() andt oUpper Case()

<scri pt | anguage="JavaScri pt">

D:\DOC\HomePageitutor\tuttext.htm Page 152 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Text Handling 22/01/2006

var aString = "This string has M xed Case";
docunent.wite(aString.toLowerCase()+ "
");
docunent.wite(aString.toUpperCase()+ "
");
</script>

Thereis very little to say about this pair, they do a simple job simply. JavaScript, unlike
the other languages we consider provides a wealth of special text functions for
processing HTML, this revealing it's roots as a web programming language. We don't
consider these here but they are all described in the standard documentation.

That concludes our look at text handling, hopefully it has given you the tools you need
to process any text you encounter in your own projects. One final word of advice:
always check the documentation for your language when processing text, there are often
powerful tools included for this most fundamental of programming tasks.

Thingsto remember

® Text processing is a common operation with powerful support built-in to most
languages

® The most common tasks are splitting text, searching for and replacing text and
changing case

® Each language provides different levels of support but the three basic operations are
nearly aways available,

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePageitutor\tuttext.htm Page 153 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

Handling Errors

What will we cover?

® A short history of error handling
® Two techniques for handling errors
® Defining and raising errors in our code for others to catch

A Brief History of Error Handling

VBScript is by far the most bizarre of our three languages in the way it handles errors.
The reason for thisisthat it is built on afoundation of BASIC which was one of the
earliest programming languages (around 1963) and VVBScript error handling is one place
where that heritage shines through. For our purposes that's not a bad thing because it
gives me the opportunity to explain why VBScript works as it does by tracing the
history of error handling from BASIC through Visual Basic to VBScript. After that we
will look at a much more modern approach as exemplified in both JavaScript and

Python.

In traditional BASIC, programs were written with line numbers to mark each one of
code. Transferring control was done by jumping to a specific line using a statement
called GOTO (we saw an example of this in the Branching topic). Essentialy this was
the only form of control possible. In this environment a common mode of error handling
was to declare an er r or code variable that would store an integer value. Whenever an
error occurred in the program the er r or code variable would be set to reflect the
problem - couldn't open afile, type mismatch, operator overflow etc

This led to code that looked like this fragment out of a fictitious program:

1010 LET DATA = I NPUT FILE

1020 CALL DATA PROCESSI NG_FUNCTI ON
1030 I'F NOTI' ERRORCCDE = 0 GOTO 5000
1040 CALL ANOTHER_FUNCTI ON

1050 I'F NOTI' ERRORCCDE = 0 GOTO 5000
1060 REM CONTI NUE PROCESSI NG LI KE TH S

5000 | F ERRORCODE = 1 GOTO 5100
5010 | F ERRORCODE = 2 GOTO 5200
5020 REM MORE | F STATEMENTS

D:\DOC\HomePagettutor\tuterrors.htm Page 154 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

5100 REM HANDLE ERROR CODE 1 HERE
5200 REM HANDLE ERROR CODE 2 HERE

As you can see amost half of the main program is concerned with detecting whether an
error occurred. Over time a slightly more el egant mechanism was introduced whereby
the detection of errors and their handling was partially taken over by the language
interpreter, this looked like:

1010 LET DATA = | NPUTFI LE

1020 ON ERROR GOTO 5000

1030 CALL DATA PROCESSI NG_FUNCTI ON
1040 CALL ANOTHER_FUNCTI ON

5000 | F ERRORCODE
5010 | F ERRORCODE

1 GOTO 5100
2 GOTO 5200

This allowed a single line to indicate where the error handling code would reside. It still
required the functions which detected the error to set the ERRORCODE value but it made
writing (and reading!) code much easier.

So how does this affect us? Quite simply Visual Basic still provides this form of error
handling athough the line numbers have been replaced with more human friendly labels.
VBScript as adescendant of Visual Basic provides a severely cut down version of this.
In effect VBScript allows us to choose between handling the errors locally or ignoring
errors completely.

To ignore errors we use the following code:

On Error Goto 0 ' O inplies go nowhere
SoneFuncti on()
SoneQt her Funct i on()

To handle errors locally we use:

On Error Resume Next
SoneFuncti on()
If Err.Nunber = 42 Then

" handl e the error here
SoneQt her Funct i on()

D:\DOC\HomePagetitutor\tuterrors.htm Page 155 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

This seems slightly back to front but in fact simply reflects the historical process as
described above.

The default behavior is for the interpreter to generate a message to the user and stop
execution of the program when an error is detected. This is what happens with GoTo

0 error handling, so in effect GoTo 0 isaway of turning off local control and allowing
the interpreter to function as usual.

Resune Next error handling allows us to either pretend the error never happened, or

to check the Error object (called Er r) and in particular the number attribute (exactly like
the early errorcode technique). The Er r object also has a few other bits of information
that might help us to deal with the situation in aless catastrophic manner than simply
stopping the program. For example we can find out the source of the error, in terms of
an object or function etc. We can also get atextual description that we could use to
populate an informational message to the user, or writeanotein alog file. Finally we
can change error type by using the Rai se method of the Er r object. We can also use
Rai se to generate our own errors from within our own Functions.

As an example of using VBScript error handling lets look at the common case of trying
to divide by zero:

script | anguage="VBScri pt">
i m x,Yy, Resul t
= Cint (I nputBox("Enter the nunmber to be divided"))
= CINt (I nput Box("Enter the number to divide by"))
On Error Resume Next
Result = x/y
If Err. Nurrber = 11 Then ' Divide by zero
Result = Nul |
End If
On Error GoTo O ' turn error handling off again
If VarType(Result) = vbNull Then
MsgBox "ERROR Coul d not perform operation”
El se

<xgAa

MsgBox CStr(x) & " divided by " & CStr(y) & " is " & CStr(Result)

End If
</script>

D:\DOC\HomePagetitutor\tuterrors.htm Page 156 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

Frankly that's not very nice and while an appreciation of ancient history may be good for
the soul, modern programming languages, including both Python and JavaScript, have
much more el egant ways to handle errors, so let's look at them now.

Error Handling in Python
Exception Handling

In recent programming environments an alternative way of dealing with errors known as
exception handling works by having functions throw or raise an exception. The system
then forces ajump out of the current block of code to the nearest exception handling
block. The system provides a default handler which catches al exceptions which have
not already been handled € sewhere and usually prints an error message then exits.

One big advantage of this style of error handling is that the main function of the program
is much easier to see becauseiit is not mixed up with the error handling code, you can
simply read through the main block without having to look at the error code at al.

Let's see how this style of programming works in practice.
Try/Catch

The exception handling block is coded rather likean if...then... el se block:

try:

program | ogi c goes here
except ExceptionType:

exception processing for naned exception goes here
except Anot her Type:

exception processing for a different exception goes here
el se:

here we tidy up if NO exceptions are raised

Python attempts to execute the statements between thet r y and the first

except statement. If it encounters an error it will stop execution of thet ry block and
jump down to theexcept statements. It will progress down the except statements
until it finds one which matches the error (or exception) type and if it finds a match it
will execute the code in the block immediately following that exception. If no matching
except statement is found, the error is propagated up to the next level of the program

D:\DOC\HomePagettutor\tuterrors.htm Page 157 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

until, either amatch is found or the top level Python interpreter catches the error,
displays an error message and stops program execution - thisis what we have seen
happening in our programs so far.

If no errors are found in thet r y block then thefinal el se block is executed although,
in practice, this featureis rarely used. Note that an except statement with no specific
error type will catch al error types not already handled. In general thisis abad idea,
with the exception of the top leve of your program where you may want to avoid
presenting Python's fairly technical error messages to your users, you can use a general
except statement to catch any uncaught errors and display a friendly "shutting down™

type message.

It is worth noting that Python provides at r aceback module which enables you to
extract various bits of information about the source of an error, and this can be useful
for creating log files and the like. | won't cover the traceback module here but if you
need it the standard module documentation provides afull list of the available features.

Let'slook at areal example now, just to see how this works:

value = raw_i nput (" Type a divisor: ")
try:
val ue = int(val ue)
print "42 /| %l = %" % (val ue, 42/val ue)
except Val ueError:
print "I can't convert the value to an integer”
except ZeroDi vi si onError
print "Your value should not be zero"
except:
print "Somethi ng unexpected happened"
el se: print "Program conpl eted successfully”

If you run that and enter a non-number, a string say, at the prompt, you will get the
Val ueEr r or message, if you enter 0 you will get the Zer oDi vi si onEr r or message
and if you enter avalid number you will get the result plus the "Program compl eted”

message.
Try/Finally

D:\DOC\HomePagetitutor\tuterrors.htm Page 158 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

Thereis another type of 'exception’ block which allows us to tidy up after an error, it's
cdleda try...finally block andtypicallyisused for closing files, flushing buffers
todisk etc. The final |y block isalways executed |ast regardless of what happens in
the try section.

try:
normal program | ogic

finally:
here we tidy up regardless of the
success/failure of the try bl ock

This becomes very powerful when combined with at ry/ except block. Inthis case
there is no significant advantage as to which try block sits inside the other, the sequence
of processing is the same in either case. Personally | normally put the

try/finally block ontheoutside sinceit reminds me that the finally is done last, but
to Python it makes no difference. It looks like this:

print "Programstarting"

try:
data = file("data.dat")
print "data file opened"

try:
value = int(data.readline().split()[2])
print "The calcul ated value is %" % (val ue/ (42-val ue))
except ZeroDevi si onError:
print "Value read was 42"
finally:
dat a. cl ose()
print "data file cl osed"
print "Program conpl eted"

Note: The datafile hould contain aline with a number in the 3rd field, something like:

Foo bar 42

In this case the data file will always be closed regardless of whether an exception is
raised in the try/except block or not. Note that this is different behavior to the

el se clauseof t ry/ except becauseit only gets called if no exception is raised, and
equally simply putting the code outside thet r y/ except block would mean the file was
not closed if the exception was anything other than a Zer oDi vi si onError. Only a
try/finally construct ensuresthat thefileis always closed.

D:\DOC\HomePagetitutor\tuterrors.htm Page 159 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

Also noticethat | put thefil e() statement outsidethet ry/ except block. That is
purely a stylistic decision to makeit align with thecl ose() statement. If I'd actually
wanted to catch afile open error 1'd have moved it into thet ry/ except block and
added another except statement.

Onefina point to emphasiseis that you cannot combinet ry/ except/final ly intoa
single construct. Y ou must keep them as separate bl ocks each with its own
t ry statement.

Generating Errors

What happens when we want to generate exceptions for other peopleto catch, in a
module say? In that case we usethe rai se keyword in Python:

numerator = 42
denomi nator = input("What value will | divide 42 by?")
i f denomi nator == O:

rai se ZerobDi visi onError()

ThisraisesaZer oDi vi si onEr r or exception which can be caught by a

try/ except block. To therest of the program it looks exactly as if Python had
generated the error internally. Another use of ther ai se keyword is to propagate an
error to a higher leve in the program from within an except block. For example we may
want to take somelocal action, log the error in afile say, but then alow the higher level
program to decide what ultimate action to take. It looks like this:

def f(datun:

try:
return 127/ (42-datum

except ZeroDivi sionError:
logfile = open("errorlog.txt","w")
logfile.write("datum was 42\ n")
| ogfile.close()
rai se

try:
f(42)
except ZeroDi vi sionError:

print "You can't divide by zero, try another val ue"

D:\DOC\HomePagetitutor\tuterrors.htm Page 160 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

Notice how the function f () catches the error, logs a message in the error file and then
passes the exception back up for the outer t r y/ except block to deal with.

User Defined Exceptions

We can also define our own exception types for even finer grained control of our
programs. We do this by defining a new exception class (we briefly looked at defining
classes in the Raw Materials topic and will look at it in more detail in the Object
Oriented Programming topic later in the tutorial). Usually an exception classistrivial
and contains no content of its own, we simply defineit as a sub-class of Except i on and
useit asakind of "smart label” that can be detected by except statements. A short
example will suffice here:

cl ass BrokenError (Exception): pass
try:

rai se BrokenError
except BrokenError:

print "W found a Broken Error"

Note that we use a naming convention of adding "Error" to the end of the class name
and that we inherit the behavior of the generic Except i on class by including it in
parentheses after the name - we'll learn all about inheritance in the OOP topic.

Onefinal point to note on raising errors. Up until now we have quit our programs by
importing sys and calling theexi t () function. Another method that achieves exactly
the sameresult isto raisethe Syst entxi t eror, likethis:

>>> rai se Systenkxit
The main advantage being that we don't needtoi nport sys first.
JavaScript

JavaScript handles errors in avery similar way to Python, using the keywordst ry,
cat ch andt hr owin place of Python'stry, except andr ai se.

WEell take alook at some examples but the principles are exactly the same as in Python.
Notethereisnotry/ final | y construct in JavaScript.

Catchingerrors

D:\DOC\HomePagetitutor\tuterrors.htm Page 161 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

Catching errorsis done by using at ry block with a set of cat ch statements, almost
identically to Python:

<scri pt | anguage="JavaScri pt">

try{
var x = NonExi stent Function();

docunent . write(x);

catch(err){
document .wite("We got an error in the code");
}

</script>
Raising errors

Similarly we can raise errors by using thet hr ow keyword just as we used the
rai se keyword in Python. We can also create our own error types in JavaScript as we
did in Python but a much easier method is just to use a string.

<scri pt | anguage="JavaScri pt">

try{
throw("New Error");

}cat ch(e){

if (e == "New Error")
docunent.wite("W caught a new error");
el se

docurment . write("Not hi ng new here");

</script>

And that's al I'll say about error handling. As we go through the more advanced topics
coming up you will see error handling in use, just as you will see the other basic
concepts such as sequences, |oops and branches. In essence you now have all of the
tools at your disposal that you need to create powerful programs. It might be a good
ideato take some time out to try creating some programs of your own, just a couple, to
try to sound these ideas into your head before we move on to the next set of topics.
Here are afew sample idess:

* A simple game such as OXO or Hangman
* A basic database, maybe based on our address book, for storing details of your
video, DVD or CD collection.

D:\DOC\HomePagetitutor\tuterrors.htm Page 162 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Error Handling 22/01/2006

* A diary utility that will let you store important events or dates and, if you fed
really keen, that automatically pops up a reminder.

To complete any of the above you will need to use all of the language features we have
discussed and probably a few of the language modul es too. Remember to keep checking
the documentation, there will probably be quite a few tools that will make the job easier
if you look for them. Also don't forget the power of the Python >>> prompt. Try things
out there until you understand how they work then transfer that knowledge into your
program - it's how the professionals do it! Most of all, have fun!

See you in the Advanced section :-)

Thingsto remember

Check VBScript error codesusing ani f statement

Catch exceptions with a Python except or JavaScript cat ch clause
Generate exceptions using the Python r ai se or JavaScript throw keyword
Error types can be a class in Python or a simple string in JavaScript

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetitutor\tuterrors.htm Page 163 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

Namespaces

What will we cover?

* The meaning of namespace and scope and why they are important
* How namespaces work in Python
* Namespaces in VBScript and JavaScript

I ntroduction

What's a namespace? | hear you ask. Well, it's kinda hard to explain. Not because they
are especially complicated, but because every language does them differently. The
concept is pretty straightforward, a namespace is a space or region, within a program,
where a name (variable, class etc) isvalid. We actually use this idea in everyday life.
Suppose you work in a big company and there is a colleague called Joe. In the accounts
department there is another guy called Joe who you see occasionally but not often. In
that case you refer to your colleague as "Jo€" and the other one as "Joe in Accounts”.

Y ou also have a colleague called Susan and there is another Susan in Engineering with
whom you work closely. When referring to them you might say "Our Susan” or "Susan
from Engineering”. Do you see how you use the department name as a qualifier? That's
what namespaces do in a program, they tell both programmers and the translator which
of several identical namesis being referred to.

They came about because early programming languages (like BASIC) only had Global
Variables, that is, ones which could be seen throughout the program - even inside
functions. This made maintenance of large programs difficult since it was easy for one
bit of a program to modify a variable without other parts of the program realizing it -
this was called a side-effect. To get round this, later languages (including modern
BASICs) introduced the concept of namespaces. (C++ has taken this to extremes by
allowing the programmer to create their own namespaces anywhere within a program.
Thisis useful for library creators who might want to keep their function names unigque
when mixed with libraries provided by another supplier)

Another term used to describe a namespace is scope. The scope of a name is the extent
of a program whereby that name can be unambiguously used, for exampleinside a
function or a module. A name's namespace is exactly the same as it's scope. There are a
few very subtle differences between the terms but only a Computer Scientist pedant
would argue with you, and for our purposes namespace and scope are identical.

D:\DOC\HomePagetitutor\tutname.htm Page 164 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

Python's approach

In Python every modul e creates it's own namespace. To access those names we have to
either precede them with the name of the module or explicitly import the names we want
to use into our modules namespace. Nothing new there, we've been doing it with the
sys and ti me modules already. (In a sense a class definition also creates its own
namespace. Thus, to access a method or property of a class, we need to use the name of
the instance variable or the class name first. More about that in the OOP topic)

In Python there are only ever 3 namespaces (or scopes):

1. Local scope - names defined within a function or a class method

2. Module scope - names defined within afile, confusingly thisis often referred to
as global scopein Python

3. Built in scope - names defined within Python itsdlf, these are always available.

So far so good. Now how does this come together when variables in different
namespaces have the same name? Or when we need to reference a name that is not in
the current namespace?

Accessing Names outside the Current Namespace

Here we look in more detail at exactly how Python locates names even when the names
we are using if the are not in the immediate namespace. It is resolved as follows, Python
will look:

1. withinit's local namespace (the current function),
2. within the module scope (the current file),
3. thebuilt-in scope.

But what if the nameisin adifferent module? Wdl, wei npor t the module, as weve
already seen many times in the tutorial . Importing the modul e actually makes the module
name visible in our modul e namespace. We can then use the modul e name to access the
variable names within the module using our familiar nodul e. nane style. This explains
why, in general, it is not agood ideato import all the names from a module into the
current file: there is a danger that a module variable will have the same name as one of
your variables and one of them will mask the other causing strange behavior in the
program.

For example let's define two modul es, where the second imports the first:

D:\DOC\HomePagetitutor\tutname.htm Page 165 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

#H#### nodul e Tirst. py #A##AH##H
spam = 42

def print42(): print spam
HBHHHBHHH PR HH PR H PR R

nodul e second. py ###H#H#H#H
fromfirst inport * # inport all names fromfirst

spam = 101 # create spamvariable, hiding first's version
print42() # what gets printed? 42 or 1017

BHEHBHBHHHHHHBHBHBHBHBHBHBHBHHHH

If you thought it would print 101 then you were wrong (and | admit | expected that
when | first wrote the example!). The reason why it prints 42 instead has to do with the
definition of a variable in Python as we described it away back in the Raw

Materials topic. Recall that anameis simply alabel used to reference an object. Now in
the first module the name pr i nt 42 refers to the function object defined in the module
(if this sounds odd there's more explanation in the advanced topic Functional
Programming where it discusses something called a lambda expression). So although
we imported the name into our module we did not actually import the function which
still refers to its own version of spam Thus when we created our new spam variable it
has no effect on the function referred to by pri nt 42

All of that confusion should serveto illustrate why, although it's more typing, it is much
safer to access names in foreign modules using the dot notation. There are afew

modul es, such as Tkinter which we'll meet later, which are commonly used by importing
all of the names, but they are written in such away to minimize the risk of name
conflicts, athough the risk always exists and can create very hard to find bugs.

Finally thereis another safe way to import a single name from amodule, likethis:

fromsys inport exit

Hereweonly bring the exit function into thelocal namespace. We cannot use any
other sys names, not even sys itsdf!

Avoiding Name Clashes

D:\DOC\HomePagetitutor\tutname.htm Page 166 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

If afunction refers to avariable called X and there exists an X within the function (local
scope) then that is the one that will be seen and used by Python. It's the programmer's
job to avoid name clashes such that alocal variable and module variable of the same
name are not both required in the same function - the local variable will mask the
modul e name.

Thereis no problem if we just want to read a global variable inside a function, Python
simply looks for the name locally, and not finding it will look globally (and if need be at
the built-in namespace too). The problem arises when we want to assign avalueto a
global variable. That would normally create a new local variable inside the function. So,
how can we assign a value to aglobal variable without creating alocal variable of the
same name? We can achieve this by use of the gl obal keyword:

var = 42

def nodd obal ():
gl obal var # prevent creation of a local var
var = var - 21

def nodLocal ():

var = 101
print var # prints 42
nodd obal ()
print var # prints 21
nodLocal ()
print var # still prints 21

Here we see the global variable being changed by the mod@ obal function but not
changed by the nodLocal function. Thelatter simply created its own internal variable
and assigned it avalue. At the end of the function that variable was garbage collected
and its existence was unseen at the module levd.

In general you should minimize the use of 'global’ statements, it's usually better to pass
thevariablein as a parameter and then return the modified variable. Hereis the
modd obal function above rewritten to avoid using agl obal statement:

var = 42
def nodd obal (aVari abl e):
return avVariable - 21

D:\DOC\HomePagetitutor\tutname.htm Page 167 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

print var
var = nodd obal (var)
print var

In this case we assign the return value from the function to the original variable while
also passing it in as an argument. The result is the same but the function now has no
dependencies on any code outside itself - this makes it much easier to reusein other
programs. It also makes it much easier to see how the global value gets changed - we
can see the explicit assignment taking place.

We can seedl of thisat work in this example (which is purely about illustrating the
point!):

variabl es with nodul e scope

W= 5

Y =3

#paraneters are |ike function variables
#so0 X has | ocal scope

def spam(X):

#tell function to | ook at nodul e | evel and not create its own W
gl obal W

Z = X*2 # new variable Z created with | ocal scope
W= X+5 # use nodule Was instructed above
if Z>W
powis a 'builtin-scope’ nanme
print pow(Z, W
return Z
el se:
return Y # no local Y so uses nodul e version
VBScript

VBScript takes afairly straightforward approach to scoping rules: if avariableis outside
afunction or subroutine then it is globally visible, if avariableisinside a function or
subroutine it is local to that module. The programmer is responsible for managing all
naming conflicts that might arise. Because all VBScript variables are created using the

Di mstatement there is never any ambiguity about which variable is meant asis the case
with Python.

D:\DOC\HomePagetitutor\tutname.htm Page 168 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

There are some slight twists that are unique to web pages, namely that regardless of
<scri pt > tag boundaries global variables are visible across an entirefile, not just within
the<scri pt > tag in which they are defined.

Wewill illustrate those points in the following code:

<script | anguage="VBScri pt">
D m aVari abl e
Di m anot her

aVariable = "This is global in scope"
another = "A d obal can be visible froma function"
</script>

<scri pt | anguage="VBScri pt">
Sub aSubrouti ne
Dim aVari abl e
avVari able = "Defined within a subroutine"
MsgBox aVari abl e
MsgBox anot her
End Sub
</script>

<script | anguage="VBScript">
MsgBox aVari abl e

aSubrouti ne

MsgBox aVari abl e

</script>

There are a couple of extra scoping features in VBScript that allow you to make
variables accessible across files on aweb page (e.g from an index frame to a content
frame and vice-versa). However we won't be going into that level of web page
programming here so I'll simply alert you to the existence of the Publ i ¢ and

Pri vat e keywords.

And JavaScript too

JavaScript follows much the same rules, variables declared inside a function are only
visible within the function. Variables outside a function can be seen inside the function
as well as by code on the outside. As with VBScript there are no conflicts as to which
variableis intended because variables are explicitly created with thevar statement.

Hereis the equivaent example as above but written in JavaScript:

D:\DOC\HomePagetitutor\tutname.htm Page 169 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Namespaces 22/01/2006

<scri pt | anguage="JavaScri pt">

var aVariable, another; // global variables

aVariable = "This is dobal in scope
";

another = "A gl obal variable can be seen inside a functi on
";

function aSubroutine()({
var aVari abl e; /1 local variable
aVariable = "Defined within a functi on
";
docunent.wite(avariable);
docunent . wite(anot her);

}

docunent.wite(avariable);
aSubroutine();
docunent.wite(avariable);

</script>

This should, by now be straightforward.
Thingsto Remember

Scoping and Namespaces are different terms for the same thing.

The concepts are the same in every language but the precise rules can vary.
Python has 3 scopes - file (global), function (local) and built-in.

VB Script and JavaScript have 2 scopes - file (global) and function (local).

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetitutor\tutname.htm Page 170 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

Regular Expressions

What will we cover?

* What regular expressions are
* How to useregular expressions in Python programs
* Regex support in JavaScript and VB Script

Definition

Regular expressions are groups of characters that describe alarger group of characters.
They describe a pattern of characters for which we can search in a body of text. They
arevery similar to the concept of wild cards used in file naming on most operating
systems, whereby an asterisk(*) can be used to represent any sequence of charactersin a
filename. So*. py means any fileending in. py. In fact filename wild-cards are a very
small subset of regular expressions.

Regular expressions are extremely powerful tools and most modern programming
languages either have built in support for using regular expressions or have libraries or
modul es available that you can use to search for and replace text based on regular
expressions. A full description of themis outside the scope of this tutor, indeed thereis
at least one whole book dedicated to regular expressions and if your interest is roused |
recommend that you investigate the O'Reilly book.

One interesting feature of regular expressions is that they manifest similarities of
structure to programs. Regular expressions are patterns constructed from smaller units.
These units are:

single characters

wildcard characters

character ranges or sets and

groups which are surrounded by parentheses.

Note that because groups are a unit, so you can have groups of groups and so on to an
arbitrary level of complexity. We can combine these units in ways reminiscent of a
programming language using sequences, repititions or conditional operators. We' Il look
at each of thesein turn. So that we can try out the examples you will need to import the
r e module and useit’s methods. For convenience | will assume you have already
imported r e in most of the examples shown.

D:\DOC\HomePagetutor\tutregex.htm Page 171 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

Sequences

As ever, the simplest construct is a sequence and the simplest regular expressionis just a
sequence of characters:

red

Thiswill match, or find, any occurrence of thethreeletters‘r’,’ e’ and‘ d’ in order,
inastring. Thus thewords red, lettered and credible would all be found because they
contain ‘red” within them. To provide greater control over the outcome of matches we
can supply some specia characters (known as metacharacters) to limit the scope of the
search:

M etacharacters used in sequences

Expression Meaning Example
“red only at the start of aline red ribbons are good
red$ only at theend of aline | lovered

/Wred only at the start of aword it’s redirected by post
red/W only at the end of aword you covered it already

The metacharacters above are known as anchors because they fix the position of the
regular expression within a sentence or word. There are several other anchors defined in
the r e modul e documentation which we don’t cover in this chapter.

Sequences can also contain wildcard characters that can substitute for any character.
The wildcard character is aperiod. Try this:

>>> jnport re

>>> re.match(' be.t', 'best')
<re. Mat chCbj ect instance at 864460>
>>> re.match(' be.t', 'bess')

The message in angle brackets tells us that the regular expression ‘ be. t’ , passed as the
first argument matches the string * best’ passed as the second argument. * be. t* will
also match ‘beat’, ‘bent’, ‘bet’, etc. The second example did not match because

D:\DOC\HomePagetutor\tutregex.htm Page 172 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

"bess' didn'tendint, sono MatchObject was created. Try out a few more matches to
see how this works. (Note that mat ch() only matches at the front of a string, not in the
middle, we can usesear ch() for that aswe will seelater!)

The next unit isarange or set. This consists of a collection of |etters enclosed in square
brackets and the regular expression will search for any one of the enclosed |etters.

>>> re.match('s[pw]am, 'spam)
<re. Mat chObj ect instance at 7cab40>

This would aso match 'swam' or 'slam’ but not 'sham’ since'n' is not included in the
regular expression set.

By putting a” sign as thefirst e ement of the group we can say that it should look for
any character except those listed, thus in this example:

>>> re.match(' [~f]ool', 'cool")
<re. Mat chCObj ect instance at 864890>
>>> re.match(' [~*f]ool', ' fool")

we can match ‘cool’ and ‘pool’ but we will not match ‘fool’ since we are looking for
any character except 'f' at the beginning of the pattern.

Finally we can group sequences of characters, or other units, together by enclosing them
in parentheses, which is not particularly useful in isolation but is useful when combined
with the repetition and conditional features we look at next.

Repetition
We can also create regular expressions which match repeated sequences of characters by
using some more special characters. We can look for arepetition of a single character or

group of characters using the following metacharacters:

M etacharactersused in repetition

Expression Meaning Example

D:\DOC\HomePagetutor\tutregex.htm Page 173 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions

zero or one of the preceding
character. Note the zero part
there since that can trip you up
if you aren’t careful.

looks for zero or more of the
preceding character.

looks for one or more of the
preceding character.

looks for n to m repetitions of

{n.mj the preceding character.

22/01/2006

pythonl ?y matches:

pythony
pythonly

pythonl*y matches both of the above, plus:
pythonlly

pythonllly

€tc.

pythonl+y matches:

pythonly

pythonlly
pythonllly

€tc.

fo{ 1,2} matches:
fo or foo

All of these repetition characters can be applied to groups of characters too. Thus:

>>> re.match(' (.an){1,2}s',

'cans')

The same pattern will also match: ‘cancans or ‘pans’ or ‘canpans but not ‘bananas
since there is no character before the second 'an' group.

Thereis one caveat with the {m n} form of repetition which is that it does not limit the
match to only n units. Thus the example in the table above, f o{ 1, 2} will successfully
match f ooo because it matches the f oo at the beginning of f ooo. Thusif you want to
limit how many characters are matched you need to follow the multiplying expression
with an anchor or a negated range. In our casef o{ 1, 2} [~o] would prevent f ooo from
matching sinceit says match 1 or 2 *0’s followed by anything other than an ‘o’.

Greedy expressions

Regular expressions are said to be greedy. What that means is that the matching and
searching functions will match as much as possible of the string rather than stopping at
the first complete match. Normally this doesn’t matter too much but when you combine
wildcards with repetition operators you can wind up grabbing more than you expect.

D:\DOC\HomePagettutor\tutregex.htm

CuuDuongThanCong.com

Page 174 of 340

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

Consider the following example. If we have aregular expression likea. * b that says we
want to find an a followed by any number of characters up to ab then the match
function will search from thefirst a to thelast b. That isto say that if the searched string
includes more than one 'b" al but the last one will beincluded inthe. * part of the
expression. Thusin this example:

re.match('a.*b',’ abracadabra')

The MatchObject has matched all of abr acadab. Not just thefirst ab. This greedy
matching behaviour is one of the most common errors made by new users of regular
expressions.

To prevent this ‘greedy’ behaviour simply add a“? after the repition character, like so:

re.match('a.*?b', " abracadabra')

which will now only match *ab’.

Conditionals

Thefinal piecein thejigsaw isto make the regular expression search for optional
elements or to select one of several patterns. We'll ook at each of these options

Separately:
Optional elements

Y ou can specify that a character is optional using the zero or more repetition
metacharacters:

>>> re. match(' conputer?d?' , 'computer')
<re. Mat chCbj ect instance at 864890>

will match conput er or conput ed. However it will also match conput er d, which we
don’'t want.

By using a range within the expression we can be more specific. Thus:

>>> re.match(' conpute[rd]',' conputer')

D:\DOC\HomePagetutor\tutregex.htm Page 175 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

<re. Mat chCbj ect instance at 874390>
will sdect only conput er and conput ed but rgject the unwanted conput er d.
Optional Expressions

In addition to matching options from alist of characters we can aso match based on a
choice of sub-expressions. We mentioned earlier that we could group sequences of
characters in parentheses, but in fact we can group any arbitrary regular expression in
parentheses and treat it as a unit. In describing the syntax | will use the notation (RE) to
indicate any such regular expression grouping.

The situation we want to examine hereis the case whereby we want to match a regular
expression containing (RE) xxxx or (RE) yyyy wherexxxx andyyyy are different
patterns. Thus, for example we want to match both pr emat ur e and pr event ati ve.
We can do this by using a sdl ection metacharacter:

>>> regexp = 'pre(mature|ventative)
>>> re. match(regexp, ' prenmature')
<re. Mat chCObj ect instance at 864890>
>>> re. match(regexp,' preventative')
<re. Mat chCbj ect instance at 864890>
>>> re. match(regexp, ' prel ude')

Notice that when defining the regular expression we had to include both the options
inside the parentheses, otherwise the option would have been restricted to

premat ur eent ati ve or premat ur vent at i ve. In other words only the letters e and
v would have formed the options not the groups.

Using Regular Expressionsin Python.

WEe ve seen alittle of what regular expressions ook like but what can we do with them?
And how do we do it in Python? To take the first point first, we can use them as very
powerful search tools in text. We can look for lots of different variations of text strings
in a single operation, we can even search for non printable characters such as blank lines
using some of the metacharacters available. We can also replace these patterns using the
methods and functions of the re module. We' ve already seen the mat ch() function at
work, there are several other functions, some of which are described below:

re Module functions and methods

D:\DOC\HomePagetutor\tutregex.htm Page 176 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

Function/M ethod Effect
match(RE,string) if RE matches the start of the string it returns a match object
: if RE is found anywhere within the string a match object is
search(RE,string) returned
split(RE, string) like string.split() but uses the RE as a separator

returns a string produced by substituting replace for re at the
sub(RE, replace, string) first matching occurrence of RE. Note this function has several
additional features, see the documentation for details.

Finds all occurences of RE in string, returning alist of match
objects

produces a regular expression object which can be reused for
multiple operations with the same RE. The object has dl of the
above methods but with an implied re and is more efficient than
using the function versions.

findall(RE, string)

compile(RE)

Note that thisis not afull list of re’'s methods and functions and that those listed have
some optional parameters that can extend their use. The listed functions are the most
commonly used operations and are sufficient for most needs.

A Practical Example Using Regular Expressions

As an example of how we might use regular expressions in Python let’s create a
program that will search an HTML file for an IMG tag that has no AL T section. If we
find one we will add a message to the owner to create more user friendly HTML in
future!

i mport re

detect '"IM5 in upper/lower case allow ng for
zero or nore spaces between the < and the "I’

img ="<*[il][mM][g]

all ow any character up to the "ALT' or 'alt' before >
alt =ing + ' . *[aAl[IL][tT].*>

open file and read it into Iist
filename = raw_input (' Enter a filenane to search ')

inf = open(filenane,'r")
lines = inf.readlines()

D:\DOC\HomePagetutor\tutregex.htm Page 177 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

#if the line has an MG tag and no ALT inside
add our nessage as an HTM. commrent
for i in range(len(lines)):
if re.search(ing,lines[i]) and not re.search(alt,lines[i]):
lines[i] += '<!-- PROVIDE ALT TAGS ON | MAGES! -->\n'

Now wite the altered file and tidy up.
i nf.close()

outf = open(filenanme,' W)
outf.writelines(lines)

outf.close()

Notice two points about the above code. First we use re.search instead of re.match
because search finds the patterns anywhere in the string whereas match only looks at the
start of the string. Secondly we use a statement continuation character *\’ in theif
statements. This just allows us to lay the code out over two lines which looks alittle
neater, especialy if there are many expressions to be combined.

This code is far from perfect because it doesn’'t consider the case where the IMG tag
may be split over several lines, but it illustrates the technique well enough for our
purposes. Of course such wanton vandalism of HTML files shouldn’t really be
encouraged, but then again anyone who doesn’t provide AL T tags probably deserves al

they get!

WEe'll seeregular expressions at work again in the Grammar Counter case study,

meanti me experiment with them and check out the other methods in the re module. We
really have just scratched the surface of what’s possible using these powerful text
processing tools.

JavaSCript

JavaScript has good support for regular expressions built into the language. In fact the
string search operations we used earlier are actually regular expression searches, we
simply used the most basic form - a simple sequence of characters. All of the rules we
discussed for Python apply equally to Javascript except that regular expressions are
surrounded in slashes(/) instead of quotes. Here are some examples to illustrate their
use:

<Scri pt | anguage="JavaScri pt">

var str = "A lovely bunch of bananas”;
docunent.wite(str + "
");

if (str.match(/*"A)) {

D:\DOC\HomePagetutor\tutregex.htm Page 178 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

docunent.wite("Found string beginning with A
");
}
if (str.match(/b[au]/)) {

docunent.wite("Found substring with either ba or bu
");
}
if (!str.match(/zzz/)) {

docunent. wite("Didn't find substring zzz!
");

</ Script>

Thefirst two succeed the third doesn't, hence the negative test.
VBScript

VB Script does not have built in regular expressions like JavaScript but it does have a
Regular Expression object that can be instantiated and used for searches, replacement
etc. It can also be controlled to ignore case and to search for all instances or just one. It
isused likethis:

<Scri pt | anguage="VBScri pt">
D m regex, matches
Set regex = New RegExp

regex. @ obal = True
regex. Pattern = "b[au]"

Set matches = regex. Execute("A | ovely bunch of bananas")
If matches. Count > 0 Then
MsgBox "Found " & matches. Count & " substrings”
End If
</ Script>

That's al I'll cover here but there is a wealth of subtle sophistication in regular
expressions, we have literaly just touched on their power in this short topic. Fortunately
there is also awedlth of online information about their use, plus the excelent O'Rellly
book mentioned at the start. My advice isto takeis slowly and get accustomed to their
vagaries as well asther virtues.

Pointsto remember

D:\DOC\HomePagetutor\tutregex.htm Page 179 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Regular Expressions 22/01/2006

* Regular expressions are text patterns which can improve the power and
efficiency of text searches

* Regular expressions are notoriously difficult to get right and can lead to
obscure bugs - handle with care.

* Regular Expressions are not a cure all and often a more sophisticated approach
may be needed, if it doesn't work after say 3 attempts consider another
approach!

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutregex.htm Page 180 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Object Oriented Programming

What will we cover?
What is an object?
What is a Class?
What are polymorphism and inheritance?
Creating, Storing and using objects

What is Object Oriented Programming?

Now we move onto what might have been termed an advanced topic up until about 10
years ago. Nowadays 'Object Oriented Programming has become the norm. Languages
like Java and Python embody the concept so much that you can do very little without
coming across objects somewhere. So what's it all about?

The best introductions are, in my opinion:

® Object Oriented Analysis by Peter Coad & Ed Y ourdon.

* Object Oriented Analysis and Design with Applications by Grady Booch (the
1st edition if you can find it)

* Object Oriented Software Construction by Bertrand Meyer (definitely the 2nd
edition of this one)

Theseincrease in depth, size and academic exactitude as you go down the list. For most
non professional programmers' purposes the first is adequate. For a more programming
focused intro try Object Oriented Programming by Timothy Budd(2nd edition). This
uses severa languages to illustrate object oriented programming techniques. It is much
more strongly oriented towards writing programs than any of the other books which
cover the whole gamut of theory and principle behind object orientation, at the design
level aswell as at the code level. Finally for awhole heap of info on all topics OO try the
Web link site at: http://www.cetus-links.org

Assuming you don't have the time nor inclination to research al these books and links
right now, I'll give you a brief overview of the concept. (Note: Some people find OO
hard to grasp others 'get it' right away. Don't worry if you come under the former
category, you can still use objects even without really 'seeing the light'.)

D:\DOC\HomePagetutor\tutclass.htm Page 181 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Onefinal point: it is possible to implement an Object Oriented design in anon OO
language through coding conventions, but it's usually an option of last resort rather than
arecommended strategy. If your problem fits well with OO techniques then it's best to
use an OO language. Most modern languages, including Python, VB Script and
JavaScript support OOP quite well. That having been said | will be using Python
throughout all the examples and only showing the basic concepts in VB Script and
JavaScript with little additional explanation.

Data and Function - together

Objects are collections of data and functions that operate on that data. These are bound
together so that you can pass an object from one part of your program and they
automatically get access to not only the data attributes but the operations that are
available too. This combining of data and function is the very essence of Object Oriented
Programming and is known as encapsulation. (Some programming languages make the
datainvisible to users of the object and thus require that the data be accessed via the
object's methods. This techniqueis properly known as data hiding, however in some
texts data hiding and encapsul ation are used interchangeably.)

As an exampl e of encapsulation, a string object would store the character string but also
provide methods to operate on that string - search, change case, calculate length etc.

Objects use a message passing metaphor whereby one object passes a message to
another object and the receiving object responds by executing one of its operations, a
method. So amethod is invoked on receipt of the corresponding message by the owning
object. There are various notations used to represent this but the most common mimics
the access to items in modules - adot. Thus, for afictitious widget class:

w = Wdget () # create new instance, w, of wi dget
w.paint() # send the nessage 'paint' to it

This would cause the paint method of the widget object to be invoked.
Defining Classes

Just as data has various types so objects can have different types. These collections of
objects with identical characteristics are collectively known as a class. We can define
classes and create instances of them, which are the actual objects. We can store
references to these objects in variables in our programs.

D:\DOC\HomePagetutor\tutclass.htm Page 182 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Let'slook at a concrete exampleto seeif we can explain it better. We will creste a
message class that contains a string - the message text - and a method to print the

message.

cl ass Message:
def _ init_ (self, aString):
self.text = aString
def printlt(self):
print self.text

Note 1:One of the methods of thisclassiscaled __init__ anditisaspecia method
called a constructor. The reason for the name is that it is called when a new object
instanceis created or constructed. Any variables assigned (and hence created in Python)
inside this method will be unique to the new instance. There are a number of special
methods like this in Python, nearly all distinguished by the _ xxx__ naming format.

Note 2:Both the methods defined have a first parameter sel f. Thenameisa
convention but it indicates the object instance. As we will soon see this parameter is
filled in by the interpreter at run-time, not by the programmer. Thusprint 1t iscaled,
on an instance of the class (see below), with no arguments: m printit().

Note 3:Wecaled theclass Message with acapital ‘M'. Thisis purely convention, but
itisfairly widdy used, not just in Python but in other OO languages too. A related
convention says that method names should begin with a lowercase letter and subsequent
words in the name begin with uppercase | etters. Thus a method called "cal cul ate current
balance" would be written: cal cul at eCur r ent Bal ance.

Y ou may want to briefly revisit the 'Raw Materials' section and look again at ‘user
defined types'. The Python address example should be alittle clearer now. Essentially
the only kind of user-defined typein Python isaclass. A class with attributes but no
methods (except __init__) iseffectively equivalent to a construct called a
record or struct insome programming languages..

Using Classes

Having defined a class we can now create instances of our Message class and manipul ate
them:

m. = Message("Hello world")

D:\DOC\HomePagetutor\tutclass.htm Page 183 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

nm2 = Message("So long, it was short but sweet")

note = [ml, n2] # put the objects in a |ist
for nsg in note:
nmsg. printlt() # print each nessage in turn

S0 in essence you just treat the class as if it was a standard Python data type, which was
after all the purpose of the excercisel

What is" sdf" ?

No, it's not a philosophical debate, it's one of the questions most often asked by new
Python OOP programmers. Every method definition in aclass in Python starts with a
parameter called self. The actual namesel f isjust a convention, but like many
programming conventions consistency is good so let's stick with it! (As you'll see later
JavaScript has asimilar concept but uses the namet hi s instead.)

Sowhat issel f al about? Why do we need it?

Basically sdf isjust areference to the current instance. When you create an instance of
the class the instance has a copy of the data but not of the methods. Thus when we send
amessage to an instance and it calls the corresponding method, it does so via an internal
reference to the class. It passes areference to itself (self!) to the method so that the class
code knows which instance to use. i

Let'slook at ardatively familiar example. Consider a GUI application which has lots of
Button objects. When a user presses a button the method associated with a button press
is activated - but how does the Button method know which of the buttons has been
pressed? The answer is by referring to the self value which will be areference to the
actual button instance that was pressed. Well seethis in practice when we get to the
GUI topic alittle later.

So what happens when a message is sent to an object? It works likethis:

* theclient code calls the instance (sending the message in OOP speak).

* Theinstance calls the class method, passing areference to itself (self).

* The class method then uses the passed reference to pick up the instance data for
the receiving object.

Y ou can see thisin action in this code sequence, notice that we can explicitly call the
class method, aswe do in thelast line:

D:\DOC\HomePagetutor\tutclass.htm Page 184 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

>>> ¢l ass C

def __init_ (self, val): self.val = val
def f(self): print "hello, nmy value is:", self.val
>>> # create two instances
>>> a = C(27)
>>> b = C(42)
>>> # first try sending nessages to the instances
>>> a. f()
hello, ny value is 27

>>> pb.f()

hello, ny value is 42

>>> # now call the nethod explicitly via the class
>>> C.f(a)

hell o, ny value is 27

So you see we can call the methods via the instance, in which case Python fills in the self
parameter for us, or explicitly viathe class, in which case we need to pass the self value
explicitly.

Now you might be wondering why, if Python can provide the invisible reference

between the instance and its class can't Python also magically fill in the sdf by itsdf? The
answer is that Guido van Rossum designed it this way! Many OOP |anguages do indeed
hide the self parameter, but one of the guiding principles of Python isthat "explicitis
better than implicit”. Y ou soon get used to it and after awhile not doing it seems
strange.

Samething, Different thing

What we have so far is the ability to define our own types (classes) and create instances
of these and assign them to variables. We can then pass messages to these objects which
trigger the methods we have defined. But there's one last e ement to this OO stuff, and
in many ways it's the most important aspect of all.

If we have two objects of different classes but which support the same set of messages
but with their own corresponding methods then we can collect these objects together
and treat them identically in our program but the objects will behave differently. This
ability to behave differently to the same input messages is known as polymor phism.

D:\DOC\HomePagetutor\tutclass.htm Page 185 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Typically this could be used to get a number of different graphics objects to draw
themselves on receipt of a'paint’ message. A circle draws a very different shape from a
triangle but provided they both have a paint method we, as programmers, can ignore the
difference and just think of them as 'shapes'.

Let'slook at an example, where instead of drawing shapes we calculate their areas:

First we create Square and Circle classes:

cl ass Square:
def __init__(self, side):
sel f.side = side
def cal cul ateArea(self):
return self.side**2

class Circle:
def __init__(self, radius):
sel f.radi us = radius
def cal cul ateArea(self):
i mport math
return math. pi *(sel f.radi us**2)

Now we can create a list of shapes (either circles or squares) and then print out their
aress.
list = [Circle(5),Crcle(7),Square(9),Crcle(3), Square(12)]

for shape in list:
print "The area is: ", shape. cal cul ateArea()

Now if we combine these ideas with modules we get a very powerful mechanism for
reusing code. Put the class definitions in a module - say 'shapes.py' and then simply
import that module when we want to manipul ate shapes. This is exactly what has been
done with many of the standard Python modul es, which is why accessing methods of an
object looks alot like using functions in a module.

Inheritance

Inheritance is often used as a mechanism to implement polymorphism. Indeed in many
OO0 languages it is the only way to implement polymorphism. It works as follows:

D:\DOC\HomePagetutor\tutclass.htm Page 186 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

A class can inherit both attributes and operations from a parent or super dass. This
means that a new class which is identical to another class in most respects does not need
to re-implement all the methods of the existing class, rather it can inherit those
capabilities and then override those that it wants to do differently (like the

cal cul at eAr ea method in the case above)

Again an example might illustrate this best. We will usea class hierarchy of bank
accounts where we can deposit cash, obtain the balance and make a withdrawal. Some
of the accounts provide interest (which, for our purposes, well assumeis calculated on
every deposit - an interesting innovation to the banking world!) and others charge fees
for withdrawals.

The BankAccount class

Let's see how that might look. First let's consider the attributes and operations of a bank
account at the most general (or abstract) leve.

Its usually best to consider the operations first then provide attributes as needed to
support these operations. So for a bank account we can:

* Deposit cash,

* Withdraw cash,

® Check current balance and

* Transfer funds to another account.

To support these operations we will need a bank account 1D(for the transfer operation)
and the current balance.

We can create a class to support that:

cl ass Bal anceError (Exception):

value = "Sorry you only have $%.2f in your account”
cl ass BankAccount:
def __init__(self, initial Anmount):
sel f. bal ance = initial Anount

print "Account created with bal ance %.2f" % sel f. bal ance

def deposit(self, anount):
sel f. bal ance = sel f. bal ance + amount

def withdraw(self, amount):

D:\DOC\HomePagetutor\tutclass.htm Page 187 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

i f self.bal ance >= anount:
sel f. bal ance = sel f. bal ance - amount
el se:
rai se Bal anceError, Bal anceError.val ue % sel f. bal ance

def checkBal ance(sel f):
return sel f. bal ance

def transfer(self, anmount, account):
try:
sel f.wi t hdraw anount)
account . deposi t (anmount)
except Bal anceError:
print Bal anceError. val ue

Note 1. We check the balance before withdrawing and also use an exception to handle
errors. Of coursethere is no Python error type Bal anceEr r or so we needed to create
one of our own - it's simply an subclass of the standard Except i on class with a string
value. The string val ue is defined as an attribute of the exception class purely as a
convenience, it ensures that we can generate standard error messages every time we
raise an error. When wer ai se Bal anceError we pass the internal format string
val ue filled in with the current value of the object's bal ance. Notice that we didn't use
sel f when defining the valuein Bal anceEr r or, that's because val ue is ashared
attribute across all instances, it is defined at the class level and known as a class
variable. We access it by using the class name followed by a dot:

Bal anceEr r or . val ue as seen above. Now, when the error generates it's traceback it
concludes by printing out the formatted error string showing the current balance.

Note 2: Thet r ansf er method uses the BankAccount's wi t hdr aw deposi t
member functions or methods to do the transfer. Thisis very common in OO and is
known as self messaging. It means that derived classes can implement their own
versions of deposi t / wi t hdr aw but thet r ansf er method can remain the same for all
account types.

The InterestAccount class

Now we use inheritance to provide an account that adds interest (we'll assume 3%) on
every deposit. It will beidentical to the standard BankAccount class except for the
deposit method. So we simply override that:

cl ass | nterest Account (BankAccount):
def deposit(self, anount):

D:\DOC\HomePagetutor\tutclass.htm Page 188 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

BankAccount . deposi t (sel f, amount)
sel f. bal ance = sel f.balance * 1.03

And that's it. We begin to see the power of OOP, all the other methods have been
inherited from BankAccount (by putting BankAccount inside the parentheses after the
new class name). Notice also that deposit called the superclass's deposit method rather
than copying the code. Now if we modify the BankAccount deposit to include some
kind of error checking the sub-class will gain those changes autometically.

The ChargingAccount class

This account is again identical to a standard BankAccount class except that thistimeit
charges $3 for every withdrawal. As for the InterestAccount we can create a class
inheriting from BankAccount and modifying the withdraw method.

cl ass Char gi ngAccount (BankAccount):
def __init__(self, initial Anmount):
BankAccount. __init__(self, initial Amount)
self.fee = 3

def withdraw(self, amount):
BankAccount . wi t hdraw(sel f, anount +sel f.fee)

Note 1: We store the fee as an instance variable so that we can changeit later if
necessary. Notice that we can call theinherited __init__ just like any other method.

Note 2: We simply add the fee to the requested withdrawal and call the BankAccount
withdraw method to do the real work.

Note 3: We introduce a side effect herein that a charge is automatically levied on
transfers too, but that's probably what we want, so is OK.

Testing our system

To check that it all works try executing the following piece of code (either at the Python
prompt or by creating a separate test file).

from bankaccount inport *

First a standard BankAccount

D:\DOC\HomePagetutor\tutclass.htm Page 189 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

a BankAccount (500)
b BankAccount (200)
a.w t hdraw(100)
#
a

a.w t hdraw(1000)
.transfer (100, b)

print "A , a.checkBal ance()
print "B =", b.checkBal ance()

Now an | nt erest Account

c = InterestAccount (1000)

c. deposi t (100)

print "C =", c.checkBal ance()

Then a Char gi ngAccount
d = Chargi ngAccount (300)
d. deposi t (200)

print "D =", d.checkBal ance()
d. wi t hdr aw(50)

print "D =", d.checkBal ance()
d.transfer (100, a)

print "A =", a.checkBal ance()
print "D =", d.checkBal ance()

Finally transfer from charging account to the interest one
The chargi ng one should charge and the interest one add
interest

print "C =", c.checkBal ance()
print "D =", d.checkBal ance()
d.transfer(20,c)

print "C =", c.checkBal ance()
print "D =", d.checkBal ance()

Now uncomment thelinea. wi t hdr awm(1000) to see the exception at work.

That's it. A reasonably straightforward example but it shows how inheritance can be
used to quickly extend a basic framework with powerful new features.

We've seen how we can build up the example in stages and how we can put together a
test program to check it works. Our tests were not complete in that we didn't cover
every case and there are more checks we could have included - like what to do if an
account is created with a negative amount...

Collections of Objects

D:\DOC\HomePagetutor\tutclass.htm Page 190 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

One problem that might have occurred to you is how we deal with lots of objects. Or
how to manage obj ects which we create a runtime. Its all very well creating Bank
Accounts statically as we did above:

accl = BankAccount(...)
acc2 = BankAccount(...)
acc3 = BankAccount(...)
etc...

But in the real world we don't know in advance how many accounts we need to create.
How do we deal with this? Lets consider the problem in more detail :

We need some kind of 'database' that allows us to find a given bank account by its
owners name (or more likely their bank account number - since one person can have
many accounts and several persons can have the same name...)

Finding something in a collection given a unique key....hmmm, sounds like a dictionary!
L ets see how we'd use a Python dictionary to hold dynamically created objects:

from bankaccount inport *
i nport tinme

Create new function to generate unique id nunbers
def get Next!D():

ok = raw_input("Create account[y/n]? ")

if ok[O] in 'yY' : # check valid input

id=tinme.tine() # use current tinme as basis of ID
id=int(id) % 10000 # convert to int and shorten to 4 digits
else: id =-1 # which will stop the |oop
return id

Let's create sone accounts and store themin a dictionary
accountData = {} # new dictionary

while 1: # | oop forever
id = getNextlD()
if id==-1:
br eak # break forces an exit fromthe while | oop
bal = float(raw_i nput ("Openi ng Bal ance? ")) # convert string to fl oat

account Data[i d] = BankAccount(bal) # use id to create new dictionary entr
print "New account created, Nunmber: %94d, Bal ance %0.2f" % (i d, bal)

Now |l ets access the accounts
for id in accountData. keys():

D:\DOC\HomePagetutor\tutclass.htm Page 191 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

print "904d\t%®. 2f" % (i d, accountDat a[id].checkBal ance())

and find a particul ar one
Enter non nunber to force exception and end program
while 1:
id=int(raw_input("Wich account nunber? "))
if idin accountData. keys():
print "Balance = %0.2d" % accountData[i d].checkBal ance()
el se: print "Invalid ID

Of course the key you use for the dictionary can be anything that uniquely identifies the
object, it could be one of its attributes, like name say. Anything at all that is unique. You
might find it worthwhile going back to the raw materials chapter and reading the
dictionary section again, they really are very useful containers.

Saving Your Objects

One snag with all of thisisthat you lose your data when the program ends. Y ou need
some way of saving objects too. As you get more advanced you will learn how to use
databases to do that but we will ook at using a simple text file to save and retrieve
objects. (If you are using Python there are a couple of modules called Pickle and Shelve)
that do this much more effectively but as usual I'll try to show you the generic way to do
it that will work in any language. Incidentally the technical term for the ability to save
and restore objects is Persistence.

The generic way isdo thisisto create save and r est or e methods at the highest level
object and override in each class, such that they call the inherited version and then add
their locally defined attributes:

class A
def __init__ (self,x,y):
self.x = x
self.y =y

def save(self,fn):
f = open(fn,"w")
f.wite(str(self.x)+ '\n") # convert to a string and add new i ne
f.wite(str(self.y)+ \n")
return f # for child objects to use

def restore(self, fn):
f = open(fn)
self.x = int(f.readline()) # convert back to original type

D:\DOC\HomePagetutor\tutclass.htm Page 192 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

self.y = int(f.readline())

return f
class B(A):
def __init_ (self,x,y,z):
A _init__(self,x,y)
self.z = z

def save(self,fn):
f = A save(self,fn) # call parent save
f.wite(str(self.z)+'\n")
return f # in case further children exi st

def restore(self, fn):
f = A restore(self,fn)
self.z = int(f.readline())
return f

create instances
AL, 2)
B(3,4,5)

oo H*

save the instances
.save('a.txt').close() # renenber to close the file
.save('b.txt').close()

oo H*

retrieve instances

newA = A(5, 6)

newA restore('a.txt').close() # renmenber to close the file
newB = B(7,8,9)

newB. restore(' b.txt"').close()

print "A: ", newA X, newA. y

print "B: ", newB. x, newB.y, newB. z

Note: The values printed out are the restored val ues not the ones we used to create the
instances.

The key thing is to override the save/restore methods in each class and to call the parent
method as thefirst step. Then in the child class only deal with child class attributes.
Obviously how you turn an attribute into a string and saveit is up to you the
programmer but it must be output on asingle line. When restoring you simply reverse
the storing process.

Mixing Classes and Modules

D:\DOC\HomePagetutor\tutclass.htm Page 193 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Modules and classes both provide mechanisms for controlling the complexity of a
program. It seems reasonabl e that as programs get bigger we would want to combine
these features by putting classes into modul es. Some authorities recommend putting
each class into a separate module but | find this simply creates an explosion of modules
and increases rather than decreases complexity. Instead | group classes together and put
the group into amodule. Thus in our example above | might put all the bank account
class definitions in one module, bankaccount , say, and then create a separate module
for the application code that uses the module. A simplified representation of that would
be:

Fil e: bankaccount. py

#
Inplements a set of bank account classes
HEHHH IR

cl ass BankAccount:
cl ass I nterest Account:

cl ass Char gi ngAccount:

And then to use it;

i mport bankaccount

newAccount = bankaccount. BankAccount ()
newChr gAcct = bankaccount . Char gi ngAccount ()

now do stuff

But what happens when we have two classes in different modul es that need to access
each others details? The simplest way is to import both modules, create local instances
of the classes we need and pass the instances of one class to the other instances
methods. Passing whol e objects around is what makes it object oriented programming.
You don't need to extract the attributes out of one object and pass them into another,
just pass the entire object. Now if the receiving object uses a polymorphic message to
get at the information it needs then the method will work with any kind of object that
supports the message.

D:\DOC\HomePagetutor\tutclass.htm Page 194 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Let's make that more concrete by looking at an example. Let's create a short module
called | ogger that contains two classes. Thefirst logs activity in afile. Thislogger will
have a single method | og() which has a"loggable object” as a parameter. The other
classin our moduleis aLoggabl e class that can be inherited by other classes to work
with thelogger. It looks likethis:

File: |ogger.py

#

Create Loggabl e and Logger classes for logging activities
of objects

HHHAHHAH R

cl ass Loggabl e:
def activity(self):
return "This needs to be overridden |ocally"

cl ass Logger:
def __init_ (self, logfilename = "logger.dat"):
self. _log = open(logfil enane, "a")

def |og(self, | oggedMj):
self. _log.wite(l oggedoj.activity() + '\n")

def _ del _ (self):
sel f. _log.close()

Note that we have provided a destructor method (__del __) to close the file when the
logger object is deleted or garbage collected. This is another "magic method” in Python
(as shown by thedouble' ' characters) similar in many waysto__init_ ()

Also notice that we've called the log attribute _| og witha' ' character in front of the
name. Thisis another common naming convention in Python, like using capitalized
words for class names. A single underscore indicates that the attribute is not intended to
be accessed directly, but only via the methods of the class.

Now before we can use our module we will create a new modul e which defines loggable
versions of our bank account classes:

File: |oggabl ebankaccount. py
#

D:\DOC\HomePagetutor\tutclass.htm Page 195 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Extend Bank account classes to work with | ogger nodul e.
HEHH T

i nport bankaccount, | ogger

cl ass Loggabl eBankAccount (bankaccount . BankAccount, | ogger. Loggable):
def activity(self):
return "Account bal ance = %" % sel f.checkBal ance()

cl ass Loggabl el nt er est Account (bankaccount . | nt er est Account,
| ogger . Loggabl e):
def activity(self):
return "Account balance = %" % sel f.checkBal ance()

cl ass Loggabl eChar gi ngAccount (bankaccount . Char gi ngAccount,
| ogger . Loggabl e):
def activity(self):
return "Account balance = %" % sel f.checkBal ance()

Notice we are using a feature called multiple inheritance, where we inherit not one but
two parent classes. Thisisn't strictly needed in Python since we could just have added an
activity() method to our original classes and achieved the same effect but in
statically typed OOP languages such as Java or C++ this technique would be necessary
so | will show you the technique here for future reference.

Now we come to the point of this excercise which is to show our application code
creating alogger object and some bank accounts and passing the accounts to the logger,
even though they are all defined in different modul es!

Test | oggi ng and | oggabl e bank accounts.
HH R

i nport | ogger
i nport | oggabl ebankaccount as | ba

| og = | ogger. Logger ()

ba = | ba. Loggabl eBankAccount ()
ba. deposi t (700)
| og. | og(ba)

i ntacc = | ba. Loggabl el nt er est Account ()
i ntacc. deposi t (500)

D:\DOC\HomePagetutor\tutclass.htm Page 196 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

| og. I og(i ntacc)

Note the use of the as keyword to create a shortcut name when importing
| oggabl ebankaccount

Note also that once we have created the local instances we no longer need to use the
modul e prefix and because thereis no direct access from one object to the other, it is all
via messages, thereis no need for the two class definition modules to directly refer to
each other either. Finally notice a so that the Logger works with instances of both
Loggabl eBankAccount and Loggabl el nt er est Account because they both
support the Loggabl e interface. Compatibility of object interfaces via polymorphismis
the foundation upon which all OOP programs are built.

Hopefully this has given you ataste of Object Oriented Programming and you can move
on to some of the other onlinetutorials, or read one of the books mentioned at the
beginning for more information and examples. Now we will briefly look at how OOP is
done in VBScript and JavaScript.

OOPin VBScript

VBScript supports the concept of objects and allows us to define classes and creste
instances, however it does not support the concepts of inheritance or polymorphism.
VBScript is therefore what is known as Object Based rather than fully Object Oriented.
Nonethel ess the concepts of combining data and function in a single object remain
useful, and alimited form of inheritance is possible using a technique called delegation
which we discuss bel ow.

Defining classes

A classis defined in VBScript using the d ass statement, like this:

<script type=text/VBScript>
O ass Myd ass
Private anAttribute
Publ i c Sub aMet hodW t hNoRet ur nVal ue()
MsgBox "MyC ass. aMet hodW t hNoRet ur nVal ue"
End Sub
Publ i c Function aMet hodW t hRet ur nval ue()
MsgBox "MyQ ass. aMet hodW t hRet ur nVal ue”
aMet hodW t hRet ur nvVal ue = 42

D:\DOC\HomePagetutor\tutclass.htm Page 197 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

End Functi on
End C ass
</script>

This defines anew class called MyCl ass with an attribute called anAt t ri but e whichis
only visible to the methods inside the class, as indicated by the keyword Pri vat e. Itis
conventional to declare data attributes to be Pr i vat e and most methods to be Publ i c.
This is known as data hiding and has the advantage of allowing us to control access to
the data by forcing methods to be used and the methods can do data quality checks on
the values being passed in and out of the object. Python provides its own mechanism for
achieving this but it is beyond the scope of this tutorial.

Creating I nstances

We cresate instances in VBScript with a combination of the Set and New keywords. The
variable to which the new instance is assigned must aso have been declared with the
Di mkeyword asis the usual VBScript style.

<script type=text/VBScript>
Di m anl nst ance

Set anlnstance = New Myd ass
</script>

This creates an instance of the class declared in the previous section and assigns it to the
anl nst ance variable.

Sending M essages

Messages are sent to instances using the same dot notation used by Python.

<script type=text/VBScript>

D m aval ue

anl nst ance. aMet hodW t hNoRet ur nVval ue()

aVal ue = anl nst ance. aMet hodW t hRet ur nVal ue()
MsgBox "aValue = " & aVal ue

</script>

The two methods declared in the class definition are called, in thefirst case thereis no
return value, in the second we assign the return to the variable aval ue. Thereis nothing
unusual here apart from the fact that the subroutine and function are preceded by the
instance name.

D:\DOC\HomePagetutor\tutclass.htm Page 198 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Inheritance and Polymor phism

VBScript as alanguage does not provide any inheritance mechanism nor any mechanism
for polymorphism. However we can fake it to some degree by using a technique called
delegation. This simply means that we define an attribute of the sub class to be an
instance of the theoretical parent class. We then define a method for all of the
"inherited” methods which simply calls (or delegates to), in turn, the method of the
parent instance. Let's subclass My ass as defined above:

<script type=text/VBScript>
G ass Subd ass
Private parent
Private Sub Class_Initialize()
Set parent = New Myd ass
End Sub
Publ i c Sub aMet hodW t hNoRet ur nVal ue()
par ent. aMet hodW t hNoREt ur nVAI ue
End Sub
Publ i c Function aMet hodW t hRet ur nval ue()
aMet hodW t hRet ur nVal ue = parent. aMet hodW t hRet ur nval ue
End Function
Publ i c Sub aNewMet hod
MsgBox "This is unique to the sub class”
End Sub
End C ass

D minst, avVal ue

Set inst = New SubC ass

i nst. aMet hodW t hNoRet ur nVAI ue

aVal ue = inst.aMet hodWt hRet ur nVal ue
i nst . aNewivet hod

MsgBox "aValue =" & CStr(aVal ue)
</script>

The key points to note here are the use of the private attribute par ent and the special,
private method d ass_I ni ti al i se. Theformer is the superclass delegate attribute
and the latter is the equivalent of Pythons __i ni t __ method for initializing instances
when they are created, it is the VBScript constructor in other words.

OOP in JavaScript

D:\DOC\HomePagetutor\tutclass.htm Page 199 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

JavaScript supports objects using a technique called prototyping. This means that there
is no explicit class construct in JavaScript and instead we can defineaclassin terms of a
set of functions or a dictionary like concept known as an initializer.

Defining classes

The most common way to define a JavaScript "class" is to create a function with the
same name as the class, effectively this is the constructor, but is not contained within any
other construct. It looks like this:

<script type=text/JavaScri pt>
function Myd ass(theAttribute)

this.anAttribute = theAttri bute;

<}script>

Y ou might notice the keyword t hi s which is used in the same way as Python'ssel f as
a placehol der reference to the current instance.

We can add new attributes to the class later using the built in pr ot ot ype attribute like
this:

<script type=text/JavaScri pt>
MyCl ass. prototype. newAttri bute = null;
</script>

This defines a new attribute of MyCl ass caled newAt t ri but e.

Methods are added by defining a normal function then assigning the function nameto a
new attribute with the name of the method. Normally the method and function have the
same name, but there is nothing to stop you calling the methods something different, as
illustrated bel ow:

<script type=text/JavaScri pt>
function oneMet hod() {
return this.anAttribute,;

MyCl ass. prototype. getAttri bute = oneMet hod;
function printlt(){
document .write(this.anAttribute + "
");

D:\DOC\HomePagetutor\tutclass.htm Page 200 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

1
MyCl ass. prototype.printlt = printlt;
</script>

Of course it would be more convenient to define the functions first then finish up with
the constructor and assign the methods inside the constructor and thisisin fact the
normal approach, so that the full class definition looks like this:

<script type=text/JavaScri pt>
function oneMet hod() {

return this.anAttri bute;
3

function printlt(){
document .write(this.anAttribute + "
");
¥

function Myd ass(theAttribute)
{

this.anAttribute = theAttribute,;
this.getAttri bute = oneMet hod;
this.printlt = printlt;

b

</script>

Creating I nstances

We create instances of classes using the keyword new, like this:

<script type=text/JavaScri pt>
var anlnstance = new Myd ass(42);
</script>

Which creates a new instance called anl nst ance.
Sending M essages

Sending messages in JavaScript is no different to our other languages, we use the
familiar dot notation.

<script type=text/JavaScri pt>
docunent.wite("The attribute of anlnstance is:
")

D:\DOC\HomePagetutor\tutclass.htm Page 201 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

anl nstance.printlt();
</script>

Inheritance and Polymor phism

Unlike VBScript it is possible to use JavaScript's prototyping mechanism to inherit from
another class. It is rather more complex than the Python technique but is not completely
unmanageable, but it is, in my experience, a relatively uncommon technique among
JavaScript programmers.

The key to inheritance in JavaScript is the pr ot ot ype keyword (we used it in passing
in the code above). By using pr ot ot ype we can effectively add features to an object
after it has been defined. We can see thisin action here;

<scri pt | anguage="JavaScri pt">
function Message(text){
this.text = text;
this.say = function(){
document .wite(this.text + '
");

i
i
nmsgl = new Message(' This is the first');
nmsgl. say();

Message. pr ot ot ype. shout = function(){
alert(this.text);

nmsg2 = new Message(' This gets the new feature');
nsg2. shout ()

/* But so did msgl...*/
nsgl. shout ()

</script>

Note 1: We added the new al ert method using pr ot ot ype after creating instance
msgl of the class but the feature was available to the existing instance as well as to the
instance, nsg2 created after the addition. That is, the new feature gets added to all
instances of Message both existing and new.

D:\DOC\HomePagetutor\tutclass.htm Page 202 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

Note 2: We used function in a new way here. It effectively is used to create a function
object which is assigned to the object property. That is:

obj.func = function(){...};

is equivaent to saying:

function f(){....}
obj.func = f;

Wewill seeasimilar concept in Python when we get to the Functional
Programming topic.

This prototyping feature gives rise to the interesting capability to change the behavior of
built-in JavaScript objects, either adding new features or changing the way existing
features function! Use this capability with great careif you don't want to spend your
time grappling with really confusing bugs.

This use of pr ot ot ype as a mechanism for adding functionality to existing classes has
the disadvantage that it alters the existing instance behaviors and changes the original
class definition.

More conventional style inheritance is available too, as shown bel ow:

<scri pt | anguage="JavaScript">
function Parent(){
this.nane = ' Parent’;
t hi s. basenet hod = function(){
alert('This is the parent');

b

function Child(){
this. parent = Parent;
this. parent ()
thi s. submet hod = function(){
alert('This fromthe child');
i
i

var aParent = new Parent();

D:\DOC\HomePagetutor\tutclass.htm Page 203 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

var aChild = new Child();

aPar ent . basenet hod() ;
achi | d. subnet hod() ;
achi | d. basenet hod() ;

</script>

The key point to note hereis that the Chi | d object has access to the
basenet hod without it being explicitly granted, it has inherited it from the parent class
by virtue of the assignment/call pair of lines:

this.parent = Parent;
this. parent ()

within the Chi | d class definition. And thus we have inherited the basenet hod from the
Par ent class!

We can, of course, use the same del egation trick we used with VBScript. Hereis the
VB Script example translated into JavaScript:

<script type=text/JavaScri pt>

function noReturn(){
this.parent.printlt();

3

function returnVal ue(){
return this.parent.getAttribute();
3

function newvet hod() {
document .write("This is unique to the sub cl ass
");
3

function Subd ass(){
this. parent = new Myd ass(27);
t hi s. aMet hodW t hNoRet ur nVal ue = noRet ur n;
t hi s. aMet hodWt hRet ur nval ue = returnVal ue;
t hi s. aNewiet hod = newivkt hod;

b

var inst, aVal ue;
inst = new Subd ass(); // define superclass
document .wite("The sub class value is:
");

D:\DOC\HomePagetutor\tutclass.htm Page 204 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Classes 22/01/2006

i nst. aMet hodW t hNoRet ur nVal ue() ;

aVal ue = inst.aMet hodWt hRet urnVal ue();
i nst. aNewivet hod();
docunent.wite("aValue = " + aVal ue);
</script>

We will see classes and objects being used in the following topics and case studies. It is
not always obvious to a beginner how this, apparently complex, construct can make
programs easier to write and understand but hopefully as you see classes being used in
real programsit will become clearer. Onething | would like to say is that, for very small
programs they do not really help and almost certainly will make the program longer.
However as your programs start to get bigger - over about 100 lines say - then you will
find that classes and objects can help to keep things organized and even reduce the
amount of code you write.

If you are one of those who finds the whole OOP concept confusing don't panic, many
people have programmed for their whole lives without ever creating asingle class! On

the other hand, if you can get to grips with objects it does open up some powerful new
techniques.

Things to Remember

Classes encapsul ate data and function into a single entity.

Classes are like cookie cutters, used to create instances, or objects.

Objects communicate by sending each other messages.

When an object receives a message it executes a corresponding method.

Methods are functions stored as attributes of the class.

Classes can inherit methods and data from other classes. This makesiit easy to

extend the capabilities of a class without changing the original.

* Polymorphismis the ability to send the same message to several different types
of object and each behaves in its own particular way in response.

* Encapsulation, Polymorphism and Inheritance are all properties of Object
Oriented programming languages.

* VBScript and JavaScript are called Object Based languages because while they

support encapsulation, they do not fully support inheritance and pol ymorphism.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutclass.htm Page 205 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

Event Driven Programming

What will we cover?

* How does an event driven program differ from a batch program?
* How to write an event loop
* How to use an event framework such as Tkinter

So far we have been looking at batch oriented programs. Recall that programs can be
batch oriented, whereby they start, do something then stop, or event driven where they
start, wait for events and only stop when told to do so - by an event. How do we create
an event driven program? Well look at this in two ways - first we will simulate an event
environment then we'll create a very simple GUI program that uses the operating system
and environment to generate events.

Simulating an Event L oop

Every event driven program has aloop somewhere that catches received events and
processes them. The events may be generated by the operating environment, as happens
with virtually all GUI programs or the program itself may go looking for events asis
often the case in embedded control systems such as used in cameras €tc.

We will create a program that looks for precisely one type of event - keyboard input -
and processes the results until some quit event is received. In our case the quit event will
be the space key. We will process the incoming events in a very simple manner - we will
simply print the ASCII code for that key. WEIl use Python for this because it has anice,
easy to use function for reading keys one at atime - get ch() . This function comesin
two varieties depending on the operating system you use. If you are using Linux it's
found in the cur ses module, if you use Windows it'sinthensvcrt module. I'll usethe
Windows version but if you are on Linux just substitute cur ses. st dscr for

msvcert and it should work just fine, I'll discuss this in more detail after covering the
Windows code.

First we implement the event handler function that will be called when a keypressis
detected then the main program body which simply starts up the event gathering loop
and calls the event handling function when avalid event is detected.

i mport msvcert

D:\DOC\HomePagetutor\tutevent.htm Page 206 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

def doKeyEvent (key):
if key == '"\x00'" or key == '"\xe0': # non ASCl
key = msvcrt.getch() # fetch second character
print ord(key)

def doQuitEvent (key):
rai se Systenkxit

First, clear the screen of clutter then warn the user
of what to do to quit

lines = 25 # set to nunber of lines in console

for line in range(lines): print

print "Hit space to end..."
print

Now mai nl oop runs "forever"
whil e True:
ky = msvcrt. getch()
I ength = 1 en(ky)
if length I'= O:
send events to event handling functions
if ky == " ": # check for quit event
doQui t Event (ky)
el se:
doKeyEvent (ky)

Notice that what we do with the events is of no interest to the main body, it simply
collects the events and passes them to the event handlers. This Independence of event
capture and processing is a key feature of event driven programming.

Note: Where the key was non ASCII - a Function key for example - we needed to fetch
a second character from the keyboard, this is because these special keys actually
generate pairs of bytes and get ch only retrieves one at atime. The actual value of
interest is the second byte.

Linux programmer s can use the above code with the foll owing modifications:

i mport curses
curses needs to initialise the screen
so that it can control it. W assign the screen to nmscvrt

just so that the renaining code works as-is, you would
normally use a variable |ike screen

D:\DOC\HomePagetutor\tutevent.htm Page 207 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

msvcrt = curses.initscr()

rest of code here...

Note that this will probably mess up your screen display. To fix it exit Python with
Ctrl-D and use the Linux command:

$ stty echo -nl

Hopefully that will restore things to normal. (If any reader knows how to restore the
screen from within curses please let me know!)

If we were creating this as a framework for usein lots of projects we would probably
include acall to aninitialization function at the start and a cleanup function at the end.
The programmer could then use the loop part and provide his own initialization,
processing and cleanup functions.

That's exactly what most GUI type environments do, in that the loop part is embedded
in the operating environment or framework and applications are contractually
required to provide the event handling functions and hook these into the event loop in
some way.

Let's seethat in action as we explore Python's Tkinter GUI library.

A GUI program

For this exercise well use the Python Tkinter toolkit. Thisis a Python wrapper around
the Tk toolkit originally written as an extension to Tcl and also available for Perl. The
Python version is an object oriented framework which is, in my opinion, considerably
easier to work with than the original procedural Tk version. We will look much more
closdy at the principles of GUI programming in the GUI topic.

| am not going to dwell much on the GUI aspects in this topic, rather | want to focus on
the style of programming - using Tkinter to handle the event loop and leaving the
programmer to create theinitial GUI and then process the events as they arrive.

In the exampl e we create an application class KeysApp which creates the GUI in the
__init__ method and binds the space key to the doQui t Event method. The class
also defines the required doQui t Event method.

D:\DOC\HomePagetutor\tutevent.htm Page 208 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

The GUI itsdf simply consists of atext entry widget whose default behavior is to echo
characters typed onto the display.

Creating an application class is quite common in OO event driven environments because
thereis alot of synergy between the concepts of events being sent to a program and
messages being sent to an object. The two concepts map on to each other very easily.
An event handling function thus becomes a method of the application class.

Having defined the class we simply create an instance of it and then send it the
mai nl oop Message.

The code looks like this:

Use from X inport * to save having to preface everything
as tkinter.xxx
from Tki nter inmport *

Create the application class which defines the GUJ
and the event handling nethods
cl ass KeysApp(Frane):
def _ init__(self): # use constructor to build GU
Frame. __init__ (self)
sel f.txtBox = Text(self)
sel f. t xt Box. bi nd("<space>", self.doQuitEvent)
sel f. t xt Box. pack()
sel f. pack()

def doQuitEvent(self,event):

i mport sys
sys.exit()

Now create an instance and start the event |oop running
nmyApp = KeysApp()
ny App. mai nl oop()

Notice that we don't even implement a key event handler! That's because the default
behavior of the Text widget is to print out the keys pressed. However that does mean
our programs are not really functionally equivalent. In the console version we printed
the ASCII codes of all keys rather than only printing the al phanumeric versions of

D:\DOC\HomePagetutor\tutevent.htm Page 209 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

printable keys as we do here. There's nothing to prevent us capturing all of the
keypresses and doing the same thing. To do so we would add the following line to the
__init__ method:

sel f.txt Box. bi nd("<Key>", self.doKeyEvent)

And the following method to process the event:

def doKeyEvent (sel f, event):
str = "%\ n" % event. keycode
sel f.txtBox.insert(END, str)
return "break"

Note 1: the key valueis stored in thekeycode field of the event. | had to look at the
source code of Tkinter.py to find that out... Recall that curiosity is a key attribute of a
programmer?!

Note2: return "break" isamagic signa to tel Tkinter not to invoke the default
event processing for that widget. Without that line, the text box displays the ASCII code
followed by the actual character typed, which is not what we want here.

That's enough on Tkinter for now. Thisisn't meant to be a Tkinter tutorial, that's the
subject of the next topic. There are also severa books on using Tk and Tkinter.

Event Driven Programming in VBScript and JavaScript

Both VB Script and JavaScript can be used in an event driven manner when
programming aweb browser. Normally when a web page containing script codeis
loaded the script is executed in a batch fashion as the page |oads. However if the script
contains nothing but function definitions the execution will do nothing but define the
functions ready for use, but the functions will not be called initially. Instead, in the

HTML part of the page the functions will be bound to HTML e ements - usually within
a Form eement - such that when events occur the functions are called. We have already
seen this in the JavaScript example of getting user input, when we read the input from
an HTML form. Let's ook at that example again more closely and see how it really is an
example of event driven programming within aweb page:

<script | anguage="JavaScri pt">
function nyProgram)({

D:\DOC\HomePagetutor\tutevent.htm Page 210 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

alert("We got a value of " + docunent.entry. data. val ue);

}

</script>

<form nane="entry' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange=' nyProgran()'>

</fornp

The script part simply defines a JavaScript function, and the definition is executed when
the page loads. The HTML code then creates a For mwith an | nput eement. As part of
thel nput definition we bind the onChange event to a short block of JavaScript which
simply executes our myPr ogr am() event handler. Now when the user changes the
content of the | nput box the browser executes our event handler. The event loop is
embedded inside the browser.

VBScript can be used in exactly the same way except that the function definitions are all
in VBScript instead of JavaScript, likethis:

<script | anguage="VBScript">
Sub myProgran()
MsgBox "We got a value of " & Docunent.entry2.data. val ue
End Sub
</script>

<form nanme="'entry2' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange='nyProgran()'>

</fornp

Thus we can see that web browser code can be written in batch form or event driven
form or a combination of styles to suit our needs.

Thingsto remember

* Event loops do not care about the events they detect

* Event handlers handle one single event at atime

* Frameworks such as Tkinter provide an event loop and often some default
event handlers too.

* Web browsers provide for both batch and event driven coding styles, or even a
mixture of both.

D:\DOC\HomePagetutor\tutevent.htm Page 211 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Event Driven Programs 22/01/2006

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutevent.htm Page 212 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

GUI Programming with Tkinter

What will we cover?

Basic GUI building principles

Basic widgets

Simple Tkinter program structure
GUI and OOP, a perfect match
wxPython as an alternative to Tkinter

In this topic we look at how a GUI programis assembled in a general sense, then how
thisis done using Python's native GUI toolkit, Tkinter. Thiswill not be afull blown
Tkinter reference nor even a complete tutorial. Thereis already a very good and detailed
tutor linked from the Python web site. This tutorial will instead try to lead you through
the basics of GUI programming, introducing some of the basic GUI components and
how to use them. We will also ook at how Object Oriented programming can help
organize a GUI application.

GUI principles

Thefirst thing | want to say is that you won't learn anything new about programming
here. Programming a GUI is exactly like any other kind of programming, you can use
sequences, loops, branches and modules just as before. What is different isthat in
programming a GUI you usually use a Toolkit and must follow the pattern of program
design laid down by the toolkit vendor. Each new toolkit will have its own API and set
of design rules and you as a programmer need to learn these. This is why most
programmers try to standardize on only a few toolkits which are available across
multiple languages - learning a new toolkit tends to be much harder than learning a new
programming |anguage!

Most windows programming languages come with atoolkit included (usually athin
veneer over the very primitive toolkit built into the windowing system itsdlf). Visua
Basic, Delphi(Kylix) and Visual C++/.NET are examples of this.

Javais different in that the language includes its own graphics tool kit (called Swing)
which runs on any platform that Java runs on - which is almost any platform!

D:\DOC\HomePagetutor\tutgui.htm Page 213 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

There are other toolkits that you can get separately which can be used on any OS (Unix,
Mac, Windows...). These generally have adapters to allow them to be used from many
different languages. Some of these are commercial but many are freeware. Examples
are. GT/K, Qt, Tk

They all have web sites. For some examples try:

* wxPython, a Python version of the wxWidgets toolkit which is actually written
in C++

* PyQt, the Qt toolkit which has "bindings' to most languages.

* pyGTK, the Gimp Toolkit, or GTK+ which is afreeware project used heavily in
the Linux community.

Qt and GT/k arewhat most Linux applications are written in and are both free for non
commercial use (ieyou don't sell your programs for profit) Qt can provide a commercial
licensetoo if you want.

The standard Python graphics kit (comes with the language) is Tkinter which is based on
Tk, avery old multi OS toolkit. Thisis the toolkit we will look at most closdly, versions
of it areavailablefor Tcl, Haskell and Perl as well as Python.

The principlesin Tk are slightly different to other toolkits so | will conclude with avery
brief 1ook at another popular GUI toolkit for Python(and C/C++) which is more
conventional in its approach. But first some general principles:

As we have already stated several times GUI applications are nearly always event driven
by nature. If you don't remember what that means go back and look at the event driven
programming topic.

| will assume that you are already familiar with GUIs as a user and will focus on how
GUI programs work from a programmers perspective. | will not be going into details of
how to write large complex GUIs with multiple windows, MDI interfaces etc. | will

stick to the basics of creating a single window application with some labdl's, buttons, text
boxes and message boxes.

First things first, we need to check our vocabulary. GUI programming has its own set of
programming terms. The most common terms are described in the table below:

| Term | Description

D:\DOC\HomePagetutor\tutgui.htm Page 214 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Window |An area of the screen controlled by an application. Windows are usually
rectangular but some GUI environments permit other shapes. Windows can
contain other windows and frequently every single GUI control is treated as
awindow in its own right.

Control |A control is a GUI object used for controlling the application. Controls have
properties and usually generate events. Normally controls correspond to
application level objects and the events are coupled to methods of the
corresponding object such that when an event occurs the object executes one
of its methods. The GUI environment usually provides a mechanism for
binding events to methods.

Widget |A control, sometimes restricted to visible controls. Some control s(such as
timers) can be associated with a given window but are not visible. Widgets
arethat subset of controls which are visible and can be manipulated by the
user or programmer. The widgets that we shall cover are:

* Frame
* Labd
* Button
* Text Entry
* Message boxes
The ones we won't discuss in this topic but are used el sewhere in the tutor
are
* Text box
* Radio Button
Finally, the ones not discussed at all are;
* Canvas - for drawing
® Check button - for multiple selections
* Image - for displaying BUMP, GIF, JPEG and PNG images
® Listbox - for lists!
* Menu/MenuButton - for building menus
® Scale/Scrollbar - indicating position

Frame |A type of widget used to group other widgets together. Often a Frameis
used to represent the compl ete window and further frames are embedded
within it.

D:\DOC\HomePagetutor\tutgui.htm Page 215 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Layout

Controls are laid out within a Frame according to a particular form of
Layout. The Layout may be specified in a number of ways, either using
on-screen coordinates specified in pixes, using relative position to other
components(left, top etc) or using a grid or table arrangement. A coordinate
system s easy to understand but difficult to manage when awindow is
resized etc. Beginners are advised to use non-resizable windows if working
with coordinate based layouts.

Child

GUI applications tend to consist of a hierarchy of widgets/controls. The top
level Frame comprising the application window will contain sub frames
which in turn contain still more frames or controls. These controls can be
visualized as a tree structure with each control having a single parent and a
number of children. Infact it is normal for this structure to be stored
explicitly by the widgets so that the programmer, or more commonly the
GUI environment itself, can often perform some common action to a control
and al its children.

The Containment tree

One very important principleto grasp in GUI programming is the idea of a containment
hierarchy. That is the widgets are contained in a tree like structure with atop level
widget controlling the entire interface. It has various child widgets which in turn may
have children of their own. Events arrive at a child widget and if it is unableto handle it
it will pass the event to its parent and so on up to thetop level. Similarly if a command
isgiven to draw awidget it will send the command on down to its children, thus a draw
command to the top level widget will redraw the entire application whereas one sent to
abutton will likely only redraw the button itself.

This concept of events percolating up the tree and commands being pushed down is
fundamental to understanding how GUI s operate at the programmer level, and why you
always need to specify a widgets parent when creating it, so that it knows whereis sits
in the containment tree. We can illustrate a containment tree for the simple application
we will createin thistopic likethis:

D:\DOC\HomePagetutor\tutgui.htm Page 216 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Top Level

Frame

Frame Frame

Button Button

This illustrates the top level widget containing a single Fr ame which represents the
outermost window border. Thisin turn contains two more Frames, the first of which
containsaText Entry widget and the second contains the two But t ons used to
control the application. We will refer back to this diagram later in the topic when we
come to build the GUI.

A Tour of Some Common Widgets

In this section we will use the Python interactive prompt to create some simple windows
and widgets. Note that because IDLE isitsdlf a Tkinter application you cannot reliably
run Tkinter applications within IDLE. You can of course create thefiles using IDLE as
an editor but you must run them from a OS command prompt. Pythonwin users can run
Tkinter applications since Pythonwin is built using windows own GUI toolkit, MFC.
However even within Pythonwin there are certain unexpected behaviors with Tkinter
application. As aresult | will use the raw Python prompt from the Operating System.

>>> from Tkinter import *

D:\DOC\HomePagetutor\tutgui.htm Page 217 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Thisisthefirst requirement of any Tkinter program - import the names of the widgets.
Y ou could of course just import the module but it quickly gets tiring typing Tki nt er in
front of every component name.

>>>top = Tk()

This creates the top level widget in our widget hierarchy. All other widgets will be
created as children of this. Notice that a new blank window has appeared complete with
an empty title bar save for a Tk logo as icon and the usual set of control buttons
(iconify, maximize etc). We will now add components to this window as we build an
application.

>>> dir (top)
[' _tcl Conmands', 'children', 'master', 'tk']

Thedi r function shows us what names are known to the argument. Y ou can useit on
modules but in this case we are looking at the internals of thet op object, an instance of
the Tk class. These are the attributes of t op, note, in particular, thechi | dr en and
mast er attributes which are the links to the widget containment tree. Note also the
attribute _t cl Commands, thisis because, as you might recall, Tkinter is built onaTcl
toolkit called Tk.

>>> F = Frame(top)

Create a Frame widget which will in turn contain the child control s/widgets that we use.
Fr ame specifiest op asitsfirst (and in this case only) parameter thus signifying that
F will be a child widget of t op.

>>> F.pack()

Notice that the Tk window has now shrunk to the size of the added Frame widget -
which is currently empty so the window is now very small! Thepack() method invokes
a Layout Manager known as the packer which is very easy to use for simple layouts but
becomes alittle clumsy as the layouts get more complex. We will stick with it for now
becauseit is easy to use. Note that widgets will not be visible in our application until we
pack them (or use another Layout manager method).

>>> |Hello = Labéel(F, text="Helloworld")

D:\DOC\HomePagetutor\tutgui.htm Page 218 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Here we create a new object, | Hel | o, aninstance of the Label class, with a parent
widget F and at ext attribute of "Hello world". Notice that because Tkinter object
constructors tend to have many parameters (each with default values) it is usual to use
the named parameter technique of passing arguments to Tkinter objects. Also notice that
the object is not yet visible because we haven't packed it yet.

Onefinal point to noteis the use of a naming convention: | put alowercasd , for Labe,
in front of aname, Hel | o, which reminds me of its purpose. Like most naming
conventions thisis a matter of personal choice, but | find it helps.

>>> |Hello.pack()

Now we can seeit. Hopefully yours looks quite alot like this:

tk A= B3

Hella warld

We can specify other properties of the Label such as the font and color using parameters
to the object constructor too. We can also access the corresponding properties using the
conf i gur e method of Tkinter widgets, like so:

>>> |Hello.configur e(text=" Goodbye")

The message changed. That was easy, wasn't it? conf i gur e is an especially good
technique if you need to change multiple properties at once because they can all be
passed as arguments. However if you only want to change a single property at atime, as
we did above you can treat the object like a dictionary, thus:

>>> |Hello['text'] =" Hello again”

which is shorter and arguably easier to understand.

Labd s are pretty boring widgets, they can only display read-only text, albeit in various
colors, fonts and sizes. (In fact they can be used to display simple graphics too but we
won't bother with that here).

Before we look at another object type thereis one more thing to do and that's to set the
title of the window. We do that by using a method of the top level widget t op:

>>> F.master .title(" Hello")

D:\DOC\HomePagetutor\tutgui.htm Page 219 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

We could have used t op directly but, as we'll seelater, access through the Frame's
master property is a useful technique.

>>> pQuit = Button(F, text=" Quit", command=F.quit)

Here we create a new widget a button. The button has alabel "Quit" and is associated
with the command F. qui t . Note that we pass the method name, we do not call the
method by adding parentheses after it. This means we must pass a function object in
Python terms, it can be a built in method provided by Tkinter, as here, or any other
function that we define. The function or method must take no arguments. The

qui t method, like the pack method, is defined in abase class and is inherited by all
Tkinter widgets, but is usually called at the top window leve of the application.

>>>pQuit.pack()
Once again the pack method makes the button visible.
>>>top.mainloop()

We start the Tkinter event loop. Notice that the Python >>> prompt has now
disappeared. That tells us that Tkinter now has control. If you pressthe Qui t button the
prompt will return, proving that our comrand option worked.

Notethat if running this from Pythonwin or IDLE you may get a different result, if so
try typing the commands so far into a Python script and running them from an OS
command prompt.

In fact its probably a good time to try that anyhow, after all it's how most Tkinter
programs will be run in practice. Use the principle commands from those we've
discussed so far as shown:

from Tki nter inmport *

set up the w ndow itself
top = Tk()

F = Frame(top)

F. pack()

dd the widgets
Ilo = Label (F, text="Hello")
I

#
I
I | 0. pack()

a
He
He

D:\DOC\HomePagetutor\tutgui.htm Page 220 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

bQuit = Button(F, text="Quit", conmand=F.quit)
bQui t. pack()

set the | oop running
t op. mai nl oop()

The call tothet op. mai nl oop method starts the Tkinter event |0op generating events.
In this case the only event that we catch will be the button press event whichis
connected to the F. qui t method. F. qui t inturn will terminate the application. Try it,
it should look likethis:

Hella

it |

Exploring Layout

Note: fromnow on I'll provide examples as Python script files rather than as commands
at the >>> prompt.

In this section | want to look at how Tkinter positions widgets within awindow. We
already have seen Frame, Label and Button widgets and those are all we need for this
section. In the previous example we used the pack method of the widget to locate it
within its parent widget. Technically what we are doing is invoking Tk's packer Layout
Manager. The Layout Manager's job is to determine the best layout for the widgets
based on hints that the programmer provides, plus constraints such as the size of the
window as controlled by the user. Some Layout managers use exact locations within the
window, specified in pixels normally, and thisis very common in Microsoft Windows
environments such as Visual Basic. Tkinter includes a Placer Layout Manager which
can do this too via a place method. | won't look at that in this tutor because usually one
of the other, more intelligent, managers is a better choice, since they take the need to
worry about what happens when awindow is resized away from us as programmers.

The simplest Layout Manager in Tkinter is the packer which we've been using. The
packer, by default, just stacks widgets one on top of the other. That is very rarely what
we want for normal widgets, but if we build our applications from Frames then stacking
Frames on top of each other is quite a reasonabl e approach. We can then put our other
widgets into the Frames using either the packer or other Layout Manager within each
Frame as appropriate. Y ou can see an example of thisin action in the Case Study topic.

D:\DOC\HomePagetutor\tutgui.htm Page 221 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Even the simple packer provides a multitude of options, however. For example we can
arrange our widgets horizontally instead of vertically by providing asi de argument,
like so:

| Hel | 0. pack(side="left")
bQuit. pack(side="1eft")

That will force the widgets to go to the | eft thus the first widget (the label) will appear at
the extreme left hand side, followed by the next widget (the Button). If you modify the
lines in the example above it will 1ook likethis:

| hello FI=1 B

Hella Cluit

And if you changethe"l eft" to"ri ght" thenthe Label appears on the extreme right
and the Button to the | eft of it, like so:

hello [H[=]

[it | Hella

Onething you noticeis that it doesn't ook very nice because the widgets are squashed
together. The packer also provides us with some parameters to deal with that. The
easiest to useis Padding and is specified in terms of horizontal padding (padx), and
vertical padding(pady). These values are specified in pixels. Lets try adding some
horizontal padding to our example:

| Hel | 0. pack(side="left", padx=10)
bQuit. pack(side="left', padx=10)

It should look likethis:;

helle [N[=] E3

Hella [uait

D:\DOC\HomePagetutor\tutgui.htm Page 222 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

If you try resizing the window you'll see that the widgets retain their positions relative to
one another but stay centered in the window. Why is that, if we packed them to the left?
The answer is that we packed them into a Frame but the Frame was packed without a
side, so it is positioned top, center - the packers default. If you want the widgets to stay
at the correct side of the window you will need to pack the Frame to the appropriate
side too:

F. pack(side="left")

Also note that the widgets stay centered if you resize the window vertically - again that's
the packers default behavior.

I'll leave you to play with padx and pady for yourself to see the effect of different values
and combinations etc. Between them, si de and padx/ pady alow quite alot of
flexibility in the positioning of widgets using the packer. There are several other options,
each adding another subtle form of control, please check the Tkinter reference

pages for details.

There are a couple of other layout managers in Tkinter, known as the grid and the
placer. To use the grid manager you usegri d() instead of pack() and for the placer
you call pl ace() instead of pack() . Each hasits own set of options and since I'll only
cover the packer in thisintro you'll need to look up the Tkinter tutorial and reference for
the details. The main points to note are that the grid arranges componentsin agrid
(surprise!) within the window - this can often be useful for dialog boxes with lined up
text entry boxes, for example. The placer user either fixed coordinates in pixes or
relative coordinates within awindow. The latter allow the component to resize along
with the window - always occupying 75% of the vertical space say. This can be useful
for intricate window designs but does require alot of pre planning - | strongly
recommend a pad of squared paper, a pencil and eraser!

Controlling Appearance using Frames and the Packer

The Frame widget actually has a few useful properties that we can use. After al, it's very
well having alogical frame around components but sometimes we want something we
can seetoo. Thisis especially useful for grouped controls like radio buttons or check
boxes. The Frame solves this problem by providing, in common with many other Tk
widgets, arelief property. Relief can have any one of severa values: sunken,

rai sed, groove, ridgeorflat.Let'susethesunken valueon our simplediaog
box. Simply change the Frame creation line to:

D:\DOC\HomePagetutor\tutgui.htm Page 223 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

F = Frame(top, relief="sunken", border=1)

Note 1:You need to provide a border too. If you don't the Frame will be sunken but
with an invisible border - you don't see any differencel

Note 2: that you don't put the border sizein quotes. This is one of the confusing aspects
of Tk programming is knowing when to use quotes around an option and when to |eave
them out. In general if it's a numeric or single character value you can leave the quotes
off. If it'samixture of digits and |etters or a string then you need the quotes. Likewise
with which |etter case to use. Unfortunately there is no easy solution, you just learn from
experience - Python often gives alist of the valid optionsin it's error messages!

One other thing to noticeis that the Frame doesn't fill the window. We can fix that with
another packer option called, unsurprisingly, fi | 1 . When you pack the frame do it
thusly:

F. pack(fill="x")

Thisfills horizontally, if you want the frame to fill the entire window just use
fill="y' too. Becausethisis quite acommon requirement thereis a special fill option
called BOTH so you could type:

F. pack(fill="both")

The end result of running the script now looks like:

Hella
it |

Adding mor e widgets

Let'snow look at atext Entry widget. Thisis the familiar single line of text input box. It
shares alot of the methods of the more sophisticated Text widget which we won't look
at here. Essentially we will simply useit to capture what the user types and to clear that
text on demand.

D:\DOC\HomePagetutor\tutgui.htm Page 224 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Going back to our "Hello World" program we'll add a text entry widget inside a Frame
of its own and a button that can clear the text that we type into it. This will demonstrate
not only how to create and use the Entry widget but also how to define our own event
handling functions and connect them to widgets.

from Tki nter inmport *

create the event handler first
def evO ear():
eHel | 0. del et e(0, END)

create the top | evel w ndow frane
top = Tk()

F = Frame(top)

F. pack(expand="t rue")

Now the frame with text entry

fEntry = Frane(F, border=1)

eHello = Entry(fEntry)

fEntry. pack(si de="top", expand="true")
eHel | 0. pack(side="left", expand="true")

Finally the frane with the buttons.

W'l sink this one for enphasis

fButtons = Frame(F, relief="sunken", border=1)

bl ear = Button(fButtons, text="Cl ear Text", conmand=evC ear)
bd ear. pack(side="left", padx=5, pady=2)

bQuit = Button(fButtons, text="Quit", comrand=F.quit)

bQuit. pack(side="left", padx=5, pady=2)

f But t ons. pack(si de="t op", expand="true")

Now run the eventl oop
F. mai nl oop()

Note that once more we pass the name of the event handler (evd ear)., without
parentheses, as the conmand argument to the bCl ear button. Note also the use of a
naming convention, evXXX to link the event handler with the corresponding widget.

Running the program yields this:

D:\DOC\HomePagetutor\tutgui.htm Page 225 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

tk _ O]
e

(it

‘ Clear Text

And if you type something in the text entry box then hit the "Clear Text" button it
removesit again.

Binding events - from widgets to code

Up till now we have used the command property of buttons to associate Python
functions with GUI events. Sometimes we want more explicit control, for example to
catch a particular key combination. The way to do that is use the bi nd function to
explicitly tie together (or bind) an event and a Python function.

WEIl now define a hot key - let's say CTRL-c - to delete the text in the above example.
To do that we need to bind the CTRL-C key combination to the same event handler as
the Clear button. Unfortunately there's an unexpected snag. When we use the command
option the function specified must take no arguments. When we use the bind function to
do the same job the bound function must take one argument. This we need to create a
new function with a single parameter which callsevC ear . Add the following after the
evClear definition:

def evHot Key(event):
evd ear ()

And add the following line following the definition of the Entry widget:

eHel | 0. bi nd("<Control -c>", evHot Key) # the key definition is case sensitive

Run the program again and you can now clear the text by ether hitting the button or
typing Ctrl-c. We could also use bind to capture things like mouse clicks or capturing or
losing Focus or even the windows becoming visible. See the Tkinter documentation for
more information on this. The hardest part is usually figuring out the format of the event
description!

A Short Message

D:\DOC\HomePagetutor\tutgui.htm Page 226 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Y ou can report short messages to your users using a MessageBox. Thisisvery easy in
Tk and is accomplished using thet kMessageBox modul e functions as shown:

i mport tkMessageBox
t kMessageBox. showi nf o("W ndow Text", "A short nessage")

There are also error, warning, Yes/No and OK/Cancel boxes available via different
showXXX functions. They are distinguished by different icons and buttons. The latter
two use ask XXX instead of showXXX and return a val ue to indicate which button the
user pressed, like so:

res = t MessageBox. askokcancel ("Wi ch?", "Ready to stop?")
print res

Here are some of the Tkinter message boxes:

» Window text]

' What?

(7
Cr=] we |

Wrapping Applications as Objects

It's common when programming GUI's to wrap the entire application as aclass. This
begs the question, how do we fit the widgets of a Tkinter application into this class
structure? There are two choices, we either decide to make the application itself as a
subclass of a Tkinter Frame or have a member field store a reference to the top level
window. The latter approach is the one most commonly used in other toolkits so that's

D:\DOC\HomePagétutor\tutgui.htm Page 227 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

the approach welll use here. If you want to see the first approach in action go back and
look at the example in the Event Driven Programming topic. (That example also
illustrates the basic use of the incredibly versatile Tkinter Text widget)

| will convert the example above using an Entry field, a Clear button and a Quit button
to an OO structure. First we create an Application class and within the constructor
assemble the visual parts of the GUI.

We assign theresultant Frameto sel f . mai nW ndow, thus allowing other methods of
the class access to the top level Frame. Other widgets that we may need to access (such
as the Entry field) are likewise assigned to member variables of the Frame. Using this
technique the event handlers become methods of the application class and all have
access to any other data members of the application (although in this case there are
none) through the sel f reference. This provides seamless integration of the GUI with
the underlying application objects:

from Tki nter inmport *

cl ass O ear App:
def __init__(self, parent=0):
sel f. mai nW ndow = Frane(parent)
Create the entry w dget
self.entry = Entry(sel f. mai nW ndow)
self.entry.insert(0,"Hello world")
self.entry. pack(fill=X)

now add the 2 buttons, use a grooved effect
fButtons = Frame(sel f.mai nW ndow, border=2, relief="groove")
bCl ear = Button(fButtons, text="C ear",

wi dt h=8, hei ght=1, command=sel f. cl ear Text)
bQuit = Button(fButtons, text="Quit",

wi dt h=8, hei ght=1, conmand=sel f. mai nW ndow. qui t)

b ear. pack(side="left", padx=15, pady=1)
bQui t. pack(side="right", padx=15, pady=1)
f Butt ons. pack(fill=X)

sel f. mai nW ndow. pack()

set the title
sel f. mai nW ndow. master.title("C ear")

def clearText(self):
self.entry. del et e(0, END)

app = O ear App()

D:\DOC\HomePagetutor\tutgui.htm Page 228 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

app. mai nW ndow. mai nl oop()

Here's the result:

Clear =l
Hello warld
Clear | (it |

The result looks remarkably like the previous incarnation although | have tweaked the
lower frame to give it a nice grooved finish and I've supplied widths to the buttons to
make them look more similar to the wxPython example below.

Of courseits not just the main application that we can wrap up as an object. We could
create a class based around a Frame containing a standard set of buttons and reuse that
classin building dialog windows say. We could even create whole dialogs and use them
across several projects. Or we can extend the capabilities of the standard widgets by
subclassing them - maybe to create a button that changes colour depending on its state.
Thisiswhat has been done with the Python Mega Widgets (PMW) which is an
extension to Tkinter which you can download.

An alternative - wxPython

There are many other GUI toolkits available but one of the most popular is the
wxPython toolkit whichis, in turn, awrapper for the C++ toolkit wxWidgets. wxPython
is much more typical than Tkinter of GUI toolkits in general. It also provides more
standard functionality than Tk "out of the box" - things like tooltips, status bars etc
which have to be hand crafted in Tkinter. Well use wxPython to recreate the simple
"Hello World" Label and Button example above.

| won't go through this in detail, if you do want to know more about how wxPython
works you will need to download the package from the wxPython website.

In general terms the toolkit defines a framework which allows us to create windows and
populate them with controls and to bind methods to those controls. It is fully object
oriented so you should use methods rather than functions. The example looks like this:

from wxPyt hon. wx inport *

D:\DOC\HomePagetutor\tutgui.htm Page 229 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

--- Define a custom Frane, this will becone the main w ndow ---
cl ass Hel | oFrame(wxFrane) :
def __init__(self, parent, ID, title, pos, size):
wxFrame. __init__(self, parent, ID title, pos, size)
we need a panel to get the right background
panel = wxPanel (self, -1)

Now create the text and button wi dgets

self.tHello = wxTextCtrl (panel, -1, "Hello world", (3,3), (185, 22))
button = wxButton(panel, 10, "Cear”, (15, 32))
button = wxButton(panel, 20, "Quit", (100, 32))
now bind the button to the handl er
EVT_BUTTON(sel f, 10, self.Ond ear)
EVT_BUTTON(sel f, 20, self.OnQuit)

these are our event handlers
def OnCl ear(self, event):
self.tHello.Cear()

def OnQuit(self, event):
sel f. Destroy()

--- Define the Application Object ---

Note that all wxPython prograns MJST define an

application class derived from wApp

cl ass Hel | oApp(WxApp) :

def Onlnit(self):

frame = Hel | oFrame(NULL, -1, "Hello", (200,50), (200,90))
frame. Show(true)
sel f.set TopW ndow(frane)
return true

create instance and start the event |oop
Hel | oApp() . Mai nLoop()

And it looks like this:

: Hello =]
II—I ello world
Clear | (it |

D:\DOC\HomePagetutor\tutgui.htm Page 230 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

Points to note are the use of a naming convention for the methods that get called by the
framework - OnXXXX. Also note the EVT_XXX functions to bind events to widgets -
thereis awhole family of these. wxPython has a vast array of widgets, far more than
Tkinter, and with them you can build quite sophisticated GUIs. Unfortunately they tend
to use a coordinate based placement scheme which becomes very tedious after awhile.
It is possible to use a scheme very similar to the Tkinter packer but its not so well
documented. Thereis acommercial GUI builder available and hopefully someone will
soon provide a free one too.

Incidentally it might be of interest to note that this and the very similar Tkinter example
above have both got about the same number of lines of executable code - Tkinter: 19,
wxPython: 20.

In conclusion, if you just want a quick GUI front end to a text based tool then Tkinter
should meet your needs with minimal effort. If you want to build full featured cross
platform GUI applications look more closely at wxPython.

Other toolkits include MFC and .NET and of course thereis the venerable curses which
isakind of text based GUI! Many of the lessons we've learned with Tkinter apply to all
of these toolkits but each has its own characteristics and foibles. Pick one, get to know
it and enjoy the wacky world of GUI design. Finally I should mention that many of the
toolkits do have graphical GUI builder tools, for example Qt has Blackadder and GTK
has Glade. wxPython has Python Card which tries to simplify the whole wxPython GUI
building process. Thereis even a GUI builder for Tkinter called SpecTix , based on an
earlier Tcl tool for building Tk interfaces, but capable of generating code in multiple
languages including Python. Thereis also an enhanced set of widgets for Tkinter called
PMW to fill the gap between the basic Tkinter set and those provided by wxPython etc.

That's enough for now. This wasn't meant to be a Tkinter reference page, just enough to
get you started. See the Tkinter section of the Python web pages for links to other
Tkinter resources.

There are aso several books on using Tcl/Tk and at least one on Tkinter. | will however
come back to Tkinter in the case study, where | illustrate one way of encapsulating a
batch mode program in a GUI for improved usability.

Thingsto remember

® GUIs controls are known as widgets
* Widgets are assembled in a containment hierarchy

D:\DOC\HomePagetutor\tutgui.htm Page 231 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to GUI Programming 22/01/2006

¢ Different GUI toolkits provide different sets of widgets, although there will be a
basic set you can assume will be present

* Frames allow you to group related widgets and form the basis of reusable GUI
components

* Event handling functions or methods are associated with widgets by linking
their name with the widgets conmand property.

* OOP can simplify GUI programming significantly by creating objects that
correspond to widget groups and methods that correspond to events.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutgui.htm Page 232 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Recursion 22/01/2006

Recursion

What will we cover?

* A definition of recursion
* How recursion works
* How recursion helps simplify some hard problems

Note: Thisisafairly advanced topic and for most applicationsyou don't need to know anything
about it. Occasionally, it isso useful that it isinvaluable, so | present it herefor your study. Just
don't panicif it doesn't make sense straight away.

What isit?

Despitewhat | said earlier about looping being one of the cornerstones of programming
itisinfact possible to create programs without an explicit loop construct. Some
languages, such as Scheme, do not in fact have an explicit loop construct like For,

Wi | e, etc. Instead they use a technique known as recursion . This turns out to be a
very powerful technique for some types of problem, so we'll take alook at it now.

Recursion simply means applying afunction as a part of the definition of that same
function. Thus the definition of GNU (the source of much free software) is said to be
recursive because GNU stands for 'GNU's Not Unix'. ie GNU is part of the definition of
GNU!

The key to making this work is that there must be a terminating condition such that
the function branches to a non-recursive solution at some point. (The GNU definition
fails this test and so gets stuck in an infinite loop).

Let'slook at a simple example. The mathematical factorial function is defined as being
the product of all the numbers up to and including the argument, and the factorial of 1 is
1. Thinking about this, we see that another way to express thisis that the factorial of N
isequal to N times the factorial of (N-1).

Thus:

1 =1

2 =1x 2 =2

3 =1 x2x3=2 x3 =6

N =1x2x3X.... (N2) x (N1) x N=(N1)! x N

So we can express this in Python like this:

D:\DOC\HomePagetutor\tutrecur.htm Page 233 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Recursion 22/01/2006

def factorial(n):
if n== 1.
return 1
el se:
return n * factorial(n-1)

Now because we decrement N each time and we test for N equal to 1 the function must
complete. Thereis asmall bug in this definition however, if you try to call it with a
number less than 1 it goesinto an infiniteloop! To fix that change the test to use "<="
instead of "==". This goes to show how easy it is to make mistakes with terminating
conditions, thisis probably the single most common cause of bugs in recursive functions.
Make sure you test all the values around your terminating point to ensure correct
operation.

Let's see how that works when we execute it. Notice that the return statement returns n
* (the result of the next factorial call) Soweget:

factorial (4) = 4 * factorial (3)
factorial (3) = 3 * factorial (2)
factorial (2) = 2 * factorial (1)
factorial (1) =1

So Python now works its way back up substituting the val ues:

factorial(2) =2 * 1 =2
factorial(3) =3 * 2 =6
factorial (4) =4 * 6 = 24

Writing the factorial function without recursion actually isn't that difficult, try it as an
exercise. Basically you need to loop over al the numbers up to N multiplying as you go.
However as well see below some functions are much harder to write without recursion.

Recursing over lists

The other area where recursion is very useful isin processing lists. Provided we can test
for an empty list, and generate alist minus its first e ement we can use recursion easily.
In Python we do that using a technique called dlicing. Thisis explained fully in the
Python manual but for our purposes all you need to know is that using an "index" of
[1:] onalist returns all of the eements from 1 to the end of thelist. So to get thefirst
element of alist called L:

D:\DOC\HomePagetutor\tutrecur.htm Page 234 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Recursion 22/01/2006

first = L[O] # just use normal indexing

And to get therest of thelist:

butfirst = L[1:] # use slicing to get elenents 1,2, 3,4...

Let'stry it out at the Python prompt, just to reassure ourselves that it works:

>>> L =[1, 2, 3,4, 5]
>>> print L[O]
1

>>> print L[1:]
[2,3,4,5]

OK, let's get back to using recursion to print lists. Consider thetrivial case of printing
each dement of alist of strings using afunction printList:

def printList(L):
if L:
print L[O]
printList(L[1:])

If L istrue- non empty - we print the first e ement then process the rest of thelist like
this:

NON PYTHON PSEUDO CCDE
PrintList([1,2,3])
prints [1,2,3][0] => 1
runs printList([21,2,3][1:]) => printList([2,3])
=> we're now in printList([2,3])
prints [2,3][0] => 2
runs printList([2,3][1:]) => printList([3])
=> we are now in printList([3])
prints [3][0] => 3
runs printList([3][21:]) => printList([])
=> we are now in printList([])
"if L" is false for an enpty list, so we return None
=> we are back in printList([3])
it reaches the end of the function and returns None
=> we are back in printList([2,3])
it reaches the end of the function and returns None
=> we are back in printList([1,2,3])

D:\DOC\HomePagetutor\tutrecur.htm Page 235 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Recursion 22/01/2006

it reaches the end of the function and returns None

[Note: The above explanation isadapted from one given by Zak Arntson on the Python Tutor
mailing list, July 2003]

For asimplelist that's atrivial thing to do using asimple for loop. But consider what
happens if the List is complex and contains other lists within it. If we can test whether an
itemisalList using the built-int ype() functionandif itisalist then we can call
printList() recursivey. If it wasn't alist we simply print it. Let's try that:

def printList(L):
#if its enpty do nothing
if not L: return
#if it's alist call printList on 1st el enent

if type(L[0]) == type([]):
printList(L[O])

el se: #no list so just print
print L[O]

now process the rest of L

printList(L[1:])

Now if you try to do that using a conventional loop construct you'll find it very difficult.
Recursion makes a very complex task comparatively simple.

Thereis acatch (of course!). Recursion on large data structures tends to eat up memory
so if you are short of memory, or have very large data structures to process the more
complex conventional code may be safer.

Finally, both VBScript and JavaScript support recursion too. However since thereis
little to say that has not already been said | will leave you with arecursive version of the
factorial function in each language:

<script | anguage="VBScript">
Function factorial (N
if N <=1 Then

Factorial =1
El se

Factorial = N * Factorial (N-1)
End | f

End Function

Document . Wite "7 =" & CStr(Factorial (7))

D:\DOC\HomePagetutor\tutrecur.htm Page 236 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Recursion 22/01/2006

</script>

<scri pt | anguage="Javascript">
function factorial (n){

if (n<=1)
return 1;
el se
return n * factorial (n-1);
b
document .wite("6! =" + factorial (6));
</script>

OK, let's now take another leap into the unknown as we introduce Functional
Programming.
Things to Remember

* Recursive functions call themselves within their own definition

* Recursive functions must have a non recursive terminating condition or an
infinite loop will occur.

* Recursion is often, but not always, memory hungry

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutrecur.htm Page 237 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Functional Programming

What will we Cover?

The difference between Functional and more traditional programming styles
Python FP functions and techniques

Lambda functions

Short Circuit Boolean eval uation

Programs as expressions

In thistopic welook at how Python can support yet another programming style: Functional
Programming(FP). Aswith Recursion thisisa genuinely advanced topic which you may wish to
ignorefor the present. Functional techniques do have some usesin day to day programming and the
supportersof FP believeit to be afundamentally better way to develop software.

What is Functional Programming?

Functional programming should not be confused with imperative (or procedural)
programming. Neither isit like object oriented programming. It is something different.
Not radically so, since the concepts that we will be exploring are familiar programming
concepts, just expressed in a different way. The philosophy behind how these concepts
are applied to solving problems is also alittle different.

Functional programming is all about expressions. In fact another way to describe FP
might be to term it expression oriented programming since in FP everything reduces to
an expression. Y ou should recall that an expression is a collection of operations and
variables that resultsin asinglevalue. Thus x == isaboolean expression. 5 +
(7-Y) isanarithmetic expression. And" Hel | o wor | d". uppercase() isastring
expression. Thelatter is also afunction call (Or more strictly a method call) on the string
object "Hel | o wor | d" and, as we shall see, functions are very important in FP (You
might already have guessed that from the name!).

Functions are used as objects in FP. That is they are often passed around within a
program in much the same way as other variables. We have seen examples of thisin our
GUI programs where we assigned the name of a function to the conmand attribute of a
Button control. We treated the event handler function as an object and assigned a
reference to the function to the Button. This idea of passing functions around our
programis key to FP.

Functional Programs also tend to be heavily List oriented.

D:\DOC\HomePagetitutor\tutfctnl.htm Page 238 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Finally FP tries to focus on the what rather than the how of problem solving. That is, a
functional program should describe the problem to be solved rather than focus on the
mechanism of solution. There are several programming languages which aim to work in
this way, one of the most widely used is Haskell and the Haskell web site (
www.haskell.org) has numerous papers describing the philosophy of FP as well as the
Haskell language. (My personal opinionis that this goal, however laudable, is rather
overstated by FP's advocates.)

A pure functional program is structured by defining an expression which captures the
intent of the program. Each term of the expression isin turn a statement of a
characteristic of the problem (maybe encapsulated as another expression) and the
evaluation of each of these terms eventually yields a solution.

Wi, that's the theory. Does it work? Y es, sometimes it works very well. For some
types of problemit is anatural and powerful technique. Unfortunately for many other
problems it requires afairly abstract thinking style, heavily influenced by mathemetical
principles. Theresultant code is often far from readable to the layman programmer. The
resultant code is also very often much shorter than the equival ent imperative code and
morerdiable.

It isthese latter qualities of conciseness and reliability that have drawn many
conventional imperative or object oriented programmers to investigate FP. Even if not
embraced whol e heartedly there are several powerful tools that can be used by all.

FP and Réliability

Therdiability of Functional Programs comes in part from the very close relationship
between FP constructs and formal specification languages such as Z or VDM. If a
problem is specified in aformal languageit is afairly straightforward step to translate
the specification into an FP language like Haskell. Of courseif the original specification
iswrong then the resultant program will merely accurately reflect the error!

This principle is known in computer science as " Garbage In, Garbage Out". The
inherent difficulty of expressing system requirements in a concise and unambiguous
manner remains one of the greatest challenges of software engineering.

How does Python doit?

D:\DOC\HomePagetitutor\tutfctnl.htm Page 239 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Python provides several functions which enable a functional approach to programming.
These functions are all convenience features in that they can be written in Python fairly
easily. What is more important however is the intent implicit in their provision, namely
to alow the Python programmer to work in a FP manner if he/she wishes.

We will ook at some of the functions provided and see how they operate on some
sample data structures that we define as:

spam = [' pork',' ham ,'spices']

nunbers = [1, 2, 3, 4, 5]

def eggs(iten):
return item

map(aFunction, aSequence)
This function applies a Python function, aFunct i on to each member of aSequence.

The expression:

L = map(eggs, spam
print L
Resultsin anew list (in this case identical to spam) being returnedin L.
We could have done the same thing by writing:
for i in spam
L. append(i)
print L

Notice however, that the map function allows us to remove the need for a nested block
of code. From one point of view that reduces the complexity of the program by one
level. WE'll seethat as arecurring theme of FP, that use of the FP functions reduces the
relative complexity of the code by eiminating blocks.

filter (@aFunction, aSequence)

Asthe namesuggestsfi | t er extracts each e ement in the sequence for which the
function returns Tr ue. Consider our list of numbers. If we want to create a new list of
only odd numbers we can produce it like so:

D:\DOC\HomePagetitutor\tutfctnl.htm Page 240 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

def isQdd(n): return (n% != 0) # use nod operator
L =filter(isCdd, nunbers)
print L

Alternatively we can write:

def isQdd(n): return (n%2 != 0)

for i in nunbers:
if isQdd(i):
L. append(i)
print L

Again notice that the conventional code requires two levels of indentation to achieve the
same result. Again the increased indentation is an indication of increased code
complexity.

reduce(aFunction, aSequence)

Ther educe functionisalittleless obviousin its intent. This function reduces alist to a
single value by combining € ements via a supplied function. For example we could sum
thevalues of alist and return the total like this:

def add(i,j): return i+
print reduce(add, nunbers)

As before we could do this more conventionally like this:

res =0

for i in range(len(nunbers)): # use indexing
res = res + nunbers[i]

print res

Whilethat produces the same result in this case, it is not always so straightforward.
What r educe actually doesis call the supplied function passing the first two members
of the sequence and replaces them with the result. In other words a more accurate
representation of reduceis likethis:

def reduce(nunbers):
L = nunbers[:] # nake a copy of original
while len(L) >= 2:

D:\DOC\HomePagetitutor\tutfctnl.htm Page 241 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

i,]
L =

= # use tupl e assignnment
[]
return L[

Once more we see the FP technique reducing the compl exity of the code by avoiding the
need for an indented block of code.

lambda

One feature you may have noticed in the examples so far is that the functions passed to
the FP functions tend to be very short, often only a single line of code. To save the
effort of defining lots of very small functions Python provides another aid to FP -

| anbda. The name lambda comes from a branch of mathemetics called lambda
calculus which uses the Greek letter Lambda to represent a similar concept.

Lambdais aterm used to refer to an anonymous function, that is, a block of code which
can be executed as if it were a function but without a name. Lambdas can be defined
anywhere within a program that alegal Python expression can occur, which means we
can use theminside our FP functions.

A Lambda looks like this:

| anbda <aParaneterList> : <a Python expression using the paraneters>

Thus the add function above could be rewritten as:

add = lanbda i,j: i+

And we can avoid the definition line completely by creating the | anbda within the call
tor educe, like so:

print reduce(lanbda i,j:i+j, nunbers)

Similarly we can rewrite our map andfi | t er exampleslike so:

L = map(lanbda i: i, spam

print L

L=~"Filter(lanbda i: (i%2 !'= 0), nunbers)
print L

D:\DOC\HomePagetitutor\tutfctnl.htm Page 242 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

List Comprehension

List comprehension is a technique for building new lists borrowed from Haskell and
introduced in Python since version 2.0. It has a slightly obscure syntax, similar to
mathematical set notation. It looks like this:

[<expression> for <value> in <collection> if <condition>]
Which is equivalent to:

L =] _ _

for value in collection:

if condition:
L. append(expr essi on)

As with the other FP constructs this saves some lines and two levd s of indentation. Lets
look at some practical examples.

First |et's create alist of all the even numbers:

>>> [n for nin range(10) if n %2 == 0]
[0, 2, 4, 6, 8]

That says we want alist of values (n) wheren is selected fromtherange0-9 and n is
even(i % 2 == 0).

The condition at the end could, of course, be replaced by a function, provided the
function returns a value that Python can interpret as boolean. Thus looking again at the
previous example we could rewriteit as:

>>>def isEven(n): return ((n%) == 0)
>>> [n for nin range(10) if isEven(n)]
[0, 2, 4, 6, 8]

Now let's create alist of the squares of the first 5 numbers:

>>> [n*n for n in range(5)]
[0, 1, 4, 9, 16]

D:\DOC\HomePagetitutor\tutfctnl.htm Page 243 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Notice that thefinal if clauseis not needed in every case. Heretheinitial expressionis
n*n and we use all of the values from the range.

Finally let's use an existing collection instead of the range function:

>>> values = [1, 13, 25, 7]
>>> [x for x in values if x < 10]
[1, 7]

This could be used to replace the following filter function:

>>> filter(lanbda x: x < 10, val ues)
[1, 7]

List comprehensions are not limited to one variable or one test however the code starts
to become very complex as more variables and tests are introduced.

Whether comprehensions or the traditional functions seem most natural or appropriate
to you is puredly subjective. When building a new collection based on an existing
collection you can use either the previous FP functions or the new list comprehensions.
When cregting a completely new collection it is usually easier to use a comprehension.

Remember though that while these constructs may seem appealing, the expressions
needed to get the desired result can become so complex that it's easier to just expand
them out to their traditional python equivalents. Thereis no shamein doing so -
readability is always better than obscurity, especialy if the obscurity is just for the sake
of being clever!

Other constructs

Of course while these functions are useful in their own right they are not sufficient to
allow afull FP stylewithin Python. The control structures of the language also need to
be altered, or at least substituted, by an FP approach. One way to achieve thisis by
applying a side effect of how Python eval uates bool ean expressions.

Short Circuit evaluation

D:\DOC\HomePagetitutor\tutfctnl.htm Page 244 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Because Python uses short circuit evaluation of boolean expressions certain properties
of these expressions can be exploited. To recap on short-circuit evaluation: when a
boolean expression is evaluated the evaluation starts at the left hand expression and
proceeds to the right, stopping when it is no longer necessary to evaluate any further to
determine the final outcome.

Taking some specific examples |et's see how short circuit eval uation works:

>>> def TRUE():
print ' TRUE
return True

>>>def FALSE():
print ' FALSE
return Fal se

First we define two functions that tell us when they are being executed and return the
value of their names. Now we use these to explore how boolean expressions are
evaluated:

>>>print TRUE() and FALSE()
TRUE

FALSE

Fal se

>>>print TRUE() and TRUE()
TRUE

TRUE

True

>>>print FALSE() and TRUE()
FALSE

Fal se

>>>print TRUE() or FALSE()
TRUE

True

>>>print FALSE() or TRUE()
FALSE

TRUE

True

>>>print FALSE() or FALSE()
FALSE

FALSE

Fal se

D:\DOC\HomePagetitutor\tutfctnl.htm Page 245 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Noticethat only I F thefirst part of an AND expression is Tr ue then and only then will
the second part be evaluated. If the first part is Fal se then the second part will not be
evaluated since the expression as a whole cannot be Tr ue.

Likewisein an OR based expression if thefirst part is Tr ue then the second part need
not be evaluated since the whole must be Tr ue.

Thereis one other feature of Pythons eval uation of boolean expressions that we can take
advantage of, namely that when eval uating an expression Python does not simply return
Tr ue or Fal se, rather it returns the actual value of the expression. Thus if testing for

an empty string (which would count as Fal se) likethis:

if "This string is not enpty": print "Not Enpty"
el se: print "No string there"

Python just returns the string itself!

We can use these properties to reproduce branching like behavior. For example suppose
we have a piece of code like the following:

if TRUE(): print "It is True"
el se: print "It is False"

We can replace that with the FP style construct:

V= (TRUE() and "It is True") or ("It is False")
print V

Try working through that example and then substitute the call to TRUE() with acall to
FALSE() . Thus by using short circuit evaluation of boolean expressions we have found
away to eiminate conventional if/else statements from our programs. Y ou may recall
that in the recursion topic we observed that recursion could be used to replace the loop
construct. Thus combining these two effects can remove all conventional control
structures from our program, replacing them with pure expressions. Thisisabig step
towards enabling pure FP style solutions.

To put all of thisinto practice let's write a completely functional style factorial program
using | anbda instead of def , recursion instead of aloop and short circuit eval uation
instead of i f/ el se:

D:\DOC\HomePagetitutor\tutfctnl.htm Page 246 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

>>> factorial = lanbda n: ((n <= 1) and 1) or
(factorial (n-1) * n)
>>> factorial (5)
120

And that really is al thereisto it. It may not be quite so inteligible as the more
conventional Python code but it does work and is a purdy functional style function in
that it is a pure expression.

Conclusions

At this point you may be wondering what exactly is the point of all of this? Y ou would
not be alone. Although FP appeals to many Computer Science academics (and often to
mathematicians) most practicing programmers seem to use FP techniques sparingly and
in akind of hybrid fashion mixing it with more traditional imperative styles as they fed

appropriate.

When you have to apply operations to elementsin alist such that map, reduce or
filter seemthe natural way to express the solution then by al means use them. Just
occasionally you may even find that recursion is more appropriate than a conventional
loop. Even morerardly will you find a use for short circuit evaluation rather than
conventions if/else - particularly if required within an expression. As with any
programming tool, don't get carried away with the philosophy, rather use whichever tool
is most appropriate to the task in hand. At least you know that alternatives exist!

Thereis onefina point to make about | anbda. Thereis one area outside the scope of
FP that lambda finds areal use and that's for defining event handlersin GUI
programming. Event handlers are often very short functions, or maybe they simply call
some larger function with afew hard wired argument values. In ether case alambda
function can be used as the event handler which avoids the need to define lots of small
individual functions and fill up the name space with names that would only be used once.
Remember that alambda statement returns a function object. This function object is the
one passed to the widget and is called at the time the event occurs. If you recall how we
define a Button widget in Tkinter, then alambda would appear like this:

def wite(s): print s
b = Button(parent, text="Press M",

command = lanbda : wite("l got pressed!"))
b. pack()

D:\DOC\HomePagetitutor\tutfctnl.htm Page 247 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

Of coursein this case we could have done the same thing by just assigning a default
parameter valuetowr i t e() and assigningwr i t e to the conmand value of the

But t on. However even here using the | anbda form gives us the advantage that the
singlew i t e() function can now be used for multiple buttons just by passing a different
string from the | anmbda. Thus we can add a second button:

b2 = Button(parent, text="O M",
command = lanbda : wite("So did I!"))
b2. pack()

We can also employ | anbda when using the bind technique, which sends an event
object as an argument:

b3 = Button(parent, text="Press ne as well")
b3. bi nd(<Button-1>, |lanbda ev : wite("Pressed"))

Wéll, that redlly is that for Functional Programming. There are |ots of other resources if
you want to look deeper into it, some are listed below. Neither VB Script nor JavaScript
directly support FP but both can be used in a functional style by a determined
programmer. The key features being to structure your programs as expressions and not
to allow side-effects to modify program variables.

Other resources

* Thereisan excelent article by David Mertz on the IBM web site about FP in
Python. It goes into more detail about control structures and provides more
detailed exampl es of the concept.

* Other languages support FP even better than Python. Examples include:: Lisp,
Scheme, Haskell, ML and some others. The Haskell web sitein particular
includes a wealth of information about FP.

® Thereisalso anewsgroup, conp. | ang. functi onal whereyou can catch up
on the latest happenings and find a useful FAQ.

® Thereare several book references to be found on the above reference sites. One
classic book, which is not entirely about FP but does cover the principles wdl is
Structure & Interpretation of Computer Programs by Abelman, Sussman and
Sussman. This text focuses on Scheme an extended version of Lisp. My personal
primary source has been the book The Haskell School of Expression by Paul
Hudak which is, naturally enough, about Haskell.

D:\DOC\HomePagetitutor\tutfctnl.htm Page 248 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Introduction to Functional Programming 22/01/2006

If anyone el se finds a good reference drop me an email viathe link bel ow.
Things to Remember

* Functional programs are pure expressions

* Python providesmap, filter andreduce aswdl asl i st
conpr ehensi ons to support FP style programming

® | anbda expressions are anonymous (ie unnamed) blocks of code that can be

assigned to variables or used as functions

* Boolean expressions are evaluated only as far as necessary to ensure the result,
which fact enables them to be used as control structures

* By combining the FP features of Python with recursion it is possible (but usually
not advisable) to write amost any function in an FP style in Python.

Previous Next Contents

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetitutor\tutfctnl.htm Page 249 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

A Case Study

For this case study we are going to expand on the word counting program we devel oped
earlier. We are going to create a program which mimics the Unix we programin that it
outputs the number of lines, words and charactersin afile. We will go further than that
however and al so output the number of sentences, clauses and paragraphs. We will
follow the devel opment of this program stage by stage gradually increasing its capability
then moving it into a module to make it reusable, turning it into an OO implementation
for maximum extendability and finally wrapping it in a GUI for ease of use.

Although we will be using Python throughout it would be possible to build JavaScript or
VB Script versions of the program with only alittle adaptation.

Additional features that could be implemented but will be left as exercises for the reader
areto

¢ calculate the FOG index of the text,where the FOG index can be defined
(roughly) as:

(Average words per sentence) + (Percentage of words nore than 5 letter:
and indicates the complexity of the text,
* calculate the number of unique words used and their frequency,

® create anew version which analyzes RTF files

Counting lines, words and characters

Let's revisit the previous word counter:
i mport string
def numwords(s):
list = string.split(s)
return len(list)

inp = open("menu.txt","r")
total =0

accumul ate totals for each line
for line in inp.readlines():

D:\DOC\HomePagaktutor\tutcase htm Page 250 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

total = total + nummords(line)
print "File had %d words" % tota

i np. cl ose()

We need to add aline and character count. The line count is easy since we loop over
each line we just need a variable to increment on each iteration of the loop. The
character count is only marginally harder since we can iterate over the list of words
adding their lengths in yet another variable.

We al so need to make the program more general purpose by reading the name of thefile
from the command line or if not provided, prompting the user for the name. (An
alternative strategy would be to read from standard input, which is what the regl

we does.)

So thefina we looks like:
i mport sys, string
Cet the file nane either fromthe comrand-1ine or the user
if len(sys.argv) != 2:
nane = raw_input ("Enter the file name: ")
el se:
nane = sys. argv[1]
inp = open(nane,"r")

initialize counters to zero; which also creates vari abl es
words, lines, chars =0, 0, O

for line in inp:
lines += 1

Break into a list of words and count them

list = 1line.split()

words += len(list)

chars += len(line) # Use original |ine which includes spaces etc.
print "% has % lines, % words and %l characters" % (nane, |ines, words,
i np. cl ose()

If you are familiar with the Unix we command you know that you can passit a
wild-carded filename to get stats for all matching files aswell as agrand total. This
program only caters for straight filenames. If you want to extend it to cater for wild

D:\DOC\HomePagaktutor\tutcase htm Page 251 of 340

CuuDuongThanCong.com

c

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

cards take alook at the glob module and build alist of names then simply iterate over
thefilelist. You'll need temporary counters for each file then cumulative counters for the
grand totals. Or you could use a dictionary instead...

Counting sentencesinstead of lines

When | started to think about how we could extend this to count sentences and words
rather than 'character groups' as above, my initial ideawas to first loop through thefile
extracting the lines into a list then loop through each line extracting the words into
another list. Finally to process each 'word' to remove extraneous characters.

Thinking about it alittle further it becomes evident that if we simply collect the lines we
can analyze the punctuation characters to count sentences, clauses etc. (by defining what
we consider a sentence/clause in terms of punctuation items). Let's try sketching that in
pseudo-code:

foreach line in file:
i ncrenent |ine count
if line enpty:
i ncrenent paragraph count
count the clause term nators
count the sentence term nators

report paras, lines, sentences, clauses, groups, words.

Wewill beusing regular expressions in the solution here, it may be worth going back
and reviewing that topic if you aren't sure how they work. Now lets try turning our
pseudo code into real code:

i mport re,sys

Use Regul ar expressions to find the tokens

sentenceStops = ".?!"

cl auseStops = sentenceStops + ",;:\-" # escape '-' to avoid range effect
sentenceRE = re.compil e("[%]" % sentenceStops)

cl auseRE = re.conpile("[%]" % cl auseSt ops)

Cet file name from conmandl i ne or user
if len(sys.argv) != 2:

nane = raw_input("Enter the file name: ")
el se:

nane = sys.argv[1]

D:\DOC\HomePagaktutor\tutcase htm Page 252 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

inp = open(nane,"r")

Now initialize counters

lines, words, chars =0, 0, O

sentences, clauses = 0, O

paras = 1 # assune always at |least 1 para

process file
for line in inp:
lines += 1
if line =="": # enpty line
paras += 1
words += len(line.split())
chars += len(line.strip())

sentences += | en(sentenceRE. findall (line))
cl auses += len(clauseRE. findall (line))
Display results
print "'’
The file % contains:
%\t characters
%\t words
%\t lines in
%\t paragraphs with
%\t sentences and
%\t cl auses.
"' % (nane, chars, words, lines, paras, sentences, clauses)

There are severa points to note about this code:

® It usesregular expressions to make the searches most efficient. We could have
done the same thing using simple string searches, but we would have needed to
search for each punctuation character separately. Regular expressions maximize
the efficiency of our program by allowing a single search to find al of the items
we want. However regular expressions are also easy to mess up. My first
attempt | forgot to escape the'-' character and that then got treated as a range by
theregular expression, with the result that any numbers in the file got treated as
clause separators! After much head scratching it took a call to the Python
community to spot the mistake. A quick '\' character inserted and suddenly all
was well again.

® Thisprogramis effectivein that it does what we want it to do. It is less effective
from the re-usability point of view because there are no functions that we can
call from other programs, it is not yet a modular program.

D:\DOC\HomePagaktutor\tutcase htm Page 253 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

* The sentence tests are |less than perfect. For example abbreviated titles such as
"Mr." will count as a sentence because of the period. We could improve the
regular expression by searching for a period, followed by one or more spaces,
followed by an uppercase | etter, but our "Mr." example will still fail since"Mr."
is usually followed by a name which begins with an uppercase |etter! This serves
toillustrate how difficult it isto parse natural languages effectively.

As the case study progresses we will address the second point about re-usability and
also start to look at the issues around parsing text in alittle more depth, although even
by the end we will not have produced a perfect text parser. That is atask that takes us
well beyond the sort of programs a beginner might be expected to write.

Turning it into a module

To make the code we have written into a modul e there are a few basic design principles
that we need to follow. First we need to put the bulk of the code into functions so that
users of the modul e can access them. Secondly we need to move the start code (the bit
that gets the file name) into a separate piece of code that won't be executed when the
function is imported. Finally we will leave the global definitions as module leve
variables so that users can change their value is they want.

Let's tackle these items one by one. First move the main processing block into a
function, well call it anal yze() . WEIl pass afile object into the function as a
parameter and the function will return the list of counter valuesin atuple.

It will ook likethis:

HEHH TR
Modul e: grammar

Created: A J. Gauld, 2004,8,8

#

Functi on:

Provides facilities to count words, |ines, characters,

paragraphs, sentences and 'clauses' in text files.

It assumes that sentences end with [.!?] and paragraphs
have a blank Iine between them A 'clause' is sinply

a segment of sentence separated by punctuation. The

sentence and cl ause searches are regul ar expression

based and the user can change the regex used. Can also
be run as a program

HHHBHHBHH R R R

D:\DOC\HomePagetutor\tutcase. htm Page 254 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

i mport re, sys

HHHHHHHHEHH R HHEH R R HHHH
initialize global variables
paras = 1 # W will assunme at |east 1 paragraph
| i nes, sentences, clauses, words, chars = 0,0,0,0,0
sentenceMarks = '.?!"
cl auseMarks = "&();:,\-' + sentenceMarks
sentenceRE = None # set via a function cal
cl auseRE = None
format = '""'
The file % contai ns:
%\t characters
%¢\t words
¢\t lines in
%\t paragraphs with
%\t sentences and
%¢\t cl auses.

HHHHBHHHHHHEH B HEH B HEH B HEHHHH
Now define the functions that do the work

setCounters allows us to reconpile the regex if we change
the token lists
def set CounterRES():

gl obal sentenceRE, cl auseRE

sentenceRE = re.compile('[%] + % sentenceMarKks)

cl auseRE = re.conpile('[%] + % cl auseMarks)

reset counters gets called by analyze()

def resetCounters():
chars, words, lines, sentences, clauses = 0,0,0,0,0
paras = 1

reportStats is intended for the driver
code, it offers a sinple text report
def reportStats(theFile):
print format % (theFile.name, chars, words, lines,
paras, sentences, clauses)

anal yze() is the key function which processes the file
def anal yze(theFile):
gl obal chars, words, | i nes, par as, sent ences, cl auses
check if REs already conpiled
if not (sentenceRE and cl auseRE)
set Count er REs()

D:\DOC\HomePagaktutor\tutcase htm Page 255 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

reset Counters()
for Iine in theFile:
lines += 1
if line =="": # enpty line
paras += 1
words += len(line.split())
chars += len(line.strip())
sentences += | en(sentenceRE. findall (

line))
cl auses += len(clauseRE. findall (line))

Make it run if called fromthe conmand Iine (in which

case the "magic' _ _nane__ variable gets set to ' __main_'
if _name__ =="_min__":
if len(sys.argv) != 2:
print "Usage: python grammar.py <fil enane>"
sys.exit()
el se:

aFile = open(sys.argv[1],"r")
anal yze(aFil e)
reportStats(aFile)
aFil e. cl ose()

First thing to notice is the commenting at the top. Thisis common practiceto let readers
of thefile get an idea of what it contains and how it should be used. The version
information(Author and date) is useful too if comparing results with someone e se who
may be using amore or less recent version.

Thefinal section is afeature of Python that calls any module loaded at the command line
" _main__" .Wecantestthespecid, built-in__nanme__ variableand if its main we
know the module is not just being imported but run and so we execute the trigger code
insidethei f .

This trigger code includes a user friendly hint about how the program should be run if
no filenameis provided, or indeed if too many filenames are provided, it could instead -
or in addition - ask the user for afilenameusingr aw_i nput ().

Noticethat theanal yze() function uses the initialization functions to make sure the
counters and regular expressions are all set up properly beforeit starts. This caters for
the possibility of a user calling analyze several times, possibly after changing the regular
expressions used to count clauses and sentences.

D:\DOC\HomePagaktutor\tutcase htm Page 256 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

Finally note the use of global to ensure that the module level variables get set by the
functions, without global we would create local variables and have no effect on the
module level ones.

Using the grammar module

Having created a modul e we can useit as a program at the OS prompt as before by
typing:

C.\> python grammar. py spam t xt

However provided we saved the module in a location where Python can find it, we can
also import the modul e into another program or at the Python prompt. Lets try some
experiments based on atest file called spam.txt which we can create and looks like this:

This is a file called spam It has
3 lines, 2 sentences and, hopefully,
5 cl auses.

Now, let's fire up Python and play alittle:

>>> jnport granmmar

>>> granmar . set Count er REs()
>>> txtFile = open("spamtxt")
>>> granmmar. anal yze(txtFil e)
>>> grammar.reportStats()

The file spamtxt contains:

80 characters

16 wor ds

3 lines in

1 par agraphs with
2 sent ences and

1 cl auses.

>>> # redefine sentences as ending in vowel s!
>>> grammar. sentenceMarks = ' aei ou’

>>> granmmar . set Count er REs()

>>> granmmar. anal yze(txtFil e)

>>> print granmar.sentences

21

>>> txtFile.close()

D:\DOC\HomePagetutor\tutcase. htm Page 257 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

As you can see redefining the sentence tokens changed the sentence count radically. Of
course the definition of a sentenceis pretty bizarre but it shows that our moduleis
usable and moderately customizable too. Notice too that we were able to print the
sentence count directly, we don't need to use the provided r epor t St at s() function.
This demonstrates the value of an important design principle, namely separation of data
and presentation. By keeping the display of data separate from the calculation of the
data we make our module much more flexible for our users.

To conclude our course we will rework the grammar modul e to use OO techniques and
then add a simple GUI front end. In the process you will see how an OO approach
results in modules which are even more flexible for the user and more extensibl e too.

Classes and objects

One of the biggest problems for the user of our module is the reliance on global
variables. This means that it can only analyze one file at atime, any attempt to handle
more than that will result in the global values being over-written.

By moving these globals into a class we can then create multiple instances of the class
(one per file) and each instance gets its own set of variables. Further, by making the
methods sufficiently granular we can create an architecture whereby it is easy for the
creator of a new type of document object to modify the search criteriato cater for the
rules of the new type. (eg. by rgecting all HTML tags from the word list we could
process HTML files as well as plain ASCII text).

Our first attempt at this creates a Document class to represent the file we are
processing:

#!' [usr/ | ocal / bin/ python
HEHHHBHHH AR HHH B H AR

Modul e: docunent. py

Author: A J. Gauld

Date: 2004/ 08/ 10

Version: 3.0

HEHHHBHHH AR HH B H R

This nmodul e provi des a Docunent class which

can be subcl assed for different categories of

Docunent (text, HTM., Latex etc). Text and HTM. are
provided as sanpl es.
#
#

Primary services avail abl e include

D:\DOC\HomePagaktutor\tutcase htm Page 258 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

- analyze(),

- reportStats().
HBHHHBHHH PR HHH B H AR
i mport sys,re

Provides 2 classes for parsing "text/ files.
Provides 2 classes for parsing "text/ files.
A Ceneric Docunent class for plain ACI I text,
and an HTM.Docurnent for HTM. fil es.

cl ass Document:

sentenceMarks = "?!."

cl auseMarks = "&()\-;:," + sentenceMarks

def __init__(self, filename):
self.filenane = fil ename

sel f.set REs()

def setCounter(self):
self.paras =1
self.lines = self.getLines()
sel f.sentences, self.clauses, self.words, self.chars = 0,0,0,0

def setREs(self):
sel f.sentenceRE = re.conpile(' [%]' % Docunent.sentenceMarks)
self.clauseRE = re.conpile(' [%]' % Docunent. cl auseMar ks)

def getLines(self):
infile = open(self.filenane)
lines = infile.readlines()
infile.close()
return lines

def anal yze(self):

for line in self.lines:
sel f.sentences += |l en(self.sentenceRE. finda
sel f.clauses += len(self.clauseRE.findall (!l
self.words += len(line.split())
self.chars += len(line.strip())
if line == "":

self.paras += 1

I
n

def formatResults(self):
format = '""'
The file % contai ns:
%\t characters

D:\DOC\HomePagaktutor\tutcase htm Page 259 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

%¢\t words

¢\t lines in

%\t paragraphs with
%\t sentences and
%¢\t cl auses.

return format % (self.filenane, self.chars,
sel f.words, len(self.lines),
sel f. paras, self.sentences, self.clauses)

cl ass Text Docunent (Docurnent) :
pass

cl ass HTM_Docunent (Docurnent) :
pass

if _name__ =="_min__":

if len(sys.argv) == 2:
doc = Docunent (sys.argv[1])
doc. anal yze()
print doc. formatResul ts()

el se:
print "Usage: python docunent3.py "
print "Failed to analyze file"

There are several points to notice here. First is the use of class variables at the
beginning of the class definition to store the sentence and clause markers. Class variables
are shared by all the instances of the class so they are a good place to store common
information. They can be accessed by using the class name, as I've done here, or by
using the usual sdf. | prefer to use the class name because it highlights the fact that they
are class variables.

I've also added a new method, set Count er s() for flexibility when we come to deal
with other document types. Its quite likely that we will use a different set of counters
when analyzing HTML files - maybe the number of tags for example. By pairing up the
set Count er s() andf or mat Resul t s() methods and providing a new

anal yze() method we can pretty much deal with any kind of document.

The other methods are more stable, reading the lines of afileis pretty standard
regardless of file type and setting the two regular expressions is a convenience feature
for experimenting, if we don't need to we won't.

D:\DOC\HomePagaktutor\tutcase htm Page 260 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

As it stands we now have functionality identical to our module version but expressed as
aclass. But now to really utilize OOP style we need to deconstruct some of our class so
that the base level or abstractDocument only contains the bits that are truly generic. The
Text handling bits will move into the more specific, or concrete Text Docunent class.
Well see how to do that next.

Text Document

We areall familiar with plain text documents, but its worth stopping to consider exactly
what we mean by a text document as compared to a more generic concept of a
document. Text documents consist of plain ASCII arranged in lines which contain
groups of letters arranged as words separated by spaces and other punctuation marks.
Groups of lines form paragraphs which are separated by blank lines (other definitions are
possible of course, but these are the ones | will use.) A vanilladocument is afile
comprising lines of ASCII characters but we know very little about the formatting of
those characters within the lines. Thus our vanilla document class should really only be
ableto open afile, read the contents into alist of lines and perhaps return counts of the
number of characters and the number of lines. It will provide empty hook methods for
subclasses of document to i mplement.

On the basis of what we just described a Document class will look like:

HHHHBHHHH B HEH B HEH B HEH B HEH B HEH
Modul e: docunent
Created: A J. Gauld, 2004/8/15

#
#
Functi on:

Provides abstract Document class to count |ines, characters
and provi de hook nethods for subclasses to use to process

nore specific docunent types

HHHBHHBHH R TR R R

cl ass Docunent:
def _ init_ (self,filenane):
self.filename = fil enane
self.lines = self.getLines()
self.chars = reduce(lanbda [1,12: 11412, [len(L) for L in self.lines]
self. _initSeparators()

def getLines(self):
f = open(self.filenane,'r")
lines = f.readlines()

D:\DOC\HomePagaktutor\tutcase htm Page 261 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

f.close()
return |ines

list of hook nethods to be overridden

def formatResults(self):

return "% contains $d lines and % characters" % (len(self.lines),
sel f. chars)

def _initSeparators(self): pass

def anal yze(self): pass

Note that the _i ni t Separ at or s method has an underscore in front of its name. Thisis
a style convention often used by Python programmers to indicate a method that should
only be called from inside the class's methods, it is not intended to be accessed by users
of the object. Such a method is sometimes called protected or private in other

languages.

Also noticethat | have used the functional programming function r educe() aong with
al anbda functionand al i st conprehensi on to calculate the number of characters.
Recall that r educe takes alist and performs an operation (the | anbda) on the first two
members and inserts the result as the first member, it repesats this until only the final
result remains which is returned as the final result of the function. In this casethelist is
thelist of lengths of the lines in the file produced by the conpr ehensi on and so it
replaces the first two lengths with their sum and then gradually adds each subsequent
length until al the line lengths are processed.

Finally note that because this is an abstract class we have not provided a runnable option
usingif _ name__ == etc

Our text document now looks like:

cl ass Text Docunent (Docurnent) :
def __init_ (self,filenane):
self.paras =1
sel f.words, self.sentences, self.clauses = 0,0,0
Document. __init__ (self, filenane)

now overri de hooks
def formatResults(self):
format = '""'
The file % contai ns:
%\t characters
%€\t words
¢\t lines in

D:\DOC\HomePagaktutor\tutcase htm Page 262 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

%\t paragraphs with
%I\t sentences and
%\t cl auses.
return format % (self.filenane, self.chars,
sel f.words, len(self.lines),
sel f. paras, self.sentences, self.clauses)

def _initSeparators(self):
sentenceMarks = "[.1?]"
cl auseMar ks = "[12, &;-1"
self.sentenceRE = re. conpil e(sent enceMar ks)
sel f.clauseRE = re. conpil e(cl auseMar ks)

def anal yze(self):

for line in self.lines:
sel f.sentences += |l en(sel f.sentenceRE. finda H
sel f.clauses += len(self.clauseRE.findall(li
self.words += len(line.split())
self.chars += len(line.strip())
if line == "":

sel f. paras +=1
if _name__ =="_min__":

i f Ien(sys argv) ==
doc TextDocunent(sys argv[1])
doc. analyze()
print doc. formatResults()

el se:
print "Usage: python <docunent >
print "Failed to analyze file"

One thing to noticeis that this combination of classes achieves exactly the same as our
first non OOP version. Compare the length of thiswith the original file - building
reusable objects is not cheap! Unless you are sure you need to create objects for reuse
consider doing anon OOP version it will probably be less work! However if you do
think you will extend the design, as we will be doing in a moment then the extra work
will repay itsdf.

The next thing to consider is the physical |ocation of the code. We could have shown
two files being created, one per class. Thisis acommon OOP practice and keeps things
well organized, but at the expense of alot of small files and alot of import statements in
your code when you come to use those classes/files.

D:\DOC\HomePagaktutor\tutcase htm Page 263 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

An alternative scheme, which | have used, isto treat closdly related classes as a group
and locate them &l in onefile, at least enough to create a minimal working program.
Thus in our case we have combined our Document and TextDocument classesin a
single module. This has the advantage that the working class provides atemplate for
users to read as an example of extending the abstract class. It has the disadvantage that
changes to the TextDocument may inadvertently affect the Document class and thus
break some other code. Thereis no clear winner here and even in the Python library
there are examples of both styles. Pick a style and stick to it would be my advice.

One very useful source of information on this kind of text file manipulation is the book
by David Mertz called "Text Processing in Python" and it is available in paper form as
well as online, here. Note however that thisis afairly advanced book aimed at
professional programmers so you may find it tough going initially, but persevere because
there are some very powerful lessons contained within it.

HTML Document

The next step in our application devel opment is to extend the capabilities so that we can
analyze HTML documents. We will do that by creating a new class. Sincean HTML
document is really a text document with lots of HTML tags and a header section at the
top we only need to remove those extra e ements and then we can treat it as text. Thus
wewill create a new HTMLDocunent class derived from Text Docunent . We will
overridethe get Li nes() method that we inherit from Docunent such that it throws
away the header and all the HTML tags.

Thus HTMLDocument looks like;

cl ass HTM_Docunent (Text Docunent) :
def getLines(self):
i nes = Text Docunent. get Li nes(sel f)
i nes sel f. _stripHeader(lines)
i nes sel f. _stripTags(lines)
return lines

def _stripHeader(self,lines):
"' renove all lines up until start of elenent
bodyMark = "'
bodyRE = re. conpil e(bodyMark, re. | GNORECASE)
whil e bodyRE.findall (lines[0]) == []:
del lines[0]
return lines

D:\DOC\HomePagetutor\tutcase. htm Page 264 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

def _stripTags(self,lines):
"''" remove anything between < and >, not perfect but ok for now '’
tagvark = '<. +>'
tagRE = re.conpil e(tagMar k)

lines2 =[]
for line in lines:
line = tagRE. sub('"',line).strip()
if line: lines2. append(line)
return lines2

Note 1: We have used the inherited method within get Li nes. Thisis quite common
practice when extending an inherited method. Either we do some preliminary processing
or, as here, we call theinherited code then do some extra work in the new class. This
was alsodoneinthe i nit__ method of the Text Docunent class above.

Note 2: We access the inherited get Li nes method via Text Docunent not via
Docunent (whichiswhereit is actually defined) because (a) we can only 'see

Text Docunent inour code and (b) Text Docurnent inherits all of Docunent 's features
so in effect does have aget Li nes too.

Note 3: The other two methods are notionally private (notice the |eading underscore?)
and are there to keep the logic separate and also to make extending this class easier in
the future, for say an XHTML or even XML document class? Y ou might like to try
building one of those as an exercise.

Note 4: It is very difficult to accurately strip HTML tags using regular expressions due
to the ability to nest tags and because bad authoring often results in unescaped '<' and '>'
characters |ooking like tags when they are not. In addition tags can run across lines and
all sorts of other nasties. A much better way to convert HTML filesto text isto use an
HTML parser such as the onein the standard HTM_Par ser module. As an exercise
rewrite the HTM_.Docunent class to use the parser module to generate the text lines.

To test our HTML Document we need to modify the driver code at the bottom of the
fileto look likethis:

if _name__ =="_min__":
if len(sys.argv) == 2:
doc = HTM.Docunent (sys. argv[1])
doc. anal yze()
print doc. formatResul ts()
el se:

D:\DOC\HomePagaktutor\tutcase htm Page 265 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

print "Usage: python <docunment> "
print "Failed to analyze file"

Adding a GUI

To create a GUI we will use Tkinter which weintroduced briefly in the Event Driven
Programming section and further in the GUI Programming topic. This time the GUI will
be slightly more sophisticated and use a few more of the widgets that Tkinter provides.

One thing that will help us create the GUI version is that we took great care to avoid
putting any print statements in our classes, the display of output is all donein the driver
code. This helps when we come to use a GUI because we can use the same output string
and display it in awidget instead of printing it on stdout. The ability to more easily wrap
an application in a GUI is amajor reason to avoid the use of print statements inside data
processing functions or methods.

Designing a GUI

Thefirst step in building any GUI application isto try to visualize how it will look. We
will need to specify afilename, so it will require an Edit or Entry control. We also need
to specify whether we want textual or HTML analysis, this type of ‘one from many'
choiceis usually represented by a set of Radiobutton controls. These controls should be
grouped together to show that they are related.

The next requirement is for some kind of display of the results. We could opt for
multiple Label controls one per counter. Instead | will use a simple text control into
which we can insert strings, thisis closer to the spirit of the commandline output, but
ultimately the choice is a matter of preference by the designer.

Finally we need a means of initiating the analysis and quitting the application. Since we
will be using atext control to display results it might be useful to have a means of
resetting the display too. These command options can all be represented by

Button controls.

Sketching these ideas as a GUI gives us something like:

D:\DOC\HomePagaktutor\tutcase htm Page 266 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

Now we are ready to write some code. Let's take it step by step:

from Tki nter inmport *
i mport docunent

#Ht#H#H#HHH TR #E CLASS DEFI NI TI ONS ########H#HBHHH AR HH##HH
cl ass G ammar App(Frane) :

def __init__(self, parent=0):
Frame. __init__ (self, parent)
self.type = 2 # create variable with default val ue

self.master.title(' Gamrar counter')
sel f. buil dU ()

Here we have imported the Tkinter and document modules. For the former we have
made all of the Tkinter names visible within our current module whereas with the latter
we will need to prefix the names with docunent .

We have a so defined our application to be a subclass of Fr ane and the

__init__ method callstheFrame. __i nit__ superclass method to ensure that
Tkinter is set up properly internally. We then create an attribute which will store the
document type value and finally call the bui | dUl method which creates all the widgets
for us. Well look at bui | dUI () next:

def buil dUl (self):
Now the file information: File nanme and type
fFile = Frane(self)
Label (fFile, text="Filenane: ").pack(side="left")
sel f.eNanme = Entry(fFile)
sel f.eNane.insert (I NSERT, "test. htni")
sel f. eNane. pack(si de=LEFT, padx=5)

to keep the radio buttons lined up with the
name we need anot her frane

D:\DOC\HomePagetutor\tutcase. htm Page 267 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

f Type = Frane(fFile, borderw dth=1, relief=SUNKEN)

sel f.rText = Radi obutton(fType, text="TEXT",
vari able = self.type, value=2
conmand=sel f. doText)

sel f.rText. pack(si de=TOP, anchor=W

sel f.rHTM. = Radi obutton(fType, text="HTM."
vari abl e=sel f.type, val ue=1
command=sel f. doHTM.)

sel f. rHTM. pack(si de=TOP, anchor=W

make TEXT the default selection

sel f.rText.select()

f Type. pack(si de=RlI GHT, padx=3)

fFile. pack(side=TOP, fill=X)

the text box holds the output, pad it to give a border
and make the parent the application frame (ie. self)
sel f.txtBox = Text(self, w dth=60, height=10)

sel f. t xt Box. pack(si de=TOP, padx=3, pady=3)

finally put some command buttons on to do the real work

fButts = Franme(self)

sel f.bAnal = Button(fButts, text="Analyze"
conmand=sel f. doAnal yze)

sel f. bAnal . pack(si de=LEFT, anchor=W padx=50, pady=2)

sel f. bReset = Button(fButts, text="Reset",
command=sel f . doReset)

sel f. bReset . pack(si de=LEFT, padx=10)

self.bQuit = Button(fButts, text="Quit",
command=sel f. doQui t)

sel f. bQuit. pack(side=RlI GHT, anchor=E, padx=50, pady=2)

fButts. pack(si de=BOTTOM fill =X)
sel f. pack()

I'm not going to explain all of that, instead | recommend you take alook at the Tkinter
tutorial and refernce found on the Pythonware web site. Thisis an excellent introduction
and reference to Tkinter going beyond the basics that | cover in my GUI topic. The
general principleisthat you create widgets from their corresponding classes, providing
options as named parameters, then the widget is packed into its containing frame.

The other key points to note are the use of subsidiary Fr anme widgets to hold the
Radiobuttons and Command buttons. The Radiobuttons also take a pair of options
caledvari abl e & val ue, theformer links the Radiobuttons together by specifying
the same external variable (sel f . t ype) and the latter gives a unique value for each

D:\DOC\HomePagaktutor\tutcase htm Page 268 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

Radiobutton. Also notice the command=xxx options passed to the button controls.
These are the methods that will be called by Tkinter when the button is pressed. The
code for these comes next:

#H#HH BB #AR#Y EVENT HANDLI NG VMETHODS #######H##H#H#H AR HH#HRH#H
time to die...
def doQuit(self):

self.quit()

restore default settings

def doReset(self):
sel f.t xt Box. del ete(1. 0, END)
sel f.rText.select()

set radi o val ues
def doText(self):
self.type = 2

def doHTM_(self):
self.type = 1

These methods are al fairly trivial and hopefully by now are self explanatory. The final
event handler is the one which does the analysis:

Create appropriate docunent type and anal yze it.
then display the results in the form
def doAnal yze(self):
filename = sel f.eNane. get ()
if filename == "":
sel f.txtBox.insert(END, "\nNo fil enane provided!\n")
return
if self.type == 2:
doc = docunent . Text Docunent (fil enane)
el se:
doc = docunent . HTM.Docunent (fi | enane)
sel f.txtBox.insert(END, "\nAnalyzing...\n")
doc. anal yze()
resultStr = doc.format Resul ts()
sel f.txtBox.insert(END, resultStr)

Again you should be able to read this and see what it does. The key points are that:

D:\DOC\HomePagaktutor\tutcase htm Page 269 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

*® it checks for avalid filename before creating the Document object.

* ltusesthesel f. t ype value set by the Radiobuttons to determine which type of
Document to create.

* It appends (the END argument to i nser t) the results to the Text box which
means we can analyze several times and compare results - one advantage of the
text box versus the multiple labe output approach.

All that's needed now is to create an instance of the Gr anmar App application class and
set the event loop running, we do this here:

myApp = Granmar App()
ny App. mai nl oop()

Let'stakealook at the final result as seen under MS Windows, displaying the results of
analyzing atest HTML file,

-

& Grammar counter

Filenarne: | testH TML. ke

¢ HTML

Analyzing. ..

The file testHT ML htm containg:
30a characters

28 wiards

] lines in

2 paragraphs with
a] sentences and
a clauzes.

Analyze Feset Quit
L

That's it. You can go on to make the HTML processing more sophisticated if you want
to. You can create new modules for new document types. Y ou can try swapping the text
box for multiple labels packed into a frame. But for our purposes we're done. The next
section offers some ideas of where to go next depending on your programming
aspirations. The main thing is to enjoy it and always remember: the computer is dumb!

Previous References Contents

D:\DOC\HomePagetutor\tutcase. htm Page 270 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

A Case Study 22/01/2006

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagetutor\tutcase. htm Page 271 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Python in Practice 22/01/2006

Python in Practice

In this section of the tutorial we are going to focus on some of the practical applications
to which Python can be put, and the library modules that help us do that. This will
involve learning about some background technol ogies such as databases, computer
networks and the world wide web, as well as the basic features of the operating system
that drives your computer. Because this is supposed to be a programming tutorial | will
only cover the bare bones of these technol ogies and provide links to other sites where
the curious can find out more.

Thetopics | have chosen reflect the areas that seem to crop up most often on the Python
tutor mailing list, and therefore should be closest to the needs of new programmers. If
your particular area of interest is not covered then the final topic may provide links to
suitable sites where you will find what you need.

Finally, the topicsin this section are all based on Python exclusively. There may be
similar capabilities available in JavaScript and VBScript but the differences are far
greater than the similarities at this level of detail. For example the easiest way to access
the Windows operating system from JavaScript or VBScript is via the Windows Script
Host discussed earlier but that is completely different in approach to Python's os
module. Comparisons would be meaningless.

Thetopics

The specific topics | will be covering along with some idea of the depth of coverage are
listed below:

Working with Data
The need to store and retrieve complex sets of data isonethat most
programmer s come acr oss at some stage. While Python provides several
methods of storing simple data easily the most powerful storage mechanism is
afull relational database. Thistopic will cover the principlesbehind relational
databases and the SQL language used to manipulate them. It will conclude
with a very simple example of using such a database from within Python.

Using the Operating System
The operating system isthe basis of everything we do with a computer and it is
very common that in the middle of a program we want to do the sort of things
we do asa user everyday. For example, we might want to copy or movefiles, or
create afolder, or start another program, or print a document. Fortunately the

D:\DOC\HomePagatutor\tutpractice.htm Page 272 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Python in Practice 22/01/2006

operating system exposes a programmable interface aswell as a user interface
and in thistopic we will look at some of the featur es available to us, especially
in the areas of traversing file structures and working with the environment.
Network programming
The internet has connected computersall over the globe, but how can one
computer communicate with another from within a program? It turnsout that
there arelots of waysto do thisbut here we will consider the most basic
mechanism available in Python, the socket. Built on top of the socket are
higher level mechanisms and we will go on to look at two of these: the email
interface for sending and reading email messages and the ftp module for
transferring files over a network.
Writing web clients
Having mastered basic network programming we now come onto the most
common form of networking today: The World Wide Web. It turnsout that
python provides modules that make web programming easy. In thisfirst topic
on the subject we look at automating basic web tasks such as fetching
information from a web site on aregular basis without resorting to a browser.
Writing Web Applications
In thistopic we turn from the web user perspective to the web site creators
view. We consider how to write a basic web application. In this case we will
put a web interface onto the address book example we have been building since
the early days of the tutor.
| nter-process communi cations
Most beginner programs consist of a single computer processrunningin
isolation, however asthe systemswe build get more powerful it is often better
to split the program into separate parts each running in its own process, often
using a technique known as client-server design. Or sometimes we simply want
to access another programs output. In this module we will ook at the basic
principles and then illustrate an example of each of the two types described.
Paralldl processing
As programs get more complex it is often the case that the simple sequential
model of execution that we have discussed up until now is not sufficient. We
want to do several things at once. Thisiswhere a technique called
threading comesinto play, and we will look at how to use Python's threading
moduleto build parallel processing into a program.

Previous Next Contents

D:\DOC\HomePagatutor\tutpractice.htm Page 273 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Python in Practice 22/01/2006

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagatutor\tutpractice.htm Page 274 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Working with Databases

| What will we cover?

Database concepts and SQL
Creating tables and inserting data
Extracting and manipulating data
linking data sets together

In this topic we will ook at how data can be stored over time and manipulated via a
database package. We have already seen how to usefiles to store small quantities of
data such as our personal address book but the complexity of using files increases
dramatically as the complexity of the data increases, the volume of data increases, and
the complexity of the operations (searching, sorting, filtering etc). To overcomethis
several database packages exist to take care of the underlying file management and
expose the data in a more abstract form which is easy to manipulate. Some of these
packages are simple code libraries that simplify the file operations we have a ready seen,
examples include the pickleand shelve modules that come with Python. In this topic
we will concentrate on more powerful packages such as those from commercia vendors
that are designed to handle large volumes of complex data.

The specific package | will belooking at is SQLite, an open source freeware package
that issimpleto install and use but capable of handling the data needs of most beginning
and intermediate programmers. Only if you have very large data sets - millions of
records - do you need to consider a more powerful package and, even then, almost all
you know from SQL ite will transfer to the new package.

The SQL.ite package can be downloaded from here and you should fetch the
command-line package appropriate for your platform. (There are some useful IDEs for
SQL.ite that you might like, but they aren't necessary for this tutorial.) Follow the
instructions on the web site to install the packages and you should be ready to start.

Relational Database Concepts

The basic principle of ardational databaseis very simple. It's simply a set of
tableswhere acdll in onetable can refer to arow in another table. Columns are known
as fidlds and rows as records.

A table holding data about employees might 1ook like:

D:\DOC\HomePagettutor\tutdbms.htm Page 275 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

EmplID Name HireDate Grade ManageriD

1020304 John Brown 20030623 Foreman 1020311

1020305 Fred Smith 20040302 Labourer 1020304

1020307 Anne Jones 19991125 Labourer 1020304

Notice a couple of conventions here:

1. Wehavean| Dfied to uniquely identify each row, thisis known as the Primary
Key. It is possible to have other keys too, but conventionally there will always be
an ID fidd to uniquedly identify arecord. This helps should an employee decide
to change their name for example!

2. Wecan link one row to another by having a field that hold the Primary Key for
another row. Thus an employee's manager is identified by the Manager | D fidd
which is simply a reference to another Enpl D entry. Looking at our data we see
that both Fr ed and Anne are managed by John who is, in turn, managed by
someone e se whose details are not visible on our section of thetable.

We are not restricted to linking data within a single table. We could create another table
for Sal ary. These could be related to G ade and so we get atablelike:

SalarylD Grade Amount

000010 Foreman 60000

000011 Labourer 35000

Now we can look up the grade of an Enpl oyee, such as John, and find that they area
For eman, then by looking at the Sal ar y table we can seethat a For enan is paid
$60000.

D:\DOC\HomePagettutor\tutdbms.htm Page 276 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

It isthis ability to link table rows together in relationships that gives relational databases
their name. Other database types include network databases, hierarchical databases and
flat-file databases. Relational databases are by far the most common.

We can do much more sophisticated queries too and we will look at how thisis donein
the next few sections. But before we can do that we had better create a database and
insert some data.

Structured Query Language

The Structured Query Language or SQL (pronounced as either Sequel or 'S 'Q' ‘L") is
the standard tool for manipulating relational databases. In SQL an expression is often
referred to as a query.

SQL comprises two parts, thefirst is the Data Definition Language, or DDL. Thisisthe
set of commands used to create and alter the shape of the database itsdlf, its structure.
DDL tends to be quite database specific with each database supplier having a slightly
different syntax for their DDL set of SQL commands.

The other part of SQL is the Data Manipulation Language or DML. DML is much
more highly standardised between databases and is used to manipul ate the data content
of the database. Y ou will spend the mgjority of your time using DML rather than DDL

Wewill only look briefly at DDL, just enough to create (with the CREATE command)
and destroy (with the DROP command) our database tables so that we can move onto
filling them with data and then retrieving that data in interesting ways using the DML
commands (I NSERT, SELECT, UPDATE, DELETE etc).

Creating Tables

To create atablein SQL we use the CREATE command. It is quite easy to use and takes
the form:

CREATE TABLE tabl enane (fiel dName, fieldNane,....);

Note that SQL statements are terminated with a semi-colon. Also SQL is not
case-sensitive and, unlike Python, does not care about white-space or indentation levels.
Asyou will seethereis a certain style convention that is used but it is not rigidly
adhered to and SQL itself cares not ajot!

D:\DOC\HomePagettutor\tutdbms.htm Page 277 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Let's try creating our Employee and Salary tables in SQLite. Thefirst thing to do is start
the interpreter, which is simply a case of calling it with afilename as an argument. If the
database exists it will be opened, if it doesn't it will be created. Thus to create an
employee database we will start SQLite like so:

E: \ PRQJECTS\ SQL> sqlite3 enpl oyee. db

That will create an empty database called enpl oyee. db and leave us at the
sql i t e> prompt ready to type SQL commands. So |et's create some tables:

sqlite> create tabl e Enpl oyee
...> (Enpl D, Nane, Hi r eDat e, G ade, Manager | D)
sqlite> create table Sal ary
...> (Salaryl D, G ade, Anount);
sqlite> tables
Enpl oyee Sal ary
sqglite>

Note that | moved thelist of fidlds into a separate line, that simply makes it easier to see
them. Also note that | tested that the cr eat e statements had worked by using the

. t abl es command to list al thetables in the database. SQL ite has several of these dot
commands that we will useto find out about our database. . hel p provides alist of
them.

There arelots of other things we can do when we create a table, such as declare the
types of data in each column, specify constraints as to the values (for example NOT
NULL means the value is mandatory and must befilled in - usually we would make the
Primary Key fiedd NOT NULL and UNI QUE.) We will look more closdly at these
constraints later on.

For now we will leave the basic table definition as it is and move on to the more
interesting topic of manipulating the data itself.

Inserting Data

Thefirst thing to do after creating the tables isfill them with datal Thisis done using the
SQL | NSERT statement. The basic structure is very simple:

I NSERT I NTO (columl, colum?2...) VALUES (val uel, value2...);

D:\DOC\HomePagettutor\tutdbms.htm Page 278 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Thereis an alternate form of INSERT that uses a query to select data from elsewherein
the database, but that's rather too advanced for us here so | recommend you read about
that in the SQLite manual.

So now, to insert some rows into our employees table, we do the following:

sglite> insert into Enpl oyee (Enpl D, Name, HireDate, G ade, Mnagerl| D)
...> values ('1020304','John Brown','20030623',"' Forenan','1020311");

sglite> insert into Enpl oyee (Enpl D, Name, HireDate, G ade, Mnagerl| D)
...> values ('1020305','Fred Smth','20040302',"' Labourer','1020304"');

sqglite> insert into Enpl oyee (Enpl D, Name, HireDate, G ade, Managerl| D)
...> values ('1020307',"' Anne Jones','19991125',"' Labourer','1020304"');

And for the Salary table:

sglite> insert into Salary (Sal aryl D, G ade, Amount)
...> val ues('000010', ' Foreman',' 60000');

sglite> insert into Salary (Sal aryl D, G ade, Amount)
...> val ues(' 000011', "' Labourer', "' 35000");

And that's it done. We now have created two tables and popul ated them with data

corresponding to the values described in the introduction above. Now we are ready to
start experimenting with the data.

Extracting Data

Data is extracted from a database using the SELECT command of SQL. Select isthe
very heart of SQL and has the most complex structure. We will start with the most basic
form and add additional features as we go along. The most basic Select statement |ooks
likethis:

SELECT col uml1, colum?2... FROM tabl el, tabl e2...;

So to select the names of all employees we could use:

sqglite> SELECT Nane from Enpl oyee;

D:\DOC\HomePagettutor\tutdbms.htm Page 279 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

And we would be rewarded with alist of all of the names in the Employeetable. In this
case that's only three, but if we have a big database that's probably going to be more
information than we want. To control the output we need to be ableto refine our search
somewhat and SQL allows us to do this by adding a WHERE clause to our

Sel ect statement, likethis:

SELECT col 1,col2... FROM tabl el,table2... WHERE conditi on;

the condi ti on isan arbitrarily complex boolean expression and, as we shall see, can
include nested select statements within it.

Let'suseawher e clauseto refine our search of names. We will only look for names of
empl oyees who are labourers:

sqglite> sel ect Nane
...> from Enpl oyee
...> where Enpl oyee. G ade = ' Labourer';

Now we only get two names back. We could extend the condition using boolean
operators such as AND, OR, NOT etc. Note that using the = condition the case of the
string is important, testing for 'labourer’ would not have worked! We'll see how to get
round that limitation later on.

Notice that in the wher e clause we used dot notation to signify the G- ade fidd. In this
case it was not really needed since we are only working with a single table but where
multiple tables are specified we need to make it clear which table the field belongs to. As
an example let's change our query to find the names of all employees paid more than
$50,000. To do that we will need to consider datain both tables:

sqlite> select Nanme, Amount from Enpl oyee, Salary
...> where Enpl oyee. Gade = Sal ary. G ade
...> and Sal ary. Amount > ' 50000' ;

As expected we only get one name back - that of the foreman. But notice that we also
got back the salary, because we added Anount to thelist of columns selected. Also note
that we have two parts to our wher e clause combined using an and boolean operator.
Thefirst part links the two tables together by ensuring that the common fields are equal,
thisisknown asajoinin SQL.

D:\DOC\HomePagettutor\tutdbms.htm Page 280 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Note 1. Because the fields that we are sel ecting come from two tables we have to
specify both of the tables from which the result will come. The order of the field names
is the order in which we get the data back but the order of the tables doesn't matter so
long as the specified fields appear in those tables. Note 2: We specified two uniquefield
names. If we had wanted to display the G ade as well, which appears in both tables,
then we would have had to use dot notation to specify which table's Grade we wanted,
likethis:

sqlite> select Enpl oyee. G ade, Nanme, Anount
...> from Enpl oyee, Sal ary
etc/...

Thefinal feature of Sel ect that | want to cover (although there are several more which
you can read about in the SQL documentation for SELECT) is the ability to sort the
output. Databases generally hold data either in the order that makes it easiest to find
things or in the order in which they are inserted, in either case that's not usually the
order we want things displayed! To deal with that we can use the ORDER BY clause of
the Sel ect statement.

SELECT col utmms FROM t abl es WHERE expressi on ORDER BY col ums;

Notice that the final ORDER BY clause can take multiple columns, this enables us to have
primary, secondary, tertiary and so on sort orders.

Let's usethisto get alist of names of employees sorted by Hi r eDat e:

sqglite> select Nane from Enpl oyee
...> order by HireDate;

And that's really al thereisto it, now you can't get much easier than that! The only
thing worthy of mention is that we didn't use awher e clause. If we had used one it
would have had to come before the or der by clause. So although SQL doesn't mind if
you drop the clause, it does care about the sequence of the clauses within the statement.

That's enough about extracting data, |et's now see how we can modify our data.

Changing Data

D:\DOC\HomePagettutor\tutdbms.htm Page 281 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

There are two ways that we can change the datain our database. We can alter the
contents of a single record or, more drastically, we can delete arecord or even awhole
table. Changing the content of an existing record is the more common case and we do
that using the UPDATE SQL command.

The basic formet is:

UPDATE t abl e SET col um = val ue WHERE condi ti on;

We can try it out on our sample database by changing the salary of a Foreman to
$70,000.

sqglite> update Sal ary
...> set Anmpunt ='70000'
...> where G ade = ' Foreman';

Onething to notice is that up until now all of the data we've inserted and sel ected has
been string types. SQLite actually stores its data as strings but actually supports quite a
few different types of data, including numbers. So we could have specified the salary in
anumeric format which would make calculations easier. WeIl see how to do that in the
next section.

The other form of fairly drastic change we can make to our datais to delete arow, or
set of rows. This uses the SQL DELETE FROMcommand, which looks like:

DELETE FROM Tabl e WHERE condi ti on

So if we wanted to delete Anne Jones from our Empl oyee table we could do this:

sqlite> delete from Enpl oyee where Nane = ' Anne Jones';

If more than one row matches our condition then all of the matching rows will be
deleted. SQL always operates on all the rows that match our query, it's not like using a
sequential search of afile or string using aregular expression.

To delete an entire table and its contents we would use the SQL DROP command, but we
will seethat in action alittle later. Obviously destructive commands like Del et e and
Dr op must be used with extreme caution!

D:\DOC\HomePagettutor\tutdbms.htm Page 282 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Linking Data Across Tables

We mentioned linking data across tables earlier, in the section on SELECT. However this
is such afundamental part of database theory that we will discuss it in more depth here.
The links between tables represent the relationships between data entities that give a
Relational Database such as SQL.ite its name. The database maintains not only the raw
data about the entities but information about the rel ationships too.

The information about the relationships is stored in the form of database

constraints which act as rules dictating what kind of data can be stored as well as the
valid set of values. These constraints are applied when we define the database structure
using the CREATE statement.

We normally express the constraints on afied by field basis so, within the CREATE
statement, where we define our columns, we can expand the basic definition from:
CREATE Tabl enane (Col um, Colum,...);

To:

CREATE Tabl enane (
Col umName Type Constraint,
Col umName Type Constraint,

And the most common constraints are:

NOT NULL

PRI MARY KEY [AUTO NCREMENT]
UNI QUE

DEFAULT val ue

NOT NULL is self explanatory, it indicates that the value must exist and not be NULL.

PRI MARY KEY simply tells SQLite to use this column as the main key for lookups (in
practice this meansit will be optimized for faster searches). The

AUTO NCREMENT means that an | NTEGER type value will automatically be assigned on
each | NSERT and the value automatically incremented by one. This saves alot of work
for the programmer in maintaining separate counts. Note that the

D:\DOC\HomePagettutor\tutdbms.htm Page 283 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

AUTO NCREMENT "keyword" is not actually used, rather it isimplied froma
type/constraint combination of | NTEGER PRI MARY KEY. Thisisanot so obvious quirk
of the SQLite documentation that trips up enough people for it to appear at the top of
the SQLite FAQ list!

UNI QUE means that the value must be unique within the table. If it is not, an error results
and the row will not be inserted. UNI QUE is often used for non | NTEGER type PRI MARY
KEY columns.

There are also constraints that can be applied to the table itself but we will not be
discussing those in any depth in this tutorial .

The other kind of constraint that we can apply, as already mentioned, is to specify the
column Type. Thisis exactly like the concept of types in a programming language and
thevalid set of typesin SQLite are:

TEXT
NUMERIC
INTEGER
None

These should be self evident with the possible exception of NUMERI C which allows the
storage of floating point numbers as well as integers. None is not really atype but simply
indicates that, as we did above, you don't need to specify atype at al. Most databases
come with a much wider set of types including, crucialy, a DATE type, however as we
are about to see, SQL ite has a somewhat unconventional approach to types which
renders such niceties |less relevant.

Most databases strictly apply the types specified. However SQLite employs a more
dynamic scheme, where the type specified is more like a hint and any type of data can be
stored in the table. When data of a different typeis loaded into afield then SQLite will
use the declared type to try and convert the data, but if it cannot be converted it will be
stored initsorigina form. Thusif afield is declared as | NTEGER but the TEXT value
'123" is passed in, SQLitewill convert the string '123' to the number 123. But if the
TEXT value 'Freddy’ is passed in the conversion will fail so SQLite will simply store the
string 'Freddy’ in the fidld! This can cause some strange behaviour if you are not aware
of thisfoible. Most databases treat the type declaration as a strict constraint and will fail
if anillega valueis passed.

D:\DOC\HomePagettutor\tutdbms.htm Page 284 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

So how do these constraints help us to modd data and, in particular, relationships? Let's
look again at our simple two-table database:

EmpID Name HireDate Grade ManageriD

1020304 90NN 20030623 Foreman 1020311 SelarylD Grade
Brown
000010 Foreman
1020305 gﬁh 20040302 Labourer 1020304
000011 Labourer
1020307 M€ 19991125 Labourer 1020304
Jones

Looking at the Enpl oyee tablefirst we can seethat the I D value should be of

| NTEGER type and have a PRI MARY KEY constraint, the other columns, with the

possible exception of the Manager | D should be NOT NULL. Manager | D should aso be
of type | NTEGER.

For the Sal ar y table we seethat again the Sal ar ylI D should be an | NTEGER with

PRI MARY KEY. The Anount column should also be an | NTEGER and we will apply a
DEFAULT value of 10000. Finally the G ade column will be constrained as

Uni que since we don't want more than one salary per grade! (Actually thisis abad idea
since normally salary varies with things like length of service as well as grade, but welll
ignore such niceties! In fact, in the real world, we probably should call this a Grade table
and not Salary...)

The modified SQL looks likethis:

sqlite> create table Enpl oyee (
.. Enpl D i nteger Primary Key,
Nane not nul |,
Hi reDate not null,
Grade not null,
Manager | D i nt eger

VVYVVVYV

D:\DOC\HomePagettutor\tutdbms.htm Page 285 of 340

CuuDuongThanCong.com

Amount

60000

35000

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

sqlite> create table Salary (
.. Salaryl D integer primary key,

\Y

..> Grade unique,
.> Anount integer default 10000
>

),

You can try out these constraints by attempting to enter data that breaks them to see
what happens. Hopefully you see an error message!

Onething to point out hereisthat thei nsert statements we used previously are no
longer adequate. We previously inserted our own values for the ID fields but these are
now autogenerated so we can (and should!) miss them out of the inserted data. But this
gives rise to anew difficulty. How can we populate the manager | D field if we don't
know what the Enpl D of the manager is? The answer is we can use a hested

select statement. 1've chosen to do this in two stages using NULL fieds initially and then
using an updat e statement after creating all the rows.

To avoid alot of repeat typing I've put all of the commands in a couple of fileswhich |
caled enpl oyee. sqgl for the table creation commands and enpl oyee. dat for the
insert statements. (Thisis just the same as creating a python script file ending in .py to
save typing everything at the >>> prompt.)

Theenpl oyee. sql filelookslikethis:

drop tabl e Enpl oyee;
create tabl e Enpl oyee (
Empl D i nteger Primary Key,
Nane not nul |,

Hi reDate not null,

Grade not null,

Manager | D i nt eger

),

drop table Sal ary;

create table Salary (

Salaryl D i nteger primary key,
G ade uni que,

Amount i nteger default 10000

),

D:\DOC\HomePagettutor\tutdbms.htm Page 286 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Noticethat | drop the tables before creating them. The DROP TABLE command, as
mentioned earlier, simply deletes the table and any data within it. This ensures the
database isin a nice clean state before we start creating our new table.

Theenpl oyee. dat script looks likethis:

insert into Enpl oyee (Nane, HireDate, G ade, Mnagerl D)
val ues (' John Brown','20030623',' Foreman', NULL);

insert into Enpl oyee (Nane, HireDate, G ade, Mnagerl D)
values ('Fred Smth','20040302', "' Labourer', NULL);

insert into Enpl oyee (Nane, HireDate, G ade, Mnagerl D)
val ues (' Anne Jones','19991125',' Labourer', NULL);

updat e Enpl oyee
set Manager| D = (Sel ect EnplD
from Enpl oyee
where Nanme = 'John Brown')
"Fred Smith' OR
" Anne Jones';

wher e Nane
Name

insert into Salary (G ade, Amount)
val ues(' Foreman', ' 60000");

insert into Salary (G ade, Amount)
val ues(' Labourer',' 35000');

Notice the use of the embedded sel ect statement in the updat e command and also
the fact that 1've used a single updat e to modify both employee rows by using a
boolean OR condition. By extending this OR | can easily add more employees with the
same manage.

Thisistypical of the problems you can have when populating a database for the first
time. You need to plan the order of the statements carefully to ensure that for every row
that needs to contain areference value to another table that you have already provided
the data for it to referencel It's a bit like starting at the leaves of a tree and working back
to the trunk. Always create/insert the data with no references first, then the data that
references that data and so on. If you are adding data after the initial creation you will
need to use queries to check the data you need already exists, and add it if it doesn't. At
this point a scripting language like Python becomes invaluabl el

Finally we can run these from the sglite prompt like this:

sqlite> .read enpl oyee. sql

D:\DOC\HomePagettutor\tutdbms.htm Page 287 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

sqglite> .read enpl oyee. dat

Make sure you have the path issues sorted out though: either run sglite from wherever
the sgl scripts live (as I've done above) or provide the full path to the script.

Now we'll try a query to check that everything is asit should be:

sqglite> select Nane from Enpl oyee
...> where Grade in

...> (select Gade from Sal ary where amount >50000)
S

Joh.n. i3r OM

That seems to have worked, John Brown is the only employee earning over $50000.
Notice that we used an | N condition combined with another embedded

SELECT statement. Thisisavariation on asimilar query that we performed above using
across tablejoin. Both techniques work but usually the join approach will be faster.

Many to many relationships

One scenario we haven't discussed is where two tables are linked in a many to

many relationship. That is, arow in onetable can be linked to severa rows in a second
table and arow in the second table can at the same time be linked to many rows in the
first table.

Consider an example. Imagine we are writing a database to support a book publishing
company. They need lists of authors and lists of books. Each author will write one or
more books. Each book will have one or more authors. How do we represent that in a
database? The solution is to represent the relationship between books and authors as a
tableinits own right. Such atableis often called an intersection table or a mapping
table Each row of this table represents a book/author relationship. Now each book only
has potentially many book/author relationships but each relationship only has one book
and one auther, so we have converted a many to many relationship into two one to many
relationships. And we already know how to build those using IDs. Let's seeit in

practice:

drop tabl e author;
create table author (

I D I nteger PRI MARY KEY,
Narme String NOT NULL

D:\DOC\HomePagettutor\tutdbms.htm Page 288 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

),

drop tabl e book

create table book (

I D I nteger PRI MARY KEY
Title String NOT NULL

),

drop tabl e book_aut hor;
create tabl e book_aut hor (
bookl D I nt eger NOT NULL,
aut hor1 D I nt eger NOT NULL

),

insert into author values ('Jane Austin');

insert into author values ('Gady Booch');

insert into author values ('lvar Jacobson');

insert into author values ('Janes Runbaugh');

insert into book val ues('Pride & Prejudice');

insert into book val ues(' Emma');

insert into book val ues(' Sense & Sensibility');

insert into book values (' Object Oriented Design with Applications');
insert into book values (' The UML User Guide');

insert into book_author val ues (

(select IDfrombook where title = 'Pride & Predjudice'),
(select ID fromauthor where value = 'Jane Austin')

),

insert into book_author val ues (
(select ID frombook where title = "'Emma'),
(select ID fromauthor where value = 'Jane Austin')

),

insert into book_author val ues (
(select IDfrombook where title = 'Sense & Sensibility'),
(select ID fromauthor where value = 'Jane Austin')

),

insert into book_author val ues (
(select ID frombook where title = ' Cbject Oiented Design with Applications
(select ID fromauthor where value = ' Gady Booch')

)

insert into book_author val ues (
I
I

(select ID frombook where title = 'The UM User Guide'),
(select ID fromauthor where value = ' Gady Booch')

D:\DOC\HomePagettutor\tutdbms.htm Page 289 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

),

insert into book_author val ues (
(select IDfrombook where title = 'The UM User Guide'),
(select ID fromauthor where value = 'lvar Jacobson')

),

insert into book_author val ues (
(select ID frombook where title = 'The UM User Guide'),
(select ID fromauthor where value = 'Janes runbaugh')

),

Now we can try some queries to see how it works. Let's see which Jane Austin books
we publish:

sqlite> SELECT title from book
...> where book_aut hor. bookl D = book.ID
...> and book_author.authorID = (select ID from author
L > where nanme = "Jane Austin");

It's getting a wee bit more complex but if you sit and work through it you'll get the idea
soon enough. Let's try it the other way around, Let's see who wrote 'The UML User
Guide':

sqlite> SELECT nane from aut hor
...> where book_author.authorID = author.ID
...> and book_aut hor. bookl D = (select 1D from book
L > where title = "The UML User CQuide");

If you ook closely you will seethat the structure of the two queriesisidentical, wejust
swapped around the table and field names alittle.

That's enough for that example, I'm now going to return to our Address Book

example that we last considered in the topic on file handling. Y ou might want to review
that before reading on to see how we convert it from file based storage to a full
database.

The Address Book Revisited

In the file based version of the address book we used a dictionary with the contact name
as key and the address as a single data item. That works fine if we always know the
name we want or we always want the full address details. But what if we want all of our

D:\DOC\HomePagettutor\tutdbms.htm Page 290 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

contacts in a particular town? Or all the people called 'John"? We could write specific
Python code for each query but as the number of special queries rises the amount of
effort gets to be a serious disincentive. This is where a database approach pays dividends
with the ability to create queries dynamically using SQL.

So what does our address book ook like as a database? Basically it is asingle table. We
could split the datainto address and person and link them - after all you may have
severa friends living in the same house, but we will stick with our original design and
useasimpletable.

Onething that we will do is split the data into several fields. Rather than a simple name
and address structure we will split the nameinto first and last names, and the address
into its constituent parts. There has been alot of study into the best way to do this and
no definitive answer, but the one thing everyone agrees on is that single field addresses
areabad idea - they are just too inflexible. Let's list thefields of our database table and
the constraints that we want to apply:

Field Name Type Constraint
First Name String Primary Key
Last Name String Primary Key
House Number String NOT NULL

Street String NOT NULL
District String
Town String NOT NULL

Post Code String NOT NULL
Phone Number String NOT NULL

Some points to note:

1. Wehavetwopri mary keys whichisnot alowed, well haveto deal with that
in a moment.

2. All of thedataistypest ri ng even though the House Nunber might be
expected to beani nt eger . Unfortunately house numbers often include | etters
too, so we haveto useastri ng.

3. Thedistrict istheonly optiona fied

D:\DOC\HomePagettutor\tutdbms.htm Page 291 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

4. Post or Zip codes are very specific in form but only within a single country. This
means we have to, once again, leavethetypeasast ri ng to cater for all
eventualities.

5. ThePhone Nunmber might seem like a candidate for a UNI QUE constraint, but
that wouldn't allow us to have two friends sharing the same phone.

Going back to thefirst point, that we have two primary keys. Thisis not allowed in SQL
but what we can do is take two columns and combine them into what is called a
composite key which allows them to be treated as a single value so far asidentifying a
row is concerned. Thus we could add aline at the end of our cr eat e t abl e statement
which combined Fi r st Nane and Last Nane asasinglePri mary Key. It would look
something like this:

create tabl e address (
Fi rst Name NOT NULL,
Last Name NOT NULL,

PhoneNurber NOT NULL,
PRI MARY KEY (FirstNane, Last Nane)

);

Notice the last line which lists the columns we want to use as the composite key. (Thisis
actually an example of a table based constraint.)

However, thinking about this, it isn't really such a good idea since, if we know two
people with the same name, we could only store one of them. Well deal with this by first
of dl definingani nt eger primary key fiedto uniqudy identify our contacts, even
though we will rarely if ever useit in aquery.

We know how to declarean | nt eger Primary Key constraint, we did that for our
employee example.

We can turn that straight into a SQL ite data creation script, likethis:

-- drop the tables if they exist and recreate them afresh
-- use constraints to inprove data integrity

drop tabl e address;

create tabl e address (

ContactI D Integer Primary Key,

First Not Null,

D:\DOC\HomePagettutor\tutdbms.htm Page 292 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Last Not Nul |,
House Not Nul I,
Street Not Null,
District,

Town Not Nul I,
Post Code Not Nul I,
Phone Not Nul |

)

Thefirst two lines are simply comments. Like the # symbol in Python, anything
following adouble dash (- -) is considered a comment in SQL.

Notice that | have not defined the type because St ri ng is the default in SQLite, if we
needed to convert, or port in computer speak, this schema, or table layout, to some
other database we would probably need to go back and add the type information.

The next step is to |oad some data into the table ready to start performing queries. I'll
leave that as an exercise for the reader, but | will be using the following data set in the
following examples:

First | Last |House Street District Town ||PostCode| Phone
Anna [Smith (42 Any Street SomePlace MyTown |ABC123 01234
Y y 567890
Bob |[Builder |17 Any Street SomePlace MyTown ||[ABC234 01234
Y y 543129
Clarke [Kennit |9 Crypt Drive |Hotspot MyTown |ABC345 01234
p P y 456459
Dave ([Smith (42 Any Street SomePlace MyTown |ABC123 01234
Y y 567890
Dave [[Smith [12A |Double Street AnyTown |DEF174 01394
Y 784310

Now we have some data | et's play with it and see how we can use the power of SQL to
extract information in ways we couldn't even dream of with our simplefile based Python
dictionary.

Who livesin Any Street?

D:\DOC\HomePagettutor\tutdbms.htm Page 293 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Thisisafairly straightforward SQL query made simple by the fact that we have broken
our address data into separate fields. If we had not done that we would have had to
write string parsing code to extract the street data which is much more complex. The
SQL query we need look likethis:

sqlite> SELECT First, Last from Address
...>WHERE Street = "Any Street";

Whoiscalled Smith?

Again thisis afairly straightforward sel ect / wher e SQL expression:

sqlite> Select First,Last from Address
...> WHERE Last = "Snmith";

What arethe duplicated names?

Thisis amore complex query. We will need to select the entries which occur more than
once. Thisiswhere the unique Cont act | D key comes into play:

sqlite> SELECT First, Last from Address
...> where First = First
...> and Last = Last
...> and ContactI D != ContactlDD;

What is Dave's Phone number ?

Again a straightforward query except that we get multiple results back.

sqlite> Select First,Last, Phone from Address
...> Were First Like Dav*;

Notice we used Li ke inthewher e clause. This uses awild card style comparison and
ignores case. As aresult it is alooser match than equality which requires an exact
match.

Accessing SQL from Python

D:\DOC\HomePagettutor\tutdbms.htm Page 294 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

SQL.ite provides an Application Programmers Interface or API consisting of a number
of standard functions which allow programmers to perform all the same operations that
we have been doing using the interactive SQL prompt. The SQLite API iswrittenin C
but wrappers have been provided for other languages, including Python.

Cursors

When accessing a database from within a program one important consideration is how
to access the multiple rows of data potentially returned by asel ect statement. The
answer isto usewhat is known in SQL asacursor. A cursor is like a Python sequence
in that it can be accessed onerow at atime. Thus by selecting into a cursor and then
using aloop to access the cursor we can process large collections of data.

The DBAPI

The documentation for the latest version of the Python DB API isfound in the
Database Topic Guide on the Python website. Y ou should read this carefully if you
intend doing any significant database programming using Python.

Installing the SQLitedrivers

The Python DBAPI drivers for SQLite can be found here. Simply download the version
corresponding to your version of Python and run the installer if you are using Windows,
other OS users will need to follow the instructions on the web site! After it isinstalled
you should be able to import the driver module like this:

frompysqglite2 inport dbapi2 as sqglite
If no errors are reported then congratul ations, the module in stalled and usable.
Basic DBI usage

| am not going to cover all of the DBI features just enough for us to connect to our
database and execute a few queries and process the results. Well finish off by rewriting
our address book program to use the address book database instead of atext file.

>>> db = sqlite.connect (' D/ DOC HonePage/ Tut or 2/ sql / addr ess. db')

D:\DOC\HomePagettutor\tutdbms.htm Page 295 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

>>> cur = db. cursor()
>>> cur.execute(' Select * from address')

>>> print cur.fetchall ()

And theresults look likethis;

[(1, u" Anna', u' Smith', u 42', u Any Street', u SonmePlace', u MyTown', u' ABC
(2, uBob', uBuilder', u 17", u Any Street', u' SomePlace', u MyTown', u'AE
(3, uCdarke', u Kennit', u 9, u Cypt Drive', u Hotspot', u MyTown', u'AE
(4, u Dave', u ' Smth', u 42", u Any Street', u' SonePlace', u MyTown', u' ABC
(5, u' Dave', u' Smth', u 12A', u' Double Street', u'', u AnyTown', u' DEF174

As you can see the cursor returns alist of tuples. Thisis very similar to what we started
off with back in the raw materials topic! And we could simply use this list in our
program as if we had read it from afile, using the database merely as a persistence
mechanism. However the real power of the database liesin its ability to perform
sophisticated queries using sel ect .

The Address Book - Onelast time

I'm now going to present our address book example for the final time. It's far from
polished and is still command line based. Y ou might like to add a GUI, remembering to
refactor the code to separate function from presentation.

| won't explain every detail of the code, by now it should mostly be self evident if you
read through it. | will however highlight afew points at the end.

HEHHH R R R
Addr essbook. py

Author: A J Gauld
Build a sinple addressbook using
the SQLite database and Pyt hon

DB- API .

#
#
#
#
#
#
#
BHEHBHBHHHHHHHHBHBHBHBHBHBHBHBH

set up the database and cursor

D:\DOC\HomePagettutor\tutdbms.htm Page 296 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases
dbpath = "D:./DOC/ Honepage/ Tutor 2/ sql /™
def initDB(path):
frompysqglite2 inport dbapi2 as sqglite
try:
db = sqglite.connect(path)
cursor = db. cursor()
except
print "Failed to connect to database:",
db, cursor = None, None
return db, cursor
Driver functions

def addEntry(book):

22/01/2006

pat h

first = raw_input('First nane: ')
last = raw_input('Last name: ')
house = raw_i nput (' House nunber: ')
street = raw_input('Street nane: ')
district = raw_input('District name: ')
town = raw_input('CGty nane: ')
code = raw_input (' Postal Code: ')
phone = raw_input (' Phone Nunber: ")
gquery = "'"I NSERT | NTO Address
(First, Last, House, Street, Di strict, Town, Post Code, Phone)
Val ues ("%","%","%","%","%","%","%","%")" "' %N
(first, last, house, street, district, town, code, phone)
try:
book. execut e(query)
except
print "lInsert failed"
raise

return None

def renoveEntry(book):
nane = raw_i nput ("Enter a nane: ")
nanmes = nane.split()
first = nanmes[0]; |ast = nanes|-1]
try:
book. execut e(' ' ' DELETE FROM Addr ess
VWHERE First LIKE "%"
AND Last LIKE "%"'"
except :
print "Renove fail ed"
raise
return None
def findEntry(book):
field = raw_input("Enter a search field: ")
value = raw_input ("Enter a search value: ")

D:\DOC\HomePagettutor\tutdbms.htm

CuuDuongThanCong.com

% (first,last))

Page 297 of 340

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

query = "'"'SELECT first,|ast, house, street, district,town, postcode, phone
FROM Address WHERE % LIKE "%"'"'"' % (field, val ue)

try:

book. execut e(query)
except : print "Sorry no matching data found"
el se:

for line in book.fetchall ():

print ' ".join(line)

return None

def testDB(database):
dat abase. execut e(" Sel ect * from Address")
print database.fetchall ()
return None

def cl oseDB(dat abase, cursor):

try:
cursor. cl ose()
dat abase. commi t ()
dat abase. cl ose()

except:
print "problemclosing database..."
raise

User Interface functions

def get Choi ce(nenu):
print menu
choice = raw_input("Sel ect a choice(1-4): ")
return choice

def main():
t heMenu = """
1) Add Entry
2) Renove Entry
3) Find Entry
4) Test dat abase connection
9) Quit and save

t heDB, theBook = initDB(dbpath + 'address.db')
choi ce = get Choi ce(t heMenu)

while choice '="9" and choice.upper() !'="

if choice == '1' or choice.upper() == "A":
addEnt r y(t heBook)

elif choice == "'2" or choice.upper() == "R:
renoveEnt ry(t heBook)

elif choice == "3 or choice.upper() =="F:
fi ndEntry(theBook)

elif choice =="'4" or choice.upper() =="'T":

D:\DOC\HomePagettutor\tutdbms.htm Page 298 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

t est DB(t heBook)
el se: print "Invalid choice, try again”
choi ce = get Choi ce(t heMenu)
el se: cl oseDB(t heDB, t heBook)

if _ nane =="'"_main__": min()

Note that we have to put quotes around the strings within the SQL queries otherwise
SQL.ite interprets them as field names. Also note that the cl oseDB function includes a
cal tocomi t . This forces the database to write al the changes in the current session
back to thefile, it can be thought of as being alittlelikethefi | e. f | ush method.
Finaly notethat thei nsert statement had to include al of the field names otherwise
SQL.ite complained about a mismatch in the number of fields even though the ID fied is
declared as AUTO NCREMENT

Another point to note, which is unrelated to using databases but nonetheless is a useful
debugging trick. Several of the functions havet ry/ except constructs and in the
except clausel'veputinar ai se statement which is now commented out. The

rai se isonly thereto aid debugging since, without it, the except clause would mask
the full Python error report. However to restore user friendly reporting of errorsits easy
to comment out this one line. Thisis much easier than trying to comment out the entire
try/ except construct during debugging.

A Final word

We have used SQL.ite for our examples becauseiit is fredy available, easy to install and
use, and fairly forgiving of mistakes. However, this simplicity means that many of the
more features found in more powerful packages are not available. In particular the text
processing capabilities and the range of constraints available are quite limited. If you do
find yoursaf confronted with a database like Oracle or IBM's DB2 it is well worth while
taking the time to read the reference documentation, using the features of the database
to best effect can significantly reduce the amount of custom code you need to write.

Some of the advanced features you should look out for are described in the box bel ow:

Foreign Keys

D:\DOC\HomePagettutor\tutdbms.htm Page 299 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Most databases feature Foreign Keys. These allow us to specify linkages or

rel ationships between tables. The data consists of primary keys of other tables. In
some cases the keys are allowed to be in other databases as well as from other tables
in the current database. We haven't discussed cross table joins in much detail here but
thisis one of the most commonly used features of relational databases as applications
get larger.

Referential Integrity

Referentia integrity is the ability to only allow data values in a column if they exist in
another location. For example in our employee database we could have restricted the
valuein the Enpl oyee. G- ade field to only allow values aready defined in the

Sal ary. Gr ade table. Thisis avery powerful tool in maintaining the consistency of
data across the database and is especially important where, as with the

gr ade columns, the values are used as keys for joining two tables.

Stored Procedures

These are functions written in a proprietary programming language provided by the
database vendor and stored in the database. The advantage of using a stored
procedureis that these are compiled and so tend to be much faster than using the
equivalent SQL commands. In addition they save bandwidth by only requiring the
function name and arguments to be sent from the client program. By being built into
the server they allow us to build common behaviour, such as complex business rules,
into the database where it can be shared by all applications consistently. The
disadvantageis that they are proprietary and if we want to change database vendor
then all stored procedures will need to be rewritten, whereas standard SQL will work
almost unchanged on any database.

Views

These are virtual tables made up from other real tables. They could be a subset of the
data in another table, to simplify browsing or, more commonly, afew columns from
one table and a few from another joined by some key. Y ou can think of them as being
a SQL query permanently being executed and the result stored in the view. The view
will change as the underlying data changes. Some databases only allow you to read
datain aview but most will permit updates as well. Views are often used to implement
data partitioning such that one user can only see the subset of data that is relevant to
her.

D:\DOC\HomePagettutor\tutdbms.htm Page 300 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with Databases 22/01/2006

Cascaded Deletes

If a cascaded deleteis set up between two data items it means that when the master
itemis deleted all subordinate items will also be deleted. One of the most common
examplesis an order. An order will normally comprise several ordered items plus the
order itself. These will typically be stored in two separate tables. If we del ete the order
we al so want to delete the order items. Cascaded del etes are normally configured in
the database DDL statements used to create the database schema. They are atype of
constraint.

Advanced Data types

Some databases permit a wide variety of data types to be stored. In addition to the
usual number, character, date and time data, there may be network addresses, Binary
Large Objects(known as BLOBS) for image files etc. Another common type of datais
the fixed precision decimal type used for financial data, this avoids the errors from
rounding found with traditional floating point numbers.

Finally if you do want to explore some more sophisticated uses of SQLitethereis an
excdllent tutorial by Mike Chirico which can be found in several places on the web, but
theonel find easiest to read is found here. With the foundation meterial above
imprinted on your mind you should have no problem following Mike's excellent tutor.

| Points to remember

Databases organise data into tables

Records consist of fields and comprise the rows of the tables

SQL is the language used to manage data

CREATE, INSERT, SELECT and UPDATE are the key commands
Programming languages provide SQL wrappers to acccess the data from
programs

® Cursors store the results of a SQL query in atemporary but accessible form

Contents Previous Next

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagettutor\tutdbms.htm Page 301 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Working with the Operating System

| What will we cover?

Therole of the Operating System
Python's access to the operating system
Working with files and folders
Working with Processes

Finding out about users

In this topic we will ook at the role of the Operating System (OS) and how we can
access the OS from Python.

So What isthe Operating System?

Most computer users know that their computer has an operating system, whether it be
Windows, Linux or MacOS or some other variety. But not so many know exactly what
the operating system does. This is compounded by the fact that most commercial
operating systems come bundled with lots of extra programmes that are not really part
of the operating system per se, but without which the computer would not be very
useable. Examples of these extras are image viewers, web browsers, text editors and so
forth. So what exactly is the operating system and why do we need one?

Thelayer cake principle

The answer lies in the way computers are built. We can think of them as a layer cake
with the computer hardware, the eectronics, at the bottom. The hardware includes the
Central Processing Unit (CPU or just the chip), the hard disk, the memory, the
Input/Output subsystem (usually abbreviated to 10 - pronounced Eye-Oh) including
things like Serial and Paralle ports, USB ports, Network connections and so on.

The next layer up is the Basic Input Output System or BIOS. The BIOS is the first layer
of software and is responsible for booting up the computer and providing a very raw
interface to the hardware. For exampleit allows the hard disk heads to be moved from
track to track and sector to sector within atrack, and to read or write individual bytes to
the hardware data buffers attached to each port. The BIOS knows nothing about files or
directories or any of the other higher level concepts that we as users are so familiar with.
It only knows how to mani pul ate the basic € ectronic devices from which the computer
is assembled. In fact in some cases it doees this by allowing hardware vendors to install

D:\DOC\HomePagatutor\tutos.htm Page 302 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

their own software at critical places within the BIOS - so for example graphics card
vendorsinstall links to their own graphics drivers at a standard location in the BIOS
code so that the BIOS simply calls an agreed interface but the vendors provide their own
customised software.

The next layer up from the BIOS is where we hit the operating system proper. The
structure of this layer depends alot on the operating system but generally it comprises a
kernel or core set of services with associated device drivers. The device drivers may be
built into the kernel or they may be modules loaded by the kerndl as needed - very
similar to the way Python's modul es get |oaded by programs as they are needed. What
this layer does is translates from the low level hardware to thelogical structures that we
recognise and use, likefiles and folders.

As an exampl e consider what happens when we open and read a file in Python:

* Wecall the Python open()

* Python calls an operating system function to open the samefile

® The operating system looks up someinternal data and translates the filename
into a set of tracks and sectors on the hard disk (and indeed figures out which
hard disk!)

® The operating system then calls several BIOS functions to position the heads at
the right location.

® The Python programcallsfi | e. read()

* Python calls the operating system read function

® The operating system instructs the BIOS to read the right number of bytes from
that location.

® The operating system repeets the BIOS locate/read sequence steps as often asis
necessary to read al of the data required for our file.

Thefinal layer in the cake is the shell which is the user environment. On modern
operating systems thisis usually presented as a Graphical User Interface.

If that all sounds pretty complicated that's becauseit is! The good news is that the
reason we have an operating system is to save us mere mortal programmers from having
to think about it, we just call open() andread() .

Process Control

D:\DOC\HomePagatutor\tutos.htm Page 303 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

However the operating system does more than simply control access to the hardware, it
also provides the ability to launch a program. In fact it provides the mechanisms for
managing all of the programs that run concurrently on your computer. The reason it
needs to do thisis that usually there are far fewer CPUs than there are programs so, to
produce theillusion of all these programmes running at the same time, what happensis
that the operating system switches between them very quickly, giving each programme a
share of the CPU - atechnique known as timeslicing. Some operating systems are better
at this than others, for example early Windows and MacOS operating systems could
only multi-task in this way with cooperation from the programs being run. If an errant
program failed to provide a suitable pause point the computer would appear to lock up!

Most modern operating systems use a system called pre-emptive multi-tasking whereby
the operating system interrupts programs regardless of what they are doing and
automatically gives the next programme access to the CPU. Various agorithms are used
to improve the efficiency of this process, depending on the operating system. Common
examples are - round robin, most recently used, least recently used, and there are several
others. Again, from a programmer's point of view we can usually just ignore all this and
pretend there redlly are multiple parallel programmes running.

User Access and Security

Thefinal aspect of the operating system that 1'm going to mention is the control of
Users. Most modern computers can at least allow several different users to access the
machine, each with their own files, desktop settings etc. Several operating systems go
one step further and allow several users to belogged in at the sametime, thisis
sometimes called multi-session operation. However with many users comes the issue of
security, it's important that John can't see Janet's data and vice versa. The operating
systemis responsible for ensuring that each user's files are securdly protected and only
those with the appropriate authority can access data.

So how can we useit?

Since the operating system's job is to abstract away all these details you may be
wondering why we as programmers should be interested in it at all, apart from academic
curiosity, perhaps? The answer is that sometimes we need to inteact with the hardware
in ways that the standard programming functions don't allow, or maybe we need to
launch another program from within our own. At other times we may want to control
the computer in the same way a user would from withoin our programmes. To do any of
these things we need to get access to the underlying operating system facilities.

D:\DOC\HomePagettutor\tutos.htm Page 304 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Python provides a number of modules for interacting with the operating system. The
most important is called the os module and it tries to provide a common interface to any
operating system by loading other lower level modules under the covers. The end result
isthat you can call the functions defined in the os module but some operating systems
will behave slightly differently depending on the way they implement those functions
internally. This doesn't normally present a problem, but if you do encounter strange
behaviour from the os functions check the documentation to seeif there are any
restrictions on your operating system implementation.

The other operating system modules that we will consider areshut i | , which provides
user level control of files and folders to programmers. Also os. pat h and gl ob both of
which provide facilities for navigating the computer file system. In fact that's the part we
will look at first.

Manipulating Files

Weve aready covered handling files earlier in the tutorial, so what can the operating
system help us do that we can't already? Well for one thing we can deletefiles, the
standard file methods allow us to create them and to modify them but not del ete them.
Also we can search for files. open() isgreat if you know where thefilelives but if you
don't how can you find it? Extending that idea what about handling groups of files - let's
say you want to manipulate all of theimagefilesin afolder. And finally what about finer
grained control of what we read from afile? The standard methods read either asingle
line or the whole file, but what if we only want afew bytes? All of these things are
possible using the OS functions.

Finding files

Thefirst module | want to look at for finding filesis called gl ob and it's used to get lists
of filenames. The bizarre name comes from Unix where the term has been used for a
long time to describe the act of selecting groups of files using wildcard characters. |
have absolutely no idea where it originated and if anyone knows please send me an
email!

The module itself is quite easy to use. After you import it (of course!) you find that
thereis only asingle function gl ob() ! You passin a pattern to match and the function
returns alist of matching filenames - what could be easier? Here is an example:

i mport gl ob

D:\DOC\HomePagatutor\tutos.htm Page 305 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

files = glob.glob("*. exe")
print files

And you get alist of the executable files in the current directory. Which begs the
question how do we know what the current directory is? And can we change it? Of
course we can - by using the os module!

i mport os

print os.getcwd() #cwd=current working directory
os. chdir (" C. / W NDOAE")

print os.getcwd()

print os.listdir('.") # finally get listing of cwd

Note that forward slashes (/) can be used in path names to avoid having to double up the
back slash (\\) escape character normally used by Windows and MS DOS. The slash also
works on MacOS so it can be considered a universal path separator which is very
convenient! If you do need to be OS specific thereis avariable os. sep that tells you
the current OS setting.

So now we know how to look for afile in the current directory and how to change the
current directory to the one we want. But that still makes searching for a specific filea
tedious exercise. To help in that we can use the very powerful os. wal k() function.

Wewill look at an example of os. wal k being used to find a specific file located
somewhere under a starting point. We'll createaf i ndfi | e function that we can usein
our programs.

First | create atest environment consisting a heirarchy of folders under aroot directory.
In each folder I've placed some files and in one of the folders the one | want to search
for, which I'vecalled t ar get . t xt . You can see this structure in this screenshot of
Windows Explorer:

D:\DOC\HomePagatutor\tutos.htm Page 306 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

© Address |IE3) FHPROJECTSPyEthom Root D3 0E-1
Folders X Mame

I AddressBook | El target.txt
I SrammarChecker
= [El F.oak
= 5 o1
I D1-1
ICh oz
= 3 D3
2 pa-t

[~ Dannrt

Theos. wal k function takes a starting point as a parameter and returns a

generator (kind of avirtual list that builds itself as reguired) consisting of tuples with 3
members (sometimes called a 3-tuple), theroot, alist of directories in the current root
and alist of the current files. If we look at the heirarchy | have created we would expect
thefirst such tupleto look likethis:

("Root', ['DLl','D2','D3'], ['FAtxt', 'FB.txt'])

We can check that easily by writing af or loop at the intreractive prompt:

>>> for t in os.wal k(' Root"):
print t

('"Root', ['D1', "D2', '"D3'], ['FA txt', "FB.txt'])
("Root/D1', ['D1-1"], ["FC txt'])

(" Root/D1/D1-1', [], ['FF.txt"'])

("Root/D2', [], ["FD. txt'])

("Root/D3", ['D3-1'], ['FE. txt'])

(' Root/D3/D3-1', [], ['target.txt'])

>>>

This clearly shows the path taken by os. wal k. It aso shows how we can find afile and
construct its full path by looking inthefi | es element of the tuples returmed by

os. wal k and combining the name once we've found it with ther oot value of the
containing tuple.

D:\DOC\HomePagettutor\tutos.htm Page 307 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System

22/01/2006

By writing our function to use regular expressions and to return alist we can create a
function that is much more powerful (but also slower!) than the simple gl ob. gl ob that

we looked at earlier. Let's have ago, it should ook likethis:

findfile.py nodul e containing only one function
findfile(), based on the use of os.wal k()

i mport os,re

def findfile(filepattern, base = "'."):
regex = re.conpile(filepattern)
mat ches = []
for root,dirs,files in os.wal k(base):
for f in files:
if regex.match(f):
mat ches. append(root + '/' + f)
return matches

And we can test it out at the interactive prompt like this:

>>> jnport findfile

>>> findfile.findfile('t.*"," Root")
[' Root/D3/D3-1/target.txt']

>>> findfile.findfile('F.*"," Root")

['Root/FA txt', 'Root/FB.txt', 'Root/Dl/FC txt",
[FD.txt', 'Root/D3/FE. txt']

>>> findfile.findfile('.*\.txt', Root")
['Root/FA txt', 'Root/FB.txt', 'Root/Dl/FC txt",

/FD.txt', 'Root/D3/FE.txt', 'Root/D3/D3-1/target.
>>> findfile.findfile('D.*","' Root")

[]

' Root/ D1/ D1- 1/ FF. t xt"'

" Root/ D1/ D1- 1/ FF. t xt'
txt']

So it works, and notice in the last examplethat it only works for files because the

directory names arein thedi r s lists which we didn't check. As an

excercisetry adding a

new function to thef i ndfi | es modulecalled fi nddi r () that searches for directories
matching a given regular expression. Then combine both to create athird function

findal | () that searches both files and directories.

Moving, Copying and Deleting files

D:\DOC\HomePagettutor\tutos.htm

CuuDuongThanCong.com

Page 308 of 340

' Roac

' Roac

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

We discussed in the Handling Files topic how to copy afile by reading it and then
writing it out to a new location. However it's possible to use the operating system to do
this work for us in with single statement! In Python we usetheshut i I modulefor this
kind of work. shut i | has several useful functions but the ones we will look at are
(summarising the Python modul e documentation):

® copy(src, dst)

Copy thefilesr c to thefile or directory dst . If dst isadirectory, afilewith
the same basename as sr ¢ is created (or overwritten) in the directory specified.
Permission bits are copied. sr c and dst are path names given as strings.

L] nmove(src, dst)

Recursively move afile or directory to another location.

If the destination is on our current filesystem, then simply use renamesr c.
Otherwise, copy sr ¢ to thedst and then removesr c.

And, perhaps strangely, the following functions from the os module rather than
shutil:

L] renove(pat h)
Remove thefile path.

If pat h isadirectory, OSEr r or israised; (seer ndi r () to remove adirectory).
L] renane(src, dst)

Rename thefile or directory sr ¢ to dst .
If dst isadirectory, OSEr r or will beraised.

The easiest way to seethese in action is simply to try them out at the interactive prompt,
using the directory/file structure | constructed for the os. wal k example above:

>>> jnport os

>>> jnport shutil as sh

>>> jnport glob as g

>>> 0s. chdir (' Root"')

>>> os. listdir('.")

[D1', 'D2', 'D3', "FA txt', "FB.txt']

D:\DOC\HomePagatutor\tutos.htm Page 309 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

>>> sh. copy(' FA txt', '"CA txt")
>>> os.listdir('.")
['"CA txt', 'D1', 'D2', 'D3'", "FA txt', 'FB.txt']

>>> sh. nove(' FB. txt', ' CB.txt")
>>> os.listdir('.")
["CAtxt', "CB.txt", 'D1', "D2', 'D3', 'FA txt']

>>> os.renove(' FA txt')
>>> os. listdir('.")
["CAtxt', "CB.txt", 'D1', "'D2', 'D3']
>>> for f in g.glob("*.txt"):
newnane = f.replace('C ,'F)
os. renane(f, newnane)
>>> os. listdir('.")
["D1, "D2', 'D3', "FA. txt', '"FB.txt']
>>>
>>>

In the exampl es we moved and copied thefiles, deleted the remaining original file then
used rename to restore the folder back to its original state. These are all operations a
user might do at a command prompt or in afile browser but here we have done them
using Python. Note also the use of af or loop to do multiple changes. Obviously we
could have added all manner of checks and rules within the loop, giving the potential to
create some very powerful file manipulation tools. And of course, by saving the code as
a script, we could perform these changes as often as we wished by simply running the
script.

Testing File Chacteristics

Often when dealing with files we need to know something about the characteristics of
the files in question. For example when reading a directory listing, from gl ob say, isthe
"file" in question really afile, or isit adirectory? Also it might be useful to find out
when it was last modified, or even to monitor it to seeif it is being regularly modified -
thus indicating that another user or program is accessing the file. We might similarly
want to monitor the size of afileto seeif it's growing.

We can do all of these things using OS features from our programs. First of al well see
how to check what kind of thing we are dealing with:

D:\DOC\HomePagatutor\tutos.htm Page 310 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

i mport os.path as p

i mport gl ob

for itemin glob.glob('*")
if p.isfile(item: print item isafile
elif p.isdir(item): print item is a directory'
el se: print item ' is of unknown type

Note that the test functions are found in the os. pat h module. Also note that there are
several other tests available which you can read about in the os. pat h module
documentation.

The next characteristic of afilethat wewill look at isits age. There are a number of
interesting dates in afiles lifeline, the first of which isits creation date, the next its more
recent modification date and finally the date of the last access. Not al operating systems
store all of the dates but most will provide creation and modification dates. In Python
the creation and modification dates can be reached through the os. pat h module using
thectine() andnti me() functions respectively.

WEell take alook at some of thefilesin our Root structure. They were al created at
nearly the same times but the top leve files will be slightly different because we
manipulated them in our earlier example using r enane() .

>>> jnport tinme as t

>>> os. listdir('.")
>>> for r,d,files in os.wal k('."):
for f in files:
print f,' created: %:%:%"' %t.localtinme(p.getctine(r+/"+f))][3: 6]
print f," nodified: %:%:%' %t.localtine(p.getnmtine(r+ /'+f))[3:6
FA.txt created: 13:42:11
FA. txt nodified: 13:36:27
FB.txt <created: 13:42:11
FB.txt nodified: 17:32:5
FC.txt <created: 17:32:46
FC.txt nodified: 17:32:5
FF.txt created: 17:34:3
FF.txt nodified: 17:32:5
FD.txt <created: 17:33:12
FD.txt nodified: 17:32:5
FE.txt <created: 17:33:53
FE.txt nodified: 17:32:5
target.txt created: 17:34:28
target.txt nodified: 17:32:5
>>>

D:\DOC\HomePagatutor\tutos.htm Page 311 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Notice the slightly bizarre result for FA and FB? It appears they were created after they
were modified! That's because we created them as copies of the original files, then we
deleted the originals and renamed the copies. The OS recognises that the contents didn't
change so shows the original copy time as the modification time but sees the rename
operation as the creation time for the current file names!

Thereis auseful OS function that can return most of the information we ever need
about afileinasingletuple. It'scaled st at () and there are several variants available,
however we will only look at the version found in the os module.

os. st at () returns atuple containing:

st_mode (protection bits),

st_ino (inode number),

st_dev (device),

st_nlink (number of hard links),

st_uid (user ID of owner),

st_gid (group 1D of owner),

st_size (size of file, in bytes),

st_atime (time of most recent access),

st_mtime (time of most recent content modification),
st_ctime (creation time, but is platform dependant)

Note that there may occasionally be some extra fields depending on what the underlying
operating system supports. Check the documentation for your platform.

Hereis asimple example applied to our top leved file FA. t xt :

>>> fnString = "protection: 9%\nsize: %)\naccessed: %\ncreated: %"
>>> stats = os.stat (' FA txt')

>>> print fnString % stats[0],stats[6],stats[7], stats[9]

protection: 33279

size: O

access: 1132407387

created: 1132407731

Notice that apart from size, which is simply the number of bytesin thefile, al the other
values need a bit of decoding to make them human readable. We'll ook at how to work
with each of them. The timestamps are easy since the numbers are just the number of
seconds from the epoch - we covered that earlier in the tutorial - and we can use the

D:\DOC\HomePagatutor\tutos.htm Page 312 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

t i me module functions (aswe did with | ocal ti me() above) to convert to a
meaningful data structure or string. The protection format needs to be decoded and the
decoding is done using some special values found in thest at module. However we also
need to use some operators, known as bitwise operators, which we haven't discussed
yet. If you haven't come across these before read through the material in the box bel ow
before continuing.

The stat modul e contains a set of predefined constants - ie variables with avalue
which is not intended to be changed. There constants allow us to decode the
permissions data using bitwise operators. The bitwise operators are the same as the
boolean logical operators we have used before: and, or , not and one new one xor .
The differenceis that, as the name suggests, these versions operate on the individual
binary bits of data rather than the overall value.

Thevauesin st at can befound by looking at the defined variables as binary val ues.
Unfortunately Python does not provide a builtin binary format option so we need to
write a short convertion function, which relies on the fact that each digit of an octal
number converts directly to its binary representation and thereis a builtin octal
conversion. Thebi n(n) function looks like this:

def bin(n):

digits = {"0":'"000","1":'001',"2":"'010"," 3" :"011",
"4':'100','5':"101','6"':"110"," 7' :" 111"}

octStr = "% " %n # convert to octal string

binStr = ""

convert octal digit to its binary equival ent

for ¢ in octStr: binStr += digits]c]

return binStr

The Bitwise Operators

D:\DOC\HomePagatutor\tutos.htm Page 313 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Now we will look at how the bitwise operators work using our bin function to display
input and output val ues.

First let's ook at the effect of a bitwise and which has the symbol &

>>> print bin(5)

101

>>> print bin(1)

001

>>> print bin(2)

010

>>> print bin(5 & 1)
001

>>> print (bin(5 & 2)
000

Let's look at those results and think about what is happening. Recall that a logical

and istrueif, and only if, both values are true. Similarly abitwise & is true (value 1) if
two corresponding bits are true (value 1). Sofor 5 & 1 theright-most bit is onein
both cases, so the result aso has its rightmost bit set to one. For 5 & 2 there are no
locations where both bits are ones, therefore theresult is al zero.

This behaviour leads to an exciting feature of bitwise and operations. By 'and'ing a
binary value with a number containing a single binary digit set to one we can find out if
the corresponding bit in the test valueis also at one, if it is, we will get a non-zero
result back.

Let'slook at an example. Lets assume we want to test if the second bit in a number is
set. We know from above that the value with a single bit in the second
position(counting from theright!) is 2. Let's look at the test:</>

TWOBIT = 2
for n in range(10):
if n & TWOBIT: print n," ="',bin(n)

D:\DOC\HomePagatutor\tutos.htm Page 314 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Y ou should find that 2,3,6 and 7 all have thelr second bit set.

We can do similar things with the bitwise or which isthe| symbol, the bitwise not
whichis ~ (be careful though, this one can break our overly simplistic

bi n() function!). Play with these using the bin() function to display the bits input and
the output. Hopefully you will see how the various operators work. Just remember to
compare the values bit by bit.

The final bitwise operator is the exclusive or or xor operator which has the symbol .
The exclusive or istrueif either one of the test valuesis true but not if both are true.
This has some interesting results. For example any number xor'd with itself always
results in zero! Similarly any number xor'd with a key will produce a result which, if it
is then xor'd with the same key, will return the original result! Thisis very useful in
cryptography. Let's ook at a few examples before we return to the stat modul e and
the business of finding permission values.

>>> print bin(5 " 2)
111

>>> print bin(5"5)

000

>>> print bin((5"2)"2)
101

Flags

When a boolean value is used to store a piece of information the variable used is often
called aflag - because a flag can be either raised or lowered (we'll ignore half mast!).
Where we have many such values relating to a single entity it is common to use a
single number to store the combined set of flags by using the individual data bits to
represent each individua flag. These flag values can then be retrieved using the bitwise
operators we have been discussing. In particular the bitwise and combined with a
decoding value known a a mask which allows us to extract the specific bits we need.
(Our TVWOBI T value was a mask for extracting the second bit.)

D:\DOC\HomePagatutor\tutos.htm Page 315 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Thest at moduleis essentially a set of predefined masks for examining the
permissions flags returned by the os. st at () function.

Using stat constants with bitwise operators

Now we will look at some of the st at values as binary numbers and seeif we can work
out how to use them.

>>> jnport stat
>>> dir(stat)

["ST_ATIME', 'ST_CTIME, 'ST_ DEV, "ST_GD, '"ST_INO, 'ST_MODE , 'ST_MII M
"ST_NLINK', "ST_SIZE', "ST_ UD, 'S ENFMI', 'S IEXEC, 'S IFBLK , 'S IFCHR,
"SIFDIR, "SIFIFO, "SIFLNK, "SIFMI', 'S IFREG, 'S IFSOCK , 'S_| MODE',
"SIREAD, 'S IRGRP', 'S IROTH, '"SIRUSR, 'SIRKG, 'SIRWO, 'S |IRMWU ,
"SISBLK ,"S ISCHR, 'SISDR, "SISFIFO, 'S I1SAD, 'S ISLNK, 'S |ISREG,
"SISSCCK, 'S ISUD, '"SISVIX, '"SIWRP, 'S IWIH, 'S IWITE, 'S | WSF
'S IXGRP', "S IXOH, "SIXUSR, '_ builtins__', '__doc_ ', '_file_'",

' nane__ ']

>>> print bin(stat.S_| READ)

100000000

>>> print bin(stat.S_ | WRI TE)

010000000

>>> print bin(stat.S_| EXEC)

001000000

Thefirst thing to point out is that there are alot of constants defined! The next thing to
note is the three values we printed are the values for determining if afile can beread,
written or executed respectively. Notice that each value has a single bit set, just like our
TWOBI T value in the examples above. So we can use a bitwise and to find out the
permissions of our file following acall totheos. st at () function! Likethis:

i nport os, stat
perm = os.stat()][]
if permé& stat.S | READ:

print 'The file is readabl e’
if permé& stat. S IWRITE:

print "The file is witeable'
if permé& stat.S | EXEC.

print '"The file is executable

D:\DOC\HomePagatutor\tutos.htm Page 316 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Those are usually the only permissions we care about, but if you need more, read the
st at module documentation carefully then check your understanding by experimenting
at the Python >>> prompt.

Changing permissions of Files

Having discovered what the permissions on afile are currently set to we can aso use the
os module to change those permissions to something more suitable. Python uses the
Unix conventions for changing permissions whereby each file has a set of three flags
(read, write, execute) for each of three user categories (owner, group and world). Thus
there are atotal of 9 flags per file. These are represented by nine bits. These bits make
up the rightmost bits of the permissions flag returned by os. st at

To change the permissions we simply set the bits appropriately. To do thisthereisa
convenience function in the os moduile called chnod() . This function takes as an
argument a 9 bit number. To convert the 9 bit binary string to areal number we can use
the builtin functioni nt () and passin a second argument representing base 2, likethis:

>>> perm= '111101100" # rwxr--r--
>>> print int(perm2)
492

Now we can use that decimal value to change the permissions of thefile.

>>> 0s. chnod(' FA. txt', 492)

Or we could do it al in one step like this:

>>> 0s. chnod(' FA txt',int('111101100', 2))

If you are familiar with octal numbers you will know that each octal digit represents
three binary bits. Thus you can express permissions very conveniently as three octal
digits. (You can seethat in the bi n functiont that we wrote above, it uses that fact to
convert to binary representation). Regular Unix users are familiar with expressing
permissions this way and you can use that in Python too, making our chrmod call 1ook
likethis:

>>> # nust use a leading O to treat as octal

D:\DOC\HomePagettutor\tutos.htm Page 317 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

>>> 0s. chnod(' FA. txt',6 0754)

All of the examples above do the same thing, they set the owners permissions to read,
write and execute while setting the group to read and execute and the world rights to
read only.

Paths, Filesand Folders

When devel oping a program it's common to have the data files in the same folder as the
program files so that everything can find everything else. In a program that you will use
more generally you cannot assume that the files will be in a known location so you may
need to search for them - perhaps using gl ob or os. wal k as described above.

Having found the file you need you will likely need to set the full path is you want to
open thefile or examine its attributes. Alternatively, given afull pathname you might
want to deconstruct that to extract only the file name, or maybe the folder name to hold
inavariable say. os. pat h provides the tools you need to do that.

Filenames in Python are considered to be made up of various parts. First thereis an
optional drive letter (non Windows operating systems often do not have the concept of
physical drives being part of afilename). Thisis followed by a sequence of folder names
separated by some specified character (in Python you can use '/ and it will nearly aways
work, but some operating systems have their own particular variants). Finally we have
the filename or basename which in turn will ususally have some kind of file extension.
Consider an example:

F: / PROJECTS/ PYTHOV Root / FA. t xt

This says that thefile FA. t xt islocated in the Root folder whichisinthe
PYTHON folder under the PROJECTS folder in the top level directory of the F: drive.

Given afull path name we can extract the basename, the extension or the fol der
sequence by using functionsin the os. pat h module, likethis:

>>> pth = F:/ PRQJECTS/ PYTHOV Root / FA. t xt

>>> stem aFile = os.path.split(pth)

>>> print "stem: ',stem ' file =", ,aFile
stem: F:/PRQIECTS/ PYTHOV Root file = FA txt

>>> # this only works on OS with drive concept, |ike Wndows

D:\DOC\HomePagatutor\tutos.htm Page 318 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

>>> print os.path.splitdrive(pth)
("F:', '/ PRAIECTS/ PYTHON Root/ FA. txt")

>>> print os.path. dirnanme(pth)
F: / PRQJECTS/ PYTHON Root

>>> print os.path. basenane(pth)
FA. t xt

>>> print os.path.splitext(aFile)
("FA, ".txt")

and we canjoin it al together again...

>>> print os.path.join(stemaFile)
F: / PROJECTS/ PYTHOV Root / FA. t xt

Onething to note about os. pat h. j oi n isthat it uses the official seperator character
for the OS. Thusif you want to build a path that is portable across platforms use
os. pat h. j oi n to doit rather than hard coding the path into your program.

File Descriptorsvv File objects

Some of the os family of modules use a slightly different mechanism of file access to the
onewe are used to. Thisis known as afile descriptor and is more closdy tied into the
operating systems concept of afile than the file objects we have used up until, now. The
advantage of using a file descriptor over afile object is that we can access a suite of low
level file operations that enable us to gain greater control of the files and their data. It is
possibe to create a file descriptor from a file object and vice versa. However in general
it's best not to try to mix the modes of operation within a single function or program.
Either usefile descriptors exclusivey or file objects.

The file descriptor functions include all of the usual file operations that we are
accustomed to such asopen, read, wi t e and cl ose. Thelow leve routines are
usually harder to use with more potential for getting things wrong. Therefore only use
low level accessif you absolutely have to. In most cases using the standard file objects
will be a better solution.

Under what circumstances might you need to use low leve file access? The standard
operations use a concept known as buffered 10 whereby datais held in storage areas
known as buffers during read and write operations. Sometimes those buffers cause

D:\DOC\HomePagatutor\tutos.htm Page 319 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

problems when accessing unusual hardware devices or performing time critical
operations. In those cases low level operations might be the answer, but if you are not
sure why you are using them, then you probably shouldn't be!

Having given a huge caveat in the previous paragraph |'m now going to say that using
thelow level routinesis not really so difficult, it's just that there are a few gotchas that
you need to avoid.

Let's start by performing the simple task of opening atext file, writing some data and
closing it again. It looks like this:

>>> fpane = ' F:/PRQIECTS/ PYTHON Root / FL. t xt'

>>> nmode = 0s. O CREAT | o0s. O WRONLY # create and wite

>>> access = 0777 # read/wite/execute for all

>>> data = 'Test text to check that it worked

>>> fd = os.open(fnane, node, access) # NB. os version not the builtin!

>>> | ength = os.wite(fd, data)

>>> jf length != len(data): print 'Anount of data witten doesn't match the
>>> 0s. cl ose(fd)

And similarly we can read the data back from thefile.

>>> node = 0s. O RDONLY # read only

>>> fd = o0s.open(fnane, node) # no access needed this tine
>>> result = os.read(fd, I|ength)

>>> print result

>>> 0s. cl ose(fd)

Notice that the way we set the file access type is more complex here, we have to use a
bitwise or operator to combine al of the necessary flags as provided by the os module.
Secondly notice that we can provide an access level other than the default, thisis one
advantage over the standard file object methods. The octal number (octal becauseit is
starting with a zero) is the same as that described above under the heading "Changing
permissions of files". When reading the data we have to pass the length of data read, we
can do this with the standard r ead too but for low level access its compul sory.

The actual data read and written is always a series of bytes. When dealing with ASCI|
character strings that's not a problem since each character takes up one byte but for
other data types you will have to usethe st r uct module as described in the File
Handling topic.

D:\DOC\HomePagatutor\tutos.htm Page 320 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Manipulating Processes

One of the most common things we do as users of an operaring system is execute
programs. Usually we do this from within a GUI or viaa command line shell, but it is
also possible to launch programs fom within another program. Sometimes launching a
program and allowing it to run to completion is all we need to do, at other times we may
need to provide input data or read the output back into our own program.

The technical term for thisis called inter process communication, or simply IPC and we
will look at that much more closdly in the next topic.

Sowhat isa " process' ?

Processis afancy computer science term for what most users call a running program.
Thus we have an executabl e file on the computer and when we execute it is starts
running within its own memory space. It may be possible to start several instances of the
same executabl e file, each of which takers uyp its own menory space and processes its
own data. Each of these executing programs along with their associated operating
environment iswhat is called a process.

We can see the proceses running on our computer using tools provided by the operating
system. If you are running Windows NT/2000 or XP you can start an applicatiojn called
the Task Manager by hitting Ctrl-Alt-Del. Look at the tab labelled Processes and you
will seealong list of running processes. Some of the names you will recognise, others
you won't because they are services started by Windows itself. Also you might notice
that some applications start several processes - relational databases and web servers
often do this. The Task Manager process view on my PC looks like this:

D:\DOC\HomePagatutor\tutos.htm Page 321 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

-\

@ Windows Task Manager g@

File Options Wiew shuat Down Help

Applications | Processes | Performance | Networking | Users |
Image Mare User MName CPU | Mem Usage 'ﬁ..
icmd. exe oo 24K |
kaskmgr exe i 5,204 K
wiaucl, exe 1] 3,960 f
winplayer exe oo 5,803 K
RiZ.exe oo 3,648 K
msimn. exe oo 4,044 ¥
gwim.exe a0 472K
pythonz. 4.exe oo 305 K
iexplore. exe oo 10,920 K
bash.exe oo 24 K
wdfrngr . exe 1] 1,600 K
SVCHOST . ERE a1 4,832 K
SZHEDHLP.EXE oo 2,312 K
ash3ery. exe i 7,092 K
aswlpday, exe 1] 200K
schedulz, exe oo 1,572 K
QTTASK.EXE oo 2,744 K
spoalsy, Bxe oo f,420 K |

' ashhisn. e nn saank M
Show processes from all users End Process
Processes: 46 CPU Usage: 2% Commit Charge: 3318 [2527M

On Linux or MacOS you can use a Unix command called ps to list running processes.
Running ps on my PC results in a screen like this:

D:\DOC\HomePagatutor\tutos.htm Page 322 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

E select -

Working with the Operating System 22/01/2006

FFID TTY STIMHE COMMAND
1 con Dec 38 Ausr-binshazh
2228 con Dec 38 susr-binspython2.4

2228 con 18:55:21 Ausr-bin-ps

The free internet encyclopedia Wikipedia gives useful and more compl ete definitions for
the different terms program, process, and executable

Running an external program - os.system()

So now we understand the difference between a program and a process | ets see how we
can execute a program from Python. The easiest way isto usethe syst en() function
from the os module. This simply executes a command string and returns an error code
that reflects whether the command terminated correctly. Thereis no way of accessing
the actual output of the invoked program, nor of providing input to the running process.
Assuch, syst ent() isbest used for "fire and forget" execution of programs. For
example, to clear aterminal screen we don't even need to know whether the command
compl eted successfully, we don't need to interact with the command onceit is
underway. We can see an example of this, on a Unix type operating system bel ow:

>>> jnport oOs
>>> errorcode = o0s.systen("clear")
0

D:\DOC\HomePagatutor\tutos.htm Page 323 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

For MS DOS/Windows based operating systems the command is slightly different:

>>> errorcode = 0s.systen("CLS")
0

But the result in both cases should be that the terminal window is cleared and the
errorcode should be zero which indicates successful completion. This might not seem
too useful but we can use syst emto good effect in our scripts where we only need to
display the native output of the command or where we are only interested in the success
or failure of the command. For example, we can find out if afile exists at a particul ar
location on a Linux computer by invoking thel s command with the filename as an
argument.

>>> fijlenane = 'xxyyzz.ggh'
>>> errorcode = os.systen('ls % > /dev/null' %filenane)
>>> if errorcode !'= 0: print filenanme, 'does not exist'

The example shows several techniques. First it shows away of parameterising system
calls using string formatting. Secondly it shows how to suppress the output from being
printed on the terminal by redirecting it to/ dev/ nul | (or perhaps to atemporary file
where the OS does not support any kind of /dev/null concept). Finally, it shows us
interpreting the errorcode to determine the result of the operation.

If the file exists the error code will be zero but if it doesn't then we will get a non-zero
error value. Of course we saw above a more elegant way to do that check using native
Python functions but the principle can often be used with other commands.

Whilesyst emis very easy to useit is not particularly flexible and has no direct way of
communicating any data back to our programs. We can fake this by capturing the output
to atemporary text file and then opening that file and processing it as usual. But thereis
a better way of achieving the same result using anothe os module command called
popen.

D:\DOC\HomePagatutor\tutos.htm Page 324 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Noteto Windows Users

The following code examples all use the Unix ps command and will not work under
Windows. In particular the conmands module is not available for Windows so you
can skip that part entirely. The other examples can be modified to work on Windows
by substituting the command string for avalid Windows command suchas"DI R / W .
| will conclude this section with some Windows specific techniques for running
processes. Unfortunately this is one area where interacting with the operating system
is decidedly non-portabl el

Running an external program - os.popen()

In fact there are several variations of the popen command called popen, popen2,
popend and popen4. The numbers refer to the various data stream combinations that
are made available. The standard data streams were described in a sidebar in the Talking
to the User topic. The basic version of popensimply creates a single data stream where
all input/output is sent/received depending on a mode parameter passed to the function.
In essenceit tries to make executing a command look like using a file object.

By contrast, popen?2 offers two streams, one for standard output and another for
standard input, so we can send data to the process and read the output without closing
the process. popen3 provides st der r accessin addition to st di n/ st dout . Finally
thereis popen4 that combines st der r and st dout into a single stream which appears
very like normal console output. In Python 2.4 al of these popen calls have been
superceded by a new Popen class found in anew subpr ocess module which we will
look at later. For now we will only look at the standard os. popen() function, the
others | will leave as a research excercisel

Let's consider how we can read the output of the ps command shown in the console
output above. As | said earlier, popen tries to make a command look like afile, so we
open the command with a read mode string and that gives us afile like object back. We
can then apply file operations liker eadl i ne, r ead etc. For non interactive programs
like ps the simplest way isto let the program run and user ead() to sweep up the
entire output as a string. We canthen usest ri ng. split () toseparatethe string into
itsindividua lines. It looks like this:

i mport os

D:\DOC\HomePagatutor\tutos.htm Page 325 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

psout = os.popen('ps -ef', 'r")
results = psout.read().split('\n")
for line in results:

print |ine

This gives us the same information that was displayed on screen, but now we can access
the data and use Python's string manipul ation features to extract whichever rows or
fields we need. For example we could extract the process ID for the Python interpreter
by finding the appropriate row and reading the 3rd field (or more usefully the 5th last
field since the User ID here has potentially one or two words, and so working back is
more likely to be accurate).

Let'stry that:

for line in results:
if "python' in line:
print 'The python pidis:", line.split()[-5]
br eak

As you can see this is much more powerful than the use of syst emand its need to
create temporary files etc.

We can a'so use popen to write to processes too, but thisis relatively uncommon.
There are other modul es that often make this easier such asthet el net module. We
will not consider writing to processes in this topic but if the need arises remember that
popen istrying to make a process ook like afile and the file can be opened for writing
aswel| asreading.

More recent versions of Python have added modules and functions to try to simplify this
kind of process interaction even more. Wewill look at some of these convenience
functions now.

Other mechanismsfor external program access

Python provides a module called commands which provides a slightly easier to use
wrapper around popen on Unix based systems. The above example of extracting the pid
from ps is repeated bel ow using the commands modul e;

>>> jnport commands as c
>>> psout = c.getoutput('ps -ef").split('\n")
>>> for rowin psout:

D:\DOC\HomePagatutor\tutos.htm Page 326 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

if "python' in row
print row split()[-5]
3268
>>>
Notice that we need to spl i t the string into rows and then spl i t therowsinto fields
exactly as we did with popen, but this time we didn't need to explicitly r ead the output.

Instead asingle call to commands. get out put executed the command and retrieved the
result. Other functions in the modul e allow us to access the exit status too.

Another Python modul e introduced in version 2.4 isthe subpr ocess module. This
module is explicitly intended to replace al of the other mechanisms discussed above.
Examples of how to useit are given in the module documentation but we will ook at
the basic usage here. The module is based upon a class called Popen - notice the capital
first letter!

The Popen class can be used to create an instance of a command. Unfortunately the
documentation is rather daunting since the Popen constructor has a great many
parameters. The good news is that they nearly all have default values and can be ignored
in the simplest cases. Thus to simply run an OS command from within a script we only
need to do this:

i nport subprocess
p = Popen('ps -ef', shell=True)

Noticetheshel | =Tr ue argument. This is necessary to get the command interpreted by
the operating system command processor, or shell.

Thereisalso afunction called cal | that can be used as a replacement for
0s. syst emasin the above example:

subprocess.call (' ps -ef', shell =True)

At thisleve cal | isamost identical to the Popen usage described above, but
cal | doesnot have all of the options available to Popen and does not create any
instances so uses slightly less system resources.

The equivalent to os. popen() isonly slightly more complex.

D:\DOC\HomePagettutor\tutos.htm Page 327 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

i nport subprocess
psout = subprocess. Popen('ps -ef', shell =True, stdout=PIPE). stdout
results = psout.read().split('\n")
for line in results:
print line

Note: The main difference hereisthat instead of providingan' r* mode string we
specify that st dout should be a Pl PE and then assign the st dout attribute of the
Popen instance to psout . Having done that the rest of the code is unchanged from the
previous examples.

The other os. popen variants can be simulated in much the same way by specifying
which of the standard streams need to be represented as pipes. (A pipeisjust adata
connection to another process, in this case between our process and the command that
we are executing) The valid values that can be assigned to the various streams include
open files, file descriptors or other streams (so that st der r can be made to appear on
st dout for example). The documentation shows how to replace each of the

os. popen functions in more detail.

One big improvement using subpr ocess rather than the older functions is that the
subpr ocess moduleraises an OSEr r or exception if the requested command can not
be found. The older functions generally left you with no clear indication of an error!

We will return to the use of subpr ocess and the concept of data pipes later in the inter
process communi cations topic.

What about Security?

Theres alot said about computer security these days and most of the facilities that
ensure a secure environment are provided by the operating system. Just as other OS
features are avail able through the OS API so we can access security features too, but
with the important proviso that the operating systemwill still regulate our access to
certain features according to the rights granted to the user who is runing the program.
So if we want to gain access to another users files we need to have that permission
anyway, its not an open invite to evade the built in security of the system - at least it
shouldn't be!

In this section we will take alook at some of the security related functions available,
such as determining the user id, changing ownership of afile and finally using
environment variables to find out about the current user's environment.

D:\DOC\HomePagatutor\tutos.htm Page 328 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Usersand File Ownership

Thefirst of these tasks, finding out the current user's ID, is done with the

os. get ui d function. The User ID isin the form of a number and converting that to a
user name is slightly more complex but we rarely need to do that since we can usually
get the user's name with the use of the get pass. get user () function which simply
looks at the various environment variables which might hold the information. We use it
likethis:

>>> j nport getpass
>>> print getpass. getuser()

The user ID is however the value that the program needs to modify security settings, so
we obtain it like:

>>> jnport oOs
>>> print os.getuid()

Probably the most common use for thisis to programmatically change the ownership of
afile, perhaps one we created earlier as part of our program. For an example we will use
one of thefiles we created earlier in this topic:

i mport os

os.chdir(r' F:\ PROIECTS\ Pyt hon\ Root ')
os.system('Is -1 *.txt')

id = os.getuid()
os.chown(' FA. txt',id,-1)
os.system('Is -1 *.txt')

Weusesyst en() to display the directory listing before and after the call to

chown() so that we can see any changes. We call chown() with the user ID that we
obtain fromget eui d() and use- 1 for the third parameter of chown() to indicate that
we don't want to change the group ownership. (If we did thereis also an

os. get gi d() function for fetching the group id). Note that the script will only have an
effect if you run it as a different user from the current owner. Also that user must have
permission to affect the change, so | recommend you log in as an adminstrator (or
'root’).

D:\DOC\HomePagatutor\tutos.htm Page 329 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Note that chown() does not tell you anything about the outcome so if you needed to
check the result you would have to use something like st at to check the user id value
before and after and thus check that the changes you expect have actually occured.

The User Environment

In this section we look at the environment in which a process runs. When we start a
program it inherits a whole memory context from the program which launches it, which
is usually a users command line shell - either MS DOS or perhaps the Bash or Korn
shells on Unix based systems. That environment includes lots of information about the
system such as the users name, home directory, current directory, temporary directory,
search paths etc. This means that by setting various environment variables each user can
to some degree customi se how the operating system works and even individual
programs. For example Python takes heed of the PYTHONPATH environment variable
when searching for modules. So two different users on the same computer could have
different module search paths because they have each set up their own value for
PYTHONPATH

Programmers can take advantage of this by defining some program specific environment
variables that the user can set to over-ride the normal program default values. For thisto
be effective we need to be able to read the current environment to find these values. To
do this we can either read a single variable using the os. get env() function or all of
the currently set variables by looking at the os. envi r on variable which contains a
dictionary of the name/value pairs.

Wewill first of all print all the environment variables, and you might be surprised to see
how much information is availablein this list:

>>> jnport os
>>> print o0s.environ

Thats it! It couldn't be much easier. Of course we could pretty it up abit if we wanted to
using the normal dictionary and string operations. However, in most cases it's much
more useful to get at the value of the variables one at atime, which we do like this:

>>> 0s. get env(' PYTHONPATH)

This shows whether we have set our PYTHONPATH variable and if so, to what.

D:\DOC\HomePagatutor\tutos.htm Page 330 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

Typical usage of get env() would be during initialisation of a program when we set up
things like the folder in which datafiles are found. In the following example we check to
see where our address books should be stored, uysing a default of the current directory
if no variable exists:

... other initialisation steps here.
fol der = os.getenv(' PY_ADDRESSES' , o0s.getcwd())
... rest of program here

Noticethat if no value exists for the variable PY_ADDRESSES then get env() returnsits
second argument which is our default |ocation.

Normally the user would create and set such environment variables manually using the
operating system. For example in Windows XP it's done via the

MyConput er - >Pr oper ti es- >Advanced- >Envi r onnment Vari abl es
sequence of settings.

On Linux or MacOSiit is done from a command prompt by using the export or
set env commands depending on the shell being used.

On some operating systems, but not all, it is possible to change the val ues of an existing
environment variable. Be very careful if you do this since on some systems it can result
in you overwriting other values. Also while some operating systems will mirror these
changes back into the users environment in most cases the changes will only apply in the
context of the writing process.

Thus if the OS supports it we could write our default folder value back to the users
environment to ensure that other instances of our program use the same location.

other code as above
put env(f ol der)
... carry on with the rest of the program

Some Unix environment variables are used by many programs, for example:
* EDITOR - determines which editing program the user prefers to use, typically

ether 'ed’, 'vi', 'vim' or 'emacs. Other programs can launch that programif the
user needs to edit atext file as part of the application.

D:\DOC\HomePagatutor\tutos.htm Page 331 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

* PRINTER - determines how the user prefersto print files.
* PAGER - determines the users preferred file viewing program, frequently this
will be set to one of 'moré, 'less or 'view'

That's al I'll say about environments for now. we will touch on them again in alater
topic but for now, if you are wondering how to get user specific data remember to look
and seeif its already there as an envirohnment variable, or alternatively give the user the
option of setting it via an environment variable specififc to your program.

And there's more, much morel

The os module and its friends contain far too much to cover in asingletopic. In fact
even the Python documentation takes several html pages to describe the os module
alone and a page each for the other modules. Please explore the wesalth of functionality
provided. You will discover many weird and wonderful names in there. Many of these
come from the Unix operating system and its API. The os module does its best to
provide equivalent functionality on any operating system but if you want to find out
more about what these functions do, often the best way is to read the Unix
documentation. A good place to start, especialy if you don't have a Unix/Linux system
to hand, is with the O'Reilly book, Unix Systems Programming for SVR4.

And if thislook at operating systes has whetted your appetite then a good geneal
operating systems book is Fundamentals of Operating Systems by James Lister. It's
short and easy to read with many diagrams of the concepts. If you want to get closer to
the code level then thereis no better book than Andrew Tanenbaum's classic text:
Operating Systems. Design And I mplementation. This was the book that inspired Linus
Torvalds to write his own operating system, which went on to become the phenomenon
that is Linux!

| Points to remember

D:\DOC\HomePagatutor\tutos.htm Page 332 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

Working with the Operating System 22/01/2006

The OS provides an environment in which proceses can run

The OS provides access to the computers hardware

The OSis accessed viaan AP, usually writtenin C

Python's os module provides a wrapper on top of the OS API

Theos. pat h and gl ob modules facilitate access to files

® system(), popen(), command() and Popen al provide different levels of
process control and 1 PC.

® getuid(),getenv() andreated features allow usto find out about the user

and their preferences.

Contents Previous Next

If you have any questions or feedback on this page send me mail at:
alan.gauld@btinternet.com

D:\DOC\HomePagatutor\tutos.htm Page 333 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

References

Books Web Sites Project Ideas Study Topics

Booksto read

Python

Learning Python
Mark Lutz - O'Rellly press. Probably the best book on programming Python if
you already know another language. Typical O'Reilly style, soif you don't like
that you may prefer:

Python - How to Program
Dietel & Diete - ??? Thistakesafairly fast paced trip through Python and
introduces lots of the interesting packages you might liketo use- TCP/IP
networking, Web programming, PyGame etc. It's big but very comprehensive,
although not in-depth.

Programming Python
Mark Lutz - O'Reilly press. Theclassic text. The second edition has less
tutorial (hisLearning Python book now coversthat ground) but describesthe
whys and wher efor es of the language better than many of thethe others, it is
strong on coverage of the more unusual modules and OOP.

Python Programming on Win32
Mark Hammond & Andy Robinson - O'Reilly press. Thisisan essential read if
you ar e serious about using Python on a Windows box. It covers accessto the
registry, ActiveX/COM programming, various GUI S etc.

Python and Tkinter Programming
John Grayson - Manning press. Thisistheonly real in depth book on Tkinter
and does afair job of covering the ground, including the bolt-on PMW set of
widgets. Itsnot a basic tutorial but it does provide a reasonable reference for
the serious Tkinter GUI programmer .

Python in a Nutshell

D:\DOC\HomePagettutor\tutrefs.htm Page 334 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

Alex Martdlli - O'Rellly press. Alex isone of the mainstays of the Usenet
Python community and hit Nutshell book isthe best concise reference on
Python currently available. It isnot atutorial although it does cover the basics
aswell asmost of the common modules.

Python Essential Reference
David Beasey - New Riders. Thisis New Riders equivalent to O'Rellly's
Nutshell book. It issimilar in scope but slightly simmer and based on Python
2.1 rather than Martelli's 2.2. Unfortunately for Beasley a lot of new stuff
appeared in 2.2 so hemisses out in the best reference award. Still an excellent
book.

Thereis also an excdlent online book for more advanced Python programmers called
Dive into Python

Thereis now a new generation of Python books appearing on specialist topics, there are
books focusing on text handling, GUI programming, Network programming, Web and
XML programming, Scientific computing etc etc. Python isreally coming of ageas a
language and the number and depth of books now available reflects that.

Tcl/Tk

Tcl and the Tk toolkit
John Ousterhout - Addison Wedley. The classic on Tcl/Tk by the language's
creator. Very much areference book and rather out of date now. It needsa
2nd edition. The Tk section is of interest to any Tk user regardless of language
(Tk isaGUI library and isimplemented on Tcl, Perl and Python).

Td/Tk in a Nutshdll
Raines & Tranter - O'Rellly press. Thisisthebook | turn to first when looking
for Tk information. It'sonly thefirst couple of sectionsthat interest the Python
programmer sincethat's wherethe bitsrelevant to Tkinter live. On the other
hand, you might likethelook of Tcl too and be motivated to experiment, and
that's never a bad thing!

VBScript

There are several books on VBScript but the only ones | have used and can thus
recommend are:

Windows Script Host

D:\DOC\HomePagatutor\tutrefs.ntm Page 335 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

Dino Esposito - Wrox press(now defunct). A good intro to WSH including both
VBScript and JScript. But itsnot a tutorial and thereference section isvery
brief.

VBScript in a Nutshell
Lomax et al - O'Reilly press. Good reference but thetutorial section isvery
sparse and only suitableif you know how to program (eg. you've done my
tutor! :-). Asareferenceit isquite good but misses out by not providing a code
example per function.

JavaScript

There are lots of books on JavaScript but most of them focus very heavily on the Web,
it can be hard sometimes to disentangle what features are JavaScript the programming
language, and what are web browser features. The best JavaScript books that | know
are

JavaScript the Definitive Guide
Flanagan - O'Relilly press. Thiswas indeed the definitive guide for along time
and although getting a little old now is till the best single book on the subject,
if alittledry.

The JavaScript Bible
Danny Goodman - SAM S(?). This gets good reviews from friends and
colleagues but | confess not to having read it. It is supposed to be a dightly
mor e readable book than the Flanagan one.

Therearelots of others, read the reviews, choose your budget and pick one.
General Programming

There are some classic programming texts that any serious programmer should own and
read regularly. Here are my personal favorites:

Code Complete
Steve McConnell - Microsoft Press. Thisisthe most completereference on all
thingsto do with writing code that | know. | read it after several years of
experienceand it all rang trueand | even learnt some new tricks. It literally
changed theway | wrote programs. Buy it. Now!

Programming Pearls

D:\DOC\HomePagatutor\tutrefs.ntm Page 336 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

Jon Bentley - Addison Wesley. There are two volumes, both invaluable.
Bentley shows how to improve the efficiency of your programsin every
conceivable way, from concept through design to implementation.

Thesearepart of a programming library that came out of Bell Labsin the
1980'sin the wake of Unix. There are so many classicsin this seriesthat | will
simply say that anything from the pens of Ken Thompson, Jon Bentley, Dennis
Ritchie, Andrew Koenig and therest at Bell Labsisworth reading. The styles
may vary but the content is pure gold.

Algorithms by Donald Knuth
Thisisa set of books describing fundamental algorithmsthat are used by
programmersover and over again. Heavy going, and a bit mathematical but, if
you ar e concer ned about the efficiency and absolute correctness of your
programs, they are worth searching out. The whole set has recently been
reissued with some updates.

Object Oriented Programming
I've aready mentioned these, but here they are again anyway:

Object Oriented Analysis
Peter Coad & Ed Yourdon. - A great intro to OO conceptswith avery simple
notation for recording your designs. As an added bonusthe notation isvery
similar to the new Unified Modeling Language (UML) standard that is being
adopted by most books, tools and journals.

Object Oriented Analysis and Design with Applications
Grady Booch - Benjamin Cummings. Thisisanother excellent book, moving
mor e into the detail of designing classes and objects.The 1st edition, if you can
find it, illustrates the lessonsin 5 different OO languages wher eas the second
edition only uses C++ and isthe poorer for it. It uses Booch's own notation
which in my opinion is still the best notation so far seen but it is being eclipsed
by UML and so is effectively obsolete. Booch isreputed to be bringing out a
new edition using UML, but it's been a long time coming...

Object Oriented Software Construction (2nd Ed)
Bertrand Meyer. Meyer has hisown OOP language - Eiffel and usesit to teach
OO very effectively. Because Eiffel is (unfairly) a bit of a minority interest the
book takes a little extra effort to read. It isundoubtedly worth it for the sheer
breadth of coverage of the current OO technology scene.

D:\DOC\HomePagettutor\tutrefs.htm Page 337 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

Other booksworth reading are:

Object Oriented Design Patterns
Gamma, Johnson et al. A revolutionary book when it came out. It contains a
number of common OO design patterns and, perhaps moreimportantly, a
notation for documenting them. Thereis now a flourishing patterns discussion
and a dedicated web site with many additional patternsaswell asvariations of
the onesin the book.

From Clouds to Code
Jesse Liberty(Wrox Press). Thisbook takes you through the process of
building areal OO application - wartsand all. Itsrather like our Case study
but much bigger and includes use of design tools like UML.

Web sitesto visit
L anguages
Python

® The Python web site

* Mark Hammond's Python for Windows page connecting MS Windows and Python.
* A Tkinter GUI tutorial

* A Powerful Web Development environment using Python.

Tcl/Tk - and thus Tkinter

The definitive Tcl site

VBScript

The Microsoft VBScript web site

There are several other online web sites for VB Script resources: components, tips,
chat-rooms etc. One such is the VB Script Forum

JavaScript

There are now severa sites claiming to be "the definitive online source for JavaScript
information™, but a couple of good ones are:

D:\DOC\HomePagatutor\tutrefs.ntm Page 338 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

The JavaScript Source

and

The original Netscape site

Other languages of interest

Java, Perl, Smalltalk, Borland De phi(and now Kylix), Tcl, Lisp/Scheme
Programming in General

Try finding some general programming links pages on Y ahoo, Google etc. There are
several good ones out there, | have no particular favourite. The best thing to do is look
for a specific topic of interest and usually you will find more than enough resources. On
Usenet the comp.software-eng news group is often a good starting point.

Object Oriented Programming
* The Cetus page again
some specifics

* Rational Corp make upmarket tools and host some useful information about OO
devel opment methods and the new UML model ling notation.

Projectstotry

There are severa ideas for projects listed in the tutorial. In addition | will give some
ideas here, in approximatey ascending order of difficulty. Most will be achievable with
the skills learn't here but al of them can be improved by checking the documentation
that comes with Python for alternatives. A couple will definitely require that you start
digging for yourself, recall that one of the requirements of a good programmer was
curiosity!

* Extend the grammar checker to include the extra facilities mentioned.

* Build adatabase of your CDs and a search facility to locate them again. Maybe
also to record the last time or frequency that you play them.

* Create atool to generate HTML pages which display alist of thefilesin a
directory as links (so that you can open them by clicking).

D:\DOC\HomePagatutor\tutrefs.ntm Page 339 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

References 22/01/2006

Other places to look include the unique Usel ess Python web site which has many sample
scripts plus ideas for new ones. They are all quite short and within the scope of a
"graduate’ of my tutorial. Finally once you fed that you are getting the hang of things
try searching for Python projects on SourceForge and join one that |ooks interesting.
Help contribute to the open source revol ution that brought you Python inthe first place!

Topicsfor further study

If al the projects above still eave you looming for more here are a few areas for you to
explore and become expert in:

GUI with Tk

Web programming - CGlI
Toolkits

Frameworks

Databases

That's all thereis. If you'd like to send me feedback on any aspect of the tutorial then
send me mail.
Thanks for getting herel

D:\DOC\HomePagettutor\tutrefs.htm Page 340 of 340

CuuDuongThanCong.com

http://cuuduongthancong.com?src=pdf

