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Land-use classification based on spaceborne or aerial remote sensing images has been extensively stud-
ied over the past decades. Such classification is usually a patch-wise or pixel-wise labeling over the whole
image. But for many applications, such as urban population density mapping or urban utility planning, a
classification map based on individual buildings is much more informative. However, such semantic clas-
sification still poses some fundamental challenges, for example, how to retrieve fine boundaries of indi-
vidual buildings. In this paper, we proposed a general framework for classifying the functionality of
individual buildings. The proposed method is based on Convolutional Neural Networks (CNNs) which
classify façade structures from street view images, such as Google StreetView, in addition to remote sens-
ing images which usually only show roof structures. Geographic information was utilized to mask out
individual buildings, and to associate the corresponding street view images. We created a benchmark
dataset which was used for training and evaluating CNNs. In addition, the method was applied to gener-
ate building classification maps on both region and city scales of several cities in Canada and the US.
� 2018 The Author(s). Published by Elsevier B.V. on behalf of International Society for Photogrammetry

and Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The classification of land cover from Earth Observation (EO)
images in complex urban environments has been a focus in remote
sensing over the past decades (Anderson et al., 1976; Pal and
Mather, 2003; Yuan et al., 2005; Stefanov et al., 2001; Rodriguez-
Galiano et al., 2012; Albert et al., 2017). Beyond, high resolution
spaceborne and aerial images are one of the handful information
sources for monitoring urban development on large scales.

However, the transfer from land cover to land use in EO-data is
complex and relies mostly on the geometry and the appearance of
individual buildings and the patterns they group together (Lu and
Weng, 2006; Gong et al., 1992; Paola and Schowengerdt, 1995;
Pacifici et al., 2009; Khorram et al., 1987; Di et al., 2000; Cheng
et al., 2015; Huang et al., 2014, 2015, 2017). The correlation of
physical indicators such as building volumes, density or alignment
has been used to infer the usage of buildings, e.g. as commercial
areas (e.g. Fig. 1(a)), residential areas (e.g. Fig. 1(b)) or industrial
areas (e.g. Fig. 1(c)). Nevertheless, such pattern analysis cannot
be directly transferable to the classification of individual buildings
as we go to a finer level of urban intrinsic scale. For example, Fig. 1
(a) shows a commercial area comprised of multiple high-rise build-
ings. However, the label ”commercial area” cannot be assigned to
all the building instances within it. As illustrated in Fig. 2, the cor-
responding street view images show that the commercial area is
comprised of a few apartments, office buildings, and one church.
This also applies to the example shown in Fig. 1(b) and (c),
where both the residential and industrial areas are comprised of
buildings with different functionalities. As can be seen, land-use
classification at a level of individual buildings is not a trivial task.
Usually, such a classification map is only obtainable through city
cadastral databases, not accessible or sometimes even not existent.
Updating such databases without automatic methods can be very
labor intensive. Hence, automatically achieving a building
instance-level classification is necessary and can be beneficial for
applications related with urban planning. Towards an automatic
classification of individual buildings, the challenges are twofold.
Firstly, remote sensing images usually only contain roof structures
due to their nadir-looking imaging geometry. The visual difference
of the roofs between certain building classes, e.g. apartments and
office buildings, can be subtle, as an example shown in Fig. 2.
Secondly, the extraction of building footprints directly from
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Fig. 1. Examples of land-use classification.

Fig. 2. The commercial land-use area as shown in Fig. 1(a), along with the street view images for some buildings selected by the red rectangles. These buildings do not belong
to the same category, even though they are located in the same land-use area. Besides, compared to the roof structures, the information of façade structures displayed in
street view images is richer and more sufficient to be used for building instance classification.

Fig. 3. The proposed workflow for land-use classification at a level of individual buildings.
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remote sensing images is still under preliminary research. A clear
segmentation of building footprints usually requires height infor-
mation which comes at an additional cost.

In this paper, we propose a general framework to tackle the
abovementioned challenges, which exploits the information
extraction from freely available street view images and online geo-
graphic maps. Specifically, façade structures shown in online street
view images are sufficiently rich for building functionality classifi-
cation, and the online map services, such as OpenStreetMap
(OpenStreetMap, 2017) or Google Maps, can provide the building
footprints which can be associated to street view images via their
geographic locations. As shown in Fig. 2, the façades displayed in



Fig. 4. Geographic information (GPS) retrieved from Google Maps of the remote
sensing image in Fig. 2, with the color randomly assigned to each building mask.
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street view images reveal much more details of different types of
buildings than the corresponding roof patches. Therefore, building
instances are classified based on their geo-tagged street view
images in the proposed method, and the inferred labels are then
linked to individual building footprints through spatial clustering.
We also build a benchmark dataset of building street view images
to train Convolutional Neural Networks (CNNs) for the classifica-
tion over large areas, as CNN has been demonstrated its powerful
ability in the tasks of this sort (Russakovsky et al., 2015; Zhou
et al., 2016; Lin et al., 2014).

In a summary, the contributions of this paper are listed as
follows:

� Proposed a general framework for land-use classification at a
level of individual buildings.

� Built a street view benchmark dataset for training building
instance CNN classifiers based on façade structures. The dataset
utilized in this paper can be downloaded via www.sipeo.bgu.-
tum.de/downloads/BIC_GSV.tar.gz
Fig. 5. Outlier examples of the retrieved street view images. We can see that
� The obtained building classification maps demonstrated the
potentials for many innovative urban analysis, e.g. very high
resolution urban population density mapping, urban social
structure understanding, city economy structure analysis and
general urban planning.

2. Related work

Feature extraction from remote sensing images plays a vital role
in land-use classification. Handcrafting features have been well
studied for decades, such as scale-invariant feature transform
(SIFT) (Lowe, 1999) encoded by bag of visual words (BoVW)
(Yang and Newsam, 2010; Cheriyadat, 2014; Zhu et al., 2016), mul-
tiple textural features (Xu et al., 2016), 3D features derived from a
digital surface model (Taubenböck et al., 2013) and features
learned by sparse coding methods (Wang et al., 2014; Yang et al.,
2014; Sun et al., 2015; Rigas et al., 2013; Zhang et al., 2015; Tuia
et al., 2015, 2016; Yao et al., 2016; Cheng et al., 2015).

Recently, many approaches based on deep learning techniques
have emerged (Cheng et al., 2017; Ma et al., 2016; Zhang et al.,
2018). Chen et al. (2014) proposes a hierarchical feature extraction
method via stacked autoencoders, which merges both spectral and
spatial information of hyperspectral images for land-use classifica-
tion. In Zou et al. (2015), deep belief networks are employed for the
feature learning in remote sensing scene classification. Both Penatti
et al. (2015) and Marmanis et al. (2016) investigate the possibility
of transferring features learned by CNN from ImageNet dataset
(Deng et al., 2009) to achieve remote sensing image classification
by fine-tuning procedures. To improve the composition-based
inference of land-use classes, multiscale CNN-based approaches
are developed in Zhao and Du (2016), Luus et al. (2015), and Liu
et al. (2016). By exploiting deep Boltzmann machine, a novel
weakly supervised learning approach for object detection in remote
sensing images is introduced (Han et al., 2015). For effectively deal-
ing with the problem of object rotation variations, a rotation-
invariant CNN model is proposed in Cheng et al. (2016). Based on
greedy layerwise unsupervised pretraining, Romero et al. (2016)
proposes a novel unsupervised deep feature extraction method.
Taking advantage of geographical information from OpenStreet-
Map, a fully convolutional neural network is trained to achieve
pixel-wise classifications in optical images on large scales
(Maggiori et al., 2017). Recurrent Neural Network (RNN) is also
proved to be efficient for classifying sequence-based data like
hyperspectral images (Mou et al., 2017). An end-to-end fully
Conv-Deconv network for unsupervised spectral-spatial feature
extraction in hyperspectral images has been proposed in Mou
there is no available information of building façades for the classification.
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Fig. 6. Examples of the benchmark dataset. It totally contains 19,658 street view images of buildings with eight classes, i.e. apartment, church, garage, house, industrial, office
building, retail and roof. The images are downloaded from Google StreetView (Anguelov et al., 2010), and the associated labels are jointly retrieved from OpenStreetMap based
on the geographic information.

Fig. 7. Number of street view images of each building class.
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et al. (2018). In order to better interpret land-uses of Synthetic
Aperture Radar (SAR) images in urban areas, Hughes et al. (2018)
proposes a pseudo-siamese CNN for identifying corresponding
patches in very-high-resolution (VHR) optical and SAR remote
sensing imagery. Surveys about the applications of deep learning
techniques to land-use classification with remote sensing images
are proposed in Zhang et al. (2016), Zhu et al. (2017).

Even the abovementioned literature is of course not exhaustive,
none of them have explicitly addressed the land-use classification
at a level of individual buildings.
3. Overall workflow

As illustrated in Fig. 3, the proposed workflow for building
instance classification contains the following steps:

� Retrieval of building footprints and associated street view
images.

� Outlier removal by the pretrained CNN on Places2 dataset (Zhou
et al., 2016).

� Building instance classification by the CNN trained on our
benchmark dataset.

3.1. Retrieval of building footprints and street view images

The building footprints and their geographic locations, can be
retrieved from online geographic information systems (GIS), such
as OpenStreetMap or Google Maps. For example, the building foot-
prints of the area shown in Fig. 2 are displayed in Fig. 4, along with
the associated GPS coordinates (latitude, longitude). The color is
randomly assigned to indicate different building instances. Given
these GPS coordinates, we can download the corresponding Google
StreetView images (Anguelov et al., 2010) which show façade
structures of individual buildings, since the retrieved images can
display these specific locations by the closest panoramas.

3.2. Outlier removal by pretrained CNN on Places2 dataset

Due to the uncontrolled quality of street view images, many of
them cannot be directly utilized for the building classification. For



Fig. 8. GPS locations of our benchmark dataset. We split all the images into two parts: one for training (17,600 images) and the others for testing (2058 images). Note that all
the testing images are located in different cities with the training ones.

Table 1
Building class descriptions from OpenStreetMap.

Apartment A building arranged into individual dwellings, often on
separate floors. May also have retail outlets on the ground
floor

Church A building that was built as a church
Garage A building suitable for the storage of one or possibly more

motor vehicle or similar
House A dwelling unit inhabited by a single household (a family

or small group sharing facilities such as a kitchen)
Industrial A building where some industrial process takes place
Office building A building where non-specific commercial activities take

place
Retail A building primarily used for selling goods that are sold to

the public
Roof A structure that consists of a roof with open sides, such as

a rain shelter, and also gas stations
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example, as shown in Fig. 5, one retrieved image is taken from the
building interior and the other two buildings are occluded by a
vehicle and trees on the side-walks. Therefore, the corresponding
façade structures are not available for classifying these buildings.
These outliers can severely influence the classification results. For
removing them, we employ the released VGG16 model
(Simonyan and Zisserman, 2014) trained on Places2 dataset
(Zhou et al., 2016) to preliminarily screen the street view images,
as this architecture has achieved the highest top-1 accuracy.1 The
dataset contains almost 10 million scene photos, labeled with 476
scene categories and attributes, which include the building-related
categories, i.e. [apartment, church, house, industrial area, museum,
building facade, embassy, hospital, parking garage, hotel]. Only the
images belonging to the abovementioned categories are preserved
for the follow-up classification.
1 https://github.com/metalbubble/places365.
3.3. Building instance classification

To train a building instance classifier, we first build a corre-
sponding street view benchmark dataset, which contains totally
19,658 images from eight classes, i.e. apartment, church, garage,
house, industrial, office building, retail and roof, and there are around
2500 images for each building class, as shown in Figs. 6 and 7. The
geo-tagged images are downloaded through Google StreetView
API,2 with the associated metadata,3 i.e. the image size and pitch
value are set to be 512� 512 pixels and 10degrees, respectively.
As illustrated in Fig. 8, all the street view images are located over
several cities of the US and Canada, e.g. Montreal, New York and
Denver, and their associated ground truth building labels are
extracted from OpenStreetMap.4 The descriptions for the building
classes are demonstrated in Table 1.

Since the dataset is not sufficiently large to train a CNN with
millions of parameters from the scratch, we choose to fine-tune a
pretrained CNN with our dataset. It is common that a pretrained
CNN on a large dataset such as ImageNet (Russakovsky et al.,
2015) can be well adapted to other new tasks with small scale
datasets, since low-level features such as corners and edges gener-
ated by prior layers of CNN are general in different images. The
high-level image representations extracted by posterior layers
are dependent on different tasks. Therefore, fine-tuning the layers
of the pretrained CNN with the new dataset has been proven to be
an efficient way for the adaptation of the CNN to a new training
task.

To further improve the classification robustness, the street view
images for each building instance are classified, and the building
class can be obtained in a decision level. Assuming there are
Mstreet view images retrieved of the study building instance, the
final building class ycan be determined by
2 https://developers.google.com/maps/documentation/streetview/.
3 https://developers.google.com/maps/documentation/streetview/intro.
4 http://wiki.openstreetmap.org/wiki/Map_Features#Building.
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Fig. 9. (a) Illustration of different looking-angles for the same building (red rectangular). (b) The corresponding retrieved street view images: Left column shows the obvious
building façades, while the right two images are outliers. In order to improve the robustness, we classify several street view images for one building, and fuse their
classification labels in a decision level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The learning and top 1-precision curves of the four networks, i.e. AlexNet (Top-left), VGG16 (Top-right), ResNet18 (Bottom-left) and ResNet34 (Bottom-right). It can
be seen that training losses of the four networks reduce as the epochs increase. Besides, the validation learning curve of AlexNet converges until 80 epochs, and those of the
other three networks can converge within 60 epochs. Overfitting behaviors are found in ResNet18 and ResNet34, and it is more severe in ResNet34. One plausible reason is
that the total parameter number of ResNet34 (21 million) is more than that of ResNet18 (11 million). As shown by top-1 precisions, AlexNet can achieve about 65%, while the
other networks can obtain about 70%.



Fig. 11. The associated normalized confusion matrices of the four networks evaluated on the test images, i.e. AlexNet (Top-left), VGG16 (Top-right), ResNet18 (Bottom-left)
and ResNet34 (Bottom-right).

Fig. 12. F1 score performances of the four trained networks on the eight building
classes. For the classes of apartment, church, garage, industrial and office building,
VGG16 achieves the highest F1 score, and for the other classes, ResNet34 is the best
among them.

Table 2
Overall precisions, recalls and F1 scores.

Network Precision Recall F1 score

AlexNet 0.55 0.53 0.53
VGG16 0.59 0.58 0.58

ResNet18 0.58 0.57 0.57
ResNet34 0.59 0.57 0.56

Bold values refer to the highest performance that the listed CNNs achieved.
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y ¼ argmax
i

1
M

XM�1

j¼0

f ðjÞi ; ð1Þ

where f ðjÞi is the ith element of the CNN softmax layer output fðjÞ,
which denotes the probability distribution over the whole building
classes, and jis the index of the classified street view image. For
example, Fig. 9 shows a building to be classified and its correspond-
ing street view images from four different positions. After the right
two images filtered by the outlier removal step, we can calculate
the final probability distribution vector by averaging those of the
left two images and obtain the building class accordingly.
4. Experiments

We train several state-of-the-art CNN architectures, e.g. Alex-
Net (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman,
2014) and ResNet (He et al., 2016) by fine-tuning all the convolu-
tional layers with our benchmark dataset, and demonstrate the
corresponding training and testing performances. Among those
networks, we choose the best one for generating building classifi-
cation maps both on region and city scales.



Fig. 13. Illustration of one study area in Vancouver (image is from Google Earth).

Classification map (ground truth) Predicted classification map (VGG16)
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Fig. 14. The predicted building classification map (Right), along with the ground truth (Left), where different colors represent different building classes. The total number of
building instances in this area is 196. Our result predicts 93 apartments, 10 churches, 13 garages, 24 houses, 1 industrial building, 21 office buildings, 26 retails and 1 roof. 7
buildings are not classified, since no corresponding street view images are found. Moreover, the confidence score for the class of each building is shown by the opacity of the
associated color mask, i.e. the higher the opacity, the larger the confidence score and vice versa.

Fig. 15. (Left) The confusion matrix of the classification result of the area in Vancouver. We can see that this area is mainly composed by apartments. (Right) 2011 census
population density of Vancouver. The white rectangle indicates the study area, which has a high population density of over 10,000/km2.
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Fig. 16. Illustration of one study area in Fort Worth (image is from Google Earth).
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Fig. 17. The predicted building classification map (Right), along with the ground truth (Left). The total number of buildings in this area is 316. Our result predicts 34
apartments, 30 churches, 2 houses, 19 industrial buildings, 152 office buildings, 28 retails and 6 roofs. There are no street view images for the remaining 45 buildings.

5 http://pytorch.org/.
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4.1. Training

As illustrated in Fig. 8, we split the whole dataset into two
parts: 17,600 images for training (2200 images for each building
class) and 2058 images for testing. Note that all the testing images
are retrieved from different cities with those utilized for training.
In order to monitor the training status of networks, we randomly
select 3200 images from the training samples to be the validation
data. We train four different networks i.e. AlexNet, VGG16,
ResNet18 and ResNet34 following the same procedure: Convolu-
tional layers of all these networks are initialized by those pre-
trained with ImageNet, and fully connected layers are randomly
initialized following a uniform distribution.

Each training batch contained in total 64images. The stochastic
gradient descent algorithm with a learning rate of g ¼ 5 � 10�4 and
a momentum value of p ¼ 0:9 was employed for training. To adjust
the learning rate, we decayed its value by a factor of 0:1 in every
30epochs. Cross-entropy loss was utilized for training with the
weight decay parameter of w ¼ 10�5. The neurons of fully con-
nected layers were dropped out by a probability of 25%. To aug-
ment the training data, we randomly cropped 224� 224 pixels
from the original 256� 256 pixels and randomly flipped the
cropped images horizontally. All the experiments were imple-
mented with Pytorch5 and carried out by one NVIDIA TITAN X (Pas-
cal) 12 GB GPU.

As shown in Fig. 10, we plot the learning curves of both training
and validation data, and calculate the corresponding top 1-
precision values during training. It can be seen that training losses
of the four networks reduce as the number of epochs increases.

http://pytorch.org/


Fig. 18. The confusion matrix of the classification result of the area in Fort Worth.
We can see that this area is mainly composed by office buildings, which indicates
that it is a business district and may locate in the center of Fort Worth.

Fig. 20. Pie chart of the building class proportions of the predicted buildings of
Calgary.

J. Kang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 44–59 53
Besides, the validation learning curve of AlexNet converges until 80
epochs, and those of the other three networks can converge within
60 epochs. Overfitting behaviors are found in ResNet18 and
ResNet34, and it is more severe in ResNet34. One plausible reason
is that the total parameter number of ResNet34 (21 million) is
more than that of ResNet18 (11 million). As shown by the top-1
precisions, AlexNet can achieve about 65%, while the other net-
works can obtain about 70%. For the follow-up evaluations, we
choose ResNet18 trained until 40 epochs and 25 epochs of
ResNet34 and compare the performances of those four networks.
Fig. 19. The city-scale building classification map of Calgary, where each classified build
there are three main industrial districts, and the downtown area is crowded by office buil
and the downtown areas (black rectangles). Such classification map can infer that Calga
industrial blocks are located. (For interpretation of the references to colour in this figur
4.2. Testing

As illustrated in Figs. 11 and 12, we demonstrate the normal-
ized confusion matrices of all the trained networks evaluated by
our test data, and the associated F1 scores of the eight building
classes, respectively. F1 score (F1), also known as F-measure, is a
criteria to measure classification accuracy, which considers both
the precision pand the recall r. It is defined as

F1 ¼ 2 � p � r
pþ r

: ð2Þ
ing instance is displayed as a colored point with GPS coordinates. It is obvious that
dings. Correspondingly, we also present the remote sensing images of one industrial
ry is an industry city with single central business district to which the three main
e legend, the reader is referred to the web version of this article.)



Table 3
Classification performance of randomly selected 1000 buildings of Calgary.

Precision Recall F1 score Support

Apartment 0.54 0.77 0.64 56
Church 0.00 0.00 0.00 1
Garage 0.41 0.90 0.57 124
House 0.97 0.62 0.75 630

Industrial 0.51 0.80 0.63 82
Office building 0.65 0.19 0.29 58

Retail 0.33 0.37 0.35 43
Roof 0.15 0.83 0.25 6

Overall 0.78 0.64 0.66 1000

Table 4
Classification performance of randomly selected 1000 buildings of Boston.

Precision Recall F1 score Support

Apartment 0.35 0.42 0.38 137
Church 0.06 0.80 0.11 5
Garage 0.51 0.38 0.43 221
House 0.69 0.61 0.65 546

Industrial 0.07 0.25 0.11 4
Office building 0.58 0.62 0.60 60

Retail 0.20 0.42 0.27 19
Roof 0.62 0.62 0.62 8

Overall 0.58 0.53 0.55 1000

Table 5
Classification performance of randomly selected 1000 buildings of Toronto.

Precision Recall F1 score Support

Apartment 0.73 0.83 0.78 212
Church 0.29 0.59 0.39 22
Garage 0.18 0.42 0.25 33
House 0.94 0.73 0.82 575

Industrial 0.36 0.79 0.49 24
Office building 0.04 0.25 0.06 4

Retail 0.84 0.50 0.63 117
Roof 0.33 0.92 0.49 13

Overall 0.82 0.71 0.75 1000

6 https://blogs.ubc.ca/maps/2013/07/03/vancouverpopulationdensity/.

54 J. Kang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 44–59
Moreover, the overall precisions, recalls and F1 scores of the four
networks are demonstrated in Table 2. From the results, we can
see that the classification performance of AlexNet is worse than
the other three networks. For the classes of apartment, church, gar-
age, industrial and office building, VGG16 achieves the highest F1
score, and for the other classes, ResNet34 is the best among them.
According to the overall accuracies shown in Table 2, we choose
the trained VGG16 model for the upcoming generation of building
classification maps of the study areas.

4.3. Building classification maps of study areas

4.3.1. Maps of study areas in Vancouver and Fort Worth
One testing area in Vancouver (image is from Google Earth) can

be seen in Fig. 13. The associated ground truth and predicted build-
ing classification maps are present in Fig. 14, where different colors
represent different building classes. We also draw the correspond-
ing confusion matrix of the inferred result in Fig. 15. The total
number of building instances in this area is 196. Our result predicts
93 apartments, 10 churches, 13 garages, 24 houses, 1 industrial
building, 21 office buildings, 26 retails and 1 roof. 7 buildings are
not classified, since no corresponding street view images are found.
Moreover, the confidence score for the class of each building is
shown by the opacity of the associated color mask, i.e. the higher
the opacity, the larger the confidence score and vice versa. From
the results, we can see that this study area is mainly composed
of apartments, which indicates that it is a residential district and
there may be a high population density of this area. Our analysis
is confirmed by the 2011 census population density of Vancouver
downloaded from the website,6 as shown in Fig. 15(Right). The
white rectangle in the figure marks the study area which has the

highest population density (over 10;000=km2). Such classification
map gives an insight into the social structure of an residential area.
For example, the houses and retails are both grouped together at the
right corner of this district.

Another testing area is located in Fort Worth, shown by the red
rectangle area in Fig. 16. The ground truth and predicted building
classification maps are present in Fig. 17. The associated confusion
matrix is demonstrated in Fig. 18. The total number of buildings in
this area is 316. Our result predicts 34 apartments, 30 churches, 2
houses, 19 industrial buildings, 152 office buildings, 28 retails and
6 roofs. There are no street view images for the remaining 45 build-
ings. According to the predicted result, we can see that this area is
mainly composed of office buildings, which indicates that it is a
business district and may locate in the center of Fort Worth.

https://blogs.ubc.ca/maps/2013/07/03/vancouverpopulationdensity/


Fig. 21. The city-scale building classification map of Boston, where each classified building instance is displayed as a colored point with GPS coordinates. Since most office
buildings and apartments locate in the cropped area, it can be observed that Boston is with one single central business district. It is not an industry city, as no large block of
industrial districts is found. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Office building, apartment and house distribution maps of Boston. We can see that both the densities of office buildings and apartments decrease from the center to
its outside, while it is contrary of the house density.

J. Kang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 44–59 55
4.3.2. City-scale Maps of Calgary, Boston and Toronto
As shown in Figs. 19, 21 and 24, we provide the city-scale build-

ing classificationmaps of Calgary, Boston and Toronto based on clas-
sifying the retrieved 6124, 64,389 and 45,978 building street view
images, respectively, where each classified building instance is dis-
played as a colored point with its GPS coordinate. Besides, Figs. 20,



Fig. 23. Pie chart of the building classproportions of the predicted buildings of Boston.

Fig. 24. The city-scale building classification map of Toronto and the associated remote s
the center of Toronto, and most industrial buildings are distributed in the regions aroun
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23 and 26 demonstrate the associated numerical proportions of
building classes based on the classification results. In order to quan-
titatively analyze the performance, 1000 buildings in each city are
randomly selected and their associated building tags from OSM
are retrieved according to their GPS locations. The classification per-
formances of the three cities are demonstrated in Tables 3–5,
respectively. Table 3 demonstrates that the overall accuracy of the
classification result in Calgary is around 0:7, given the retrieved
1000 building tags fromOSM.As illustrated in Table 4, by comparing
with the building tags from OSM, the overall accuracy of the classi-
fication map in Boston can reach around 0:55. According to Table 5,
more than 75% buildings in Toronto can be accurately classified.

As shown by the classification map of Calgary, it is obvious that
there are three main industrial districts, and the downtown area is
crowded by office buildings. Correspondingly, we also present the
remote sensing images of one industrial and the downtown areas
(black rectangles). Such classification map can infer that Calgary
is an industry city with single central business district to which
the three main industrial blocks are located.
ensing image of the central city. Most apartments and office buildings are located in
d it.
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Fig. 25. Apartment, office and industrial building distribution maps of Toronto.
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According to the map of Boston, houses obviously dominate the
buildings of the city, and they are located around the city center.
Besides, Boston is also with one single central business district
(noted by the black dashed rectangle), since most office buildings
and apartments locate in this area. The associated remote sensing
image is demonstrated at the bottom of Fig. 21. As shown by the
distribution maps of office buildings, houses and apartments
plotted in Fig. 22, we can see that the densities of office buildings
and apartments decrease from the center to its outside, while it is
contrary of the house density. In addition, Boston is not an industry
city, since no large block of industrial districts is observed in
the classification map and the proportion of industrial buildings
is very low.

From the maps of Fig. 24 and 25, most apartments and office
buildings are located in the center of Toronto, and most industrial
buildings are distributed in the regions around it. As shown in
Fig. 26, the second largest proportion of building classes is apart-
ment, which indicates that the population density is high in Tor-
onto, especially in the city center. Besides, around 10% buildings
are industrial, which indicates industry is one of the fields which
contribute most to the economy of Toronto.
5. Discussion

In our training experiments, all the fully connected layers are
initialized randomly. As for ResNet, there is only one fully
Fig. 26. Pie chart of the building class proportions of the predicted buildings of
Toronto.
connected layer (softmax layer) in the architecture and we utilize
the network pre-trained on ImageNet dataset which contains
totally 1000 classes. The parameters of the fully connected layer
cannot be directly transferred to our task, since there are 8 classes
in our dataset. While, for AlexNet and VGG16, besides the last fully
connected layer (softmax layer), there are two more fully con-
nected (fc) layers to be initialized. Taking VGG16 as an example,
we took two experiments with the same hyperparameters for
training the network on our benchmark dataset, while those two
fully connected layers were initialized in two ways, i.e. initialized
randomly and by the parameters pretrained with ImageNet. As
shown in Fig. 27, VGG16 where the two fully connected layers
were initialized by the pretrained parameters did accelerate the
training of the network, since it can achieve higher classification
accuracy than the one where the fc layers were initialized ran-
domly during the first several epochs. However, both of them
can converge to comparable classification accuracies at last.

According to the classification accuracies of eight building
classes, churches are relatively easier to recognize than any other
classes, since their structures are more unique, while some classes
are not easily identified, e.g. retails and industrials. There are the
following reasons that may influence the classification results.
Firstly, since the ground truth labels come from the OSM users,
manually labeling errors among some building classes exist in
the benchmark dataset, especially for those with similar façade
structures, e.g. some industrial and office buildings. As shown in
Fig. 28(Left), the building displayed by the street view image tends
to be an office building, while the building tag retrieved from OSM
is industrial. Secondly, some street view images include multiple
buildings of different classes, e.g. a house with a garage by its side.
Fig. 27. Top-1 precision curves of VGG16 on the validation dataset with different
initializations of fully connected layers.



Fig. 28. Some results show the reasons that may induce classification errors. (Left) The building displayed by the street view image tends to be an office building, while the
ground truth building tag retrieved from OSM is industrial. (Middle) The building demonstrated in the image is a house, while it is misclassified as garage, since there are both
garage and house structures demonstrated in the image. (Right) Although the building is correctly recognized, the confidence score is not so high, since the typical façade
structure of church is not displayed in the retrieved image.
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From Fig. 28(Middle), the building demonstrated in the image is a
house, while it is misclassified as a garage. Lastly, side faces of
buildings are displayed in some retrieved street view images, thus
the corresponding façade features are not rich for the classification.
As illustrated by Fig. 28(Right), although the building is correctly
recognized, the confidence score is not so high, since the typical
façade structure of church is not displayed in the retrieved image.

It is worth noting that as an alternative, a building rejection
class can be added to replace the outlier removal procedure,
depending on the quality of input data.
6. Conclusion and future work

In this paper, we presented a framework for building instance
classification, which tended to provide more informative classifi-
cation maps. With this approach, relatively high accuracies could
be achieved for land-use classification of individual buildings.
For this task, we built a street view benchmark dataset with
eight building categories for training and testing. By investigat-
ing four different CNN architectures, we chose VGG16 to predict
building instance classification maps on region and city scales.
Such maps help us to get insight of urban areas, and have the
potential for many innovative urban analysis, e.g. very high
resolution urban population density mapping, urban social struc-
ture understanding, city economy structure analysis and general
urban planning.

For the future work, to improve the classification performance,
other information can be fused, e.g. text descriptions associated
with social media images and text information displayed in
images, e.g. brand names. Also, in order to obtain denser building
classification maps, information from remote sensing images and
GIS maps can be exploited for those buildings without street view
images. In case that building footprints cannot be retrieved from
GIS maps, a method of individual building detection in remote
sensing images should be also developed.
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