

Mastering QGIS

Go beyond the basics and unleash the full power of
QGIS with practical, step-by-step examples

Kurt Menke, GISP

Dr. Richard Smith Jr., GISP

Dr. Luigi Pirelli

Dr. John Van Hoesen, GISP

BIRMINGHAM - MUMBAI

Mastering QGIS

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-868-2

www.packtpub.com

Cover image by NASA Earth Observatory

Credits

Authors
Kurt Menke, GISP

Dr. Richard Smith Jr., GISP

Dr. Luigi Pirelli

Dr. John Van Hoesen, GISP

Reviewers
Paolo Corti

Abdelghaffar Khorchani

Gergely Padányi-Gulyás

Commissioning Editor
Dipika Gaonkar

Acquisition Editors
Richard Harvey

Rebecca Youé

Content Development Editor
Samantha Gonsalves

Technical Editors
Ruchi Desai

Manal Pednekar

Copy Editors
Sonia Michelle Cheema

Jasmine Nadar

Project Coordinator
Kinjal Bari

Proofreaders
Martin Diver

Maria Gould

Elinor Perry-Smith

Indexer
Rekha Nair

Graphics
Valentina D'silva

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Foreword

It has been my pleasure to witness the development of both this book, Mastering
QGIS, and the QGIS software in the past 12 months. Who could have predicted
the rapid development and adoption of QGIS in such a short time? QGIS is now
on a par, in terms of its functionality and features, with the best of commercial GIS
application software. With an aggressive code development schedule of quarterly
updates, the QGIS project is adding new features faster than most GIS professionals
can keep pace. To help with the dire need for professional training, this book has
been created to provide you with the concise technical expertise that will serve you
well, both now and in future versions of this powerful GIS software. I have enjoyed
the privilege of working closely with the contributing authors of this book for the
past 2 years. We have been engaged in an intense curriculum development process
to create the first-ever national GIS curriculum that is based around a national
standard—the U.S. Department of Labor's Geospatial Technology Competency
Model (GTCM). This effort has resulted in a series of GIS courses, all based around
QGIS, that provide a solid foundation upon which this book can be used to enhance
your technical skills. Each of the contributing authors is a very experienced GIS
professional and many of them serve as instructors for highly respected academic
GIS programs. Dr. Richard (Rick) Smith, a certified GIS Professional (GISP),
serves as an assistant professor for the Geographic Information Science program
at Texas A&M University—Corpus Christi, Texas, USA. Rick has been onboard
the curriculum effort since day one, where his expertise in GIS and cartography
is highlighted. Kurt Menke is a certified GIS Professional (GISP) and operates his
own GIS consulting business (Bird's Eye View GIS) in New Mexico, USA, where he
teaches open source GIS software at the local college and universities. Kurt is well
respected in both conservation and healthcare GIS and has completed numerous
GIS projects in these disciplines. Dr. John Van Hoesen (GISP) serves as an associate
professor of geology and is the Environmental Studies Community Mapping Lab
Director at Green Mountain College in Vermont, USA. His passions include open
source software, environmental science, and the great outdoors, where he leads
students in the discovery of our natural world. Luigi Pirelli, from Spain, is a core
contributor to QGIS and a contributing author of this book.

He provided us with the chapters on programming for QGIS. A huge thanks to our
most capable editor, Samantha Gonsalves, for her management during the creation
of this book. A former systems engineer at Infosys in Mumbai, India, and now an
editor for Packt Publishing, her leadership kept the team on a tight deadline to
complete Mastering QGIS while maintaining the highest editorial standards. For all of
us, it has been a fascinating and rewarding experience and now you hold the results
of our effort in your hands. Best wishes for success on Mastering QGIS, now and in
the future!

Phillip Davis
Director, National Information Security & Geospatial Technology Consortium,
Del Mar College,
Texas, USA

About the Authors

Kurt Menke, a certified GIS Professional (GISP), has been working in the GIS
field since 1997. Prior to this, he worked as a professional archaeologist for 10 years
in the American Southwest. He earned a master's degree (MA) in geography from
the University of New Mexico in 2000. That same year, he founded Bird's Eye View
(www.BirdsEyeViewGIS.com) to apply his expertise with the GIS technology to the
world's mounting ecological and social problems. Toward this end, Mr. Menke's
work focuses largely on wildlife conservation and public health. His specialties are
spatial analysis, modeling, and cartography.

He is a longtime advocate of FOSS4G. He began writing MapServer applications
in 2001 and has been using QGIS since 2007. He is one of the coauthors of the
curriculum at the FOSS4G Academy (http://foss4geo.org/) and has been
teaching FOSS4G college courses since 2009. In 2014, Kurt began authoring an
award-winning blog on FOSS4G technologies and their use in community health
mapping (http://communityhealthmaps.nlm.nih.gov/).

A special thanks goes to Phil Davis for his leadership in the
development of the FOSS4G Academy and for his continuing efforts
to promote FOSS4G in the U.S. educational system. I would like
to thank Rick Smith for being such a joy to work with. I'd also like
to acknowledge Karl Benedict for introducing me to the world of
FOSS4G and Jeffery Cavner for his ongoing camaraderie. Finally,
I'd like to thank my beautiful wife, Sarah, for her steady support
and encouragement.

Dr. Richard Smith Jr., is an assistant professor of geographic information science at
the School of Engineering and Computing Sciences at Texas A&M University Corpus
Christi. He has a PhD in geography from the University of Georgia and holds a master
of science in computer science and a bachelor of science in geographic information
science degree from Texas A&M University Corpus Christi. Richard actively does
research in cartography, systems integration, and the use of geospatial technology for
disaster response. Richard is an advocate of FOSS4G and building FOSS4G curriculum.
He is one of the coauthors of the FOSS4G Academy (http://foss4geo.org).

Richard has collaborated with other writers in his field, but Mastering QGIS is his
first book.

I would like to thank my wife and daughter for putting up with my
late-night and weekend writing sessions. I would also like to thank
my coauthor Kurt Menke for being patient with my edits. I would
especially like to thank the editorial team; you have made my first
book-writing experience an excellent one.

Outside those directly involved or affected by the writing of this
book, I'd like to thank my academic and life mentors, Dr. Stacey
Lyle, Dr. Thomas Hodler, Dr. Gary Jeffress, and Dr. Robin Murphy,
for providing their support and good wishes as I begin my career.
In addition to teaching me, you have inspired me to have the
confidence to teach and write. To those of you reading this, I hope I
do my mentors justice by providing a clear and useful text to assist
you in mastering QGIS.

Dr. Luigi Pirelli is a freelance software analyst and developer with an honors
degree in computer science from the University of Bari. He worked for 15 years in
Satellite Ground Segment and Direct Ingestion for the European Space Agency. Since
2006, he has been involved with the GFOSS world, contributing to QGIS, GRASS,
and MapServer core and developing and maintaining many QGIS plugins. He
actively participates in QGIS Hackmeetings. He is the founder of the OSGEO Italian
Local Chapter (http://gfoss.it/drupal/) and now lives in Spain and contributes
to this GFOSS community. During the last few years, he started teaching PyQGIS
by organizing trainings from basic to advanced levels and supporting companies to
develop their specific QGIS plugins.

He is the founder of the local hackerspace group Bricolabs.cc that is focused on Open
Hardware. He likes cycling, repairing everything, and trainings groups on conflict
resolution. Besides this book, he has also contributed to Lonely Planet Cycling Italy.

A special thanks to the QGIS developer community and core
developers as the project is managed in a really open way by
allowing contributions from everyone.

I want to thank everyone with whom I have worked. I learned
from each of them, and without them, I wouldn't be here giving my
contribution to free software and to this book.

A special thanks to my friends and neighbors who helped me with
my son during the writing of this book.

I would like to dedicate this book to my partner and especially to
my son for his patience when he used to see me sitting in front of a
computer for hours instead of playing with him.

Dr. John Van Hoesen is an associate professor of geology and environmental
studies at Green Mountain College in rural west-central Vermont. He earned an MS
in 2000 and a PhD in geology from the University of Nevada, Las Vegas, in 2003. He
is a certified GIS Professional (GISP) with a broad background in geosciences and
has been using some flavor of GIS to evaluate and explore geologic processes and
environmental issues since 1997. He has used and taught some variant of FOSS GIS
since 2003, and over the last 3 years, he has taught graduate, undergraduate, and
continuing education courses using only FOSS GIS software.

About the Reviewers

Paolo Corti is an environmental engineer based in Rome, Italy. He has more than
15 years of experience in the GIS field; after working with proprietary solutions for
some years, he proudly switched to open source technologies and Python almost
a decade ago.

He has been working as a software architect, developer, and analyst for
organizations such as the United Nations World Food Programme, the European
Commission Joint Research Centre, and the Italian Government.

Currently, he is working within the GeoNode project, for which he is the core
developer, in the context of emergency preparedness and response.

He is an OSGeo charter member and a member of the pyCSW and GeoNode Project
Steering committees. He is the coauthor of PostGIS Cookbook by Packt Publishing, and
he writes a popular blog on open source geospatial technologies at http://www.
paolocorti.net.

Abdelghaffar Khorchani has a license degree in geographic information systems, a
fundamental license in natural science applied in biology and geology, and a master's
degree in geomatics and planning. He is also a computer engineer. Currently, he is
pursuing his master's degree in planning and regional development (University of
Laval—Canada) and his PhD in marine sciences (University of Milano-Biccoca – Italy).

He has prepared courses in Japan on fishery resource management approaches
for young leaders and in Spain in the field use of geographic information systems
for scheduling and management. He has also prepared other training modules in
Tunisia on urban administration.

He has 8 years of experience in the geomatics field and has worked on several
projects in the agriculture sector, environment, transport, and mapping.

Currently, he is in the Ministry of Agriculture in Tunisia and is responsible for the
mapping service for project VMS (short for Vessel Monitoring System).

He is also a trainer in the mapping field of Geographic Information System, GPS, and
CAD. He is particularly interested in the development of decision support tools.

A special thanks to Packt Publishing for this opportunity to
participate in the review of this book. I thank my family, especially
my parents, for their physical and moral support. Finally, I want to
thank Cheima Ayachi, who helped me a lot when I was reviewing
this book.

Gergely Padányi-Gulyás is a GIS and web developer and remote sensing analyst
with over 7 years of experience. He specializes in designing and developing web
mapping applications and Geographic Information Systems (GIS). He is a dedicated
user/developer of open source software, and he is also an active member of the
OSGeo local chapter. He is familiar both with client- and server-side programming.

For more than 4 years, he worked for archaeologists as a GIS engineer and remote
sensing analyst where he contributed to laying the foundation of the Hungarian
Archaeological predictive modelling. After that, he became a Java web developer for
a private company. Since then, he has been working at a state nonprofit corporation
as a GIS and web developer where he uses the skills he learned from his previous
jobs: combining GIS with development. During the past few years, he has been
involved with plugin development in different programming languages such as Java
for GeoServer and Python for QGIS.

He has a website (www.gpadanyig.com).

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[i]

Table of Contents
Preface ix
Chapter 1: A Refreshing Look at QGIS 1

QGIS download and installation 2
Installing QGIS on Windows 2
Installing QGIS on Mac OS X 2
Installing QGIS on Ubuntu Linux 2

Installing QGIS only 2
Installing QGIS and other FOSSGIS Packages 3

Tour of QGIS 4
QGIS Desktop 4
QGIS Browser 5

Loading data 6
Loading vector data 6
Loading raster data 7
Loading databases 8
Web services 9

Working with coordinate reference systems 10
Working with tables 11

Table joins 12
Editing data 14

Snapping 15
Styling vector data 16
Styling raster data 18
Contrast enhancement 19
Blending modes 20

Composing maps 23
Adding functionality with plugins 24
Summary 26

Table of Contents

[ii]

Chapter 2: Creating Spatial Databases 27
Fundamental database concepts 27

Database tables 28
Table relationships 29
Structured Query Language 29

Creating a spatial database 30
Importing data into a SpatiaLite database 33

Importing KML into SpatiaLite 33
Importing a shapefile into SpatiaLite 35
Importing tables into SpatiaLite 36

Exporting tables out of SpatiaLite as a shapefile 40
Managing tables 41

Creating a new table 41
Renaming a table 43
Editing table properties 43
Deleting a table 44
Emptying a table 45

Creating queries and views 45
Creating a SQL query 45
Creating a spatial view 46
Dropping a spatial view 48

Summary 49
Chapter 3: Styling Raster and Vector Data 51

Choosing and managing colors 52
Always available color picker components 53
Changeable panels in the color picker 54

Color ramp 54
Color wheel 55
Color swatches 55
Color sampler 57

Managing color ramps 57
Managing the QGIS color ramp collection 58

Renaming a color ramp 59
Removing a color ramp 59
Exporting a color ramp 59
Importing a color ramp 60
Adding a color ramp 60
Editing a color ramp 65

Styling single band rasters 65
Paletted raster band rendering 66
Singleband gray raster band rendering 67
Singleband pseudocolor raster band rendering 70

Table of Contents

[iii]

Styling multiband rasters 73
Creating a raster composite 74
Raster color rendering 76
Raster resampling 79
Styling vectors 80

Single-symbol vector styling 80
Categorized vector styling 81
Graduated vector styling 83
Rule-based vector styling 85
Point-displacement vector styling 88
Inverted polygons vector styling 90

Vector layer rendering 91
Using diagrams to display thematic data 93

Parameters common to all diagram types 94
Diagram size parameters 94
Diagram position parameters 94
Adding attributes to diagrams 95

Creating a pie chart diagram 96
Creating a text chart diagram 98
Creating a histogram chart diagram 100

Saving, loading, and setting default styles 101
Saving a style 102
Loading a style 102
Setting and restoring a default style 102

Summary 103
Chapter 4: Preparing Vector Data for Processing 105

Merging shapefiles 106
Creating spatial indices 107
Checking for geometry errors 107
Converting vector geometries 109

Creating polygon centroids 110
Converting polygons to lines and lines to polygons 110
Creating polygons surrounding individual points 111
Extracting nodes from lines and polygons 112
Simplifying and densifying features 113
Converting between multipart and singlepart features 115
Adding geometry columns to an attribute table 117

Using basic vector geoprocessing tools 118
Spatial overlay tools 119

Using the Clip and Difference tools 120

Table of Contents

[iv]

Using the Intersect and Symmetrical Difference tools 121
Overlaying polygon layers with Union 123

Creating buffers 123
Generating convex hulls 125
Dissolving features 126

Defining coordinate reference systems 127
Understanding the Proj.4 definition format 127
Defining a new custom coordinate reference system 129

Advanced field calculations 131
Exploring the field calculator interface 132
Writing advanced field calculations 134

The first example – calculating and formatting the current date 135
The second example – inserting geometric values 136
The third example – calculating a population-dependent label string 137

Complex spatial and aspatial queries 140
Summary 144

Chapter 5: Preparing Raster Data for Processing 145
Reclassifying rasters 145

Converting datasets from floating-point to integer rasters 148
Resampling rasters 149

Installing and troubleshooting SAGA on different platforms 152
Rescaling rasters 155
Creating a raster mosaic 156
Generating raster overviews (pyramids) 158
Converting between raster and vector data models 161

Converting from raster to vector 161
Converting from vector to raster (rasterize) 162

Creating raster surfaces via interpolation 164
Summary 167

Chapter 6: Advanced Data Creation and Editing 169
Creating points from coordinate data 169

Mapping well-known text representations of geometry 174
Geocoding address-based data 176

How address geocoding works 177
The first example – geocoding using web services 178
The second example – geocoding using local street network data 180

Georeferencing imagery 184
Ground control points 184
Using the Georeferencer GDAL plugin 185
The first example – georeferencing using a second dataset 188

Getting started 188

Table of Contents

[v]

Entering the ground control points 189
Transformation settings 191
Completing the operation 197

The second example – georeferencing using a point file 197
Checking the topology of vector data 200

Installing the Topology Checker 200
Topological rules 200

Rules for point features 201
Rules for line features 201
Rules for polygon features 202

Using the Topology Checker 203
Repairing topological errors via topological editing 207

Example 1 – resolving duplicate geometries 208
Example 2 – repairing overlaps 208

Setting the editing parameters 208
Repairing an overlap between polygons 211

Example 3 – repairing a gap between polygons 213
Summary 214

Chapter 7: The Processing Toolbox 215
About the processing toolbox 216

Configuring the processing toolbox 216
Understanding the processing toolbox 219
Using the processing toolbox 223

Performing raster analyses with GRASS 223
Calculating the shaded relief 225
Calculating least-cost path 228

Calculating the slope using r.slope 229
Reclassifying a new slope raster and the land use raster 230
Combining reclassified slope and land use layers 232
Calculating the cumulative cost raster using r.cost 233
Calculating the cost path using least-cost paths 234

Evaluating a viewshed 236
Clipping elevation to the boundary of a park using GDAL 237
Calculating viewsheds for towers using r.viewshed 238
Combining viewsheds using r.mapcalculator 240
Calculating raster statistics using r.stats 242

SAGA 244
Evaluating a habitat 245

Calculating elevation ranges using the SAGA Raster calculator 245
Clipping land use to the park boundary using Clip grid with polygon 246
Querying land use for only surface water using the SAGA Raster calculator 247
Finding proximity to surface water using GDAL Proximity 248
Querying the proximity for 1,000 meters of water using the GDAL Raster calculator 249
Reclassifying land use using the Reclassify grid values tool 251

Table of Contents

[vi]

Combining raster layers using the SAGA Raster calculator 252
Exploring hydrologic analyses with TauDEM 254

Removing pits from the DEM 255
Calculating flow directions across the landscape 256
Calculating the upstream area above Fort Klamath 257
Calculating a stream network raster grid 259
Creating a watershed-specific vector stream network 260

R 262
Exploring summary statistics and histograms 262

Summary 269
Chapter 8: Automating Workflows with the Graphical Modeler 271

An introduction to the graphical modeler 272
Opening the graphical modeler 272
Configuring the modeler and naming a model 274
Adding inputs 276
Adding algorithms 279
Running a model 284
Editing a model 286
Documenting a model 288
Saving, loading, and exporting models 290
Executing model algorithms iteratively 292
Nesting models 294
Using batch processing with models 298
Converting a model into a Python script 299
Summary 300

Chapter 9: Creating QGIS Plugins with PyQGIS and
Problem Solving 301

Webography - where to get API information and PyQGIS help 301
PyQGIS cookbook 302
API documentation 302
The QGIS community, mailing lists, and IRC channel 303

Mailing lists 303
IRC channel 304
The StackExchange community 304
Sharing your knowledge and reporting issues 304

The Python Console 306
Getting sample data 307
My first PyQGIS code snippet 307
My second PyQGIS code snippet – looping the layer features 308

Exploring iface and QGis 308

Table of Contents

[vii]

Exploring a QGIS API in the Python Console 310
Creating a plugin structure with Plugin Builder 310

Installing Plugin Builder 311
Locating plugins 311
Creating my first Python plugin – TestPlugin 312

Setting mandatory plugin parameters 313
Setting optional plugin parameters 314
Generating the plugin code 315
Compiling the icon resource 315
The plugin file structure – where and what to customize 317

A simple plugin example 319
Adding basic logic to TestPlugin 319

Modifying the layout with Qt Designer 319
Modifying the GUI logic 321
Modifying the plugin logic 322

Setting up a debugging environment 326
What is a debugger? 326
Installing Aptana 327
Setting up PYTHONPATH 327
Starting the Pydevd server 328
Connecting QGIS to the Pydevd server 329

Debugging session example 330
Creating a PyDev project for TestPlugin 331
Adding breakpoints 333
Debugging in action 334

Summary 335
Chapter 10: PyQGIS Scripting 337

Where to learn Python basics 337
Tabs or spaces, make your choice! 338

Loading layers 338
Managing rasters 339

Exploring QgsRasterLayer 340
Visualizing the layer 341

Managing vector files 342
Managing database vectors 343

Vector structure 345
The basic vector methods 345
Describing the vector structure 346

Describing the header 347
Describing the rows 348

Iterating over features 350
Describing the iterators 352

Table of Contents

[viii]

Editing features 352
Updating canvas and symbology 352
Editing through QgsVectorDataProvider 353

Changing a feature's geometry 354
Deleting a feature 355
Adding a feature 356

Editing using QgsVectorLayer 357
Discovering the QgsVectorLayerEditBuffer class 358
Changing a feature's attributes 359
Adding and removing a feature 359

Running processing toolbox algorithms 359
Looking for an algorithm 360
Getting algorithm information 361
Running algorithms from the console 362
Running your own processing script 363

Creating a test processing toolbox script 364
Looking at the custom script 364
Running the script 365

Running an external algorithm or command 365
Running a simple command 366

Interacting with the map canvas 367
Getting the map canvas 368
Explaining Map Tools 368
Setting the current Map Tool 369
Getting point-click values 370

Getting the current Map Tool 370
Creating a new Map Tool 370
Creating a map canvas event handler 371
Creating a Map Tool event handler 371
Setting up the new Map Tool 372

Using point-click values 373
Exploring the QgsRubberBand class 374

Summary 376
Index 379

[ix]

Preface
Welcome to Mastering QGIS. The goal of this book is to help intermediate and
advanced users of GIS develop a deep understanding of the capabilities of QGIS
while building the technical skills that would facilitate in making the shift from a
proprietary GIS software package to QGIS.

QGIS embodies the open source community's spirit. It seamlessly works with other
free and open source geospatial software, such as SAGA, GDAL, GRASS, and fTools,
and supports standards and formats that are published by myriad organizations.
QGIS is about freedom in the geospatial world: freedom to choose your operating
system, freedom from licensing fees, freedom to customize, freedom to look under
the hood, and freedom to contribute to the development of QGIS. As you work
through this book, we believe that you will be amazed at how much capability and
freedom QGIS provides.

QGIS has rapidly risen from the initial version written by Gary Sherman in 2002 to
become a globally used and developed volunteer-led project. In 2009, QGIS version
1.0 was released as an Open Source Geospatial Foundation (OSGeo) project and
continues to be rapidly adopted worldwide. The enduring support of the open
source community has really delivered QGIS to a point where it is now a top-shelf
product that should be in all GIS users' toolboxes, and we want this book to be your
tour guide and reference as you learn, use, and contribute to QGIS.

Preface

[x]

What this book covers
Chapter 1, A Refreshing Look at QGIS, reviews the installation and basic functionality
of QGIS that will be the assumed knowledge for the remainder of the book.

Chapter 2, Creating Spatial Databases, covers how to create and edit spatial databases
using QGIS. While QGIS supports many spatial databases, SpatiaLite will be used in
this chapter. First, core database concepts will be covered, followed by the creation of
a spatial database. Next, importing, exporting, and editing data will be covered. The
chapter will conclude with queries and view creation.

Chapter 3, Styling Raster and Vector Data, covers styling raster and vector data for
display. First, color selection and color ramp management are covered. Next,
singleband and multiband raster data are styled using custom color ramps and
blending modes. Next, complex vector styles and vector layer rendering are covered.
Rounding out the chapter is the use of diagrams to display thematic map data.

Chapter 4, Preparing Vector Data for Processing, covers techniques useful for turning
raw vector data into a more usable form. The chapter will start with data massaging
and modification techniques such as merging, creating indices, checking for
geometry errors, and basic geoprocessing tools. Next, advanced field calculations
will be covered, followed by complex spatial and aspatial queries. The chapter will
end by defining new or editing existing coordinate reference systems.

Chapter 5, Preparing Raster Data for Processing, covers the preparation of raster data
for further processing using the GDAL menu tools and the Processing Toolbox
algorithms. Specifically, these include reclassification, resampling, rescaling, mosaics,
generating pyramids, and interpolation. The chapter will conclude by converting
raster to vector.

Chapter 6, Advanced Data Creation and Editing, provides advanced ways to create
vector data. As there is a great deal of data in tabular format, this chapter will cover
mapping coordinates and addresses from tables. Next, georeferencing of imagery
into a target coordinate reference system will be covered. The final portion of the
chapter will cover testing topological relationships in vector data and correcting any
errors via topological editing.

Chapter 7, The Processing Toolbox, begins with an explanation and exploration of the
QGIS Processing Toolbox. Various algorithms and tools, available in the toolbox,
will be used to complete common spatial analyses and geoprocessing tasks for both
raster and vector formats. To illustrate how these processing tools might be applied
to real-world questions, two hypothetical scenarios are illustrated by relying heavily
on GRASS and SAGA tools.

Preface

[xi]

Chapter 8, Automating Workflows with the Graphical Modeler, covers the purpose and
use of the graphical modeler to automate analysis workflows. In the chapter, you
will develop an automated tool/model that can be added to the Processing Toolbox.

Chapter 9, Creating QGIS Plugins with PyQGIS and Problem Solving, covers the
foundational information to create a Python plugin for QGIS. Information about the
API and PyQGIS help will be covered first, followed by an introduction to the iface
and QGis classes. Next, the steps required to create and structure a plugin will be
covered. The chapter will be wrapped up after providing you with information on
creating graphical user interfaces and setting up debugging environments to debug
code easily.

Chapter 10, PyQGIS Scripting, provides topics for integrating Python analysis scripts
with QGIS outside of the Processing Toolbox. Layer loading and management
are first covered, followed by an exploration of the vector data structure. Next,
programmatic launching of other tools and external programs are covered. Lastly,
the QGIS map canvas is covered with respect to how a script can interact with the
map canvas and layers within.

What you need for this book
To get the most from this book, it is recommended that you install QGIS and
follow the explanations. If you choose to do so, you will need a reasonably
modern computer with access to the Internet to download and install QGIS, read
documentation, and install plugins. QGIS can run on Windows, Mac OS X, and many
Linux distributions.

Who this book is for
This book is for intermediate to advanced GIS users, developers, and consultants
who are familiar with QGIS but want to look deeper into the software to unleash its
full potential. The reader is expected to be comfortable with common GIS functions
and concepts, as possession of this knowledge is assumed throughout the book. This
book focuses on how to use QGIS and its functions beyond the basics.

Preface

[xii]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Type a comma
after $now, and enter 'dd/MM/yyyy' followed by a close parenthesis."

A block of code is set as follows:

CASE
WHEN "POP1996" > 5000000 THEN
 Result
ELSE
 "STATE_NAME"
END

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

CASE
WHEN "POP1996" > 5000000 THEN
 Result
ELSE
 "STATE_NAME"
END

Any command-line input or output is written as follows:

sudo apt-get install qgis-plugin-grass

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "You can explore the
QGIS plugin ecosystem by navigating to Plugins | Manage and Install Plugins."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xiii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/8682OS_ImageBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

Preface

[xiv]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

A Refreshing Look at QGIS
QGIS is a volunteer-led development project licensed under the GNU General Public
License. It was started by Gary Sherman in 2002. The project was incubated with the
Open Source Geospatial Foundation (OSGeo) in 2007. Version 1.0 was released
in 2009. At the time of writing this book, QGIS 2.6 was the stable version and new
versions are released every four months.

In this chapter we will review the basic functionality of QGIS, which will be assumed
knowledge for the remaining chapters in this book. If you need a refresher on QGIS
or a quick-start guide to QGIS, you should read this chapter. The topics we will cover
in this chapter are as follows:

• Downloading QGIS and its installation
• The QGIS graphical user interface
• Loading data
• Working with coordinate reference systems
• Working with tables
• Editing data
• Styling data
• Composing a map
• Finding and installing plugins

A Refreshing Look at QGIS

[2]

QGIS download and installation
QGIS can be installed on Windows, Mac OS X, Unix, Linux, and Android operating
systems, making it a very flexible software package. Both the binary installers and
source code can be downloaded from download.qgis.org. In this section, we will
briefly cover how to install QGIS on Windows, Mac OS X, and Ubuntu Linux. For
the most up-to-date installation instructions, refer to the QGIS website.

Installing QGIS on Windows
For Windows, there are two installation options, which are as follows:

• QGIS Standalone Installer: The standalone installer installs the binary
version of QGIS and the Geographic Resource Analysis Support System
(GRASS) using a standard Windows installation tool. You should choose
this option if you want an easy installation experience of QGIS.

• OSGeo4W Network Installer: This provides you with the opportunity
to download either the binary or source code version of QGIS, as well as
experimental releases of QGIS. Additionally, the OSGeo4W installer allows
you to install other open source tools and their dependencies.

Installing QGIS on Mac OS X
To install QGIS on Mac OS X, the Geospatial Data Abstraction Library (GDAL)
framework and matplotlib Python module must be installed first, followed by the
QGIS installation. The installation files for GDAL, matplotlib, and QGIS are available
at http://www.kyngchaos.com/software/qgis.

Installing QGIS on Ubuntu Linux
There are two options when installing QGIS on Ubuntu: installing QGIS only, or
installing QGIS as well as other FOSSGIS packages. Either of these methods requires
the use of the command line, sudo rights, and the apt-get package manager.

Installing QGIS only
Depending on whether you want to install a stable release or an experimental release,
you will need to add the appropriate repository to the /etc/apt/sources.list file.

With sudo access, edit /etc/apt/sources.list and add the following line to install
the current stable release or current release's source code respectively:
deb http://qgis.org/debian trusty main

deb-src http://qgis.org.debian trusty main

Chapter 1

[3]

Depending on the release version of Ubuntu you are using, you will need to specify
the release name as trusty, saucy, or precise. For the latest list of QGIS releases for
Ubuntu versions, visit download.qgis.org.

With the appropriate repository added, you can proceed with the QGIS installation
by running the following commands:

sudo apt-get update

sudo apt-get install qgis python-qgis

To install the GRASS plugin (recommended), install the optional package by running
this command:

sudo apt-get install qgis-plugin-grass

Installing QGIS and other FOSSGIS Packages
The ubuntugis project installs QGIS and other FOSSGIS packages, such as GRASS
on Ubuntu. To install the ubuntugis package, remove the http://qgis.org/debian
lines from the /etc/apt/sources.list file, and run the following commands:

sudo apt-get install python-software-properties

sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable

sudo apt-get update

sudo apt-get install qgis python-qgis qgis-plugin-grass

QGIS is also available for Android. We have not provided
detailed installation instructions because it is in alpha testing
at the moment. However, there are plans to have a normalized
installation process in a future release. You can find more
information about this at http://hub.qgis.org/projects/
android-qgis.
The download page is available at http://qgis.org/
downloads/android/.
A related app has recently been announced and it is named
QField for QGIS. For a short time, it was named QGIS Mobile.
It is described as a field data capture and management app that
is compatible with QGIS. At the time of writing this, it was in
invite-only alpha testing. It is eventually expected to be available
in the Android Play Store. You can find more information on this
app at http://www.opengis.ch/tech-blog/.

A Refreshing Look at QGIS

[4]

Tour of QGIS
QGIS is composed of two programs: QGIS Desktop and QGIS Browser. Desktop
is used for managing, displaying, analyzing, and styling data. Browser is used to
manage and preview data. This section will give you a brief tour of the graphical
user interface components of both QGIS Desktop and QGIS Browser.

QGIS Desktop
The QGIS interface is divided into four interface types: menu bar, toolbars, panels,
and map display. The following screenshot shows QGIS Desktop with all four
interface types displayed:

The map display shows the styled data added to the QGIS project and, by default,
takes up the majority of the space in QGIS Desktop. The menu bar, displayed
across the top, provides access to most of QGIS Desktop's functionality. The
toolbars provide quick access to QGIS Desktop functionality. The toolbars can
be arranged to either float independently or dock at the top, bottom, left, or right
sides of the application. The panels, such as Browser and Layers, provide a variety
of functionality and can be arranged to either float independently or dock above,
below, right, or left of the map display.

Chapter 1

[5]

There are four toolbars that are particularly useful, and it is recommended that you
enable them:

• The File toolbar provides quick access to create, open, and save QGIS projects
and create and manage print composers

• The Manage Layers toolbar contains tools to add vector, raster, database,
web service, text layers, and create new layers

• The Map Navigation toolbar contains tools that are useful for panning,
zooming, and refreshing the map display

• The Attributes toolbar provides access to information, selection, field
calculator, measuring, bookmarking, and annotation tools

QGIS Desktop offers a number of customization options. You can toggle the visibility
of toolbars by navigating to View | Toolbars, or by right-clicking on the menu bar or
the enabled toolbar button, which will open a context menu allowing you to toggle the
toolbar and panel visibility. You can assign shortcut keys to operations by navigating
to Settings | Configure shortcuts. You can also change application options, such as
interface language and rendering options by navigating to Settings | Options.

QGIS Browser
The QGIS Browser interface (shown in the following screenshot) is composed of
three parts: toolbar, data tree view, and information panel.

A Refreshing Look at QGIS

[6]

The data tree view is an expandable tree listing of all geospatial data files on your
computer and through connections. The information display, which takes most of
the space on the application, contains four tabs that provide different views of the
selected data in the data tree listing, and they are as follows:

• Param: This tab displays details of data that is accessed through connections,
such as a database or WMS.

• Metadata: This tab displays the metadata (if any) of the selected data.
• Preview: This tab renders the selected data. You can zoom into the data

using your mouse wheel and pan using the arrow keys on your keyboard.
• Attribute: This tab displays the attribute table associated with the selected

data. You can sort the columns by clicking on the column headings.

The toolbar provides access to four functions. The Refresh function reloads the data
tree view while the Manage WMS function opens the WMS management screen
allowing you to manage the WMS connections. The New Shapefile function opens
the new vector layer dialog allowing new shapefiles to be created. Finally, the Set
layer CRS function allows you to define the coordinate reference system of the
geospatial data file that is selected in the data tree view.

Loading data
One strength of QGIS is its ability to load a large number of data types. In this
section, we will cover loading various types of data into QGIS Desktop.

In general, data can be loaded in four ways. The first way, which will be covered
in detail in this section, is to use the Add Layer menu under Layer and select the
appropriate type of data that you wish to load. The second way is to open the
Browser panel, navigate to the data you wish to load, and then drag the data onto
the map display or onto the Layers panel. The third way to load data is to enable the
Manage Layers toolbar and click on the button representing the data type that you
wish to load. The fourth way is to locate the data in QGIS Browser, drag the data,
and drop it onto the QGIS Desktop map display or the Layers panel.

Loading vector data
To load vector files, click on Add Vector Layer by navigating to Layer | Add Layer.
This will open the Add Vector Layer dialog that will allow us to choose the source
type and source of the dataset that we wish to load.

Chapter 1

[7]

The source type contains four options: File, Directory, Database, and Protocol.
When you choose a source type, the source interface will change to display the
appropriate options. Let's take a moment to discuss what type of data these four
source types can load:

• File: This can load flat files that are stored on disk. The commonly used flat
file types are as follows:

 ° ESRI shapefile (.shp)
 ° AutoCAD DXF (.dxf)
 ° Comma separated values (.csv)
 ° GPS eXchange Format (.gpx)
 ° Keyhole Markup Language (.kml)
 ° SQLite/SpatiaLite (.sqlite/.db)

• Directory: This can load data stored on disk that is encased in a directory.
The commonly used directory types are as follows:

 ° U.S. Census TIGER/Line
 ° Arc/Info Binary Coverage

• Database: This can load databases that are stored on disk or those
available through service connections. The commonly used database
types are as follows:

 ° ODBC
 ° ESRI Personal GeoDatabase
 ° MSSQL
 ° MySQL
 ° PostgreSQL

• Protocol: This can load protocols that are available at a specific URI. QGIS
currently supports loading the GeoJSON protocol.

Loading raster data
To load raster data into QGIS, click on Add Raster Layer by navigating to
Layer | Add Layer. This will open a file browser window and allow you to choose
a GDAL-supported raster file. The commonly used raster types supported by GDAL
are as follows:

• ArcInfo ASCII Grid (.asc)
• Erdas Imagine (.img)

A Refreshing Look at QGIS

[8]

• GeoTIFF (.tif/.tiff)
• JPEG/JPEG-2000 (.jpg or .jpeg/.jp2 or .j2k)
• Portable Network Graphics (.png)
• Rasterlite (.sqlite)
• USGS Optional ASCII DEM (.dem)

To add an Oracle GeoRaster, click on Add Oracle GeoRaster Layer by navigating
to Layer | Add Layer, then connect to an Oracle database to load the raster. More
information about loading database layers is in the following section.

The Geospatial Data Abstraction Library (GDAL) is a free and
open source library that translates and processes vector and raster
geospatial data formats. QGIS, as well as many other programs,
use GDAL to handle many geospatial data processing tasks.
You may see references to OGR or GDAL/OGR as you work with
QGIS and GDAL. OGR is short for OGR Simple Features Library
and references the vector processing parts of GDAL. OGR is not
really a standalone project, as it is part of the GDAL code now;
however, for historical reasons, OGR is still used.
More information about GDAL and OGR can be found at
http://gdal.org. GDAL is an Open Source Geospatial
Foundation (http://osgeo.org) project.

Loading databases
QGIS supports PostGIS, SpatiaLite, MSSQL, and Oracle databases. Regardless of the
type of database you wish to load, the loading sequence is very similar. Therefore,
instead of covering specific examples, the general sequence will be covered.

First, click on Add Layer under Layer and then choose the database type you wish to
load. This will open a window with options for adding the data stored in a database.
As an example, the following screenshot shows the window that opens when you
navigate to Layer | Add Layer | Add SpatiaLite Layer:

Chapter 1

[9]

Note that the window will look the same for any database
you choose, except for the window name.

To load data from a database, we must first create a connection to the database. To
create a new connection, click on the New button to open a connection information
window. Depending on the database type you are connecting to, different connection
options will be shown. Once you have created a database connection, select it from
the drop-down list and click on Connect; you will see a list of all layers contained
within the database display. If there are a large number of tables, you can select
Search options and perform a search on the database. To load a layer, select it in the
list and click on Add. If you only wish to load a portion of the layer, select the layer
and then click on Set Filter to open the query builder. If you set a query and then
add the layer, only the filtered features will be added.

Web services
QGIS supports the loading of OGC-compliant web services such as WMS/WMTS,
WCS, and WFS. Loading a web service is similar to loading a database service. In
general, you will create a new server connection, connect to the server to list the
available services, and add the service to the QGIS project.

A Refreshing Look at QGIS

[10]

Working with coordinate reference
systems
When working with spatial data, it is important that a coordinate reference system
(CRS) is assigned to the data and the QGIS project. To view the CRS for the QGIS
project, click on Project Properties under Project and choose the CRS tab.

It is recommended that all data added to a QGIS project be projected into the same
CRS as the QGIS project. However, if this is not possible or convenient, QGIS can
project layers "on the fly" to the project's CRS.

If you want to quickly search for a CRS, you can enter the EPSG
code to quickly filter through the CRS list. An EPSG code refers
to a specific CRS stored in the EPSG Geodetic Parameter Dataset
online registry that contains numerous global, regional, and
local CRS. An example of a commonly used EPSG code is 4326
that refers to WGS 84. The EPSG online registry is available at
http://www.epsg-registry.org/.

To enable the "on the fly" projection, perform the following steps:

1. Click on Project Properties under Project.
2. Choose the CRS tab and Enable 'on the fly' CRS transformation.
3. Set the CRS that you wish to apply to the project and make all layers that are

not set to the project's CRS transform "on the fly".

To view the CRS for a layer, perform the following steps:

1. Open the layer's properties by either navigating to Layer | Properties or by
right-clicking on the layer in the Layers panel.

2. Choose Properties from the context menu and then choose the General tab.
3. If the layer's CRS is not set or is incorrect, click on Specify to open the CRS

selector window and select the correct CRS.

To project a layer to a different CRS, perform the following steps:

1. Right-click on the layer in the Layers panel and then choose Save As from
the context menu.

2. In the Save vector layer as dialog, set the file format and filename, then set
CRS to Selected CRS and click on Change to set the target CRS, and save
the file.

Chapter 1

[11]

To create a new CRS or modify an existing CRS, perform the following steps:

1. Click on Custom CRS under Settings to open the Custom Coordinate
Reference System Definition window.

2. Click on the Add new CRS button to add a new entry to the CRS list.
3. With the new CRS selected, we can set the name and parameters of the CRS.

The CRS properties are set using the Proj.4 format. To modify an existing
CRS, click on Copy existing CRS and select the CRS from which you wish to
copy parameters; otherwise, enter the parameters manually.

Proj.4 is another Open Source Geospatial Foundation (http://
osgeo.org) project used by QGIS, and it is similar to OGR and
GDAL. This project is for managing coordinate systems and
projections. For a detailed user manual for the Proj.4 format
used to specify the CRS parameters in QGIS, download it from
ftp://ftp.remotesensing.org/proj/OF90-284.pdf.

Working with tables
There are two types of tables you can work with in QGIS: attribute tables and
standalone tables. Whether they are from a database or associated with a shapefile
or a flat file, they are all treated the same. Standalone tables can be added by clicking
on the Add Vector Layer menu by navigating to Layer | Add Layer. QGIS supports
the table formats supported by OGR along with database tables. Tables are treated
like any other GIS layer; they simply have no geometry. Both types of tables can be
opened within Desktop by selecting the layer/table in the Layers panel, and then by
either clicking on Open Attribute Table under Layer or by right-clicking on the data
layer, and choosing Open Attribute Table from the context menu. They can also be
previewed in Browser by choosing the Attribute tab.

The table opens in a new window that displays the number of table rows and selected
records in the title bar. Below the title bar are a series of buttons that allow you to
toggle between editing, managing selections, and adding and deleting columns. Most
of the window is filled with the table body. The table can be sorted by clicking on
the column names. An arrow will appear in the column header, indicating either an
ascending or a descending sort. Rows can be selected by clicking on the row number
on the left-hand side. In the lower-left corner is a Tables menu that allows you to
manage what portions of the table should be displayed. You can choose Show All
Features (default setting), Show Selected Features, Show Features Visible on Map
(only available when you view an attribute table), Show Edited and New Features,
create column filters, and advanced filters (expression). The lower-right corner has a
toggle between the default table view and a forms view of the table.

A Refreshing Look at QGIS

[12]

Attribute tables are associated with the features of a GIS
layer. Typically, one record in the attribute table corresponds
to one feature in the GIS layer. The exception to this is
multipart features, which have multiple geometries linked
to a single record in the attribute table. Standalone tables are
not associated with GIS data layers. However, they may have
data of a spatial nature from which a spatial data layer can be
generated (for more information, see Chapter 6, Advanced Data
Creation and Editing. They may also contain data that you wish
to join to an existing attribute table with a table join.

Table joins
Let's say that you need to make a map of the total population by county. However,
the counties' GIS layer does not have population as an attribute. Instead, this data is
contained in an Excel spreadsheet. It is possible to join additional tabular data to an
existing attribute table.

There are two requirements, which are as follows:

• The two tables need to share fields with attributes to match for joining
• There needs to be a cardinality of one-to-one or many-to-one between the

attribute table and the standalone table
To create a join, load both the GIS layer and the standalone table into QGIS
Desktop. QGIS will accept a variety of standalone table file formats including Excel
spreadsheets, .dbf files, and comma delimited text files. You can load this tabular
data using the Add Vector Layer menu by navigating to Layer | Add Layer and
setting the file type filter to All files (*) (*.*) as shown in the following screenshot:

Chapter 1

[13]

Once the data is loaded, a join can be completed by following these steps:

1. Select the GIS layer in the Layers panel that will receive the new data from
the join.

2. Navigate to Layer | Properties and choose the Joins menu.
3. Click on the add join button (the one with green plus sign).
4. Choose the Join Layer, Join Field, and Target Field values. The Join Layer

and Join Field values represent the standalone table. The Target Field value
is the column in the attribute table on which the join will be based.

Although in this example the join field and the target field
have the same name, this is not a requirement. The two
fields merely need to hold the same unique ID.

5. At this point, you can choose Cache the join in virtual memory, Create
attribute index on the join field, and Choose which fields are joined. The
last option lets you to choose which fields from the join layer to append to
the attribute table. At this point, the Add vector join window will look like
the following screenshot.

6. Once created, the join will be listed on the Joins tab. The extra attribute
columns from the join layer will be appended to the attribute table, where the
value in the join field matched the value in the target field.

A Refreshing Look at QGIS

[14]

7. Joins can be removed by clicking on the remove join button (the one with red
minus sign).

Joins only exist in virtual memory within the QGIS Desktop
document. To preserve the join outside the map document click
on Save as... under Layer and save a new copy of the layer. The
new layer will include the attributes appended via the join.

Editing data
Vector data layers can be edited within QGIS Desktop. Editing allows you to add,
delete, and modify features in vector datasets. The first step is to put the dataset into
edit mode. Select the layer in the Layers panel and click on Toggle Editing under
Layer. Alternatively, you can right-click on a layer in the Layers panel and choose
Toggle Editing from the context menu. Multiple layers can be edited at a time. The
layer currently being edited is the one selected in the Layers panel. Once you are in
the edit mode, the digitizing toolbar (shown in the following screenshot) can be used
to add, delete, and modify features.

Chapter 1

[15]

From left to right, the tools in the digitizing toolbar are as follows:

• The Current Edits tool allows you to manage your editing session. Here, you
can save and rollback edits for one or more selected layers.

• The Toggle Editing tool provides an additional means to begin or end an
editing session for a selected layer.

• The Save Layer Edits tool allows you to save edits for the selected layer(s)
during an editing session.

• The Add Features tool will change to the appropriate geometry depending
on whether a point, line, or polygon layer is selected. Points and vertices of
lines and polygons are created by clicking. To complete a line or polygon
feature, right-click. After adding a feature, you will be prompted to enter
the attributes.

• Features can be moved with the Move tool by clicking on them and dragging
them to the new position.

• Individual feature vertices can be moved with the Node tool. Click on a
feature once with the tool to select it and the vertices will change into red
boxes. Click again on an individual vertex to select it. The selected vertex
will turn into a dark-blue box. Now, the vertex can be moved to the desired
location. Additionally, edges between vertices can be selected and moved.
To add vertices to a feature, simply double-click on the edge where you want
the vertex to be added. Selected vertices can be deleted by pressing the Delete
key on the keyboard.

• Features can be deleted, cut, copied, and pasted using the Delete Selected,
Cut Features, Copy Features, and Paste Features tools.

Snapping
Snapping is an important editing consideration. It is a specified distance (tolerance)
within which vertices of one feature will automatically align with vertices of another
feature. The specific snapping tolerance can be set for the whole project or per layer.
The method for setting the snapping tolerance for a project varies according to the
operating system, which is as follows:

• For Windows, navigate to Settings | Options | Digitizing
• For Mac, navigate to QGIS | Preferences | Digitizing
• For Linux, navigate to Edit | Options | Digitizing

A Refreshing Look at QGIS

[16]

In addition to setting the snapping tolerance, here the snapping mode can also be set
to vertex, segment, or vertex and segment. Snapping can be set for individual layers
by navigating to Settings | Snapping Options. Individual layer snapping settings
will override those of the project. The following screenshot shows examples of
multiple snapping option choices.

There are many digitizing options that can be set by
navigating to Settings | Options | Digitizing. These include
settings for Feature Creation, Rubberband, Snapping,
Vertex markers, and Curve Offset Tool. There is also an
Advanced Digitizing toolbar which is covered in Chapter 6,
Advanced Data Creation and Editing.

Styling vector data
When you load spatial data layers into QGIS Desktop, they are styled with a random
single symbol rendering. To change this, navigate to Layer | Properties | Style.

There are several rendering choices available from the menu in the top-left corner,
which are as follows:

• Single Symbol: This is the default rendering in which one symbol is applied
to all the features in a layer.

• Categorized: This allows you to choose a categorical attribute field to style
the layer. Choose the field and click on Classify and QGIS will apply a
different symbol to each unique value in the field. You can also use the Set
column expression button to enhance the styling with a SQL expression.

• Graduated: This allows you to classify the data by a numeric field attribute
into discrete categories. You can specify the parameters of the classification
(classification type and number of classes) and use the Set column
expression button to enhance the styling with a SQL expression.

Chapter 1

[17]

• Rule-based: This is used to create custom rule-based styling. Rules will be
based on SQL expressions.

• Point displacement: If you have a point layer with stacked points, this option
can be used to displace the points so that they are all visible.

• Inverted polygons: This is a new renderer that allows a feature polygon to be
converted into a mask. For example, a city boundary polygon that is used with
this renderer would become a mask around the city. It also allows the use of
Categorized, Graduated, and Rule-based renderers and SQL expressions.

The following screenshot shows the Style properties available for a vector data layer:

In the preceding screenshot, the renderer is the layer symbol. For a given symbol,
you can work with the first level, which gives you the ability to change the
transparency and color. You can also click on the second level, which gives you
control over parameters such as fill, border, fill style, border style, join style, border
width, and X/Y offsets. These parameters change depending on the geometry of
your layer. You can also use this hierarchy to build symbol layers, which are styles
built from several symbols that are combined vertically.

A Refreshing Look at QGIS

[18]

Styling raster data
You also have many choices when styling raster data in QGIS Desktop. There is
a different choice of renderers for raster datasets, which are as follows:

• Singleband gray: This allows a singleband raster or a single band of a
multiband raster to be styled with either a black-to-white or white-to-black
color ramp. You can control contrast enhancement and how minimum and
maximum values are determined.

• Multiband color: This is for rasters with multiple bands. It allows you to
choose the band combination that you prefer.

• Paletted: This is for singleband rasters with an included color table. It is
likely that it will be chosen by QGIS automatically, if this is the case.

• Singleband pseudocolor: This allows a singleband raster to be styled with
a variety of color ramps and classification schemes.

The following is a screenshot of the Style tab of a raster file's Layer Properties
showing where the aforementioned style choices are located:

Chapter 1

[19]

Contrast enhancement
Another important consideration with raster styling is the settings that are used for
contrast enhancement when rendering the data. Let's start by loading the Jemez_
dem.img image and opening the Style menu under Layer Properties (shown in the
figure below). This is an elevation layer and the data is being stretched on a black-
to-white color ramp from the Min and Max values listed under Band rendering. By
default, these values only include those that are from 2 percent to 98 percent of the
estimation of the full range of values in the dataset, and cut out the outlying values.
This makes rendering faster, but it is not necessarily the most accurate.

Next, we will change these settings to get a full stretch across all the data values in
the raster. To do this, perform the following steps:

1. Under the Load min/max section, choose Min / max and under Accuracy,
choose Actual (slower).

2. Click on Load.

A Refreshing Look at QGIS

[20]

3. You will notice that the minimum and maximum values change. Click
on Apply.

Default singleband contrast enhancement (left) and more accurate contrast enhancement (right)

You can specify the default settings for rendering rasters
by navigating to Settings | Options | Rendering. Here,
the defaults for the Contrast enhancement, Load min/max
values, Cumulative count cut thresholds, and the standard
deviation multiplier can be set.

Blending modes
The blending modes allow for more sophisticated rendering between GIS layers.
Historically, these tools have only been available in graphics programs and they
are a fairly new addition to QGIS. Previously, only layer transparency could be
controlled. There are now 13 different blending modes that are available: Normal,
Lighten, Screen, Dodge, Addition, Darken, Multiply, Burn, Overlay, Soft light, Hard
light, Difference, and Subtract. These are much more powerful than simple layer
transparency, which can be effective but typically results in the underneath layer
being washed out or dulled. With blending modes, you can create effects where
the full intensity of the underlying layer is still visible. Blending mode settings
can be found at the bottom of the Style menu under Layer Properties in the Layer
Rendering section along with the Layer transparency slider. They are available for
both vector and raster datasets.

Chapter 1

[21]

In this example of using blending modes, we want to show vegetation data (Jemez_
vegetation.tif) in combination with a hillshade image (Jemez_hillshade.img).
Both data sets are loaded and the vegetation data is dragged to the top of the layer
list. Vegetation is then styled with a Singleband pseudocolor renderer; you can do
this by performing the following steps:

1. Choose Random colors.
2. Set Mode to Equal interval.
3. Set the number of Classes to 13.
4. Click on Classify.
5. Click on Apply.

The following screenshot shows what the Style properties should look like after
following the preceding steps.

A Refreshing Look at QGIS

[22]

At the bottom of the Style menu under Layer Properties, set the Blending mode to
Multiply and the Contrast to 45 and click on Apply. The blending mode allows all
the details of both the datasets to be seen. Experiment with different blending modes
to see how they change the appearance of the image. The following screenshot shows
an example of how blending and contrast settings can work together to make a raster
'pop' off the screen:

Chapter 1

[23]

Composing maps
With QGIS, you can compose maps that can be printed or exported to image and
graphic files. To get started, click on New Print Composer under Project. Give the
new composition a name, click on OK, and the composer window will open.

The composer presents you with a blank sheet of paper upon which you can craft
your map. Along the left-hand side, there are a series of tools on the Composer Items
toolbar. The lower portion of the toolbar contains buttons for adding map elements
to your map. These include the map body, images, text, a legend, a scale bar, graphic
shapes, arrows, attribute tables, and HTML frames. Map elements become graphics
on the composition canvas. By selecting a map element, graphic handles will appear
around the perimeter. These can be used to move and resize the element. The upper
portion of the Composer Items toolbar contains tools for panning the map data,
moving other graphic content, and zooming and panning on the map composition.

The majority of the map customization options can be found in the composer tabs. To
specify the sheet size and orientation, use the Composition tab. Once map elements
have been added to the map, they can be customized with the Item properties tab.
The options available on the Item properties tab change according to the type of
map element that is selected. The Atlas generation tab allows you to generate a map
book. For example, a municipality could generate an atlas by using a map sheet GIS
layer and specifying which attribute column contains the map sheet number for each
polygon. The Items tab allows you to toggle individual map elements on and off.

A Refreshing Look at QGIS

[24]

The toolbars across the top contain tools for aligning graphics (the Composer Item
Actions toolbar), navigating around the map composition (the Paper Navigation
toolbar), and tools for managing, saving, and exporting compositions (the Composer
toolbar). Maps can be exported as images, PDFs, and SVG graphic files. To export
the map, click on the Composer menu and select one from among Export as image...,
Export as SVG..., or Export as PDF... depending on your needs. The following is a
screenshot showing parts of the composer window.

Adding functionality with plugins
There are so many potential workflows, analysis settings, and datasets within the
broad field of GIS that no out-of-the-box software could contain the tools for every
scenario. Fortunately, QGIS has been developed with a plugin architecture. Plugins
are add-ons to QGIS that provide additional functionality. Some are written by the
core QGIS development team and others are written by QGIS users.

Chapter 1

[25]

You can explore the QGIS plugin ecosystem by navigating to Plugins | Manage and
Install Plugins. This opens the Plugins Manager window (shown in figure below)
that will allow you to browse all plugins, those that are installed, and those that are
not installed, and adjust the settings. If there are installed plugins with available
upgrades, there will also be an Upgradable option. The search bar can be used to
enter search terms and find available plugins related to the topic. This is the first
place to look if there's a tool or extra type of functionality that you need! To install a
plugin, simply select it and click on the Install Plugin button. Installed plugins can
be toggled on and off by checking the box next to each.

You will be notified by a link at the bottom of the QGIS Desktop application if there
are updates available for your installed plugins. Clicking on the link will open the
Plugins Manager window, where the Upgrades tab will allow you to install all
or some of the available updates. Plugins themselves may show up as individual
buttons, toolbars, or as items under the appropriate menu, such as Plugins, Vector,
Raster, Database, Web, or Processing.

To add a base map to QGIS, enable the OpenLayer plugin.
It appears under the Web menu and allows you to add
base maps from OpenStreetMap, Google Maps, Bing Maps,
Map Quest, OSM/Stamen, and Apple Maps. This plugin
requires an Internet connection.

You can also browse the QGIS Python Plugins Repository
at https://plugins.qgis.org/plugins/.

A Refreshing Look at QGIS

[26]

Summary
This chapter provided a refresher in the basics of Desktop and QGIS Browser. We
covered how to install the software on several platforms and described the layout
of both QGIS Desktop and QGIS Browser. We then covered how to load vector,
raster, and database data layers. Next, you were shown how to work with coordinate
reference systems and style data. We covered the basics of working with tables,
including how to perform a table join. The chapter concluded with a refresher on
composing maps and how to find, install, and manage plugins.

The next chapter will cover creating spatial databases. Data is the foundation of any
GIS. Now that you have had a refresher on the basics of QGIS, it is time to learn
how to expand your work to include spatial databases. In Chapter 2, Creating Spatial
Databases, you will learn how to create and manage spatial databases within QGIS.

[27]

Creating Spatial Databases
This chapter covers the creation and editing of spatial databases using QGIS. The
core concepts of databases will be briefly reviewed; however, we have assumed that
you are generally familiar with database concepts and SQL for most of the content
covered in this chapter. The topics that we will cover in this chapter are as follows:

• Core concepts of database construction
• Creating spatial databases
• Importing and exporting data
• Editing databases
• Creating queries
• Creating views

Fundamental database concepts
A database is a structured collection of data. Databases provide multiple benefits
over data stored in a flat file format, such as shapefile or KML. The benefits include
complex queries, complex relationships, scalability, security, data integrity, and
transactions, to name a few. Using databases to store geospatial data is relatively
easy, considering the aforementioned benefits.

There are multiple types of databases; however, the most
common type of database, and the type of database that this
chapter will cover, is the relational database.

Creating Spatial Databases

[28]

Database tables
A relational database stores data in tables. A table is composed of rows and
columns, where each row is a single data record and each column stores a field value
associated with each record. A table can have any number of records; however, each
field is uniquely named and stores a specific type of data.

A data type restricts the information that can be stored in a field, and it is very
important that an appropriate data type, and its associated parameters, be selected
for each field in a table. The common data types are as follows:

• Integer
• Float/Real/Decimal
• Text
• Date

Each of these data types can have additional constraints set, such as setting a default
value, restricting the field size, or prohibiting null values.

In addition to the common data types mentioned previously, some databases
support the geometry field type, allowing the following geometry types to be stored:

• Point
• Multi-point
• Line
• Multi-line
• Polygon
• Multi-polygon

The multi-point/line/polygon types store multi-part geometries so that one record
has multiple geometry parts associated with it.

ESRI shapefiles store geospatial data in multi- type geometry,
so using multi- type geometry is a good practice if you plan on
converting between formats.

Chapter 2

[29]

Table relationships
A table relationship connects records between tables. The benefit of relating tables is
reducing data redundancy and increasing data integrity. In order to relate two tables
together, each table must contain an indexed key field.

The process of organizing tables to reduce redundancy is called
normalization. Normalization typically involves splitting larger
tables into smaller, less redundant tables, followed by defining
the relationship between the tables.

A field can be defined as an index. A field set as an index must only contain values
that are unique for each record, and therefore, it can be used to identify each record
in a table uniquely. An index is useful for two reasons. Firstly, it allows records to
be quickly found during a query if the indexed field is part of the query. Secondly,
an index can be set to be a primary key for a table, allowing for table relationships
to be built.

A primary key is one or more fields that uniquely identify a record in its own table.
A foreign key is one or more fields that uniquely identify a record in another table.
When a relationship is created, a record(s) from one table is linked to a record(s)
of another table. With related tables, more complex queries can be executed and
redundancy in the database can be reduced.

Structured Query Language
Structured Query Language (SQL) is a language designed to manage databases
and the data contained within them. Covering SQL is a large undertaking and is
outside the scope of this book, so we will only cover a quick refresher that is relevant
to this chapter.

SQL provides functions to select, insert, delete, and update data. Four commonly
used SQL data functions are discussed as follows:

• SELECT: This retrieves a temporary set of data from one or more tables based
on an expression. A basic query is SELECT <field(s)> FROM <table>
WHERE <field> <operator> <value>; where <field> is the name of the
field from which values must be retrieved and <table> is the table on which
the query must be executed. The <operator> part checks for equality (such
as =, >=, LIKE) and <value> is the value to compare against the field.

Creating Spatial Databases

[30]

• INSERT: This inserts new records into a table. The INSERT INTO <table>
(<field1>, <field2>, <field3>) VALUES (<value1>, <value2>,
<value3>); statement inserts three values into their three respective
fields, where <value1>, <value2>, and <value3> are stored in <field1>,
<field2>, and <field3> of <table>.

• UPDATE: This modifies an existing record in a table. The UPDATE <table>
SET <field> = <value>; statement updates one field's value, where
<value> is stored in <field> of <table>.

• DELETE: This deletes record(s) from a table. The following statements deletes
all records matching the WHERE clause: DELETE FROM <table> WHERE
<field> <operator> <value>; where <table> is the table to delete records
from, <field> is the name of the field, <operator> checks for equality, and
<value> is the value to check against the field.

Another SQL function of interest is view. A view is a stored query that is presented
as a table but is actually built dynamically when the view is accessed. To create a
view, simply preface a SELECT statement with CREATE VIEW <view_name> AS and
a view named <view_name> will be created. You can then treat the new view as if it
were a table.

Creating a spatial database
Creating a spatial database in QGIS is a simple operation. QGIS supports PostGIS,
SpatiaLite, MSSQL, SQL Anywhere, and Oracle Spatial databases. We will cover
SpatiaLite, an open source project that is cross-platform, simple, and lightweight, and
provides quite a bit of functionality. SpatiaLite is a spatial database management
system (DBMS) built on top of SQLite, a lightweight personal DBMS.

SpatiaLite (and thus, SQLite) is built on a personal architecture,
which makes installation and management virtually nonexistent.
The trade-off, however, is that it neither does a good job of
supporting multiple concurrent connections nor does it support
a client-server architecture. For a more complex DBMS, PostGIS
is an excellent open source option.

We will create a new SpatiaLite database that we will use for the remaining exercises
in this chapter; to do this, perform the following steps:

1. Open QGIS Desktop and open the Browser panel. If the Browser panel is
missing, click on Browser by navigating to View | Panels. In the Browser
panel, you will find the SpatiaLite entry below your hard drive folders.

Chapter 2

[31]

2. Create a new SpatiaLite database by right-clicking on SpatiaLite and then
choose Create database… (as shown in the following screenshot).

3. Create a new folder on disk and save the new database as GiffordPinchot.
sqlite. The newly created database will appear under the SpatiaLite
database entry.

Now that we have a new SpatiaLite database, let's look at its initial structure and
contents. To do this, we will use DB Manager, a built-in QGIS plugin. DB Manager
provides a simple graphical interface to manage PostGIS and SpatiaLite databases.
Using DB Manager, we will be able to view and manage our SpatiaLite database.
Let's start by getting familiar with the DB Manager interface.

1. Click on DB Manager under Database to open the DB Manager. The DB
Manager interface (as shown in the following screenshot) is composed of
four parts: menu bar, toolbar, tree view, and information panel.

Creating Spatial Databases

[32]

2. Navigate to SpatiaLite | GiffordPinochet.sqlite to see a tree listing of all
tables, views, and general information about the database, as shown in in
the following screenshot:

When a new SpatiaLite database is created, it is automatically populated with
multiple tables and views. These tables and views hold records used by the DBMS to
manage the structure and operation of the database. You should not modify or delete
these tables or views unless you are absolutely sure of what you are doing.

Chapter 2

[33]

Importing data into a SpatiaLite database
Importing data into a SpatiaLite database is easy using the DB Manager. SpatiaLite
supports the following formats for importing files:

• Shapefile (.shp)
• Dbase (.dbf)
• Text (.txt), Commas Separate Values (.csv), and Excel spreadsheets (.xls)
• Well-known Text (.wkt) and Well-known Binary (.wkb)
• PostGIS (.ewkt / .ewkb)
• Geography Markup Language (.gml)
• Keyhole Markup Language (.kml)
• Geometry JavaScript Object Notation (.geojson)
• Scalable Vector Graphics (.svg)

Let's use DB Manager to import data in a few different formats into our
GiffordPinochet.sqlite database.

Importing KML into SpatiaLite
To import a KML file into a SpatiaLite database, complete the following steps:

1. Open DB Manager by clicking on DB Manager under Database. Expand
SpatiaLite and select GiffordPinochet.sqlite on the Tree panel.

2. Navigate to Table | Import layer/file to open the Import vector layer dialog.
3. Click on the ellipsis button at the right-hand side of the Input drop-down

box and select and open streams.kml from the sample dataset that is
available for download on the Packt Publishing website.

4. Click on the Update options button to load the remainder of the dialog box.
The output table name will populate as streams, and it will match the base
name of the input file.

5. Set the following options as shown in the next screenshot:
 ° Select Source SRID and enter 4326. This is the EPSG code for all

KML datasets.
 ° Select Target SRID and enter 26910. This is the EPSG code for NAD

83/UTM Zone 10 North.
 ° Select Create spatial index.

Creating Spatial Databases

[34]

6. Refer the following screenshot to make sure your settings match. If so, click
on the OK button to import the file.

By setting the target SRID to a different value than the source
SRID, the data will be projected to the new coordinate system
during the import process, saving you a step.

7. After a few moments, you will be notified that the import is complete.
To view the newly created table, you'll need to refresh the Tree panel by
selecting GiffordPinochet.sqlite in the tree and then click on Refresh under
Database, or press the F5 key on your keyboard. The streams table should
now appear and have the polyline icon next to it.

8. To preview the attribute table, click on the Table tab on the information
panel. To preview the geometry, click on the Preview tab on the information
panel. To view the newly created SpatiaLite layer in QGIS Desktop,
right-click on streams on the Tree panel, and then choose Add to canvas.

Chapter 2

[35]

Importing a shapefile into SpatiaLite
1. Open DB Manager by clicking on DB Manager under Database. Expand

SpatiaLite and select GiffordPinochet.sqlite on the Tree panel.
2. Navigate to Table | Import layer/file to open the Import vector layer dialog,

as shown in the following screenshot.
3. Click on the ellipsis button at the right-hand side of the Input drop-down

box and select and open NF_roads.shp from the sample dataset that is
available for download on the Packt Publishing website.

4. Click on the Update options button to load the remainder of the dialog box.
The output table name will populate as NF_roads, and it will match the base
name of the input file.

5. Set the following options:
 ° Select Source SRID and enter 26910. This is the EPSG code for

NAD 83/UTM Zone 10 North. Since we don't want to change the
coordinate system during import, we do not need to set Target SRID.

 ° Select Create spatial index.

6. Click on the OK button to import the file.

Creating Spatial Databases

[36]

7. After a few moments, you will be notified that the import is complete.
To view the newly created table, you'll need to refresh the Tree panel by
selecting GiffordPinochet.sqlite in the tree, and then click on Refresh
under Database, or press the F5 key on your keyboard. The NF_roads table
should now appear and have the polyline icon next to it.

8. To preview the attribute table, click on the Table tab on the information
panel. To preview the geometry, click on the Preview tab on the information
panel. To view the newly created SpatiaLite layer in QGIS Desktop,
right-click on NF_roads in the tree, and then choose Add to canvas.

Importing tables into SpatiaLite
To import a table file into a SpatiaLite database, complete the following steps:

1. Open DB Manager by clicking on DB Manager under Database. Expand
SpatiaLite and select GiffordPinochet.sqlite on the Tree panel.

2. Navigate to Table | Import layer/file to open the Import vector layer dialog.
3. Click on the ellipsis button to the right-hand side of the Input drop-down

box and select and open Waterfalls.xls from the sample dataset that is
available for download on the Packt Publishing website.

4. Click on the Update options button to load the remainder of the dialog box.
The output table name will populate as Waterfalls, and it match the base
name of the input file. Note that all options related to spatial datasets are not
modifiable and are grayed out (as shown in in the following screenshot). This
is because SpatiaLite treats the input as a nonspatial table, even though it
has coordinates stored in the table. We will add the spatial component to the
table in a later step.

Chapter 2

[37]

5. Click on the OK button to import the file.

6. After a few moments, you will be notified that the import is complete.
To view the newly created table, you'll need to refresh the Tree panel by
selecting GiffordPinochet.sqlite in the tree and then click on Refresh under
Database, or press the F5 key on your keyboard. The Waterfalls table
should now appear and have the table icon next to it.

7. Select the Waterfalls table. Click on the Info tab on the information panel.
Note the Northing and Easting fields. These fields contain the coordinates
of the waterfalls in NAD 83/UTM Zone 10 North (EPSG 26910). Click on the
Table tab on the information panel to view the entries in the table. Note that
the Preview tab is not selectable, because the selected table does not have any
geometry field.

At this point, the table import is complete. However, since the Waterfalls table
has coordinate pairs, a point geometry column can be added to the table that would
essentially convert the table to a point layer. Let's do this now:

1. With the Waterfalls table selected in the Tree panel, navigate to Table | Edit
Table to open the Table properties window.

Creating Spatial Databases

[38]

2. Click on the Add geometry column button. In the new window, set the
following options to match the following screenshot and then click on OK to
create the geometry field:

 ° Name: geom (the name of the field that will contain the geometry
information)

 ° Type: POINT (the type of geometry the field will hold)
 ° Dimensions: 2 (the number of dimensions (values) the geometry

field will hold for each record)
 ° SRID: 26910 (the coordinate system of the geometry field)

3. Close the table properties. To view the newly edited table, you'll need to
refresh the Tree panel by selecting GiffordPinochet.sqlite in the tree and
then clicking on Refresh under Database, or press the F5 key on your
keyboard. The Waterfalls table should now appear and have the
point icon next to it.

Now that the Waterfalls table has a geometry field, we need to populate it with the
coordinates. We will accomplish this by writing a SQL update query and using the
SpatiaLite MakePoint function. To do this, perform the following steps:

1. In the SQL window, click on the Clear button to clear the SQL query
text area.

2. Enter the following query in the SQL query text area:
UPDATE Waterfalls
SET geom = MakePoint(Easting,Northing,26910);

Chapter 2

[39]

Let's discuss the MakePoint function.
MakePoint(Easting,Northing,26910) is a SpatiaLite
function that creates a new point geometry object. Easting and
Northing are the columns in the same row that hold the values
for the x and y coordinates respectively. 26910 is the SRID of the
x and y coordinates.

3. Click on the Execute (F5) button to execute the query. The query will return
no result but will indicate that 100 rows were affected. This indicates that the
geometry field of 100 rows have been populated with point geometry. The
following screenshot shows the query and the indication that 100 rows
were affected:

4. On the SQL window, click on the Close button to close the window.
5. To view the changes made to the Waterfalls table, you'll need to refresh the

Tree panel by selecting GiffordPinochet.sqlite in the tree and then clicking
on Refresh under Database, or press the F5 key on your keyboard.

Creating Spatial Databases

[40]

6. Note that the Waterfalls table now has the point icon next to it. Click on
the Info tab on the information panel. Under the SpatiaLite section of the
information printout, note that a warning is displayed stating that no spatial
index has been defined (shown in following figure). To improve access
speed, it is best that a spatial index be set. Click on create it and then click on
the Yes button on the pop up.

7. To preview the attribute table, click on the Table tab on the information
panel. To preview the geometry, click on the Preview tab on the information
panel. To view the newly created SpatiaLite layer in QGIS Desktop, right-
click on NF_roads in the tree and then choose Add to canvas.

Exporting tables out of SpatiaLite as a
shapefile
To export a table as a shapefile, perform the following steps:

1. Open DB Manager by clicking on DB Manager under Database. Expand
SpatiaLite and select the database from which you wish to export a table in
the Tree panel.

2. In the Tree panel, select the table that you wish to export.
3. Navigate to Table | Export to file to open the Export vector file dialog.
4. Click on the ellipsis button at the right-hand side of the Output file text box

and name the output file. Note that you can only export to the shapefile
format using this tool.

Chapter 2

[41]

5. Set the Source SRID, Target SRID, and Encoding options or leave them
unselected to use the default values. Select Drop existing one if you wish to
overwrite an existing shapefile.

The following screenshot shows the Export to vector file dialog ready to export to
waterfalls.shp.

Managing tables
DB Manager provides functions to create, rename, edit, delete, and empty tables
using tools found under the Table menu. In this section, we will discuss each tool.

Creating a new table
Creating new tables using DB Manager is fairly straightforward. When creating a
new table, you can specify whether it will be a spatial table or a nonspatial table.
In this section, we will create a new spatial table in SpatiaLite to hold data about
mountain peaks in a park; to do this, perform the following steps:

To quickly create a new SpatiaLite layer (and optionally a
database) in one dialog box in QGIS Desktop, navigate to
Layer | Create Layer | New SpatiaLite Layer….

1. Open DB Manager by clicking on DB Manager under Database. Expand
SpatiaLite and select GiffordPinochet.sqlite in the Tree panel.

2. Navigate to Table | Create Table to open the Create Table window.
3. Enter Peaks as the table name.
4. Click on the Add field button to add a new table field. A new row will

appear in the field list. Set the Name field to Name and the Type field to
character(20) from the list of field type options.

Creating Spatial Databases

[42]

5. Click on the Add field button to add a second field, with the Name field set
to Elevation and the Type field set to integer.

6. Set the Primary key field to Name. This will require the peak names to
be unique.

7. Select Create geometry column and choose the following options:
 ° Create geometry column: POINT
 ° Name: geom
 ° Dimensions: 2
 ° SRID: 26910

8. Select Create spatial index to create a spatial index for the table.
9. Your dialog should look like the following screenshot. If it does, click on the

Create button to create the new table.

10. If the table is created successfully, a prompt will confirm that everything
went fine. Dismiss the dialog, then click on the Close button to close the
Create Table window.

Chapter 2

[43]

11. To view the new Peaks table, you'll need to refresh the Tree panel by
selecting GiffordPinochet.sqlite in the tree and then click on Refresh under
Database, or press the F5 key on your keyboard. Note that the Peaks table
has the point icon, indicating that it is a geometry table.

Renaming a table
To rename a table, perform the following steps:

1. Open DB Manager by clicking on DB Manager under Database. In the Tree
panel, expand the tree and select the database that contains the table that you
wish to rename.

2. In the Tree panel, select the table you wish to edit. Right-click on the table
and choose Rename from the contextual menu to rename it.

Editing table properties
To edit table properties, perform the following steps:

1. Open DB Manager by clicking on DB Manager under Database. In the
Tree panel, expand the tree and select the database that contains the table
that you wish to edit.

2. In the Tree panel, select the table that you wish to edit. Navigate to
Table | Edit table to open the Table properties window.

3. The Table properties window (shown in the following screenshot) has three
tabs—Columns, Constraints, and Indexes—that allow the editing of their
respective table properties.

Creating Spatial Databases

[44]

The Columns tab lists all the fields, their type, whether they allow null values,
and their default values. Below the field list, there are four buttons. The Add
column button opens a window and allows you to create a new field and specify its
properties. The Add geometry column button opens a window and allows you to
create a new geometry field and specify its properties. The Edit column button opens
a window and lets you change the selected field's properties. The Delete column
button deletes the selected field.

SpatiaLite does not support table-altering commands, such as
editing and deleting existing fields; therefore, these options
will be disabled.

The Constraints tab lists all the constraints on the table; their name, their type, and
the column(s) that are affected by the constraints. The Add primary key/unique
button opens a window and allows you to create a new primary key constraint. The
Delete constraint button deletes the selected constraint.

SpatiaLite does not support adding or removing a constraint
from an existing table: therefore, these options will be disabled.
The constraints can be managed using other SQLite clients.

The Indexes tab lists all the indexes on the table, their name, and the column(s)
that are a part of the index. The Add index button opens a window that allows
you to create a new index by selecting the field to index and provides an index
name. The Add spatial index button adds a spatial index to the table. This option
is only available if the table is a geometry field. The Delete index button deletes the
currently selected index.

Deleting a table
There are two ways to delete a table from a database within QGIS: by using the
Browser panel in QGIS Desktop or by using the DB Manager.

To delete a table using the Browser panel in QGIS Desktop, expand the database
from which you wish to delete a table, then right-click on the table and choose
Delete layer.

Chapter 2

[45]

To delete a table using DB Manager, open DB Manager by clicking on DB Manager
under Database. In the Tree panel, expand the tree and select the database that
contains the table that you wish to delete. In the Tree panel, select the table that you
wish to delete. Then, click on Delete table/view under Table. You can also right-click
on the table in the Tree panel and choose Delete from the contextual menu.

Emptying a table
To remove every record from a table without deleting the table, open DB Manager
by clicking on DB Manager under Database. In the Tree panel, expand the tree and
select the database that contains the table that you wish to empty. In the Tree panel,
select the table you wish to empty. Then, click on Empty table under Table.

Creating queries and views
DB Manager has a SQL window that allows SQL queries to be executed against the
database. This section will explain how to use the SQL window to query a table and
create a spatial view in SpatiaLite.

Different databases support different SQL commands.
SQLite supports much of, but not all, the standard SQL. For
a complete listing of supported SQL operations, visit
http://www.sqlite.org/sessions/lang.html.

Creating a SQL query
To create a SQL query, perform the following steps:

1. Open DB Manager by clicking on DB Manager under Database.
2. In the Tree panel, navigate to and select the database on which you wish to

perform a SQL query.
3. Navigate to Database | SQL window, or press F2 on your keyboard, to open

the SQL window.

Creating Spatial Databases

[46]

4. Enter a SQL query in the textbox at the top. Click on the Execute button or F5
on your keyboard to execute the SQL query against the database. The results
of the query will be displayed in the results box at the bottom, and the number
of affected rows and execution time will appear next to the Execute button. An
example of a successfully run query is shown in the following screenshot:

You can store any query by entering a name in the textbox at the top and then
click on the Store button. To load and run the stored query, select the query name
in the drop-down box at the top. To delete a stored query, select the query in the
drop-down box and then click on the Delete button.

Creating a spatial view
Creating a spatial view on a SpatiaLite database using the SQL window in DB
Manager is a two-step process. The first step is to create a view that includes a field
with unique identifiers and the geometry column. The second step is to insert a new
record in the views_geometry_columns table to register the view as a spatial view.
In this section, we will create a spatial view on the Waterfalls table to show all the
waterfalls in the Mowich Lake quad; to do this, perform the following steps:

1. Open DB Manager by clicking on DB Manager under Database.
2. In the Tree panel, navigate to and select the GiffordPinochet.sqlite database.

Chapter 2

[47]

3. Navigate to Database | SQL window, or press F2 on your keyboard, to open
the SQL window.

4. Enter the following query:
CREATE VIEW mowich_lake_waterfalls AS
SELECT w.pk as ROWID, w.NAME, w.TYPE, w.geom from Waterfalls as w
WHERE w.quadname = 'Mowich Lake';

In the CREATE VIEW query, two fields are required to be included in the
SELECT statement: the unique identifier field should be renamed to ROWID
and the geometry field. You must rename the unique identifier to ROWID or
the view cannot be registered as a spatial view.

5. Click on the Execute button to create the view. The following screenshot
displays a successfully written and executed view of the Waterfalls table:

Now that the view is created, we need to register it as a spatial view by
inserting a new row in the views_geometry_columns table. This table links
the view's geometry to the geometry of the table it selects from.

6. In the SQL window, click on the Clear button to clear the SQL query textbox.
7. Enter the following query:

INSERT INTO views_geometry_columns (view_name, view_geometry,
view_rowid, f_table_name, f_geometry_column, read_only)
VALUES('mowich_lake_waterfalls', 'geom', 'rowid', 'waterfalls',
'geom', 1);

In this INSERT query, six fields have values inserted in them.

 ° view_name: This contains the name of the view that we wish to
register as spatial.

 ° view_geometry: This contains the name of the geometry field in
the view.

Creating Spatial Databases

[48]

 ° view_rowid: This contains the name of the rowid field. Note that it
must be rowid. If the rowid field is named something else, you will
need to recreate the view with a rowid field.

 ° f_table_name: The name of the table the view is selecting from.
 ° f_geometry_column: The name of the geometry field in the table the

view is selecting from.
 ° read_only: In this field, enter 1 for the spatial view to be read-only

and enter 0 for the spatial view to be read/write. Note that as of
version 2.6.0 of QGIS, views set as read/write cannot be edited in
QGIS Desktop. However, views may be editable in some plugins or
with SQL queries.

8. Click on the Execute button to create the view. The following screenshot
displays a successfully written and executed view of the Waterfalls table:

The view is now registered as spatial and can be added to the QGIS Desktop canvas
like any other SpatiaLite spatial table.

Dropping a spatial view
Dropping a spatial view requires that you drop the spatial view table and delete the
relating entry in the view_geometry_columns table.

To drop the spatial view table, use the SQL DROP VIEW command. For example, to
drop the mowich_lake_waterfalls view, you will need to execute the following
SQL command:

DROP VIEW mowich_lake_waterfalls

Chapter 2

[49]

With the view dropped, the final step is to delete the related entry in the view_
geometry_columns table by using the SQL DELETE command. For example, to drop
the entry related to the mowich_lake_waterfalls view, you will need to execute the
following SQL command:

DELETE FROM views_geometry_columns
WHERE view_name = 'mowich_lake_waterfalls';

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Summary
This chapter provided you with the steps to handle databases in QGIS. While QGIS
can handle multiple databases, we used SpatiaLite as it provides a good amount of
functionality with little overhead or administration.

Using the DB Manager you can perform a number of operations on databases.
Operations of note are: creating indices, spatial and aspatial views, importing
and exporting, and performing queries. From the introduction to DB Manager
and SpatiaLite in this chapter, you are now well-equipped to write more complex
queries that take full advantage of the SQL commands and SpatiaLite SQL extension
commands. A full listing of SQLite SQL commands are available at http://www.
sqlite.org/lang.html. A full listing of the SpatialLite SQL extension commands
are available at http://www.gaia-gis.it/gaia-sins/spatialite-sql-
4.2.0.html.

The next chapter moves us from the storage of geospatial data to the display of
geospatial data. The styling capabilities of QGIS will be covered for both vector
and raster files. Additionally, the rendering options that were first introduced in
QGIS 2.6 will be covered.

[51]

Styling Raster and
Vector Data

In this chapter, we will cover advanced styling and labeling of raster and vector
data in QGIS. It is assumed that you are familiar with basic styling in QGIS and are
looking to improve your styling techniques. The topics that we will cover in this
chapter are as follows:

• Choosing and managing colors
• Managing color ramps
• Styling single band rasters
• Styling multiband rasters
• Creating a raster composite
• Raster color rendering
• Raster resampling
• Styling vectors
• Vector layer rendering
• Using diagrams to display thematic data
• Saving, loading, and setting default styles

Styling Raster and Vector Data

[52]

Choosing and managing colors
As colors are used throughout the styling process, we will first review the ways
in which you can select and manage color collections in QGIS. The color picker is
accessible in any window that allows a color selection to take place. For example,
when choosing a color in the Style window under Layer Properties, click on the
down arrow next to the color display and then select Choose color... as shown in
the following screenshot:

This will open the color picker tool, as shown in the following screenshot:

Let's take a tour of the color picker tool by starting with the components that are
always available, and conclude our tour by looking at the four changeable panels.

Chapter 3

[53]

Always available color picker components
The current and previous colors are displayed in the bottom-left corner of the
color picker tool. In the preceding screenshot, the Old field depicts the color that is
currently chosen, and the color mentioned in the Current field will replace the one in
the Old field if the OK button is clicked. The current color can be saved into a quick-
access color collection (the 16 colored squares in the bottom-right corner) using either
of the following two ways:

• By clicking on the button with the blue arrow (). This will save the current
color in the first column of the top row of the color collection, overwriting
any existing color. Subsequent clicks on the blue arrow button will store the
current color in the next column until all 16 boxes are full and then will loop
back to the beginning.

• By Dragging and dropping the current color on top of a quick-access color
box. The old color can also be saved using the drag and drop method.

The color picker displays and allows manipulation of the value in the Current field
in two color models: HSV and RGB. On the right half of the color picker, the hue (H),
saturation (S), value (V), red (R), green (G), and blue (B) values for the currently
selected color are displayed. Each of these color parameters can be individually
modified by either using the slider controls or by changing the numeric values.

Red, green, and blue values must be specified between 0 and
255 where 0 represents no color and 255 represents full color.
Hue is specified in degrees ranging from 0° to 359° where
each degree represents a different location (and color) on
the color wheel. Saturation and value are specified using
percentages and range between 0%, representing no saturation
or value, and 100% , representing full saturation or value.

Below the color parameters is the Opacity setting. The right half of the Current
and Old fields display the color with the applied opacity level. For example, in the
following screenshot, the current color is shown with no opacity (100%) on the left
and with the currently selected opacity of 50% on the right. The old color is shown
with no opacity on the left and with the previously selected opacity of 100% on the
right (in this case, both sides are the same).

Styling Raster and Vector Data

[54]

The HTML notation textbox displays the HTML color notation of the current color.
The color notation can be changed to one of the four different formats by clicking on
the down arrow () in the HTML notation textbox.

Lastly, the Reset button resets the current color to match the old color.

Changeable panels in the color picker
The color picker has four changeable panels: Color ramp (), Color wheel (),
Color swatches (), and Color sampler (). Each of these panels provide convenient
ways to select and manage colors. This section will provide details of each of the
four panels.

Color ramp
The color ramp panel is an interactive selection tool that sets the currently selected
HSV or RGB parameter values based on the location of a mouse click. To select the
color-model parameters that the color ramp will display, click on one of the radio
selection buttons next to the H, S, V, R, G, or B values on the right half of the color
picker. The selected parameter can be individually modified using the thin vertical
slider control on the right-hand side of the color ramp panel. The other two color
model parameters can be set simultaneously by clicking on the large color display
on the left side of the color ramp panel. In the following screenshot, the V (Value)
value in the HSV color model is selected and is represented in the thin vertical slider
control; the H (Hue) and S (Saturation) values are combined and are represented in
the large color display:

Chapter 3

[55]

Color wheel
The color wheel panel, shown in the following screenshot, is an interactive selection
tool that sets the color value based on mouse clicks. The ring contains the hue, while
the triangle contains the saturation and value. To set the hue, click on the ring. To set
the saturation and value (while not changing the hue), click on the triangle.

Color swatches
The color swatches panel, shown in the following screenshot, provides an interface
to manage color palettes and select colors from the palettes:

To switch between color palettes, select the desired color palette from the
drop-down box at the top. The following three default color palettes are listed
in the drop-down box:

• Recent colors: This contains the most recent colors selected in the color
picker. This palette cannot be modified.

Styling Raster and Vector Data

[56]

• Standard colors: This contains the colors that are always available as quick
selections in QGIS.

• Project colors: This contains the colors that are stored within the QGIS
project file.

The three default color palettes can be quickly accessed by clicking on the down
arrow next to a color display, as shown in the following screenshot:

The current color can be added to a color palette by clicking on the plus sign button
(). The color(s) selected in the palette can be removed by clicking on the minus
sign button (). To apply a label to a color in a palette, double-click on the space to
the right of the color swatch, enter the label, and press Enter on the keyboard. The
label will be displayed as a tooltip when hovering the mouse over the color in the
palette quick-access menu that was shown in the preceding screenshot.

The ellipsis drop-down button to the right of the palette select box provides seven
handy functions to manage palettes. Let's review each one:

• Copy Colors: This copies the selected color(s) in the current palette to
the clipboard.

• Paste Colors: This pastes color(s) stored in the clipboard to the
current palette.

• Import Colors: This imports colors from a GPL palette file and places them
into the current palette.

• Export Colors: This exports the current palette to a GPL palette file.
• New Palette: This create a new, empty palette that you can name. The palette

will persist in the color picker until it is removed.
• Import Palette: This imports a GPL palette file into the list of palettes.

The palette will persist in the color picker until it is removed.
• Remove Palette: This removes the current palette from the list. Note that

the three default palettes cannot be removed.

Chapter 3

[57]

Color sampler
The color sampler sets the current color to a color sample collected from the screen
using the mouse pointer. The color sample is based on the average of all colors under
the mouse pointer within the specified Sample average radius value. To collect a
sample color, click on the Sample color button, then move the mouse cursor to a
location where you want to sample a color, and then either press the spacebar or
click to collect the sample. As you move the mouse cursor around, a preview of the
sample color will appear under the Sample color button. The following screenshot
shows the color sampler with Sample average radius of 5 px (pixels) and a preview
of the green color currently under the mouse cursor:

Now that the color picker dialog has been toured, and you know how to select colors
and manage them in palettes, we will look at how to create and manage color ramps.

Managing color ramps
Color ramps are used in multiple applications when styling data. A color ramp
is a series of continuous or discrete colors that can be applied to raster or vector
data values. QGIS contains a number of color ramps that are ready to use and also
allows you to add new color ramps. In this section, we will first demonstrate how to
manage the QGIS color ramp collection and then how to add new color ramps.

Styling Raster and Vector Data

[58]

Managing the QGIS color ramp collection
Color ramps can be managed and created using the Style Manager window. The
Style Manager window provides an interface to manage the marker, line, fill, and
color ramps that are available in the Style tab of the layer property window. To open
the Style Manager, navigate to Settings | Style Manager and then click on the Color
ramp tab. The Style Manager window is shown in the following screenshot:

The color ramps displayed in the Color ramp tab are available for quick access from
drop-down selection boxes when you style the data. For example, the following
screenshot shows the quick-access color ramps in a drop-down box when we specify
a color ramp to apply a pseudocolor to a single band raster:

Chapter 3

[59]

Six operations are available to manage color ramps in the Style Manager: rename,
remove, export, import, add, and edit. Each of these operations will be explained now.

Renaming a color ramp
To rename a color ramp, click once on the color ramp to select it, pause, and then click
on it a second time (this is a slow double-click) to make the name editable. Type in
the new color ramp name, then press Enter to save it.

Removing a color ramp
To remove a color ramp, select the color ramp, then click on the Remove item button
(). The color ramp will no longer be available.

Exporting a color ramp
To export a color ramp, navigate to Share | Export to open the Export style(s)
window (shown in the following screenshot):

Select the symbols that you wish to export and then click on Export to export the
selected symbols to an XML file. The exported symbols can later be imported to the
Style Manager using the Import function.

Styling Raster and Vector Data

[60]

Importing a color ramp
To import color ramps from an XML file, navigate to Share | Import to open the
Import style(s) window (shown in the following figure):

Exported color ramp styles can be imported from an XML file or a URL that is
pointing to an XML file. To import from a file, select file specified below for the
Import from parameter, then click on Browse to select the XML file. Once the
Location value is specified, the color ramps will be displayed. Select the color ramps
that you wish to import, select the group into which you wish to import the color
ramps, and then click on Import. The imported color ramps (and other symbol types,
if selected) will be added to the color ramp list in the Style Manager.

Adding a color ramp
Using the Add item button (), three types of color ramps—Gradient, Random,
and ColorBrewer—can be added to the color ramp list in the Style Manager. These
color ramp types can be created from scratch, or they can be selected from a large
collection of existing color ramps from the cpt-city archive of color gradients.

Let's add one color ramp of each type and then add a cpt-city color ramp.

Chapter 3

[61]

Adding a Gradient color ramp
To add a Gradient color ramp, click on the Add item button () and then choose
Gradient. This will open the Gradient color ramp window. A Gradient color ramp
uses two colors, which are specified as Color 1 and Color 2, to set the start and end
colors. QGIS applies an algorithm to create a gradation between the two colors.
Additional colors can be added to the gradient by clicking first on Multiple stops and
then on Add stop; this will open the color picker. Once a color is chosen, you can enter
the percentage along the gradient to apply the stop's color. Additional stops can be
added by again clicking on Add stop. As an example, in the following screenshot, a
gradient is created between red and green with a yellow stop at the 50 percent location:

When all the gradient parameters have been set, click on OK to save the gradient.
QGIS will prompt you to name the gradient. Once it is named, the gradient will
appear in the Style Manager's list of color ramps after the default color ramps.

Styling Raster and Vector Data

[62]

Adding a Random color ramp
To add a Random color ramp, click on the Add item button () and then choose
Random. This opens the Random color ramp window (shown in the following
screenshot). A Random color ramp generates a number of randomly generated colors
that fall within specified Hue, Saturation, and Value ranges. The Classes parameter
determines how many colors to generate. Colors are randomly generated each time
any one of the parameters are changed. As an example, in the following screenshot,
five random colors are generated with different hues (between 100 and 320) but with
the same saturation and value:

When all the parameters have been set, click on OK to save the Random color ramp.
QGIS will prompt you to name the color ramp. Once it is named, the Random color
ramp will appear in the Style Manager's list of color ramps.

Chapter 3

[63]

Add a ColorBrewer color ramp
To add a ColorBrewer color ramp, click on the Add item button () and then
choose ColorBrewer. This opens the ColorBrewer ramp window (shown in the
following figure). A ColorBrewer color ramp generates three to eleven colors using
one of the available schemes. The Colors parameter determines how many colors to
generate and the Scheme name parameter sets the color scheme that will be used. As
an example, in the following screenshot, five colors are generated using the RdGy
(Red to Grey) color scheme:

When all the parameters have been set, click on OK to save the ColorBrewer
color ramp. QGIS will prompt you to name the color ramp. Once it is named, the
ColorBrewer color ramp will appear in the Style Manager's list of color ramps.

The ColorBrewer color ramps are based on the work of Cynthia
Brewer. For more information and an interactive color selector,
visit the ColorBrewer website at http://colorbrewer2.org/.

Styling Raster and Vector Data

[64]

Adding a cpt-city color ramp
If you do not want to add a color ramp from scratch, a large collection of existing
color ramps from the cpt-city archive of color gradients is available for use in QGIS.
To add a cpt-city color ramp, click on the Add item button () and then
choose cpt-city. This opens the cpt-city color ramp window (shown in the
following screenshot):

Color ramps can be selected by theme or by author by choosing the appropriate
tab at the top of the window. In either case, the color ramps are presented in an
expandable tree on the left with a listing of color ramps in each tree element on the
right. When a color ramp is selected, the Selection and preview and Information
tabs are populated.

There are two ways to add a cpt-city color ramp to the list in the Style Manager: as a
cpt-city or as a standard gradient color ramp.

To save the color ramp as a cpt-city color ramp, click on OK with a color ramp
selected. This will keep the link between the added color ramp and the cpt-city color
ramp list. The color ramp cannot be modified if it is added as a cpt-city color ramp.

Chapter 3

[65]

To save the color ramp as a standard gradient color ramp, check Save as standard
gradient and then click on OK. This will save the color ramp as a gradient color
ramp and the color ramp will not link back to the cpt-city color ramp collection.
The color ramp can be modified later as it has been converted to a standard gradient
color ramp.

Be sure to review the license information for the cpt-city
color ramps in the Information tab's License field. Many
different licenses are used and some require attribution
before they can be used.

The cpt-city archive of gradients is available at http://
soliton.vm.bytemark.co.uk/pub/cpt-city/. The
archive contains thousands of gradients. The gradients
that are most applicable to style geographic data have
been included in the QGIS cpt-city collection.

Editing a color ramp
To edit a color ramp, select the color ramp and then click on the Edit button. This
will open one of the four types of windows depending on which type of color
ramp was selected: Gradient, Random, ColorBrewer, or cpt-city. Using the opened
window, the properties of the color ramp can be modified.

Now that color ramps have been discussed, we will put the color ramps to work
by styling raster data with color ramps and later, we will use color ramps to style
vector data.

Styling single band rasters
In this section, the three different band render types that are appropriate for single
band rasters will be covered. Single band rasters can be styled using three different
band render types: paletted, singleband gray, and singleband pseudocolor.

Note that even though raster color rendering and resampling are part of raster style
properties, they will be discussed separately in later sections as they are common to
all single band and multiband raster renderers.

Styling Raster and Vector Data

[66]

The raster band render type should be chosen to best match
the type of data. For instance, a palette renderer is best used
on rasters that represent discrete data, such as land use
classes. The singleband gray would be a good choice for a
hillshade, while a singleband pseudocolor would work well
on a raster containing global temperature data.

Paletted raster band rendering
The paletted raster band renderer applies a single color to a single raster value. QGIS
supports the loading of rasters with paletted colors stored within and the changing
the color assigned to the raster value. QGIS does not currently support the creation
of color palettes for single band rendering. However, existing QGIS layer style files
(.qml) that contain palettes can be applied by clicking on the Load Style button in
the layer properties.

As an example of a raster with a color palette stored within it, add NA LC 1km.
tif from the sample data to the QGIS canvas and open the Style tab under Layer
Properties. The following figure shows the Paletted band renderer being applied to
Band 1 of the raster:

To change a color, double-click on a color in the Color column to open the color picker.

Chapter 3

[67]

Singleband gray raster band rendering
The singleband gray band renderer stretches a gradient between black and white to
a single raster band. Additionally, contrast enhancements are available to adjust the
way the gradient is stretched across the raster band's values. Let's apply a singleband
gray renderer and a contrast enhancement to the sample GRAY_50M_SR_W.tif raster
file that represents shaded relief, hypsography, and flat water for Earth.

Add GRAY_50M_SR_W.tif to the QGIS canvas and open its Style tab from
Layer Properties. As this is a singleband raster, QGIS defaults the Render type
value to Singleband gray with the following parameters (as shown in the
following screenshot):

• Gray band: Band 1 (Gray) (The raster band that is being styled. If a
multiband raster is being used, then the combobox will be populated with all
raster bands.)

• Color gradient: Black to white (The gradient to apply to the selected gray
band. The choices are Black to white and White to black.)

• Min: 105 (The minimum cell value found in the gray band.)
• Max: 207 (The maximum cell value found in the gray band.)
• Contrast enhancement: Stretch to MinMax (The method used to stretch the

color gradient to the gray band with respect to the Min and Max values.)

Styling Raster and Vector Data

[68]

The Min, Max, and Contrast enhancement parameters work together to determine
how to stretch the color gradient to the gray band. To understand how these
parameters work together, we need to first discuss how the Min and Max values are
derived, which draws our attention to the Load min/max values section of the Band
rendering options. The Load min/max values section contains parameters that are
used to calculate which Min and Max values should be set. Three sets of parameters
must be set before you click on the Load button; they are as follows:

• Cell value selection: Selects cell values to include in the Min and Max value
determination. Rasters may have cell values that are outliers, which may
affect the rendering of the image. For instance, if only a few cells have an
abnormally high value, then the gradient will stretch all the way to these
high values, which will cause the raster to look overly gray and bland. To
combat this grayness, some cell values can be excluded so that the gradient
is not skewed by these outliers. Three methods are available to select cell
values, and it is recommended that you experiment with these values to
achieve the most desirable selection of cell values:

 ° Cumulative count cut: This includes all values between the two
parameters. In the preceding screenshot, all values between 2% and
98% of the cell data range were included. In general, this will remove
the few very high and very low values that may skew the gradient.

 ° Min / max: This includes all values.
 ° Mean +/- standard deviation: This includes all values within the

specified number of standard deviations about the mean of all values.

• Extent: The extent of the raster to sample for cell values. Either the Full
extent of the raster or the Current canvas extent can be used.

• Accuracy: This determines the accuracy of the min/max calculation. The
calculation can either be an Estimate (faster) or an Actual (slower) option.
In general, Actual (slower) is the preferred option; however, for very large
rasters, Estimate (faster) may be preferred to save time.

With the Load min/max values set, click on the Load button to calculate the Min
and Max values. With the Min and Max values set, we can turn our attention to the
Contrast enhancement parameter. The Contrast enhancement parameter sets how
to stretch the color gradient across the cell values of the gray band. The following
four methods are available for Contrast enhancement:

• No enhancement: No enhancement is applied. The color gradient is
stretched across all values in the entire gray band. While this may be desired
sometimes, it may tend to make the raster look overly gray.

Chapter 3

[69]

• Stretch to MinMax: This method stretches the color gradient across the
gray band between the Min and Max values. It generally produces a higher
contrast, a darker rendering than No enhancement. All cell values below the
Min value are assigned the lowest gradient color and all cell values above the
Max value are assigned the highest gradient color.

• Stretch and clip to MinMax: This method stretches the color gradient across
the gray band between the Min and Max values. It produces the same
rendering as the Stretch to MinMax method, except that all cell values below
the Min value and all values above the Max value are assigned no color (and
they are transparent).

• Clip to MinMax: This method stretches the color gradient across all values
in the gray band, which is the same result as No enhancement, except that
all cell values below the Min value and all values above the Max value are
assigned no color (and they are transparent).

The following figure shows the effects of the four different Contrast enhancement
methods on the Gray_50M_SR_W.tif sample file when the Color gradient field is
set to Black to white, Min is set to 107, and Max is set to 207. A Min value of 107 is
selected to exclude the cell value of 106 that is associated with the oceans.

Styling Raster and Vector Data

[70]

Singleband pseudocolor raster band
rendering
The singleband pseudocolor band renderer stretches a color ramp to a single raster
band. Additionally, three Color interpolation methods are available to adjust the
way the color ramp is stretched across the raster band's values with respect to the
min and max cell values (for a discussion on determining min and max values, see
the preceding section).

Let's apply a singleband pseudocolor renderer to the GRAY_50M_SR_W.tif sample
data raster file that represents shaded relief, hypsography, and flat water for Earth.
Add GRAY_50M_SR_W.tif to the QGIS canvas and open its Style tab from Layer
Properties. For the Render type field, choose Singleband pseudocolor.

The singleband pseudocolor render type has many interworking parameters that are
best explained as a whole through the lens of a workflow, instead of explaining them
as separate parts. The example shown in the following screenshot will be the basis
for explaining the parameters:

1. First, the band should be selected. For the Band field, choose Band 1 (Gray).
If this were a multiband raster, more bands would be available for selection.

2. Next, we should choose the color ramp to apply to the raster. As none of
the default color ramps are suitable for our example, click on the color ramp
combobox to open it, scroll to the bottom, and choose New color ramp (as
shown in following screenshot):

Chapter 3

[71]

3. When prompted, choose cpt-city as the color ramp type, then click on
OK. This will open the cpt-city color ramp window. In the Topography/
bathymetry group, select the wiki-2.0 color ramp and add it. Optionally,
the color ramp can be inverted by checking the Invert parameter.
The color ramp can be applied to the raster cell values in a Continuous or
Equal interval classification mode terminating at the Min and Max values:

 ° Continuous: This stretches the color ramp between the Min and
Max values with each unique value being assigned a unique color.

 ° Equal interval: This assigns a number of colors, designated by the
Classes parameter, across groups of values. For instance, if five
classes are specified, then no matter how many unique values exist
in the raster, five colors will be applied to the raster where each
color will be applied to groups of values with group value ranges of
(Max – Min)/Classes.

4. Set the mode to Continuous, the Min value to 105, and Max value to 207.
5. Click on the Classify button to apply the color ramp to the values. The

classification list on the left will populate with values, colors, and labels.
The last step is to choose the Color interpolation method. The following
three methods are available and they have a significant effect on how the
raster will be rendered:

 ° Discrete: Assigns only, and exactly, the colors chosen in the
classification list. Values between values listed in the Value column
are assigned the color assigned to the next highest listed value. In other
words, if there are, say, 164 unique values in the raster and 15 colors
listed in the classification list, the raster will be rendered with exactly
the 15 listed colors. This method is best for cases where you want to
reduce the number of colors that will be used to render the raster.

Styling Raster and Vector Data

[72]

 ° Linear: This assigns a unique color to each unique raster value. Values
between values listed in the Value column are assigned a unique
color that is calculated linearly and is based on its location between
the surrounding listed values. In other words, if there are, say, 164
unique values in the raster and 15 colors listed in the classification list,
the raster will be rendered with the 164 unique colors that appear as
a nice, linear progression through the 15 listed colors. This method
is best for raster data that represents continuous information (for
example, elevation or temperature data) where you want a smooth
progression of color that is stretched across the raster values.

 ° Exact: This assigns a unique color to only the values listed in the
Value column of the classification list. In other words, if there are,
say, 164 unique values in the raster and 15 colors (and 15 associated
values) listed in the classification list, only the 15 raster values that
are listed will be rendered with their associated colors. No other
values will be assigned a color. This method is best for raster data
that represents discrete data classes where you do not want non-
listed values to be assigned any color.
The following figure shows the effects of the three Color
interpolation methods on our sample data as configured so far:

6. Set the Color interpolation field to Linear to assign all unique values
a unique color.
Optionally, you could check Clip (below classification list); this would not
assign colors to values outside the maximum and minimum values listed in
the classification list.

7. Click on Apply or OK to render the raster.

Chapter 3

[73]

These three single band render types (paletted, singleband gray, and singleband
pseudocolor) provide a large amount of flexibility and customization to fit your
styling needs. The next section covers the remaining band render type that is best
applied to multiband rasters: multiband color.

Styling multiband rasters
The multiband color band renderer stretches three gradients (red, green, and blue)
to three separate raster bands. The basic idea is that the computer will display
natively used combinations of red, green, and blue lights to create the desired image.
By matching individual raster bands to the red, green, and blue lights used by the
display, the three bands' colors will mix so that they are perceived as other colors,
thereby creating a red, green, and blue image composite that is suitable for display.

Contrast enhancements are available to adjust the way the gradients are stretched
across the raster bands' values. Contrast enhancements have already been covered in
the Singleband gray raster band rendering section, so refer to this section for an in-depth
coverage of the topic.

Let's see how multiband rasters are rendered in QGIS. Add TL_ASTER.jpg from the
sample data to the QGIS canvas. This sample image is a TerraLook image derived
from an ASTER image. Open the Style tab from Layer Properties. As this is a
multiband raster, QGIS defaults the Render type field to Multiband color with the
parameters shown in the following screenshot:

Styling Raster and Vector Data

[74]

The multiband color renderer allows you to designate which raster band will be
applied to each of the three color bands (which you can think of as color ramps). In
the preceding screenshot, the raster has three bands with Band 1 (Red) applied to Red
band, Band 2 (Green) applied to Green band, and Band 3 (Blue) applied to Blue band.

To change which raster band is applied to the color bands, select the band from the
drop-down boxes. The drop-down boxes will list all the bands stored in the raster as
well as Not set (that is shown in the following screenshot). Choosing Not set does
not apply a raster band to a color band.

After exploring all the four band-rendering options, it is time to shift our focus to the
bottom two sections of the raster style window: color rendering and resampling.

Creating a raster composite
To combine many separate raster files (each representing one raster band) into
a raster composite, we can use the r.composite tool in the Processing Toolbox.
The processing toolbox (which is covered in detail in Chapter 7, The Processing
Toolbox) allows us to access tools from GRASS GIS, which contains the r.composite
tool. The r.composite tool assigns three singleband rasters to a red, green, and blue
raster band and produces one multiband raster.

To open the r.composite tool, open the processing toolbox first by navigating to
Processing | Toolbox. In the search box at the top of the processing toolbox, type
r.composite to find the tool and then double-click on the tool to open it. This will
open the r.composite tool window, as shown in the following screenshot:

Chapter 3

[75]

The r.composite tool has a number of parameters that can be set and these are
as follows:

• Red: This includes the raster that will be assigned to the red band.
• Green: This include the raster that will be assigned to the green band.
• Blue: This includes the raster that will be assigned to the blue band.
• Number of levels to be used for <band>: This includes the number of levels

that the input raster values will be mapped to.
• Dither: If this is checked, will dither the image to reduce banding and loss

of detail.
• Use closest color: If this is checked, the original pixel colors will be translated

into the closest palette color. No dithering will occur if this is enabled.

Styling Raster and Vector Data

[76]

• GRASS region extent: This sets the region extent of the output composite
raster. Uses the minimum of inputs by default; otherwise, the extent can be
set from the current canvas extent or by a layer in the Layers panel.

• GRASS region cell size: This sets the cell size of the output composite raster.
• Output RGB image: This includes the name and location of the output

composite raster.
• Open output file after running algorithm: If this is checked, the output

composite raster will be added to the map canvas.

The output raster composite will contain three bands and it will be automatically
styled as a multiband raster in QGIS.

Raster color rendering
Raster color rendering modifies the properties of the raster to change the way it
displays and interacts with the layer below it in the Layers panel. Color rendering
is a part of the raster style properties for all band renderer types and works in the
same way, regardless of the selected band renderer. In this section, we will discuss
the parameters available for change in the Color rendering section of the raster
style properties.

When a raster is first loaded, the Color rendering parameters are set to their default
values, as shown in the following screenshot. At any time, the default values can be
reloaded by clicking on the Reset button.

There are six parameters that can be set in the Color rendering section and these are
as follows.

• Blending mode: This applies a blending method to the raster that mixes
with layers below it in the Layers panel. A number of blending modes are
available to choose from and these are commonly found in graphics editing
programs. There are 13 blending modes and these are as follows:

 ° Normal: This is the default blending node. If the raster has any
transparent cells, the colors from the layer below the raster will
show through, otherwise no colors will be mixed.

Chapter 3

[77]

 ° Lighten: In this mode, for each raster cell in the or the raster below,
the maximum value for each color component that is found in either
raster is used.

 ° Screen: In this mode, lighter cells from the raster below are displayed
transparently over the raster while darker pixels are not.

 ° Dodge: This mode increases the brightness and saturation of the
raster cells below based on the brightness of the raster's cells.

 ° Addition: This mode adds the color components of each cell of
this raster and the raster below together. If the color component
value exceeds the maximum allowed value, then the maximum
value is used.

 ° Darken: In this mode, for each raster cell in the raster, or the raster
below, the minimum value of each color component found in either
raster is used.

 ° Multiply: This mode multiplies the color components of each cell of
the raster and the raster below together. This will darken the raster.

 ° Burn: In this mode, the raster below is darkened using the darker
colors from this raster. Burn works well when you want to apply the
colors of this raster subtly to the raster below.

 ° Overlay: This mode combines the multiply and screen methods.
When this is used for the raster below, lighter areas become lighter
and darker areas become darker.

 ° Soft light: This mode combines the burn and dodge methods.
 ° Hard light: This mode is the same as the overlay method; however,

this raster and the raster below are swapped for inputs.
 ° Difference: This mode subtracts this raster's cell values from the cell

values of the raster below. If a negative value is obtained, then the cell
value from the raster below is subtracted from this raster's cell value.

 ° Subtract: This mode subtracts this raster's cell values from the cell
values of the raster below. If a negative value is obtained, a black
color is displayed.

• Brightness: This changes the brightness of the raster. Brightness affects how
bright or dark the raster appears. Brightness affects all cells in the raster in
the same way.

Styling Raster and Vector Data

[78]

• Contrast: This changes the contrast value of the raster. Contrast separates
the lightest and darkest areas of the raster. An increase in contrast increases
the separation and makes darker areas darker and brighter areas brighter.
For example, a large negative contrast of -75, would produce a mostly gray
or monotone image, since the bright and dark colors are not separated very
much at all.

• Saturation: This changes the saturation value of the raster. Saturation
increases the separation between colors. An increase in saturation makes the
colors look more vibrant and distinct, while a decrease in saturation makes
the colors look duller and more neutral.

• Grayscale: This renders the raster using a grayscale color ramp. The
following three rendering methods are available:

 ° By lightness: In this method, an average of the lightness value of
multiple raster band values will be applied to the gray color ramp
with the saturation set as 0. If the raster only has one band, then each
cell's lightness value will be used. The lightness value is calculated
using the formula 0.5 * (max(R,G,B) + min(R,G,B)).

 ° By luminosity: In this method, a weighted average of multiple raster
band values will be applied to the gray color ramp. Luminosity
approximates how you perceive brightness from colors. The
weighted average is calculated using the formula 0.21 * red + 0.72 *
green + 0.07 * blue.

 ° By average: In this method, the average of the raster band values
for each cell will be applied to the color ramp. If the raster only has
one band, this selection will have no effect. For example, if the raster
had three bands with cell values of 25, 50, and 75, then 50 would
be applied as the cell value for the gray color ramp. The average is
calculated using the formula (R+G+B)/3.

• Hue: This parameter adds a hue to each cell of the raster. To apply a hue,
check the Colorize box and then select a color using the color picker. The
Strength parameter linearly scales the application of the selected Colorize
color to the existing raster colors.

Chapter 3

[79]

Raster resampling
Raster resampling prepares the raster for display when not every raster cell can
be mapped to its own pixel on the display. If each raster cell is mapped to its own
display pixel, the raster renders at full resolution (also known as 1:1). However,
since screen sizes are limited and we may wish to enlarge or reduce the size of the
raster as we work at different map scales, the raster cells must be mapped to more
than one pixel or a number of raster cells must be combined, or dropped, to map to
a single pixel. As some raster cells cannot be shown at different resolutions, QGIS
must determine how to render the raster and still maintain the character of the full-
resolution raster. This section will discuss the parameters available for determining
how the raster will be resampled for display.

The Resampling section of the raster Style tab has three parameters: Zoomed:
in, Zoomed: out, and Oversampling. The Resampling section with its default
parameters is shown in the following screenshot:

The Zoomed: in parameter sets the resampling method when zoomed in on the
raster. Three resampling methods are available for selection: Nearest neighbour,
Bilinear, and Cubic.

The Zoomed: out parameter sets the resampling method when zoomed out from
the raster. Two resampling methods are available for selection: Nearest neighbour
and Average.

The Oversampling parameter determines how many subpixels will be used to
compute the value when zoomed out.

The four resampling methods that can be selected for use are as follows:

• Nearest neighbour: In this method, each raster cell is assigned the value
of the nearest cell (measure between cell centers). This is a great method to
choose when the raster represents discrete, categorical data as no new values
are created.

• Bilinear: In this method, each raster cell is assigned an average value based
on the four closest cells with original values. This method will smooth the
data and may flatten peaks and fill valleys.

• Average: In this method, each raster cell is assigned an average value based
on surrounding cells with original values. This method will smooth the data
and may flatten peaks and fill valleys.

Styling Raster and Vector Data

[80]

• Cubic: In this method, each raster cell is assigned an interpolated value based
on the surrounding cells with original values. Unlike the bilinear method,
this method will not smooth the peaks or valleys as much and it tends to
maintain local averages and variability. This is the most computationally
intensive method.

Styling vectors
In this section, the six different vector styling types will be covered. The six types
are single symbol, categorized, graduated, rule-based, point-displacement, and
inverted polygons.

Note that even though layer rendering is part of vector style properties, it will be
discussed separately in the next section as it is common to all vector styling types.

Single-symbol vector styling
The single-symbol vector style applies the same symbol to every record in the vector
dataset. This vector style is best when you want a uniform look for a map layer, such
as when you style lake polygons or airport points.

The following screenshot shows the Single Symbol style type with default
parameters for point vector data. Its properties will be very similar to line and
polygon vector data.

Let's take a quick tour of the four parts of the properties window for the Single
Symbol style type that is shown in the previous screenshot:

• Symbol preview, in the upper-left corner, shows a preview of a symbol with
the current parameters.

Chapter 3

[81]

• Symbol parameters, in the upper-right corner, has the parameters for the
symbol selected in the symbol component tree (these will change slightly
depending on geometry type of the vector data).

• Library symbols, in the bottom-right corner, lists a group of symbols from the
library (which is also known as Style Manager). Clicking on a symbol sets
it as the current symbol design. If symbol groups exist, they can be selected
for viewing in the Symbols in group drop-down menu. To open the Style
Manager, click on Open Library.

• Symbol component tree, in the bottom-left corner, lists the layers of symbol
components. Clicking on each layer changes the symbol parameters so that
the symbol can be changed.

As an example of how to use the Single Symbol style properties to create a circle
around a gas pump , a second layer with the SVG marker symbol layer type was
added by clicking on the Add symbol layer button (), and was then moved on top
of the circle by clicking on the Move up button (). The following figure shows the
parameters used to create the symbol:

To save your custom symbol to the Style Manager, click on the Save button to name
and save the style. The saved style will appear in the Style Manager and the list of
library symbols.

Categorized vector styling
The categorized vector style applies one symbol per category of the attribute
value(s). This vector style is the best when you want a different symbol that is based
on attribute values, such as when styling country polygons or classes of roads lines.
The categorized vector style works best with nominal or ordinal attribute data.

Styling Raster and Vector Data

[82]

The following screenshot shows the Categorized style type with parameters for
point vector data of schools. Its properties will be very similar to those for line and
polygon vector data.

Styling vector data with the Categorized style type is a four-step process, which is
as follows:

1. Select an appropriate value for the Column field to use the attributes for
categorization. Optionally, an expression can be created for categorization by
clicking on the Expression button () to open the Expression dialog.

2. Create the classes to list by either clicking on the Classify button to add a
class for each unique attribute that is found; otherwise, click on the Add
button to add an empty class and then double-click in the Value column to
set the attribute value to be used to create the class. Classes can be removed
with the Delete or Delete all buttons. They can be reordered by clicking and
dragging them up and down the list. Classes can also be modified by double-
clicking in the Value and Label columns.

3. Set the symbol for all classes by clicking on the Symbol button to open
the Symbol selector window. Individual class symbols can be changed by
double-clicking on the Symbol column of the class list.

4. Choose the color ramp to apply to the classes. Individual class colors can be
changed by double-clicking on the Symbol column of the class list.

Other symbol options (which will change availability based on vector layer type),
such as transparency, color, size, and output unit, are available by right-clicking
on a category row. Additionally, advanced settings are available by clicking on the
Advanced button.

Chapter 3

[83]

Graduated vector styling
The graduated vector style applies one symbol per range of numeric attribute values.
This vector style is the best when you want a different symbol that is based on a
range of numeric attribute values, such as when styling gross domestic product
polygons or city population points. The graduated vector style works best with
ordinal, interval, and ratio numeric attribute data.

The following screenshot shows the Categorized style type with parameters for
polygon vector data of the populations of the countries. Its properties will be very
similar to that of point and line vector data.

Styling vector data with the Categorized style type is a five-step process, which is
as follows:

1. Select an appropriate value for the Column field to use the attributes for
classification. Optionally, an expression can be created for classification by
clicking on the Expression button () to open the Expression dialog.

2. Choose the number of classes and the classification mode. The following five
modes are available for use:

 ° Equal Interval: In this mode, the width of each class is set to be the
same. For example, if input values ranged between 1 and 100 and
four classes were desired, then the class ranges would be 1-25, 26-50,
51-75, and 76-100 so that there are 25 values in each class.

Styling Raster and Vector Data

[84]

 ° Quantile (Equal Count): In this mode, the number of records in
each class is distributed as equally as possible, with lower classes
being overloaded with the remaining records if a perfectly equal
distribution is not possible. For example, if there are fourteen records
and three classes, then the lowest two classes would contain five
records each and the highest class would contain four classes.

 ° Natural Breaks (Jenks): The Jenks Breaks method maximizes
homogeneity within classes and creates class breaks that are based
on natural data trends.

 ° Standard Deviation: In this mode, classes represent standard
deviations above and below the mean record values. Based on how
many classes are selected, the number of standard deviations in each
class will change.

 ° Pretty Breaks: This creates class boundaries that are round numbers
to make it easier for humans to delineate classes.

3. Create the classes to list by either clicking on the Classify button to add a
class for each unique attribute that is found; otherwise, click on the Add
Class button to add an empty class and then double-click in the Value
column to set the attribute value range to be used to create the class.
Classes can be removed with the Delete or Delete All buttons. They can be
reordered by clicking and dragging them up and down the list. Classes can
also be modified by double-clicking in the Value and Label columns.

4. Set the symbol for all classes by clicking on the Symbol button to open
the Symbol selector window. Individual class symbols can be changed
by double-clicking on the Symbol column of the class list.

5. Choose the color ramp to apply to the classes. Individual class colors can be
changed by double-clicking on the Symbol column of the class list.

The Legend Format field sets the format for all labels. Anything can be typed in the
textbox. The lower boundary of the class will be inserted where %1 is typed in the
textbox, and the upper boundary of the class will be inserted where %2 is typed.

If Link class boundaries is checked, then the adjacent class boundary values
will be automatically changed to be adjacent if any of the class boundaries are
manually changed.

Other symbol options, such as transparency, color, and output unit, are available by
right-clicking on a category row. Advanced settings are available by clicking on the
Advanced button.

Chapter 3

[85]

Rule-based vector styling
The rule-based vector style applies one symbol per created rule and can apply
maximum and minimum scales to toggle symbol visibility. This vector style is the
best when you want a different symbol that is based on different expressions or when
you want to display different symbols for the same layer at different map scales. For
example, if you are styling roads, a rule could be set to make roads appear as thin
lines when zoomed out, but when zoomed in, the thin lines will disappear and will be
replaced by thicker lines that are more scale appropriate.

There are no default values for rule-based styling; however, if a style was previously
set using a different styling type, the style will be converted to be rule-based when
this style type is selected. The following screenshot shows the Categorized style type
from the previous section that is converted to the Rule-based style type parameters
for polygon vector data of the populations of the countries. Its properties will be very
similar to that of point and line vector data.

The Rule-based style properties window shows a list of current rules with the
following columns:

• Label: The symbol and label that will be visible in the Layers panel are
displayed here. The checkbox toggles rule activation; unchecked rules will
not be displayed.

• Rule: This displays the filter applied to the vector dataset to select a subset
of records.

• Min. Scale: This displays the smallest (zoomed-out) scale at which the rule
will be visible.

Styling Raster and Vector Data

[86]

• Max. Scale: This displays the largest (zoomed-in) scale at which the rule will
be visible.

• Count: This displays the number of features that are included in this rule.
This is calculated when the Count features button is clicked.

• Duplicate count: This displays the number of features that are included in
the current and other rules. This is helpful when you are trying to achieve
mutually exclusive rules and need to determine where duplicates exist.
This is calculated when the Count features button is clicked.

To add a new rule, click on the Add rule button () to open the Rule properties
window. To edit a rule, select the rule and then click on the Edit rule button () to
open the Rule properties window. To remove a rule, select the rule and then click on
the Remove rule button ().

Additional scales, categories, and ranges can be added to each rule by clicking on
the Refine current rules button. To calculate the number of features included in each
rule and to calculate the duplicate feature count, click on the Count features button.

When a rule is added or edited, the Rule properties window (which is shown in the
following screenshot) displays five rule parameters, which are as follows:

• Label: This should have the rule label that will be displayed in the
Layers panel.

• Filter: This will have the expression that will select a subset of features
to include in the rule. Click on the ellipsis button to open the Expression
string builder window. Then, click on the Test button to check the validity
of the expression.

• Description: This has a user-friendly description of the rule.
• Scale range: This has the Minimum (exclusive) and Maximum (inclusive)

scales between which the rule will be visible.
• Symbol: This has the symbol that will be used to symbolize features included

in the rule.

Chapter 3

[87]

None of the parameters are required (Label, Filter, and Description could be left
blank); to exclude Scale range and Symbol from the rule, uncheck the boxes next to
these parameters.

Styling Raster and Vector Data

[88]

As an example of use, using the Populated Places.shp sample data, capital cities,
megacities, and all other places can be styled differently by using rule-based styling.
Additionally, each rule is visible to the minimum scale of 1:1, although they become
invisible at different maximum scales. The following screenshot shows the rules
created and a sample map of selected populated places in the country of Nigeria:

Point-displacement vector styling
The point-displacement vector style radially displaces points that lie within a set
distance from each other so that they can be individually visualized. This vector
style works best on data where points may be stacked on top of each other, thereby
making it hard to see each point individually. This vector style only works with the
point vector geometry type.

Chapter 3

[89]

The following screenshot shows how the Point displacement style works by using
the Single Symbol renderer, which is applied to the Stacked Points.shp sample
data. Each point within the Point distance tolerance value of at least one other
point is displaced at a distance of the Circle radius modification value around a
newly-created center symbol. In this example, three groups of circles have been
displaced around a center symbol.

The Point displacement style parameters, shown in the preceding figure, provide
multiple parameters to displace the points, set the sub-renderer, style the center
symbol, and label the displaced points. Let's review parameters that are unique to
the point-displacement style:

• Center symbol: This contains the style for the center symbol that is created at
the location from where the point symbols are being displaced.

Styling Raster and Vector Data

[90]

• Renderer: This contains the renderer that styles the displaced points.
Click on the Renderer settings button to access renderer settings.

• Circle pen width: This sets the outline pen width in millimeters that
visualizes the Circle radius modification value.

• Circle color: This contains the outline pen color for the Circle radius
modification circle.

• Circle radius modification: The number of millimeters that the points are
displaced from the center symbol. This circle can be displayed on the map
if the Circle pen width value is greater than 0.

• Point distance tolerance: For each point, if another point(s) is within this
distance tolerance (defined in millimeters), then all points will be displaced.

The Labels parameters applies to all points (displaced or not) in the vector data. It
is important to use these label parameters, rather than the label parameters on the
Labels tab of the Layer Properties window, because the labels set in the Labels tab
will label the center symbol and not the displaced points.

Inverted polygons vector styling
The inverted polygons vector style inverts the area that a polygon covers. This vector
style only works with the polygon vector geometry type.

The following figure shows the Inverted polygons style for a polygon of the country
of Nigeria on the left and all countries underneath the transparent inverted polygon
of Nigeria on the right. Notice that the entire canvas is covered by the inverted
polygon, which has the effect of cutting out Nigeria from the map.

Chapter 3

[91]

The Inverted polygons style parameters rely on a sub-renderer to determine the
symbol used for the inverted polygons. By choosing the sub-renderer, the polygon
rendering is inverted to cover the entire map canvas. The following screenshot shows
the Inverted polygons style parameters that created the inverted polygon of Nigeria:

If multiple polygons are going to be inverted and the polygons overlap, Merge
polygons before rendering (slow) can be checked so that the inverted polygons
do not cover the area of overlap.

Vector layer rendering
Layer rendering modifies the properties of the vector to change the way it displays
and interacts with the layer below and the features within the vector. Layer
rendering is a part of vector style properties for all style types and works in the
same way, regardless of the selected style type. In this section, we will discuss the
parameters that are available for change in the Layer rendering section of vector
style properties.

When a vector is first loaded, the Layer rendering parameters are set to their default
values, as shown in the following screenshot:

Styling Raster and Vector Data

[92]

The Layer rendering section has three parameters, which are as follows:

• Layer transparency: This contains the percentage of transparency for the
layer. The higher the transparency value, the more the layers below will be
visible through this layer.

• Layer blending mode: This applies a blending method to the vector that
mixes with layers below in the Layers panel. A number of blending modes
are available to choose from and are commonly found in graphics editing
programs. In fact, there are 13 blending modes. Each of these blending modes
is discussed in more detail in the Raster color rendering section of this chapter.

• Feature blending mode: This applies a blending method to the vector that
mixes with other features in the same vector layer. A number of blending
modes are available to choose from and are commonly found in graphics
editing programs. There are 13 blending modes. Each of these blending modes
is discussed in more detail in the Raster color rendering section of this chapter.

The new blending modes should be explored before you use transparency for
overlays. Let's consider an example where we want to add a hillshade to our map to
give it some depth. In the following figure, the top-left map shows Africa's countries
by using polygons and Normal Layer blending. A common way to place a hillshade
behind polygons is to make the polygons semi-transparent so that the hillshade
can give depth to the polygons. However, this tends to wash out the colors in the
polygons and the hillshade is muted, which is illustrated at the top-right corner of
the following figure. Instead, the Hard Light or Multiply Layer blending methods
(illustrated at the bottom-left and bottom-right corners respectively in the following
figure) can be used to maintain strong color and include the hillshade.

Chapter 3

[93]

Layer rendering can really improve the look of your map. So, experiment with the
layer-rendering methods to find the ones that work best for your overlays.

Using diagrams to display thematic data
QGIS supports the addition of three diagram types as overlays on top of vector data.
The three diagram types are pie chart, text diagram, and histogram. The underlying
vector data can still be styled to provide a nice base map.

To add a diagram, open the vector's Layer Properties window and then click on the
Diagrams tab. The Diagrams tab, shown in the following screenshot, is split into two
sections. The top section contains the Appearance and Options tabs, which contain
parameters that are unique to each selectable Diagram type value. It also contains
the Size and Position tabs, which contain parameters shared by all the Diagram
types value. The bottom section, Attributes, is common to all diagram types and
provides the mechanism for adding attributes to diagrams.

Styling Raster and Vector Data

[94]

Parameters common to all diagram types
Since the Size, Position, and Attributes sections are common to all diagrams, the
next section will first cover these parameters. The following three sections will cover
the parameters that are unique to each type of diagram.

Diagram size parameters
The Size tab, shown in the following screenshot, provides the following parameters:

• Fixed size: If this is checked, all charts will have the specified area or
diameter (for a pie and text chart) or length (for a bar chart).

• Size units: This contains the unit of the Fixed size parameter.
• Scale linearly between 0 and and the following attribute value / diagram

size: If Fixed size is not checked, then the length (for a bar chart), area, or
diameter (for a pie and text chart) set by the Scale parameter of the charts will
be scaled down linearly from the selected Size value. The selected Size value
represents the maximum or set Attribute value. To enable QGIS to determine
the maximum attribute value, click on the Find maximum value button.

• Increase size of small diagrams: If checked, this parameter sets the
Minimum size value to which the charts will be scaled.

Diagram position parameters
The Position tab, shown in the following screenshot, provides the following
parameters:

• Placement: This sets the placement of the chart. The available options are
Around point, Over point, Line, Horizontal, and Free.

Chapter 3

[95]

• Data defined position: If this is checked, the x and y positions of the chart
can be set by attributes.

• Automated placement settings: This provides more parameters to fine-tune
the placement of charts, such as showing all charts and showing partial labels.

Adding attributes to diagrams
Each of these diagram types supports the display of multiple attributes. To add
or remove attributes, you must move (or build) an expression from the Available
attributes list to the Assigned attributes list. Attributes in the Assigned attributes
list will be used in the diagram.

There are two ways to add an attribute to the Assigned attributes list, which are
as follows:

• Select the attribute(s) from the Assigned attributes list, then click on the Add
attribute button ()

• Click on the Add expression button () and then create an expression that
will be added as a single entry

Once an attribute has been added, the Assigned attributes colors can be changed by
double-clicking on the color patches in the Color column.

Styling Raster and Vector Data

[96]

The following figure shows two examples. The top example shows a single attribute
that has been added to the Assigned attributes list, and the bottom one is an example
of a single attribute and an attribute that was calculated with an expressions.

Creating a pie chart diagram
A pie chart diagram displays attribute(s) in a round pie chart where each attribute
occupies a pie slice proportional to the percentage that the attribute represents from
the total of all attributes added to the pie chart. As an example, the following figure
shows a portion of a state with pie charts showing the proportion of different racial
population in each county:

Chapter 3

[97]

By reviewing the pie charts in the preceding figure, let's note down a few things:

• The pie slices differ for each county's race attributes and are colored based on
each attribute's selected color

• The size of the pie charts vary based on the total population in each county
• The pie slice outlines are black and thin
• The pie charts are displayed above the centroid of each polygon

These four noted items, among others that are not noted, are all customizable using
parameters available in the Diagrams tab of the Layer Properties window. The
Diagrams tab for pie charts has three tabs with parameters: Appearance, Size,
and Position.

The Appearance tab, shown in the following screenshot, provides the following
parameters:

• Transparency: This is used to specify the transparency percentage for the
pie chart.

• Line color: This contains the color of the lines surrounding the pie and
in-between pie slices.

• Line width: This contain the width of the lines surrounding the pie and
in-between pie slices.

• Start angle: This is used to specify the angle from which the pie slices will
begin to rotate in a clockwise manner. The available options are Top, Right,
Bottom, and Left.

• Scale dependent visibility: If this is checked, the Minimum and Maximum
visibility scales can be set.

Styling Raster and Vector Data

[98]

Creating a text chart diagram
The text chart diagram displays attributes in a round circle where each attribute
occupies a horizontal slice of the circle and the attribute value is labeled inside
the slice. As an example, the following figure shows a portion of a state's counties
with text charts showing the Hispanic population in the top half and non-Hispanic
population in the bottom half of the circle:

By reviewing the text charts in the preceding figure, let's note down a few things:

• The labels report each race's attribute and are colored based on the selected
attribute colors

• The size of the chart varies according to the total population of each county
• The horizontal slice outlines are black and thin
• The text charts are displayed above the centroid of each polygon

These four noted items, among others that are not noted, are all customizable
using parameters available in the Diagrams tab of the Layer Properties window.
The Diagrams tab for text charts has four tabs with parameters: Appearance, Size,
Position, and Options.

The Appearance tab, shown in the following screenshot, provides the following
parameters:

• Transparency: This is used to specify the transparency percentage for the
text chart.

• Background color: This contains the background/fill color for the circle.

Chapter 3

[99]

• Line color: This contains the color of the lines surrounding the circle and
in-between slices.

• Line width: This contains the width of the lines surrounding the circle and
in-between slices.

• Font: This can be used to set the font. Open the Select Font dialog to set the
font parameters for the attribute labels that appear inside the circle slices.

• Scale dependent visibility: If this is checked, the Minimum and Maximum
visibility scales can be set.

The Options tab, shown in the following screenshot, provides the Label placement
parameter This parameter sets the baseline position for the vertical placement of the
text. The available options are x-height, which sets the text at the x-height position of
the text, and Height, which sets the text at the bottom position of the text height.

Styling Raster and Vector Data

[100]

Creating a histogram chart diagram
The histogram chart diagram displays attributes in a histogram/bar chart where
each attribute can be visualized as a bar that varies in length in proportion to the
attributes' values. As an example, the following figure shows a portion of a state's
counties with histogram charts showing the Hispanic population as one bar and non-
Hispanic population as the other bar:

By reviewing the histogram charts in the preceding figure, let's note down a
few things:

• The bars report each race's attribute and are colored according to the selected
attribute colors

• The bar outlines are black and thin
• The histogram charts are displayed above the centroid of each polygon

These three noted items, among others that are not noted, are all customizable
using parameters available in the Diagrams tab of the Layer Properties window.
The Diagrams tab for text charts has four tabs with parameters: Appearance, Size,
Position, and Options.

The Appearance tab, shown in the following screenshot, provides the following
parameters:

• Bar width: This contain the width, in millimeters, of each bar in
the histogram

• Transparency: This is used to specify the transparency percentage for
the histogram chart

Chapter 3

[101]

• Line color: This contains the color for the lines surrounding the bars
• Line width: This contains the width of the lines surrounding the bars
• Scale dependent visibility: If this is checked, the Minimum and Maximum

visibility scales can be set:

The Options tab, shown in the following screen, provides the Bar Orientation
parameter. This parameter sets the orientation of the bars. The options available are
Up, Down, Right, and Left.

Saving, loading, and setting default styles
Now that you have set the styles that you want for raster and vector layers, you will
likely want to save the styles so that they can be used again later or applied to other
layers. There are four buttons that are used to manage styles. These four buttons,
shown in the following screenshot, are always displayed near the bottom of the
Layer Properties window:

In this section, we will use these four buttons to save a style to a style file, load a
saved style file, and set and restore a default style.

Styling Raster and Vector Data

[102]

Saving a style
QGIS can save styles in two file formats: .qml and .sld. The .qml style file is specific
to QGIS, while the .sld style file is useable by other programs to style files. In general,
you should plan on saving styles using the .qml file type as it does the best job of
saving your styles; however, if portability is a priority, then the .sld file is the better
choice. To save a style, open the Layer Properties window, set the style that you wish
to save, then click on the Save Style button and save the style as either a .qml or a
.sld file. The saved style file can later be loaded and applied to other data files.

To have a style always apply to the layer you are saving the
style from, save the style file as a .qml and name it the same
name as the source file. For example, if the shapefile name
was Coastlines.shp, then you should save the style file as
Coastlines.qml. Creating a style file with the same name
has the same effect as setting the default style.

Loading a style
QGIS can load styles from two formats: .qml and .sld. To load a style, open the
Layer Properties window, click on the Load Style button, and open the style file
that you wish to load. This will apply the style to the layer. QGIS will try and apply
the styles even if the geometry of the style is not applicable to the geometry of the
current layer; this can create unexpected output, so it is usually best to load styles
that match the geometry type.

Setting and restoring a default style
To set a layer's current style as the default style for use in other QGIS projects,
click on the Save As Default button in the Layer Properties window. This will
save a .qml file with the same name as the layer on disk. When the layer is added
to the map canvas (in this or another QGIS project) the saved default style will be
automatically applied.

If you have made changes to the style of a layer that had a default style and wish to
revert back to the default style, click on the Restore Default Style button.

Lastly, to remove a default style for a layer, delete the .qml file of the same name as
the layer on disk.

Chapter 3

[103]

Summary
In this chapter, we provided you with steps on how to style vector and raster data
in QGIS. We first covered how to pick colors using the new color picker, then we
covered how to create and manage color ramps using the style manager. Next, we
reviewed the different ways to style single band and multiband rasters, create a
raster composite, as well as how to overlay rasters using renderers. Vector styling
was reviewed next and we covered the six different style types. We also looked at
how to use vector renderers for layer overlays. Next, we toured the three diagram
types that can be visualized on top of vector datasets. We finished the chapter with
instructions on how to save and load the styles for use in other QGIS projects.

In the next chapter, we will move from viewing data to preparing data for
processing. Preparation topics will range from spatial and aspatial queries and
converted geometry types to defining new coordinate reference systems.

Chapter 4

[105]

Preparing Vector
Data for Processing

Typically, raw data obtained for a GIS project needs to be massaged for use in the
specific application. It may need to be merged, converted to a different geometry
type, saved to the coordinate reference system of the project, subset to the extent of
the study area, or subset by attribute values. While QGIS provides a powerful set of
tools that can handle many types of vector preparation and transformation tasks, this
chapter will cover what we consider to be commonly used vector-preparation tasks.
Many of the tools covered in this chapter are found on the Vector menu in QGIS;
however, others are available in the processing toolbox. Additional vector processing
tasks will be covered in Chapter 7, The Processing Toolbox and Chapter 8, Automating
Workflows with the Graphical Modeler. The topics that we will cover in this chapter are
as follows:

• Merging shapefiles
• Creating spatial indices
• Checking for geometry errors
• Converting vector geometries
• Adding geometry columns
• Using basic vector geoprocessing tools
• Advanced field calculations
• Complex spatial and aspatial queries
• Defining new coordinate reference systems
• Raster to vector format conversions

Preparing Vector Data for Processing

[106]

Merging shapefiles
The Merge Shapefiles to One tool merges (that is, combines) multiple input
shapefiles to a new shapefile. The input shapefiles must be in a common coordinate
reference system and should contain common attributes. For example, vector data is
often provided in tiles or by political jurisdiction such as counties or states. In these
cases, the data may need to be merged to form a seamless layer covering the study
area. The Merge Shapefiles to One tool that can be found by navigating to Vector |
Data Management Tools will combine them.

In the Merge shapefiles dialog, you have the option to choose whether you wish to
merge all shapefiles in a folder or pick individual shapefiles to merge.

1. Depending on how your shapefiles are stored, you can do either of
the following:

 ° Keep Select by layers in the folder unchecked to merge all
shapefiles in a directory

 ° Check Select by layers in the folder to select individual files
to merge

Chapter 4

[107]

2. If the previous option is enabled, choose the shapefile type
(Point, Line, or Polygon).

3. Set the input directory/files by clicking on Browse.
4. Name the output shapefile by clicking on Browse.
5. Choose whether you wish to select Add result to map canvas.
6. Click on OK to merge the shapefiles.

Creating spatial indices
Large data layers with hundreds or thousands of features will render much more
quickly with a spatial index. To create a spatial index, choose the Create Spatial
Index tool by navigating to Vector | Data Management Tools. Select the loaded
canvas layers or check the Select files from disk option and navigate to a folder and
select layers on disk. Click on OK to create the spatial indexes.

Checking for geometry errors
Data (even from reputable sources) can contain geometry errors. These can often be
tiny geometry errors that are not obvious but that prevent geoprocessing tools from
running or producing valid results.

Preparing Vector Data for Processing

[108]

The Check Geometry Validity tool (which can be found by navigating to Vector |
Geometry Tools | Check Geometry Validity) takes an input vector layer that is
loaded in the canvas and scans the data for errors, such as geometric intersections.
The errors can be displayed in a window on the tool or can be output to a point layer.
The resulting point layer will have an attribute describing the error. In the following
screenshot, you can see that the tool has been run using the DRECP_Alternative1_
Integrated.shp sample dataset. This data is portion one of five alternatives for the
Desert Renewable Energy Conservation Plan for Southern California. The tool found
267 errors. The errors still need to be repaired, but at least you now know where
they are!

Chapter 4

[109]

If you have a layer with hundreds or thousands of errors, the most
elegant way to repair them is to use the GRASS GIS plugin to import
them into a GRASS database. GRASS uses a topological vector data
model. When importing, you can set a snapping tolerance below which
vertices will be snapped together. This will likely clean up the majority
of the errors. For the remainder, you can use the v.clean GRASS tool.
Once the errors have been cleaned up, the data can be exported out of
GRASS into the vector format that you require.

Converting vector geometries
Sometimes, it is necessary to make conversions among point, line, and polygon
vector geometries. For example, you may need to generate point centroids from
zip code polygons or a town boundary polygon from a line layer. Such conversions
may be necessary to put the data into the most appropriate geometry for analysis.
For example, if you need to determine the acreage of parcels, but they are provided
in a line format, you will need to convert them to polygons to calculate their areas.
Sometimes, you may want to convert geometries for cartographic reasons, such as
converting polygons to points to create label points. The following tools can be found
on the Geometry Tools menu under Vector:

Preparing Vector Data for Processing

[110]

Creating polygon centroids
With the Polygon Centroids tool that can be found by navigating to Vector |
Geometry Tools, you can generate points that will be located at the center of
polygons. Simply provide the input polygon layer and name the output. In the
following example, centroids of the Neighborhoods_pdx.shp shapefile have been
generated. This tool preserves all the attributes during the conversion. With the data
in point form, you can generate a heat map, compute densities, or measure distances.

Converting polygons to lines and lines to
polygons
With the Polygons to Lines and Lines to Polygon tools that can be found by navigating
to Vector | Geometry Tools, you can convert between these two geometry types.
There are many reasons why this conversion may be desirable. In the following
example, we are provided with a slope layer in a polygon format. Here, we will
convert it to a line geometry so that it can be styled as contour lines. All the attributes
will be maintained during either conversion. Conversions from line to polygon are
necessary if the area needs to be calculated. An example of this is parcel data from
a CAD program that is provided to you as a line layer. In a GIS environment, parcel
data is better represented as a polygon layer than as a line layer.

Chapter 4

[111]

Creating polygons surrounding individual
points
There are two tools for generating polygons around individual points in a layer:
Voronoi and Delaunay triangulation. Voronoi polygons represent the area of
influence around each point. These are named after the Russian mathematician
Georgy Voronoy who invented the algorithm. They are also referred to as Thiessen
polygons and are named after Alfred Thiessen who independently created the same
algorithm. You can use the Voronoi polygon in QGIS by navigating to Vector |
Geometry Tools | Voronoi Polygons. The resulting polygon represents the areas
closer to the point used as the input than any other points in the layer. The Delaunay
triangulation tool can be found by navigating to Vector | Geometry Tools |
Delaunay Triangulation.

Delaunay triangulation creates a series of triangular polygons. The method creates
a triangle in such a way that a circle drawn through the three nodes of the triangle
will contain no other nodes. This is the same technique that is used to generate
triangulated irregular networks (TINs).

Preparing Vector Data for Processing

[112]

Here, we'll use the High_schools_pdx.shp data to compare these two methods. The
two tools are intuitive. You need to provide the input point vector layer and specify
the output polygon shapefile name. The Voronoi polygons tool has an option to
set a buffer region. This is the amount by which the resulting polygons will extend
beyond the perimeter points. In the following example, the Buffer region field has
been set to 10%:

The following figure shows the output differences between Voronoi polygons and
Delaunay polygons:

Extracting nodes from lines and polygons
The Extract Nodes tool (which can found by navigating to Vector | Geometry Tools
| Extract Nodes) can be used to convert either line or polygon layers into a point
layer. Each individual vertex from the input layer will be extracted and output
to a new layer. In the following example, we are interested in identifying street
intersections. By extracting the nodes from the Selected_streets.shp layer, a point
for each intersection is generated, as shown in the following screenshot:

Chapter 4

[113]

Street lines and extracted nodes representing intersections

Simplifying and densifying features
The Simplify Geometries and Densify Geometries tools (which can found by
navigating to Vector | Geometry Tools) remove and add vertices, respectively.
They are only suitable for line and polygon data.

Simplifying data may be desirable to make it more suitable for use at a smaller scale.
It may also be helpful if the data is to be used in an online interactive mapping
scenario. The simplify tool uses a modified Douglas-Peucker algorithm that reduces
the number of vertices while attempting to maintain the shape of the features. In the
following example, the polygons of the Neighborhoods_pdx.shp data are simplified
with a simplify tolerance of 20. The tolerance is specified in map units.

Preparing Vector Data for Processing

[114]

Here, the data is in a State Plane coordinate reference system with units in feet. With
the Simplify tolerance field set to 20, the algorithm will try to eliminate vertices
within 20 feet of one another. With this setting, the number of vertices is reduced
from 31,637 to 6,189 with almost no change in the shapes of the polygons! This
reduced the size of the data on disk from 1.05 MB to 208 KB.

The following figure shows the result of the simplification operation. When zoomed
in to 1:1,000, the difference between the input and output geometries can be seen.
The black lines are the original neighborhood boundaries and the red lines are the
boundaries after being simplified. The largest shift in position represents 15 feet in
real-world units.

Chapter 4

[115]

The Densify Geometries tool adds vertices to a line or polygon layer. The operation is
run per polygon or line segment. The tool asks for vertices to be added. The default
is one per segment but can be set to the desired number. This might be the first step
before the Extract Nodes tool is used or there may be other reasons for densifying
the geometries.

Converting between multipart and singlepart
features
In a typical vector layer, one feature corresponds to one record in the attribute table.
In a multipart layer, there are multiple features that are tied to one record in the
attribute table. This is often the case with data representing islands. For example, we
have some sample data of county boundaries for Hawaii. Hawaii has five counties
and the GIS data has five records in the attribute table. However, several of these
counties include multiple islands.

To illustrate this point, the following figure shows a single record selected in the
attribute table that selects multiple polygons that are tied to the single record:

Preparing Vector Data for Processing

[116]

Using the Multipart to Singleparts tool, which can be found by navigating to
Vector | Geometry Tools, with Hawaii_counties.shp as the input, we generate
a singlepart shapefile with 32 features. The following figure shows that a single
polygon is now tied to a single record in the attribute table:

The Singleparts to Multipart tool, which can be found by navigating to Vector |
Geometry Tools, generates a multipart layer based on an attribute you specify in the
Unique ID field input. The options of the Singleparts to Multipart tool are shown in
the following screenshot:

Chapter 4

[117]

Adding geometry columns to an
attribute table
To add geometry values to new attribute columns in a vector layer's attribute table,
click on Export/Add Geometry Columns by navigating to Vector | Geometry Tools.
As shown in the following screenshot, the tool requires an input vector layer, a
determination of which CRS will be used for the calculations (Calculate using), and
a choice of whether you wish to create the columns in the existing file or Save to new
shapefile with the added geometry columns:

Preparing Vector Data for Processing

[118]

Depending on the geometry type of the input vector layer, different geometry
columns will be created as follows:

• Point: The XCOORD and YCOORD columns will contain the x and y coordinates
of the point

• Line: The SHAPE_LEN column will contain the length of the record's line(s)
• Polygon: The AREA and PERIMETER columns will contain the area and

perimeter of the record's polygon(s)

Using basic vector geoprocessing tools
This section will focus on geoprocessing tools that use vector data layers as inputs
to produce derived outputs. Geoprocessing tools are part of the fTools plugin that
is automatically installed with QGIS and enabled by default. The tools can be found
in the Geoprocessing Tools menu under Vector. The icons next to each tool in the
menu give a good indication of what each tool does.

We will look at some commonly used spatial overlay tools such as clip, buffer,
and dissolve. In the case of a simple analysis, these tools may serve to gather all
the information that you need. In more complex scenarios, they may be part of a
larger workflow.

Chapter 4

[119]

The tools covered in this chapter are also available via the Processing
plugin, which is installed by default with QGIS Desktop. When enabled,
this plugin turns on the Processing menu from which you can open the
Processing Toolbox. The toolbox is a panel that docks to the right side
of QGIS Desktop. The tools are organized in a hierarchical fashion. The
toolbox contains tools from different software components of QGIS such
as GRASS, the Orfeo toolbox, SAGA, and GDAL/OGR, as well as the
core QGIS tools covered in this chapter. Some tools are duplicated. For
example, the GRASS commands, SAGA tools, and QGIS geoalgorithms
all include a buffer tool. At the bottom of the Processing Toolbox, there
is a toggle between the default simplified interface and the advanced
interface. The advanced interface organizes the tools by the source
software package. With the default installation of QGIS 2.6, the toolbox
contains almost 400 tools; so, the search box is a convenient way to locate
tools within the toolbox. For a more detailed look at the Processing
Toolbox, refer to Chapter 7, The Processing Toolbox.

Spatial overlay tools
Spatially overlaying two data layers is one of the most fundamental types of GIS
analysis. It allows you to answer spatial questions and produce information from
data. For instance, how many fire stations are located in Portland, Oregon? What is
the area covered by parks in a neighborhood?

This series of spatial overlay tools compute the geometric intersection of two or more
vector layers to produce different outputs. Some tools identify overlaps between
layers and others identify areas of no overlap. The spatial overlay tools include Clip,
Difference, Intersect, Symmetrical Difference, and Union.

Preparing Vector Data for Processing

[120]

When using a tool that requires multiple vector input data layers,
the layers must be in the same coordinate reference system.

Using the Clip and Difference tools
These two tools are related in that they are the inverse of each other. Data often
extends beyond the bounds of your study area. In this situation, you can use the
Clip tool to limit the data to the extent of your study area. It is often described as a
"cookie cutter". It takes an input vector layer and uses a second layer as the clip layer
to produce a new dataset that is clipped to the extent of the clip layer. The Difference
tool takes the same inputs but outputs the input features that do not intersect with
the clip layer.

In this example, we will clip fire stations to the boundary of the city of Portland.
Load the fire_sta.shp and PDX_city_limits.shp files from the sample data.
Select fire_sta in the Input vector layer field and PDX_city_limits in the Clip
layer field. The output shapefile will be loaded into QGIS automatically since Add
result to canvas is checked. This is the default setting for most tools. If you have any
selected features, you can choose to just use them as inputs. The operation creates a
fire stations' layer consisting of the 31 features that lie within the Portland city limits.

Chapter 4

[121]

Using the Difference tool with the same inputs that were used with Clip results in
the output fire stations that lie beyond the limits of the clip layer. The outputs from
these two tools contain only attributes from the input vector layer.

Inputs and outputs from the Clip and Difference tools

Using the Intersect and Symmetrical
Difference tools
The Intersect tool preserves only the areas common to both datasets in the output.
Symmetrical Difference is the opposite; only the areas that do not intersect are
preserved in the output. Unlike Clip and Difference, the output from these two tools
contains attributes from both input layers. The output will have the geometry type
of the minimum geometry of the inputs. For example, if a line and polygon layer are
intersected, the output will be a line layer. The following is an example of running
the Intersect tool. After that, you will see a figure that demonstrates the output from
each tool.

Preparing Vector Data for Processing

[122]

The following examples uses the North_PDX_parks.shp and Kenton.shp shapefiles
from the sample data:

The following figure compares the Intersect and Symmetrical Difference tools by
showing example inputs and outputs for each:

Chapter 4

[123]

Overlaying polygon layers with Union
The Union tool overlays two polygon layers and preserves all the features of both
datasets, whether or not they intersect. The following figure displays an example
union using the North_PDX_parks.shp and Kenton.shp shapefiles from the sample
data. Attributes from both datasets are contained in the output attribute table.

Output of the Union tool

Creating buffers
The Buffer tool is a commonly used tool that produces a new vector polygon layer
that represents a specific distance from the input features. It can be used to identify
proximity to a feature. Here, we will buffer the Portland fire departments by one
mile; this will identify all the areas within the one-mile buffer distance. To buffer,
we will perform the following steps:

1. The Input vector layer field will be set to Portland_FireStations.

Preparing Vector Data for Processing

[124]

2. Next, we'll specify the buffer distance. The tool will use the units of the
coordinate reference system of the input vector layer as the distance units.
This data is in State Plane Oregon North with the unit as feet. Enter 5280 to
produce a one-mile buffer. You also have the option of specifying an attribute
column containing buffer distances. This allows you to specify different
buffer distances for different features.

The Buffer distance field will accept both positive and negative
values. If a negative value is entered, the buffer will be extended
inside the polygon boundary. If a positive value is entered, the buffer
will be extended outside the polygon boundary.

3. QGIS cannot create true curves, but it provides an option to set Segments
to approximate. The higher the number the smoother the output will be
because QGIS will use more segments to approximate the curve. In this
example, it has been set to 20 instead of the default of 5.

4. Checking Dissolve buffer results will merge buffer polygons if they overlap.

Chapter 4

[125]

When you navigate to Processing Toolbox | Geoalgorithms | Vector |
Geometry Operations, you will find the Variable distance buffer tool.
This tool creates a multiple-ring buffer where the radius of the rings are
determined by a distance value stored in an attribute column.

Generating convex hulls
The Convex Hull tool will take a vector layer (point, line, or polygon) and generate
the smallest possible convex bounding polygon around the features. It will generate
a single minimum convex hull around the features or allow you to specify an
attribute column as input. In the latter case, it will generate convex hulls around
features with the same attribute value in the specified field.

Preparing Vector Data for Processing

[126]

The result will be the bounding area for a set of points, and it will work well if
there are no outlying data points. Here, a convex hull has been generated around
Portland_FireStations.shp:

Dissolving features
The Dissolve tool merges the features of a GIS layer. It will merge all the features in
a layer into one feature. This can be done via the values of an attribute field or with
the Dissolve all option. In the following example, the neighborhoods of Portland
(Neighborhoods_pdx.shp) are dissolved, which creates the city boundary:

Chapter 4

[127]

Most tools have a checkbox for using only
selected features.

Defining coordinate reference systems
QGIS supports hundreds of coordinate reference systems for data display and
analysis. In some cases, however, the supported CRS may not suit your exact needs.
QGIS provides the functionality to create custom CRS using the Custom Coordinate
Reference System Definition tool that can be found by navigating to Settings |
Custom CRS.

In QGIS, a CRS is defined using the Proj.4 definition format. We must understand
the Proj.4 definition format before we can define a new or modify an existing CRS;
therefore, in the first part of this section, we will discuss the basics of Proj.4, and in
the second part, we will walk you through an example to create a custom CRS.

Proj.4 is another Open Source Geospatial Foundation (http://osgeo.
org) project used by QGIS, similar to OGR and GDAL. This project is for
managing coordinate systems and projections. For a detailed user manual
for the Proj.4 format used to specify the CRS Parameters in QGIS, visit the
project website at https://trac.osgeo.org/proj.

Understanding the Proj.4 definition format
The Proj.4 definition format is a line composed of a series of parameters separated by
spaces. Each parameter has the general form of +parameter=value. The parameter
starts with the + character, followed by a unique parameter name. If the parameter
requires a value to be set, then an equal sign, =, character will follow the parameter
name and the value will follow the equal sign. If a parameter does not require a
value to be set, then it is treated as a flag.

As an example, the following figure displays a Proj.4 definition for the USA Eckert
IV CRS. Notice that this CRS has seven parameters; each parameter is prefaced with
a + character. Also, notice that six of the parameters have associated values and one
parameter is a flag. Each value is set after the = character.

Preparing Vector Data for Processing

[128]

The parameters displayed in the preceding figure show only subset parameters
that Proj.4 contains. If a CRS does not use a parameter, it is simply omitted from the
parameter line. The following is a list and discussion of common parameters used
when defining a CRS:

• Projection (+proj): This is always required. It is the name of the cartographic
projection to use. The value provided is an abbreviated name of a
supported projection.

• Spheroid (+ellps): This is a model of the earth's shape that is used in
transforming a projection. The reference spheroid, or ellipsoid, is generated
by choosing the lengths of the major and minor axes that best fit those of the
real earth. Many such models are appropriate for different locations on earth.

• Datum (+datum): This is the name of the spheroid to use.
• Central meridian (+lon_0): This is the longitude on which a map is centered

(x-origin).
• Latitude of origin (+lat_0): This is the latitude on which a map is

centered (y-origin).
• False easting (+x_0): This is the x-coordinate value for the central meridian

(x-origin). For example, if the central meridian for your projected map is
-96.00 and the false easting is set to 0.00, then all locations along that
meridian are assigned a value of 0.00. All locations to the west of the central
meridian (x-origin) are assigned a negative value and all locations to the
east of the central meridian are assigned a positive value, similar to a typical
Cartesian plane.

• False northing (+y_0): This is the y-coordinate value for the latitude of
origin (y-origin). For example, if the reference latitude for a conic projection
is 37.00, then all locations along that parallel are assigned a value of 0.00.
All locations to the south of the reference latitude (y-origin) are assigned
a negative value and all locations to the north of the reference latitude are
assigned a positive value, similar to a typical Cartesian plane.

• Standard parallel(s) (+lat_1, +lat_2): This is the latitude(s) on which a map
is centered (sometimes the y-origin), or for conic projections, the parallels
along which the cone touches the earth.

• No defaults (+no_defs): This is a flag to designate that no default values
should be utilized for parameters not specified in the projection definition.

• Coordinate units (+units): These are used to define distances when setting x
and y coordinates.

Chapter 4

[129]

For a full list of parameters, visit the Proj.4 project website at
https://trac.osgeo.org/proj.

Defining a new custom coordinate reference
system
There are two methods for creating a custom CRS: write a Proj.4 definition from
scratch or copy the Proj.4 definition from an existing CRS and modify it. No
matter which creation method you choose, both are completed using the Custom
Coordinate Reference System Definition window.

The following figure shows the New England.shp sample data in its unprojected
WGS 1984 form. In this section, we will create a custom CRS to display the New
England states using an equal-area map projection.

Preparing Vector Data for Processing

[130]

Open the Custom Coordinate Reference System Definition window by clicking
on Custom CRS under Settings. This window has two parts: Define and Test. We
will not use/discuss the Test part, but instead, we will focus on the Define part of
the window to create our new CRS. We will modify the USA_Contiguous_Albers_
Equal_Area_Conic EPSG:102003 projection so that it focuses on New England.

1. Click on the Add new CRS button to create a blank CRS entry.
2. Set the name of the new CRS to New England Albers Equal Area Conic.

At this point, we have two options; we can write the Proj.4 projection from
scratch in the Parameters textbox, or we can copy an existing CRS Proj.4
string from a projection that closely matches what we want and then modify
it to our needs. Let's elect to copy an existing CRS and modify it.

3. Click on the Copy existing CRS button, which will open the Coordinate
Reference System Selector window.

4. Enter 102003 in the Filter text box to find the USA_Contiguous_Albers_
Equal_Area_Conic projection. Select the found projection and then click on
OK. This will copy the Proj.4 string back to the Parameters text box in the
Custom Coordinate Reference System Definition window.

5. In the Parameters text box, modify the Proj.4 string by changing it to
+proj=aea +lat_1=42.5 +lat_2=45 +lat_0=43.75 +lon_0=-71 +x_0=0
+y_0=0 +datum=NAD83 +units=m +no_defs. The modified string should
look like the one shown in the following figure:

6. Click on OK to close the window and store your new custom CRS.
With the creation of the custom CRS, we can apply it as our project CRS to
perform an on-the-fly CRS transformation (by navigating to Project | Project
Properties | CRS). The new custom CRS can be found at the bottom of the
CRS list under User Defined Coordinate Systems, as shown in the following
screenshot:

Chapter 4

[131]

The following figure shows the New England states with the custom CRS that we
created/defined. Quite a difference!

Advanced field calculations
QGIS Desktop provides powerful field-calculation functionality. In the field
calculator, advanced mathematical, geometry, string, date and time, type conversion,
and conditional functions are available for use. Leveraging these advanced functions
along with standard operators allows for some powerful field calculations.

This section will explain the field calculator interface in detail, followed by multiple
examples of advanced field calculations from a variety of functional areas. It is
assumed that you know the basics of field calculations and common operators.

Preparing Vector Data for Processing

[132]

Exploring the field calculator interface
The field calculator can be opened in three ways, which are as follows:

• Open the attribute table of the layer whose details you wish to calculate and
then click on the field calculator button () on the attribute table toolbar

• Open the attribute table of the layer whose details you wish to calculate and
then press Ctrl + I on your keyboard

• Select the layer whose details you wish to calculate in the Layers panel and
then click on the field calculator button () on the attributes toolbar

The Field calculator window, shown in the following figure, has five sections:

• Field designation: This determines which field will hold the output of the
expression. You can use Create a new field or Update existing field by
selecting the desired option and setting the relevant option(s). A virtual field
can also be created by selecting Create a new field and Create virtual field. A
virtual field is not stored in the dataset; instead, it is stored as an expression
in the QGIS project file and will be recalculated every time the field is used.

• Function list: This contains a tree of field-calculation functions available for
insertion into the expression.

• Function help: This displays the help documentation for the selected
function in the function list.

• Operators: This ensures quick button access to insert commonly used
operators into the expression. These operators are also in the function list
under the Operators branch.

• Expression: This is an editable text area that contains the expression that will
calculate field values. Underneath the expression is a preview of the output
for a sample record. If the expression is invalid, a notice will appear with a
link to more information about the expression error.

Chapter 4

[133]

The expression must meet strict syntax guidelines, otherwise the field calculator
will report a syntax error instead of an output preview. The following are common
syntax rules for expressions:

• Operators should be placed without any special formatting. For example, +.
• Fields should be surrounded by double quotes. For example, "State_Name".
• Text (string) values should be surrounded by single quotes. For example,

'Washington'.

Preparing Vector Data for Processing

[134]

• Whole numbers (integer) and decimal numbers (float) should be entered
without any surrounding characters. For example, 153.27.

• Functions come in two types, as follows:
 ° Functions requiring parameters: These begin with a function name,

followed by a set of parentheses. Inside the parentheses are function
parameters separated by commas. For example, log(base, value).

 ° Functions not requiring parameters: These begin with a dollar sign
($) followed by the function name. For example, $area.

If this is a little confusing, don't worry, you can rely on the field calculator to enter a
portion of the syntax for you correctly. To add an operator, field, or function to the
expression, double-click on the desired item in the function list and it will be added
to the cursor location in the expression.

In addition to adding functions through the function list, the field calculator can also
add to the expression any value that currently exists in any field. To do this, expand
the Fields and Values branch of the function list tree. A list of the fields in the attribute
table will be listed. When you select a field, a Field values area will appear to the right
underneath the function help (as shown in the following figure). Click on all unique
to load the Field values area with all unique values found in the selected field. Then,
click on 10 samples to load 10 samples that are found in the selected field into the Field
values area. You can also load values by right-clicking on the field name and selecting
it from the contextual menu (contextual menu is shown in following figure). Double-
click on a value to add it to the cursor location in the expression.

Writing advanced field calculations
Let's put what we learned previously to practice. This section will walk you through
creating three advanced field calculations. The first calculation will insert the current
date into a field as a formatted string. The second calculation will insert a geometry
value. The third calculation will calculate a label string that differs depending on the
state's population.

Chapter 4

[135]

The first example – calculating and formatting the
current date
The first example of an advanced field calculation uses two functions to calculate
and format the current date. For this example, we will format the current date as
dd/mm/yyyy.

1. Open the Field calculator window.
2. Select Create a new field and set the following options:

 ° Output field name: Updated
 ° Output field type: Text (string)
 ° Output field width: 10

3. In the Function list field, expand the String node and then double-click
on format_date to add it to the Expression area. This function takes two
arguments: a time string and a string representing the format to convert the
time string to. We will use the current date function for the time and write a
format string.

4. In the Function list field, expand the Date and Time node and then double-
click on $now to add it to the Expression area after the open parenthesis.

5. Type a comma after $now and enter 'dd/MM/yyyy', followed by a closed
parenthesis. The $now function returns a string representation of the current
time and date. The following figure shows the completed calculation:

6. Click on OK to execute the calculation. This will enable editing on the layer
and calculate the field values.

7. Save the edits to the layer and disable the editing mode. The calculated
values are now stored in the layer. The following figure shows a sample of
the calculated and formatted date:

Preparing Vector Data for Processing

[136]

The second example – inserting geometric values
The second example of an advanced field calculation uses two functions to insert
the x coordinate for a point and the x coordinate of a specific vertex for a line or
polygon. First, we will calculate the x coordinate of a point. To do this, perform
the following steps:

1. Open the Field calculator window.
2. Select Create a new field and set the following options:

 ° Output field name: XCoord
 ° Output field type: Decimal number (real)
 ° Output field width: 10
 ° Output field precision: 7

3. In the Function list field, expand Geometry and then double-click on $x
to add it to the Expression area. This function returns the x coordinate of a
point geometry. The following figure shows the completed calculation:

Now let's calculate the first and last x coordinate for a line or polygon:

1. Open the Field calculator window.
2. Select Create a new field and set the following options:

 ° Output field name: XCoord1
 ° Output field type: Decimal number (real)
 ° Output field width: 10
 ° Output field Precision: 7

3. In the Function list field, expand Geometry and then double-click on xat
to add it to the Expression area. This function returns the x coordinate of
a vertex specified by a 0-based index number. Inside the parentheses, you
will need to specify the index of the vertex whose coordinates you wish
to retrieve. For example, to retrieve the x coordinate of the first vertex, the
command will be xat(0). You can also specify the vertex using negative
numbers. So, to retrieve the x coordinate of the last vertex, the command will
be xat(-1).

Chapter 4

[137]

4. The following figure shows the completed calculations for xat(0) and xat(-
1) for a line geometry type:

The third example – calculating a population-
dependent label string
This third example populates a new field with a string that is used for labeling states.
States that have a population of over five million will have a label with the state
name and population. All other states will simply have a label with the state name.
The basic logic of our calculation is, "If a state has a population of over five million,
then create a label that lists the state name and population; otherwise, create a label
that lists the state name".

Since we have two cases of possible labels, we will need to use the CASE ELSE
conditional function. The purpose of the CASE ELSE function is to direct the field
calculator to a calculation block when a condition is met. So, we will have one
calculation block for states over five million in population and one for all other states.

For this example, the states48.shp sample data is being used. The POP1996 field
contains the states' population values as of 1996 and is the field used to determine
whether a state's population is over or under five million.

1. Open the Field calculator window.
2. Select Create a new field and set the following options:

 ° Output field name: StateLabel
 ° Output field type: Text (string)
 ° Output field width: 35

3. In the Function list field, expand the Conditionals node and then double-
click on CASE ELSE to add it to the Expression area.
This will add CASE WHEN expression THEN result ELSE result END
to the Expression area. We will replace expression with the test for
populations greater than five million. The result after THEN will be replaced
with the label we wish to create when expression is true. The result after
ELSE will be replaced with the label we wish to create when expression
is false.

Preparing Vector Data for Processing

[138]

4. Let's start by setting the label for states with a population of less than five
million. Replace the result after ELSE with the field name STATE_NAME.

5. Now, we will set the condition to check for population greater than five
million. Replace condition with "POP1996" > 5000000. The following
figure shows the expression with optional formatting to make it easier
to read:

6. The last step is to calculate the string for states with a population greater than
five million. The format of the string will be <state name> Population:
<population>, with the state name on the first line and the population on
the second line. As this is a complex string, it will be constructed in three
parts, and then concatenated together using the concatenation operator, ||
(two vertical bars).

7. Replace result with the "STATE_NAME" field.
8. Add a concatenation operator after "STATE_NAME" by either typing two

vertical bars (||) or by clicking the concatenation operator button (). This
allows the following text to be concatenated with the contents of the "STATE_
NAME" field.

9. After the concatenation operator, type '\nPopulation: 'and keep a space
between the colon and closing single quote. The \n is interpreted as a new
line and starts a new line in the string.

Chapter 4

[139]

10. Add a concatenation operator to the end of the line.
The last item to add to the string is the population value stored in the
POP1996 field. However, the population is stored as an integer and an integer
(or any other number) cannot be concatenated to a string. Therefore, we
need to convert the integer to a string so that we can concatenate. Luckily for
us, the format_number() function converts a number to a string and adds
thousands separators and rounds the number (although rounding is not
needed in this case).

To convert a number to a string without formatting, use
the tostring() function.

11. After the concatenation operator, add the format_number() function by
expanding String in Function list and double-click on format_number. You
can also manually type in the function.

12. Inside the parenthesis of the format_number() function, enter "POP1996",
0 where "POP1996" is the first parameter containing the population value,
the comma separates the function parameters, and 0 is the number of decimal
places to round the number. The following figure shows the completed
expression that is formatted across multiple lines for easy reading:

13. Click on OK to perform the field calculation. This will enable editing on the
layer and calculate the field values.

Preparing Vector Data for Processing

[140]

14. Save the edits to the layer and disable the editing mode. The calculated
values are now stored in the layer. The following figure shows a sample
of labels calculated for states with populations greater and less than
five million:

Complex spatial and aspatial queries
QGIS provides powerful spatial and aspatial query tools that allow for the easy
creation of data subsets. In this section, a series of spatial and aspatial queries will
be used to determine which elementary schools are within the Southeast Uplift
Neighborhood Coalition (SEUL) and Southwest Neighborhoods Inc. (SWNI)
coalitions in Portland, Oregon. This example uses the Neighborhoods_pdx.shp and
schools.shp sample data.

First, we will select the SEUL and SWNI coalition neighborhoods from
Neighborhoods_pdx.shp. To do this, perform the following steps:

1. Open the attribute table of Neighborhoods_pdx. Click on the Select features
using an expression button () to open the Select by expression window.
This window is a subset of the Field calculator window that was explained
in the Exploring the field calculator interface section, earlier in this chapter. If
you are unfamiliar with the interface, review the aforementioned section.

Chapter 4

[141]

2. In Function list, expand the Fields and Values node and double-click on
"COALIT" to add it to the Expression area.

3. In the Operators area, click on the Equal operator button () or press = on
your keyboard to add it to the Expression area.

4. With "COALIT" still selected in Function list, click on the all unique button
to load a list of all unique values found in the field. Double-click on 'SEUL' to
add it to the Expression area after the equal sign.

5. As we want to choose either SEUL or SWNI coalition neighborhoods, we
will use the Boolean OR operator to connect the two expressions together. In
Function list, expand the Operators node and double-click on OR to add it
to the end of the expression.

6. Using what you learned so far, add "COALIT" = 'SWNI' to the end of the
expression. The completed expression is shown in the following screenshot:

7. Click on Select to perform the aspatial selection. Close the Select by
expression window and the attribute table to view the results on the map.
The following figure shows the selected neighborhoods.

Preparing Vector Data for Processing

[142]

With the two coalitions selected, we will next perform a spatial selection to
determine which schools are within the selected neighborhoods. To do this, perform
the following steps:

1. Navigate to Vector | Spatial Query | Spatial Query from the QGIS menu
bar to open the Spatial Query window. This window allows features from
one layer to be selected based on their spatial relationship with the features
in a different layer. Depending on the geometry of the two layers, the spatial
relationships will change to match the appropriate selections that
are available.

2. In the Select source features from section, choose schools.
3. Set Where the feature to Within from the drop down box.
4. In the Reference features of section, choose Neighborhoods_pdx. Keep

46 selected geometries selected. With this selected, only the currently
selected neighborhoods will be used for the spatial query.

5. For the And use the result to field, choose Create new selection.
6. Click on Apply to execute the query. Once complete, the Spatial Query

window will expand to display the results.

The following screenshot shows the expanded Spatial Query window.
You can select individual result feature IDs and select Zoom to item to center
the map on the selected item. Note that the window still contains the original
spatial query, so it is possible to modify the query and execute it again.
In addition, note that you can view log messages of the query. Lastly, you
can create a temporary layer to the map from the selected features by clicking
on the Create layer with selected button ().

Chapter 4

[143]

7. Click on Close to dismiss the Spatial Query window. On the map, the
schools layer will have the selected records that fall within the two selected
coalition neighborhoods. The last step is to select only the elementary schools
from the selection.

8. Open the attribute table of schools. Click on the Select features using an
expression button to open the Select by expression window.

9. Using what you have learned so far, create this expression:
"LEVEL" = 'Elementary'.

10. Click on the down arrow next to the Select button and choose Select within
selection. This will execute the selection. The remaining 32 selected records
are the elementary schools that were previously selected by location. Click on
Close to close the Select by expression window.

11. On the schools attribute table, in the lower-left corner, click on Show all
Features button and choose Show Selected Features. Only the selected
records will now display in the attribute table.

Preparing Vector Data for Processing

[144]

Summary
Data is rarely in the form needed to perform processing and analysis. Often, data
needs to be merged, checked for validity, converted, calculated, projected, and so on,
to make it ready for use. This chapter covered many common preparation tasks to
convert raw data into a more useable form.

In the next chapter, this theme of data preparation will continue, but it will be
applied to raster data. You will learn how to mosaic, reclassify, resample, interpolate,
and convert raster data to make it more meaningful as an input to processing tasks.

[145]

Preparing Raster Data
for Processing

This chapter covers how to prepare raster data for further processing with the
GDAL menu tools and Processing Toolbox algorithms. There are specific
considerations and tools for managing raster data. The topics that you will cover
in this chapter are as follows:

• Reclassification
• Resampling
• Rescaling
• Raster mosaics
• Generating overviews (pyramids)
• Data format conversions
• Interpolation

Reclassifying rasters
Raster data sets often have hundreds or thousands of values. For an analysis, you
may need to synthesize the data into meaningful categories. For example, elevation
may be an important input in a habitat model for species X. However, you may only
be interested in identifying several broad elevation thresholds that help to define the
habitat. In the following example, you will use the elevation.tif sample data. You
will reclassify the elevation data into several categories: less than 2000 meters, 2000
to 2500 meters, and greater than 2500 meters. This will result in a raster with three
values: one for each group of elevation values. The following steps outline how to
use the r.recode GRASS tool (found in the processing toolbox) to accomplish this:

1. Load elevation.tif and set the project's CRS to EPSG: 26912.

Preparing Raster Data for Processing

[146]

2. Turn on the Processing plugin (by navigating to Plugins | Manage and
Install Plugins) if it is not enabled.

3. Open the Processing panel by clicking on Toolbox under Processing.

The Processing Toolbox is covered in more detail in
Chapter 7, The Processing Toolbox.

4. To help locate the tool, type recode into the Processing Toolbox search bar
and hit the Enter key. Double-click on the tool to open it.

5. Select the input layer by clicking on the down arrow to choose a raster
loaded in the canvas or by clicking on the browse button.

6. Next, the tool will ask for a value to be filled in the File containing recode
rules [optional] field. This file has to be created in a text editor. The syntax
for the recode rules file is as follows:
input_value_low:input_value_high:output_value_low:output_value_
high
input_value_low:input_value_high:output_value
*:input_value:output_value
input_value:*:output_value

7. The following are the recode rules for this example. The first line tells the
tool to recode the values less than 2000 meters with a value of 1 in the output
raster. The first asterisk is a wildcard for every value less than 2000. The
second line recodes the values greater than and equal to 2000 and less than
2500 as 2 in the output raster. The third line recodes all values greater than
2500 as 3 in the output raster:
*:2000:1
2000:2500:2
2500:*:3

8. Save the preceding code to a text file named Elevation_rRecode_Rules.
txt.

Chapter 5

[147]

9. Select the output raster by clicking on the browse button. You can choose
either to Save to a temporary file or Save to file. The following screenshot
shows the completed r.recode tool:

There is a similar GRASS tool in the Processing Toolbox named
r.reclass. The r.reclass tool is used when reclassifying integer and
categorical rasters, while r.recode will reclassify floating-point
and decimal value rasters. Both tools use the same format for the
rules text file. More complete documentation for these tools can be
found on the GRASS GIS help pages at http://grass.osgeo.
org/grass65/manuals/r.reclass.html and http://
grass.osgeo.org/grass65/manuals/r.recode.html.

Preparing Raster Data for Processing

[148]

The following figure shows the result of the reclassification. The original elevation
raster with the original elevation values is on the left, and the reclassified raster with
three values is on the right.

Converting datasets from floating-point to
integer rasters
Raster datasets may have integer values or floating-point values with decimal points.
The r.recode tool can also be used to convert raster datasets between these formats.
The elevation.tif sample data is a floating-point raster with values ranging from
1502.1 to 2898.49 meters above sea level.

To see the full range of values in a raster, navigate to Layer
Properties | Style. Under Load min/max values, select the
Min/Max setting. For Accuracy, choose Actual (slower).
Then, click on Apply.

To convert this raster to an integer raster, you will need to set up a rule text file with
the following text:

1502.1:2898.49:1502:2898
(input_value_low:input_value_high:output_value_low:
 output_value_high)

Chapter 5

[149]

Conversely, if you have an integer raster with values between 10 and 500 and want
to convert it to floating point, you will need to set up a rule text file with this:

10:500:0.1:5.0

This will result in a raster with cell values ranging from 0.1 to 5.0.

Resampling rasters
When an analysis requires that multiple raster datasets be combined or overlaid, their
pixel resolutions should be equal. The spatial resolution or cell size of a raster can be
increased or decreased by a process known as resampling. Although you can increase
or decrease the resolution of a raster, it is considered a better practice to decrease the
resolution of the finer datasets to match the resolution of the coarsest raster.

As an example, let's say you have two rasters: a 90-meter resolution elevation raster
and a 30-meter vegetation raster. In this scenario, it would be best to resample the
vegetation data to a 90-meter resolution to match the elevation data. This way all
the data will be matched accurately. Conversely, if you resample to match the finest
resolution raster, you will introduce false accuracy. The elevation data has a 90-meter
resolution because that was the smallest unit that could be differentiated from the
neighboring pixels. If you increase the spatial resolution, each elevation pixel is
converted to nine 30-meter pixels. You cannot assume that all nine resulting pixels
actually have the same elevation value in the real world. It is more likely that only
the center pixel would have the same value.

In QGIS, there are several tools that can be used to resample a raster. In this example,
the GDAL Translate tool will be used. The resolution of the elevation.tif sample
data will be changed from 27.3526 meters to 100 meters. While the Translate tool can be
found by navigating to Raster | Conversion | Translate, you will use the Processing
Toolbox implementation of it here because it has better options for specifying the
output pixel size. As you'll see this tool can be used for a variety of raster conversions
during the resampling process. As you'll see in the following steps, this tool can be
used for a variety of raster conversions during the resampling process:

1. Open the Processing Toolbox.
2. Switch to the advanced view.
3. Locate the tool by navigating to GDAL/OGR | Conversion | Translate

(convert format).
4. Select the Input layer raster by clicking on the down arrow to choose a raster

loaded in the canvas. or by clicking on the browse button.

Preparing Raster Data for Processing

[150]

5. For a specific output resolution, enter the number in the Set the size of the
output file (In pixels or %) box. To change the resolution by a percentage,
click on the Output size is a percentage of input size box.

6. If there are cells to designate as Nodata cells, enter the value in the Nodata
value, leave as none to take the nodata value from input field. Otherwise,
leave this option blank.

7. If there is a one-band raster with a color table, use the Expand drop-down
menu to choose a setting for converting it to a three-band image.

8. To change the CRS of the raster during the resampling operation, specify the
new output CRS by clicking on the browse button for the Output projection
for output file [leave blank to use input projection] option box.

9. To subset or clip the raster during the resampling operation, enter the
coordinates for the desired spatial envelope in the Subset based on
georeferenced coordinates (xmin, xmax, ymin, ymax) option box.

10. Additional creation parameters can be specified. For a full list of options
for the gdal_translate utility, visit the help page at http://www.gdal.org/
gdal_translate.html.

11. Use the Output raster type drop-down menu to choose the radiometric
resolution of the output raster. The options are Byte, Int16, UInt16, UInt32,
Int32, Float32, Float64, CInt16, CInt32, CFloat32, and CFloat64.

The Output raster type setting in the Translate tool of
the Processing Toolbox can also be used to convert from
floating-point rasters to integer rasters and vice versa.
With a floating-point raster as the input, choose one of
the integer settings to convert the raster to an integer.

Chapter 5

[151]

12. Select the output raster by clicking on the browse button. You can choose
to either Save to a temporary file or Save to file. The following screenshot
shows the completed Translate tool:

Preparing Raster Data for Processing

[152]

The following figure shows the result of raster resampling. The original elevation
raster with 27.3526 meter pixel resolution is on the left and the resampled raster with
100 meter pixel resolution is on the right.

There are two additional tools that can be used to resample
raster data, and both are found in the Processing Toolbox. Under
GRASS commands | Raster tools there is the r.resample tool.
Under SAGA | Grid-Tools there is the Resampling tool. Both
these tools have similar options to the GDAL Translate tool and
are included with most installations of QGIS.

Installing and troubleshooting SAGA on
different platforms
SAGA, like GRASS GIS, is a standalone application whose tools can be accessed from
within the QGIS Processing Toolbox. To do this, you need to have both QGIS and
SAGA installed. The processing framework must also be configured properly so that
QGIS can access the SAGA command-line executable. The following are guides for
installing and troubleshooting SAGA on each operating system.

Chapter 5

[153]

Windows
If you are running Windows and you installed QGIS with either the OSGeo4W or the
standalone installer, SAGA will be included (unless SAGA was unchecked during
the OSGeo4W installation). More importantly, the path to the SAGA executable is
automatically configured. There is nothing you need to do. Just use the SAGA tools!

Mac OS X
When you install QGIS from the Kyngchaos repository at kyngchaos.com/
software/qgis, SAGA will be included. The main error that you may encounter
will state Missing dependency: This algorithm cannot be run. If you encounter this
error, there are three ways to troubleshoot the problem:

1. There may be a conflict with the GDAL plugins. When they are enabled, the
GDAL formats are added to the SAGA file format list and this changes the
expected ordering. (This is mentioned in the Kyngchaos QGIS 2.6 README
file.) The workaround is to disable the GDAL plugins (GDAL tools and
Georeferencer GDAL) when SAGA algorithms are needed. This leaves GDAL
unable to use these formats, so remember to re-enable the GDAL plugins
when the work with the SAGA tools is complete.

2. There may be multiple versions of the Processing Toolbox plugin installed.
Shut down QGIS. Move the ~/.qgis2/python/plugins/processing folder
to your desktop and relaunch QGIS. The folder will be rebuilt and the most
recent version of SAGA will be used.

3. Identify the installation path for SAGA. In QGIS, navigate to Settings |
Options | System and make sure that the PATH variable includes the path to
the SAGA binaries. This can be found under Current environment variables.

Linux
The SAGA binaries must be installed. They can be found at http://sourceforge.
net/p/saga-gis/wiki/Binary%20Packages/. There are packages available for
Debian, Ubuntu, and FreeBSD. For example, SAGA can be installed on Ubuntu by
running the following commands:

sudo add-apt-repository ppa:johanvdw/saga-gis

sudo apt-get update

sudo apt-get install saga

Preparing Raster Data for Processing

[154]

If you encounter the missing dependencies error, perform the following steps:

1. Open SAGA by navigating to Processing | Options | Providers and
uncheck Use SAGA 2.0.8 syntax:

2. If you still get the error, identify the installation path for SAGA. In QGIS,
navigate to Settings | Options | System and make sure that the PATH variable
includes the value for the path to the SAGA binaries. This can be found under
Current environment variables, as shown in the following screenshot:

Chapter 5

[155]

Rescaling rasters
When an analysis calls for multiple rasters to be combined mathematically, it is often
desirable to have the values in each raster converted to a common scale. For example,
in a site-selection analysis, you need the data values for the input rasters to be
scaled from 0 to 100. This can be done with the advanced interface by navigating to
Processing Toolbox | GRASS commands | Raster | r.rescale tool. In the following
example, the RiparianSurface.img raster with values ranging from 10 to 95.5 will
be rescaled to a raster with values ranging from 0 to 100. To do this, perform the
following steps:

1. Select the input raster layer by clicking on the down arrow to choose a raster
loaded in the canvas, or by clicking on the browse button.

2. Specify The input data range to be rescaled.
3. Specify The output data range.
4. Select the output raster layer by clicking on the browse button and choosing

Save to a temporary file or Save to file:

Preparing Raster Data for Processing

[156]

Creating a raster mosaic
Frequently, raster data is made available in tiles. In fact, some consider the Murphy's
Law of GIS to be that your study area lies at the intersection of four topographic
quadrangles. In this situation, the input rasters will need to be combined into a
seamless raster that covers the study area. When doing this, the individual input
rasters must all be in the same coordinate reference system and have the same
number of bands.

Assuming that these two conditions have been met, the Merge tool that can be found
by navigating to Raster | Miscellaneous can be used to merge the individual rasters
together. This tool is a GUI version of the GDAL_merge command-line tool. Overlap
among the input rasters is allowed. If this happens, the data for the last image in the
list will be used for the area of overlap. In the Merge dialog, you have the option
to choose whether you wish to merge all the rasters in a folder or you can pick
individual rasters to merge. This provides a nice built-in batch-processing option.
The following are the options for running the Merge tool:

1. Depending on how your data is stored, you can choose one of the
following options:

 ° Select Choose input directory instead of files.
 ° Click on the Select… button and select the individual rasters to

merge. In the following example, the sample data 35106-G4.tif,
35106-G5.tif, 35106-H4.tif, and 35106-H5.tif are being merged.
(Note that this data has a CRS of EPSG: 26913, so the project CRS
should be set to this.)

2. Name the output file by clicking on Select….
3. If the rasters include a no-data value, you can select No data value and

specify this value.
4. If the input rasters cover the same geography but contain different bands of

information, this tool can be used to create a multiband image. By choosing the
Layer stack option, each input file becomes a separate band in a stacked image.

5. The Use intersected extent option specifies the spatial envelope for the
output. It defaults to the extent of the inputs.

6. If the images include a color table that can be passed on to the output by
choosing the Grab pseudocolor table from the first image option, this option
assumes that the same color table is used for all the input rasters.

Chapter 5

[157]

Notice that the syntax equivalent to the gdal_merge command
line is displayed as you choose your merge options. If you are
familiar with the GDAL command-line syntax, you can use the
edit button () to set the tool options by editing the command
directly. For example, you could specify the output image format
as a 16-bit integer by using the –ot Int16 parameter. You could
also specify the output pixel size with the –ps parameter. The
GDAL help page for this command can be found at http://www.
gdal.org/gdal_merge.html.
The Creation Options allow you to add your own command-line
options and set parameters, such as the compression profile to be
used on the output image.

The following screenshot shows the Merge command that is configured to mosaic
the collection of input rasters. The equivalent command-line syntax is displayed in
the window:

Preparing Raster Data for Processing

[158]

There are two additional tools in QGIS that can be used to create raster
mosaics. Both of these require the rasters to be merged and loaded
into the QGIS map canvas. The first is the GRASS tool r.patch. It can
be found by navigating to Processing Toolbox | Grass Commands |
Raster | r.patch.
The second tool is the SAGA tool Merge raster layers. This tool can
be found by navigating to Processing Toolbox | SAGA | Grid-
Tools | Merge raster layers. This SAGA tool lets you determine how
overlapping cells in the set of input rasters will be handled. You can
choose to use the first value in the order of the grid list or the mean
value. It also allows you to choose the interpolation method. See the
following figure:

Generating raster overviews (pyramids)
A raster pyramid is a reduced-resolution version of a raster. The purpose of a
pyramid is to reduce the time it takes to display a raster. Pyramids can be built
at multiple levels to help strike a balance between the pyramid's file size and the
display speed.

Chapter 5

[159]

To build a raster overview in QGIS, click on Build Overviews (Pyramids) by
navigating to Raster | Miscellaneous. This will open the Build overviews
(Pyramids) tool window, as shown in the following screenshot:

The Build overviews tool provides a few options as well as the ability to edit the
GDAL command that will build the overviews. By selecting Batch mode, an entire
directory of rasters will be processed, instead of the default of a single raster. In
either case, the following options are available:

• Input file: The raster (or directory of rasters) that will have overviews built.
• Clean: If this is selected, any previously built overviews will be deleted.

Preparing Raster Data for Processing

[160]

• Overview format: The format of the built overviews. The options are
as follows:

 ° External (GTiff.ovr): In this format, the overviews are stored in
the external .ovr file. The file will have the same base name as the
original input file.

 ° Internal (if possible): In this format, the overviews are stored within
the raster file. Note that the Clean option will not remove previously
built internal overviews.

 ° External (Erdas Imagine .aux): In this format, the overviews are
stored in the external .aux file. The file will have the same base name
as the original input file.

• Resampling method: The resampling method used to downsample the
input raster.

• Levels: This provides the options for the levels for which the overviews
should be built. The values represent the amount of reduction in resolution
for each level. For instance, level 8 represents a resolution of one-eighth of
the original raster. Multiple levels can be selected.

• Custom levels: A custom set of levels can be specified. Levels must be
specified as positive integers that are separated by spaces.

• Profile: If External or Internal overview formats are selected, a compression
profile can be selected. The profile sets parameters that are required to
reach the selected compression level. Once a profile is selected, it appears
underneath the text box.

The Build overviews tool is essentially a frontend for the gdaladdo GDAL command.
So, at the bottom of the tool window, the GDAL command is displayed and modified
when options are selected. To manually change the GDAL command, press the Edit
button () to make the GDAL command editable.

The gdaladdo GDAL command builds or rebuilds
pyramids for raster data. For more detailed information
about this command and its parameters, visit the
documentation page at http://gdal.org/
gdaladdo.html.

Chapter 5

[161]

Converting between raster and vector
data models
QGIS provides tools to convert between raster and vector data models. In this
section, we will convert between the two data models using a national land cover
dataset of 2006 for the Dallas area in Texas.

Converting from raster to vector
To convert a raster to a vector format, QGIS provides the Polygonize tool. The
Polygonize tool converts an input raster file into any supported type of vector file and
writes the raster cell values to a field in the vector file. When the raster is polygonized,
adjacent cells of the same value are aggregated to a single larger polygon.

To access the Polygonize tool, click on Polygonize (Raster to Vector) by navigating
to Raster | Conversion. The Polygonize tool is shown in the following screenshot
and uses the sample DFW Land Cover.tif file as input:

Preparing Raster Data for Processing

[162]

To convert a raster to a vector polygon, the following options are available:

• Input file (raster): Input file to be polygonized.
• Output file for polygons (shapefile): Name and extension of the output file

that will hold the resulting polygons. Note that dozens of common vector
formats are supported, so be sure to specify the extension for the format that
you wish to use.

• Field name: The field name that will hold the cell values.
• Use mask: If selected, the specified file will be used to mask the input.
• Load into canvas when finished: Loads the output file into the QGIS canvas.

The Polygonize tool is essentially a frontend for GDAL. So, at the bottom of the tool
window, the gdal_polygonize GDAL command is displayed and modified when
the options are selected. To manually change the GDAL command, press the Edit
button () to make the GDAL command editable.

The gdal_polygonize GDAL command produces polygon
features from raster data. For more detailed information about
this command and its parameters, visit the documentation page
at http://gdal.org/gdal_polygonize.html.

There is a similar GRASS tool in the Processing Toolbox
named r.to.vect that converts a raster to a polygon, line, or
a point-vector format. Complete documentation for this tool
can be found on the GRASS GIS help pages at http://grass.
osgeo.org/grass65/manuals/r.to.vect.html.

Converting from vector to raster (rasterize)
To convert a vector to a raster format, QGIS provides the Rasterize tool. This tool
converts a shapefile to a raster and applies the values in a specified attribute field to
the cell values. To access the Rasterize tool, click on Rasterize (Vector to Raster) by
navigating to Raster | Conversion. The Rasterize tool, shown in the following figure,
uses the DFW_Land_Cover.shp sample file as input.

Chapter 5

[163]

To convert a vector to a raster, the following options are available:

• Input file (shapefile): The input vector file to be converted. The tool
supports multiple vector formats.

• Attribute field: The attribute field holds the value to assign to the raster cells.
• Output file for rasterized vectors (raster): The output raster file. The tool

supports multiple raster formats.
• Keep existing raster size and resolution: This is only selectable if the output

file already exists. This sets the output raster size and resolution to match the
existing output file.

• Raster size in pixels: This allows manual designation of raster width and
height in pixels.

Preparing Raster Data for Processing

[164]

• Raster resolution in map units per pixel: This allows manual designation of
raster width and height in the units of the map.

• Load into canvas when finished: Loads the output file in to the
QGIS canvas.

The Rasterize tool is essentially a frontend for GDAL. So, at the bottom of the tool
window, the gdal_rasterize GDAL command is displayed and modified when the
options are selected. To manually change the GDAL command, press the Edit button
() to make the GDAL command editable.

The gdal_rasterize GDAL command burns vector geometries
into the raster band(s) of a raster. For more detailed information
about this command and its parameters, visit the documentation
page at http://gdal.org/gdal_rasterize.html.

There are two similar GRASS tools in the Processing Toolbox
named v.to.rast.attribute and v.to.rast.value
that convert a vector to the raster format. The v.to.rast.
attribute tool assigns attribute values to the output raster cells.
The v.to.rast.value tool assigns a single value or calculated
value to the output raster cells. Complete documentation for these
tools can be found on the GRASS GIS help pages at http://
grass.osgeo.org/grass71/manuals/v.to.rast.html.

Creating raster surfaces via interpolation
QGIS supports surface interpolation from vector points to a raster using the
Interpolation plugin. The Interpolation tool supports Inverse Distance Weighted
(IDW) and Triangular Interpolation (TIN). To enable the Interpolation plugin, click
on Manage and Install Plugins under Plugins.

As an example of how to use the Interpolation tool, let's use the Pecos DEM Points.
shp sample file to interpolate a surface using IDW:

1. Add Pecos DEM Points.shp to the map canvas.
2. Open the Interpolation plugin tool by navigating to Raster | Interpolation |

Interpolation. The tool is shown in the following figure and uses the Pecos
DEM Points.shp sample file as the input vector layer:

Chapter 5

[165]

The interface of the Interpolation tool is identical whether IDW or TIN
is chosen as the interpolation method. The only exceptions are the
interpolation method parameters, which can be set by clicking on the
configure button (). For this example, we will only cover the IDW
parameter (distance coefficient); however, you must know that for TIN,
you can set the Interpolation method (linear or cubic) and have the option
to export the triangulation to shapefile.

3. In the Input area, the Vector layers combo box is populated with all the
valid vector layers added to the QGIS project. Make sure that Pecos DEM
Points is selected.

4. Select value as the interpolation attribute. This will be the value that is
used as input for the interpolation method. If the input vector supports 3D
geometry, we could optionally select Use z-Coordinate for interpolation
instead of choosing an attribute.

5. Click on Add to add the vector layer and the selected attribute to the layer
list. At this point, we could add additional input vector layers to use as
inputs. The inputs will be combined into a single input.

6. Moving to the Output section, select Inverse Distance Weighted (IDW) as
the interpolation method.

7. Click on the configure button () to access the Distance coefficient
(P value) parameter. Enter 3.0 to decrease the influence of distant points for
the interpolation. Click on OK to set the value.

8. Set the Number of columns value to 200. Note that as you type in the
value, the Cellsize X value changes to 0.00005. These two values are linked
together and are automatically calculated based on the extent values listed
(X min, X max, Y min, Y max).

Preparing Raster Data for Processing

[166]

9. Set the Cellsize Y value to 0.0005 to match the Cellsize X value. Again, note
that as you type in the value, the Number of rows value changes to 127.
The extent values can be manually changed by typing in the desired values,
or they can be automatically filled with the current extent of the map canvas
by clicking on Set to current extent. The default extent is set to the extent of
the input vectors.

10. Set the output file to Pecos_IDW.tif.
11. Select Add result to project to automatically add the interpolated raster to

the map canvas. Click on OK to execute the IDW interpolation.

The following figure shows the resulting raster from the IDW interpolation with the
Pecos DEM Points.shp input points on top:

There are additional interpolation tools available via the Processing Toolbox. In
the GRASS commands, there are v.surf.bspline, v.surf.idw, and v.surf.rst,
which interpolate using the bicubic or bilinear spline, inverse distance weighted,
and regularized spline, respectively. In the SAGA commands, there are many
interpolation methods under the Grid – Gridding, Grid – Spline, and Kriging
sections in the advanced interface of the Processing Toolbox.

Chapter 5

[167]

Summary
This chapter provided steps and examples showing how to prepare raster data
for further processing. This chapter covered common raster operations such as
reclassification, resampling, rescaling, mosaicking, interpolation, and so on. Many
of the tools shown in this chapter rely on GDAL to perform the calculations, while
others are included as part of plugins or QGIS. Where applicable, alternative
tools were noted in information boxes, as different tools may provide different
functionality or parameters.

In the next chapter, we will switch from modifying and preparing existing data
(as discussed in Chapter 4, Preparing Vector Data for Processing, and this chapter) to
creating data. The next chapter will cover creating points from raw coordinate data,
geocoding, georeferencing imagery, and topology operations.

[169]

Advanced Data Creation
and Editing

This chapter will provide you with more advanced ways to create vector and raster
data. There is a great deal of spatial data held in tabular format. Readers will learn
how to map coordinate and address-based data. Other common sources of geospatial
data are historic aerial photographs and maps in hard copy. Readers will learn how
to georeference scanned imagery and transform it into a target coordinate reference
system. The final portion of the chapter will cover testing topological relationships in
vector data and correcting any errors via topological editing.

The topics that you will cover in this chapter are as follows:

• Creating points from coordinate data
• Geocoding address-based data
• Georeferencing imagery
• Checking the topology of vector data
• Repairing topological geometry errors via topological editing

Creating points from coordinate data
There is a lot of data with spatial components stored in spreadsheets and tables. One
of the most common forms of tabular spatial data are x and y coordinates that are
stored in a delimited text file. The data may have been collected with a GPS receiver,
it may have been generated by a surveyor, or it may have been transcribed off
topographic maps. Regardless, QGIS can map these coordinates as points by using
the Add Delimited Text Layer tool (). This tool can be found by navigating to
Layer | Add Layer | Add Delimited Text Layer or on the Manage Layers toolbar.

Advanced Data Creation and Editing

[170]

Delimited text data is simply a table with column breaks that are identified by
a specific character such as a comma. With this tool, QGIS can accept either
x and y coordinates or Well-Known Text (WKT) representations of geometry.
WKT can contain point, line, or polygon geometry. The following is a sample
data, cougar_sightings.csv, viewed in a text editor. This is a comma-delimited
file with x and y coordinate values.

In this example, the first row contains the column names and definitions for the
data type in each column. The column names and definitions are enclosed in
quotes and are separated by commas. The first column reads "SAMPID, C, 20". In
this case, the field name is SAMPID. It is a text field signified by the letter C, which
stands for character, with a width of 20 characters. The final two columns contain
the coordinates. These are numeric fields signified by the N character. They have a
precision of 19 and a scale of 11.

QGIS has three requirements for the delimited text file to be mapped:

• The first row must be a delimited header row of field names
• The header row must contain field-type definitions
• If the geometry values are stored as x and y coordinate values, they must be

stored as numeric fields

The Create a Layer from a Delimited Text File tool is simple but robust enough to
handle many file-format contingencies. The following is the workflow for mapping
data held in such a file:

1. Navigate to Layer | Add Layer | Add Delimited Text Layer.
2. Select the file name by clicking on Browse... and locate the delimited text file

on your system. QGIS will attempt to parse the file with the most recently
used delimiter.

3. Select Layer name. By default, this will be the prefix of the delimited text file.

Chapter 6

[171]

4. Use the File format radio boxes to specify the format of the delimited text
file. You will see how QGIS is parsing the file by the example at the bottom
of the Create a Layer from a Delimited Text File window. The following are
the options for File format:

 ° Choose CSV if it is a standard comma-delimited file.
 ° Custom delimiters can be checked to identify the specific character

used. The choices are Comma, Tab, Space, Colon, Semicolon, or
Other delimiters.

 ° Choose the Regular expression delimiter option if you wish to
enter the regular expression for the delimiter. For example, \t is the
regular expression for the tab character.

5. The Record options section allows you to specify the number of header
lines to discard. In most cases, this option will be set to First record has
field names.

6. The Field options option allows you to control some field parameters:
 ° Check Trim fields if you need to trim leading or trailing spaces from

your data
 ° Check Discard empty fields to prevent empty fields from being put

into the output
 ° If commas are also the separators for decimal place values, check

Decimal separator is a comma

7. Once the file has been parsed, choose an appropriate value from the
Geometry definition option:

 ° If your file contains x and y coordinates, choose Point coordinates
and identify the fields containing the x and y coordinates.

 ° Choose Well known text (WKT), if your file contains WKT
geometries. For this option, you will also need to choose the field
containing the WKT geometry definitions.

 ° If the file does not contain any spatial information, choose No
geometry and the table will be loaded simply as a table.

8. Additionally, you can choose to enable the following options:
 ° Use spatial index: Creates a spatial index
 ° Use subset index: Creates a subset index
 ° Watch file: This setting watches for changes to the file by other

applications while QGIS is running

Advanced Data Creation and Editing

[172]

9. After you click on OK, the Coordinate Reference System Selector dialog box
will open. Use this dialog box to identify the coordinate reference system of
the data. It is very important to correctly identify the CRS of the input data.

There is a setting that can affect the behavior of the Coordinate
Reference System Selector for both new layers and layers that
are loaded into QGIS without a defined CRS. By navigating to
Settings | Options | CRS, you can choose how these situations
are handled. The choices are Prompt for CRS, Use Project CRS,
or Use default CRS displayed below. The default setting is
Prompt for CRS. However, if you have this set to Use project
CRS or Use default CRS displayed below, then you will not be
prompted to define the CRS as described earlier.

The following screenshot shows an example of a completed Create a Layer from a
Delimited Text File tool.

Chapter 6

[173]

Once the tool has been run, a new point layer will be added to QGIS with all the
attributes present in the original file (unless you chose to discard empty fields).
However, this is not a standalone GIS layer yet. It is simply a rendering of the
tabular data within the QGIS project. As such, it will behave like any other layer.
It can be used as an input for other tools, records can be selected, and it can be
styled. However, it cannot be edited. To convert the layer to a standalone shapefile
or another vector format, click on Save as under Layer or right-click on the layer in
the Layers panel and click on Save as. Here, you can choose any OGR supported
file format along with an output CRS of your choice. The cougar_sightings.csv
sample data has coordinates in UTM zone 13 NAD83 or EPSG:26913. The following
screenshot shows the mapped data in the cougar_sightings.csv sample data:

Sample data in cougar_sightings.csv mapped by x and y coordinate values

Advanced Data Creation and Editing

[174]

Mapping well-known text representations
of geometry
As mentioned earlier, the Add Delimited Text Layer tool can also be used to map
Well-Known Text (WKT) representations of geometry. WKT can be used to represent
simple geometries such as Point, LineString, and Polygon along with MultiPoint,
MultiLineString, and MultiPolygon. It can also represent more complex geometry
types such as geometry collections, 3D geometries, curves, triangular irregular
networks, and polyhedral surfaces. WKT geometries use geometry primitives such
as Point, LineString, and Polygon followed by the coordinates of vertices that are
separated by commas. For example, LINESTRING (30 10, 20 20, 40 30) would
represent the line feature shown in the following screenshot:

To demonstrate how WKT can be mapped via the Add Delimited Text Layer tool, we
will map the Parcels_WKT.csv sample data file; this has WKT geometries for eight
parcels (polygons):

1. Click on Add Delimited Text Layer by navigating to Layer | Add Layer.
2. Select the file name by clicking on Browse... and locate the delimited text file

on your system. In this example, the Parcels_WKT.csv file is being used.
3. Choose an appropriate value for the Layer name field. By default, this will be

the prefix of the delimited text file.

Chapter 6

[175]

4. Use the File format radio buttons to specify the format of the delimited text
file. This is a CSV file.

5. For Record options, set the Number of header lines to discard option as 1.
6. Set the Geometry definition option to Well known text (WKT).
7. Set the Geometry field option to field_1.
8. Click on OK and the Coordinate Reference System Selector will open. Use

this dialog box to identify the coordinate reference system of the data. For
this example, the data is in EPSG: 2903.

The following screenshot shows an example of a completed Create a Layer from a
Delimited Text File tool set up to parse a WKT file:

Advanced Data Creation and Editing

[176]

The data layer will be added to the Layers list and will behave like any other vector
layer. The following figure shows the resulting parcel boundaries:

Well-known text representations of parcels mapped via the Add Delimited Text Layer tool

An easy way to explore WKT geometries is to use the
getWKT plugin. This allows you to click on a selected
feature (in the QGIS map canvas) and see the WKT for
that feature. The WKT can be copied to the clipboard.

Geocoding address-based data
Another useful and common tabular spatial data source is a street address.
Geocoding addresses has many applications such as mapping the customer base
for a store, members of an organization, public health records, or incidence of
crime. Once they are mapped, the points can be used in many ways to generate
information. For example, they can be used as inputs to generate density surfaces, or
they can be linked to parcels of land, and characterized by socio-economic data. They
may also be an important component of a cadastral information system.

An address geocoding operation typically involves the tabular address data and a
street network dataset. The street network needs to have attribute fields for address
ranges on the left- and right-hand side of each road segment. You can geocode
within QGIS using a plugin named MMQGIS (http://michaelminn.com/linux/
mmqgis/). MMQGIS is a collection of vector data-processing tools developed by
Michael Minn. To install the plugin, perform the following steps:

1. Navigate to Plugins | Manage and Install Plugins.
2. Click on the All tab and type MMQGIS into the search bar.
3. Install the plugin that manifests as the MMQGIS menu.

Chapter 6

[177]

MMQGIS has many useful tools. For geocoding, you will use the tools found in
Geocode under MMQGIS. There are two tools there: Geocode CSV with Google/
OpenStreetMap and Geocode from Street Layer. The first allows you to geocode
a table of addresses using either the Google Maps API or the OpenStreetMap
Nominatim web service. This tool requires an Internet connection but no local street
network data. The web services provide the street network. The second tool uses a
local street network dataset with address-range attributes to geocode the address data.

How address geocoding works
The basic mechanics of address geocoding are straightforward. The street network
GIS data layer has attribute columns containing address ranges on both the even and
odd side of every street segment. In the following example, you see a piece of the
attribute table for the Streets.shp sample data. The columns LEFTLOW, LEFTHIGH,
RIGHTLOW, and RIGHTHIGH contain the address ranges for each street segment.

Advanced Data Creation and Editing

[178]

In the following example, we are looking at Easy Street. On the odd side of the
street, the addresses range from 101 to 199. On the even side, they range from 102
to 200. If you want to map 150 Easy Street, QGIS would assume that the address
is located halfway down the even side of that block. Similarly, 175 Easy Street
would be on the odd side of the street, roughly three-quarters of the way down the
block. Address geocoding assumes that the addresses are evenly spaced along a
linear network. QGIS should place the address point very close to its actual position,
but due to variability in lot sizes not every address point will be perfectly positioned.

Now that you've learned the basics you'll see how each MMQGIS geocoding tool
works. Here, both tools will be demonstrated against the Addresses.csv sample data.
The first example will use web services. The second example will use the Streets.
shp sample data. In both cases, the output will be a point shapefile containing all the
attribute fields found in the source Addresses.csv files.

The first example – geocoding using web
services
Here are the steps for geocoding the Addresses.csv sample data using web services.

1. Load the Addresses.csv and Streets.shp sample data into QGIS Desktop.
2. Open the Addresses.csv sample data and examine the table. These are

addresses of municipal facilities. Notice that the street address (for example,
150 Easy Street) is contained in a single field. There are also fields for the
city, state, and country. Since both Google and OpenStreetMap are global
services, it is wise to include such fields so that the services can narrow down
the geography.

3. Install and enable the MMQGIS plugin.
4. Navigate to MMQGIS | Geocode | Geocode CSV with Google/

OpenStreetMap. The Web Service Geocode dialog window will open.

Chapter 6

[179]

5. Select an appropriate value for the Input CSV File (UTF-8) field by clicking
on Browse... and locating the delimited text file on your system.

6. Select the address fields by clicking on the drop-down menu and fill suitable
values in the Address Field, City Field, State Field, and Country Field
fields. MMQGIS may identify some or all of these fields by default if they are
named with logical names such as Address or State.

7. Choose the web service.
8. Name the output shapefile by clicking on Browse....
9. Select a value for the Not Found Output List field by clicking on Browse....

Any records that are not matched will be written to this file. This allows you
to easily see and troubleshoot any unmapped records.

10. Click on OK. The status of the geocoding operation can be seen in the lower-
left corner of QGIS. The word Geocoding will be displayed, followed by the
number of records that have been processed.

11. The output will be a point shapefile and a CSV file listing the addresses that
were not matched.

The following screenshot shows the completed Web Service Geocode tool:

Advanced Data Creation and Editing

[180]

Two additional attribute columns will be added to the output
address point shapefile: addrtype and addrlocat. These fields
provide information on how the web geocoding service obtained
the location. These may be useful for accuracy assessment.
addrtype is the Google <type> element or the OpenStreetMap
class attribute. This will indicate what kind of address type
was used by the web service (highway, locality, museum,
neighborhood, park, place, premise, route, train station,
university, and so on).
addrlocat is the Google <location_type> element or
OpenStreetMap type attribute. This indicates the relationship of
the coordinates to the addressed feature (approximate, geometric
center, node, relation, rooftop, way interpolation, and so on).
If the web service returns more than one location for an address,
the first of the locations will be used as the output feature.
Use of this plugin requires an active Internet connection. Google
places both rate and volume restrictions on the number of
addresses that can be geocoded within various time limits. You
should visit the Google Geocoding API website (http://code.
google.com/apis/maps/documentation/geocoding/) for
more details, current information, and Google's terms of service.
Geocoding via these web services can be slow. If you don't get
the desired results with one service, try the other.

The second example – geocoding using local
street network data
Here are the steps for geocoding the Addresses.csv sample data using local street
network data:

1. Load the Addresses.csv and Streets.shp sample data.
2. Open the Addresses.csv sample data and examine the table. This contains

the addresses of municipal facilities. Notice that there is an address column
(for example, 150 Easy Street) along with separate columns for number
(150) and street (Easy). This tool requires that the number and street address
components be held in separate fields.

3. Install and enable the MMQGIS plugin.
4. Navigate to the MMQGIS | Geocode | Geocode from Street Layer menu

and open the Geocode from Street Layer dialog window.

Chapter 6

[181]

5. Select the Addresses.csv sample data as the Input CSV File (UTF-8) field
by clicking on Browse... and locating the delimited text file on your system.

6. Select the street name field from the Street Name Field drop-down menu.
7. Select the number field from the Number Field drop-down menu.
8. Select the zip field from the ZIP Field drop-down menu.
9. Select the street GIS layer loaded in QGIS from the Street Layer

drop-down menu.
10. Select the street name field of the street layer from the Street Name Attribute

drop-down menu.

This tool allows geocoding from street address ranges or
via From X Attribute and To X Attribute coordinates.
The latter assumes that you have attribute columns with
the To and From coordinates for each street segment. To
geocode via To and From coordinates select the From X
Attribute, To X Attribute, From Y Attribute,
and To Y Attribute fields from the drop-down menu.

11. In this example, only address ranges will be used. Populate the From X
Attribute, To X Attribute, From Y Attribute, and To Y Attribute dropdown
menus with the (street line start), (street line end), (street line start), and
(street line end) option.

12. Since address ranges will be used for geocoding, select the Left From
Number, Left To Number, Right From Number, and Right To Number
attributes from the drop-down menu.

13. If the street data has left and right zip code attributes, select Left Zip and
Right Zip from the drop-down menu. Since the Streets.shp sample data
does not have zip code attributes, these options will the left blank (none).

14. The Bldg. Setback (map units) option can be used to offset geocoded address
points from the street centerline. This should represent how far buildings are
from the middle of the street in map units. In this case, the map units are in
feet. Enter a map unit value of 20.

15. Name the output shapefile by clicking on Browse... button.

Geocoding operations rarely have 100 percent success.
Street names in the street shapefile must match the street
names in the CSV file exactly. Any discrepancy between
the name of a street in the address table and the street
attribute table will lower the geocoding success rate.

Advanced Data Creation and Editing

[182]

16. The tool will save a list of the unmatched records. Complete the Not Found
Output List field by clicking on Browse... button name the comma delimited
file. Any records that are not matched will be written to this file. This allows
you to easily see and troubleshoot any unmapped records.

17. Click on OK.
18. The output will be a point shapefile and a CSV file listing the addresses

that were not matched. In this example, the output shapefile will have 199
mapped address points. There will be four unmatched records described in
the Not Found CSV list.

The following screenshot shows the completed Geocode from Street Layer tool:

Chapter 6

[183]

Geocoding is often an iterative process. After the initial
geocoding operation, review the Not Found CSV file. If it's
empty, then all the records were matched. If it has records in it,
compare them with the attributes of the streets layer. This will
help you determine why the records were not mapped. It may
be due to inconsistencies in the spellings of street names. It may
also be due to a street centerline layer that is not as current as
the addresses. Once the errors have been identified, they can
be addressed by editing the data or obtaining a different street
centerline dataset. The geocoding operation can be rerun on the
unmatched addresses. This process can be repeated until all the
records are matched.

Use the Identify tool () to inspect the mapped points, and the
roads, to ensure that the operation was successful. Never take a
GIS operation for granted. Check your results with a critical eye.

The following figure shows the results of geocoding addresses via street
address ranges. The addresses are shown with the street network used in the
geocoding operation.

Advanced Data Creation and Editing

[184]

Georeferencing imagery
Maps and aerial photographs in hard copy have a lot of valuable data on them.
When this data needs to be brought into a GIS, they are digitally scanned to produce
raster imagery. The output of a digital scanner has a coordinate system, but it is a
local coordinate system created by the scanning process. The scanned imagery needs
to be georeferenced to a real-world coordinate system before it can be used in a GIS.

Georeferencing is the process of transforming the coordinate reference system
(CRS) of a raster dataset into a new coordinate reference system. Often, the process
transforms the CRS of a spatial dataset from a local coordinate system to a real-
world coordinate system. Regardless of the coordinate systems involved, we'll call
the coordinate system of the raster to be georeferenced as the source CRS and the
coordinate system of the output as the destination CRS. The transformation may
involve shifting, rotating, skewing, or scaling the input raster from source coordinates
to destination coordinates. Once a data set has been georeferenced, it can be brought
into a GIS and aligned with other layers.

Ground control points
Georeferencing is done by identifying ground control points (GCP). These are
locations on the input raster where the destination coordinate system is known.
Ground control points can be identified in one of the following two ways:

• Using another dataset covering the same spatial extent that is in the
destination coordinate system. This can be either a vector or a raster dataset.
In this case, GCPs will be locations that can be identified on both the datasets.

• Using datums or other locations with either printed coordinates or
coordinates that can be looked up. In this case, the locations are identified
and the target coordinates are entered.

Once a set of ground control points has been created, a transformation equation
is developed and used to transform the raster from the source CRS to the
destination CRS.

Ideally, GCPs are well distributed across the input raster. You should strive to create
GCPs near the four corners of the image, plus several located in the middle of the
image. This isn't always possible, but it will result in a better transformation.

Chapter 6

[185]

Using the Georeferencer GDAL plugin
The Georeferencer GDAL plugin is a core QGIS plugin, meaning it will be
installed by default. It is an implementation of the GDAL_Translate command-line
utility. To enable it, navigate to Plugins | Manage and Install Plugins and then
click on the Installed tab and check the box to the left of Georeferencer GDAL
plugin. Once enabled, you can launch the plugin by clicking on Georeferencer under
Raster. The Georeferencer window has two main windows: the image window and
the ground control point (GCP) table window. These windows are shown in the
following screenshot:

Advanced Data Creation and Editing

[186]

The general procedure for georeferencing an image is as follows:

1. Load the image to be georeferenced into the Georeferencer image window by
clicking on Open Raster under File or by using the Open raster button ().

2. If you are georeferencing the raster against another dataset, load the second
dataset into the main QGIS Desktop map canvas.

3. Begin to enter ground control points with the Add point tool (This tool, ,
is also available via Edit | Add point) Regardless of which of the two ground
control point scenarios you are working with, you need to click on the GCP
point within the Georeferencer image window. Use the zoom and pan tools
so that you can precisely click on the intended GCP location.

4. Once you click on the input raster with the Add point tool, the Enter map
coordinates dialog box will open:

You are now halfway done entering the GCP. Follow the appropriate directions
below. These will be different workflow depending on whether you are
georeferencing against a second loaded dataset or against benchmarks, datums, or
other printed coordinates on the input raster.

If you are georeferencing against a second loaded dataset, you need to follow
these steps:

1. Click on the From map canvas button.
2. Locate the same GCP spatial location on the data loaded in the main QGIS

Desktop map canvas. Click on that GCP location.
3. Use the zoom and pan tools so that you can precisely click on the intended

GCP location.
4. If you need to zoom in to the dataset within the QGIS Desktop map canvas,

you will have to first zoom in and then click on the From map canvas button
again to regain the Add point cursor and enter the GCP.

Chapter 6

[187]

5. The Enter map coordinates dialog box will reappear with the X / East and
Y / North coordinates entered for the point where you clicked on the QGIS
Desktop map canvas:

6. Click on OK.
7. As you enter GCP information for the source (srcX/srcY) and destination

(dstX/dstY) coordinates, they will be displayed in the GCP Table window
in the Georeferencer window:

Advanced Data Creation and Editing

[188]

8. Repeat steps (1-4 and 1-7 above) to enter the remaining GCPs.

If you are georeferencing against benchmarks, datums, or other printed coordinates
on the input raster, you need to perform the following steps:

1. Enter the X / East and Y / North coordinates in the appropriate boxes.
2. Click on OK.
3. Repeat steps (1-4 and 1-2 above) to enter the remaining GCPs.

Now that you've learned the basic procedure for georeferencing in QGIS, we will go
through two examples in greater detail. Here, you will learn all the options for using
the Georeferencer GDAL plugin.

The first example – georeferencing using a
second dataset
In this example, the scanned1990.tif aerial photograph will be georeferenced
by choosing ground control points from a more recent aerial photograph of the
bridgeport_nj.sid area. The scanned1990.tif image is the result of scanning a
hard copy of an aerial photograph. The bridgeport_nj.sid image file covers the
same portion of the planet and is in the EPSG:26918 - NAD83 / UTM zone 18N CRS.
Once the georeferencing operation is completed, a new copy of the scanned1990.
tif image will be created in the EPSG:26918 - NAD83 / UTM zone 18N CRS.

Getting started
1. Launch QGIS Desktop and load the bridgeport_nj.sid file into the QGIS

Desktop map canvas. (Note that you may need to navigate to Properties |
Style for this layer and set the Load min/max values option to Min / max so
that the image renders properly.)

2. Click on Georeferencer under Raster to launch the plugin. The Georeferencer
window will open.

3. Load the scanned1990.tif aerial photograph into the Georeferencer image
window by clicking on Open Raster under File or by using the Open raster
button . The Coordinate Reference System Selector window will open.
This is because the scanned1990.tif image does not have a defined CRS.
Set the CRS to EPSG:26918 - NAD83 / UTM zone 18N and click on OK.

4. Arrange your desktop so that QGIS Desktop and the Georeferencer window
are visible simultaneously.

5. Familiarize yourself with both datasets and look for potential GCPs. Look for
precise locations such as piers, corners of roof tops, and street intersections.

Chapter 6

[189]

Entering the ground control points
1. Zoom in to the area, using the zoom-in button (), where you will enter the

first GCP in both the QGIS Desktop and Georeferencer windows. Zooming in
will allow you to be more precise.

2. Enter the first GCP into the Georeferencer image window using the Add
Point tool().

3. After clicking on the image in the Georeferencer image window, the Enter
map coordinates window will open. Click on the From map canvas
button. The entire Georeferencer window will momentarily disappear.

4. Click on the same location in QGIS Desktop.

If you have not first zoomed in to the GCP area in QGIS
Desktop, you can still do so. After zooming in you will need
to click on the From map canvas button again to regain
the Add Point cursor.

5. The Enter map coordinates window will reappear with the destination
coordinates, populating the X / East and Y / North boxes. Click on OK to
complete the Ground Control Point.

6. The GCP table in the Georeferencer window will now be populated with
the source and destination coordinates for the first ground control point. The
control point will also be indicated in both the Georeferencer image window
and QGIS Desktop by a red dot.

If a GCP has not been precisely placed, the Move GCP Point
tool () can be used to adjust the position of the control
point in either the Georeferencer image window or the QGIS
Desktop map canvas.
GCPs can be deleted in two ways, as follows:

• Using the Delete point tool () and clicking on the
point in the Georeferencer image window

• By right-clicking on the point in the GCP table and
choosing Remove

Advanced Data Creation and Editing

[190]

The following figure QGIS Desktop and the Georeferencer window with a single
GCP entered.

Chapter 6

[191]

7. Repeat steps 6 to 11 for the remaining ground control points until you have
entered eight GCPs.

8. Use the pan and zoom controls to navigate around each image, as needed:

9. Once all the points have been entered, the Save GCP Points As button ()
can be used to save the points to a text file with a .points extension. These
can serve as part of the documentation of the georeferencing operation and
can be reloaded with the Load GCP Points tool () to redo the operation
at a later date.

Transformation settings
The following steps describe how to set the Transformation settings.

1. Once all the eight GCPs have been created, click on the Transformation
settings button ().

2. Here, you can choose appropriate values for the Transformation type,
Resampling method fields, and other output settings. There are seven
choices for Transformation type. This setting will determine how the ground
control points are used to transform the image from source to destination
coordinate space. Each will produce different results and these are described
as follows; for this example, choose Polynomial 2:

 ° Linear: This algorithm simply creates a world file for the raster and
does not actually transform the raster. Therefore, this option is not
sufficient for dealing with scanned images. It can be used on images
that are already in a projected coordinate reference system but are
lacking a world file. It requires a minimum of two GCPs.

 ° Helmert: This performs a simple scaling and rotational
transformation. This option is only suitable if the transformation
simply involves a change from one projected CRS to another. It
requires a minimum of two GCPs.

Advanced Data Creation and Editing

[192]

 ° Polynomial 1, Polynomial 2, Polynomial 3: These are perhaps the
most widely used transformation types. They are also commonly
referred to as first (affine), second, and third order transformations.
The higher the transformation order the more complex the distortion
that can be corrected and the more computer power it requires.
Polynomial 1 requires a minimum of three GCPs. It is suitable for
situations where the input raster needs to be stretched, scaled, and
rotated. Polynomial 2 or Polynomial 3 should be used if the input
raster needs to be bent or curved. Polynomial 2 requires six GCPs
and Polynomial 3 requires 10 GCPs.

 ° Thin Plate Spline: This transforms the raster in a way that allows
for local deformations in the data. This may give similar results as
a higher-order polynomial transformation and is also suitable for
scanned imagery. It requires only one GCP.

 ° Projective: This is useful for oblique imagery and some scanned
maps. A minimum of four GCPs should be used. This is often a good
choice when Georeferencing satellite imagery such as Landsat and
DigitalGlobe.

There is no one best Transformation type. You may need
to try several and then determine which generated the most
accurate transformation for your particular dataset.

The following screenshot shows setting the Transformation type setting within the
Transformation settings window.

Chapter 6

[193]

1. There are five choices for Resampling method. During the transformation,
a new output raster will be generated. This setting will determine how the
pixel values will be calculated in the output raster. Each is described here; for
this example, choose Linear:

 ° Nearest neighbour: In this method, the value of an output pixel
values will be determined by the value of the nearest cell in the input.
This is the fastest method and it will not change pixel values during
the transformation. It is recommended for categorical or integer data.
If it is used with continuous data, it produces blocky output.

 ° Linear: This method uses the four nearest input cell values to
determine the value of the output cell. The new cell value is a
weighted average of the four input cell values. It produces smooth
output because high and low input cell values may be eliminated in
the output. It is recommended for continuous datasets. It should not
be used on categorical data because the input categories may not be
maintained in the output.

 ° Cubic: This is similar to Linear, but it uses the 16 nearest input cells
to determine the output cell value. It is better at preserving edges, and
the output is sharper than the Linear resampling. It is often used with
aerial photography or satellite imagery and is also recommended for
continuous data. This should not be used for categorical data for the
same reasons that were given for the Linear resampling.

 ° Cubic Spline: This algorithm is based on a spline function and
produces smooth output.

 ° Lanczos: This algorithm produces sharp output. It must be used with
caution because it can result in output values that are both lower and
higher than those in the input.

The following figure shows setting the Resampling method setting within the
Transformation settings window.

Advanced Data Creation and Editing

[194]

As is the case with Transformation type, there is no best
Resampling method. Choosing the most appropriate algorithm
depends on the nature of the data and how that data will
be used after it has been georeferenced. Nearest neighbour,
Linear, and Cubic are the most frequently used options.

2. Since raster data tends to be large, it may be desirable to choose a
compression algorithm. There are four choices for Compression. Some
choices offer better reductions in file size while others offer better data access
rates. For this example, use None. The choices are as follows:

 ° None: This offers no compression
 ° LZW: This offers the best compromise between data access times and

file size reduction
 ° Packbits: This offers the best data access times but the worst file

size reduction
 ° Deflate: This offers the best file size reduction

3. Name the output raster by clicking on the Browse button.
4. Choose the target SRS by clicking on the Browse button. A window for

choosing the target coordinate reference system will open. For this example,
choose EPSG: 26918.

5. If an output map and output report are desired in the PDF format, click
on the browse button next to the Generate pdf map and Generate pdf
report options and specify the output name for each. The report includes a
summary of the transformation setting, GCPs used, and the root mean square
error for the transformation.

6. Click on the Set Target Resolution box to activate the Horizontal and
Vertical options for output pixel resolution in map units. For this example,
leave this option unchecked.

7. The Use 0 for transparency when needed option can be activated if pixels
with the value of 0 should be transparent in the output. For this example,
leave this option unchecked.

8. Click on Load in QGIS when done to have the output added to the QGIS
Desktop map canvas.

The Georeferencer tool can be configured by clicking on Configure
Georeferencer under Settings in the Georeferencing window. Here,
there are options for adding tips (labels) for the GCPS, choosing
residual units, and specifying sheet sizes for the PDF report.

Chapter 6

[195]

9. Click on OK to set the transformation settings:

10. Once the Transformation Settings values have been set, the residual[pixels]
column in the GCP table will be populated. This column contains the root mean
square error (RMSE) for each GCP. The mean RMSE for the transformation will
be displayed at the bottom of the Georeferencer window.

RMSE is a metric that indicates the quality of the transformation.
It will change depending on the Transformation type value
chosen. The general rule of thumb is that the RMSE should
not be larger than half the pixel size of the raster in map units.
However, it is only an indication. Another indication is how
well the georeferenced imagery aligns with other datasets.

Advanced Data Creation and Editing

[196]

11. Additionally, the Link Georeferencer to QGIS tool () and Link QGIS to
Georeferencer tool () will be activated. These will join the Georeferencer
window to the QGIS Desktop map canvas, and they will be synched together
when you use the pan and zoom tools.

The following screenshot shows the image in the Georeferencer window with 8
GCP's entered. Their location is identified by numbered boxes within the image
window. The To and From coordinates are displayed in the GCP table window
along with the RMSE values.

Chapter 6

[197]

Completing the operation
1. Click on the Start Georeferencing button () button to complete the

operation. The georeferenced raster will be written out and added to the
QGIS Desktop map canvas if the option was checked in the Transformation
Settings window.

The Generate GDAL Script tool () will write out the GDAL
command-line syntax for the current georeferencing operation. This
code can be copied to the clipboard and used to write out to a file:

The second example – georeferencing using
a point file
This example will use the zone_map.bmp image. It displays zoning for a small group of
parcels in Albuquerque, New Mexico. This image has five geodetic control points that
are indicated by small points with labels (for example, I25 28). These control points
are maintained by the U.S. National Geodetic Survey (NGS). Here, you will learn how
to load a precompiled set of ground control points to georeference the image:

1. Load the image into the Georeferencer window.
2. Choose EPSG:2903 - NAD83(HARN) / New Mexico Central (ftUS) for

the CRS.
3. Click on the Load GCP Points tool () and choose the zone_map.points

file. The destination coordinates for the locations in this file were obtained
from the NGS website (http://www.ngs.noaa.gov/cgi-bin/datasheet.
prl). From the website, the Station Name link under DATASHEETS was
used, and a station name search conducted for each. The destination
coordinates are in EPSG:2903 - NAD83(HARN) / New Mexico Central (ftUS).

Advanced Data Creation and Editing

[198]

The following figure shows the image in the Georeferencer window with
5 GCP's entered based off of datums whose destination coordinates were
looked up online. Their location is identified by numbered boxes within the
image window. The To and From coordinates are displayed in the GCP table
window along with the RMSE values.

Chapter 6

[199]

4. The zone_map.points file consists of five columns in a comma-delimited text
file. The columns MapX / MapY are the destination coordinates. Columns
pixelX / pixelY are the source coordinates, and enable column has a value of
1 if the GCP is to be used in the transformation and a value of 0 if it is not to
be used. The following are the contents of this points file:
mapX,mapY,pixelX,pixelY,enable
1524608.32,1484404.47,7532975.55,-1935414.15,1
1523925.76,1480815.95,6274098.49,-8399918.00,1
1523645.13,1482436.21,5780754.77,-5490891.27,1
1526449.40,1482056.68,10850286.74,-6171365.35,1
1526925.10,1479718.37,11700879.35,-10356281.00,1

5. Click on Transformation Settings under Settings and set the following
parameters:

 ° Choose Polynomial 1 as the Transformation type
 ° Choose Nearest neighbour as the Resampling method
 ° Choose a Compression of None
 ° Name the output raster
 ° Choose EPSG: 2903 as the Target SRS
 ° Complete the Generate pdf map and Generate report pdf fields
 ° Check Load in QGIS when done
 ° Click on OK

The following figure shows the completed Transformation settings.

Advanced Data Creation and Editing

[200]

6. Click on the Start Georeferencing button () to complete the operation.
The georeferenced raster will be written out and added to the QGIS Desktop
map canvas.

Checking the topology of vector data
In GIS, there are two main data models: vector and raster. They are called models
because they are not real but are representations of the real world. It is important
that we ensure our data is modeling the world as accurately as possible. Vector
datasets often have hundreds or thousands of features making it nearly impossible
to verify each feature. However, using topology rules, we can let QGIS evaluate the
geometry of our datasets and ensure that they are well constructed.

Topology is the relationship between contiguous or connected features in a GIS.
Here, you will be introduced to the Topology Checker plugin. This plugin allows
you to test topological relationships in your data and ensure that they are modeling
the real world accurately. An example of a topological relationship rule is polygons
must not overlap. Imagine a country boundaries dataset. It is not possible for a point
to be in two countries at once. Therefore, polygons in such a dataset should not
overlap. The Topology Checker plugin can be used to test whether there are any
overlapping polygons.

Installing the Topology Checker
Here are the steps for installing the Topology Checker plugin:

1. Navigate to Plugins | Manage and Install Plugins and click on the All tab.
2. In the search bar, type topology.
3. Select the Topology Checker plugin and click on Install plugin.
4. Once enabled, the Topology Checker plugin can be found by

navigating to Vector | Topology Checker.
5. When the Topology Checker window opens, it appears as a panel in QGIS

Desktop.

Topological rules
Different sets of topological rules are available depending on the feature geometry:
point, line, or polygon. Some rules test for relationships between features in a single
layer and some test the relationships between features of two separate layers. All
participating layers need to be loaded into QGIS. The following topological rule tests
are available.

Chapter 6

[201]

Rules for point features
The rules for point features are as follows:

• must be covered by: This relationship test evaluates how a point layer
interacts with a second vector layer. Points that do not intersect the second
layer are flagged as errors.

• must be covered by endpoints of: This relationship test evaluates how
a point layer interacts with a line layer. Points that do not intersect the
endpoints of the second layer are flagged as errors.

• must be inside: This evaluates how a point layer interacts with a second
polygon layer. Points not covered by the polygons are flagged as errors.

• must not have duplicates: This evaluates if point features are stacked on
top of one another. Additional points are with the same x and y position
(stacked) as the first point queried are flagged as errors.

• must not have invalid geometries: This checks whether the geometries are
valid and if they are not, then it flags those features as errors.

• must not have multi-part geometries: This flags all multi-part points
as errors.

Rules for line features
The rules for line features are as follows:

• end points must be covered by: This relationship test evaluates how a line
layer interacts with a second point layer. The features that do not intersect
the point layer are flagged as errors.

• must not have dangles: This test will flag features that are dangling arcs.
• must not have duplicates: This flags additional duplicate line segments

(stacked) as errors.
• must not have invalid geometries: This checks whether the geometries are

valid and if they are not, then it flags those features as errors.
• must not have multi-part geometries: This flags features that have a

geometry type of multi-line as errors.
• must not have pseudos: This tests lines for the presence of pseudo nodes.

This is when there is a pair of nodes where there should only be one. These
can interfere with network analysis. The features with pseudo nodes will be
flagged as errors.

Advanced Data Creation and Editing

[202]

Rules for polygon features
The rules for polygon features are as follows:

• must contain: This checks whether the target polygon layer contains at
least one node or vertex from the second layer. If it doesn't, it is flagged
as an error.

• must not have duplicates: This flags additional duplicated stacked polygons
as errors.

• must not have gaps: This flags adjacent polygons with gaps as errors.
Watersheds or parcel boundaries would be suitable for this test.

• must not have invalid geometries: This checks whether the geometries are
valid. Some of the rules that define a valid geometry are as follows:

 ° Polygon rings must close
 ° Rings that define holes should be inside rings that define exterior

boundaries
 ° Rings should not self-intersect (they may neither touch nor cross

one another)
 ° Rings should not touch other rings, except at a point

• must not have multi-part geometries: This flags all multi-part polygons
as errors.

• must not overlap: This flags adjacent polygon features in the same layer that
overlap one another as errors. Watersheds or parcel boundaries would be
suitable for this test.

• must not overlap with: This relationship test evaluates how polygon features
from the target layer interact with polygon features from a second polygon
layer. Those that do will be flagged as errors.

Chapter 6

[203]

Using the Topology Checker
The parcels.shp sample data will be used to demonstrate how to set up and test
topological relationships. Here, the parcels polygon shapefile is loaded and the
Topology Checker panel has been enabled by clicking on Topology Checker under
Vector. The following figure shows the parcels.shp sample data loaded into QGIS
desktop and the Topology checker plugin enabled.

Advanced Data Creation and Editing

[204]

Here are the steps for configuring the Topology Checker plugin and evaluating the
topology of the parcels.shp sample data.

1. Click on the Configure button in the Topology Checker panel to open the
Topology Rule Settings dialog.

2. To set a rule, choose the target layer, parcels.
3. Next, choose the must not have gaps rule from the central drop-down menu:

The list of available rules changes depending upon which
target layer is chosen.

4. Since this rule involves only the target layer, the final drop for a second layer
disappears.

5. Now, we will add a second rule. Set the target layer to parcels and the rule as
must not overlap.

6. Click on the Add Rule button ().
7. For the third rule, again set the target layer to parcels and set the rule as

must not have duplicates.

Chapter 6

[205]

8. Click on the Add Rule button.
9. For this example, we will test three rules against the parcels layer:

 ° must not have gaps
 ° must not overlap
 ° must not have duplicates

10. The rules that have been established are summarized in the Topology Rule
Settings dialog box:

11. A rule can be deleted by selecting it and choosing Delete Rule ().
12. Click on OK when the topological rules have been defined.

As of version 0.1 of the Topology Checker plugin, the
Tolerance setting is not operational. If it were, it would
allow a tolerance to be set in map units. For example, one
could test whether a bus stop's layer (point) is within 50
feet of the centerline of a road (line) by setting a tolerance
of 50 feet and using the must be covered by rule.

Advanced Data Creation and Editing

[206]

13. Once the topology rules have been set, you can choose to validate the
topology for the entire layer (Validate All) or just within the current map
extent (Validate Extent).

14. For this example, choose Validate All.
15. The topology errors are displayed in the Topology Checker panel. In this

case, 17 errors are found including 6 gaps, 9 overlaps, and 2 duplicate
geometries, as shown in the following screenshot:

16. The Show errors box can be checked to see where in the dataset the errors
occur. Errors will be highlighted in red, as shown in the following figure:

Chapter 6

[207]

Repairing topological errors via
topological editing
Once the geometry errors have been identified, the work of repairing the layer
begins. In Chapter 1, A Refreshing Look at QGIS, we covered basic vector data editing
that included layer-based snapping. In this final section, we will cover how to repair
topological geometry errors via topological editing. We will continue to use the
parcels.shp data as an example.

Topological editing only works with polygon geometries.

The editing approach taken depends on the topological error you are addressing.
In the last section, three types of errors were found: gaps, overlaps, and duplicate
geometries. These are three of the most common errors associated with polygon data
and we will look at how to repair these three types of errors.

Advanced Data Creation and Editing

[208]

Example 1 – resolving duplicate geometries
Duplicate geometries are the most straightforward errors to address. Here are the
step by step directions for resolving this type of topological conflict.

1. Toggle the editing option on for the parcels layer.
2. Double-click on the first instance of a duplicate geometry in the Topology

Checker error table to zoom to it.
3. Use the Select Features by Rectangle tool () to select the duplicate parcel.
4. Open the attribute table.
5. Change the display filter in the lower-right corner to Show

Selected Features:

6. Notice that all the attributes are identical. It is wise to verify this to ensure
you do not delete any unique data.

7. Select the feature with the higher row number and click on the Delete
selected button ().

8. Toggle off editing for this layer and save the changes.

Example 2 – repairing overlaps
To repair overlaps, there are some editing parameters with which you should
familiarize yourself and set.

Setting the editing parameters
1. Click on Snapping Options under Settings to check the snapping tolerances.
2. Click the checkbox to the left of the parcels layer to select it. Choose to

vertex and segment in the Mode field and a value of 10 map units in the
Tolerance field.

Chapter 6

[209]

3. Besides layer-based snapping options, you can also enable topological
editing from the Snapping Options dialog box. Click on the Enable
topological editing checkbox. Checking this option allows you to edit
common boundaries in adjacent polygons. QGIS will detect shared polygon
boundaries and vertices on these shared boundaries; they will only have to
be moved once and both polygons will be edited together.

4. There are two other editing options available here:
 ° Avoid intersections: This can be checked for a particular layer to

avoid creating overlaps when digitizing new polygons. With this
option checked, you can digitize a new polygon adjacent to an
existing one so that the new polygon intersects the existing feature.
QGIS will cut the new polygon to create the shared boundary.

 ° Enable snapping on intersection: This allows you to snap to an
intersection of another background layer.

For this example, leave the above two options unchecked.

5. Click on OK to close the Snapping options window.
The completed Snapping options are displayed in the following screenshot:

6. There are additional editing parameters that need to be set from Options
under Settings on the Digitizing tab. Set the value for Search radius for
vertex edits field to 10 pixels as shown in the figure below. Setting this value
to something larger than zero helps to ensure that QGIS finds the correct
vertex during an editing operation.

Advanced Data Creation and Editing

[210]

Adjusting the layer transparency can help when you work
with overlaps. A 50 percent transparency setting will allow
the overlaps to be visible.

7. Uncheck the Show errors option on the Topology Checker panel. This
declutters the map canvas.

8. Here, we will work on the first overlap in the list that has a feature ID
value of 624. To find this error, double-click on this record in the Topology
Checker error table. QGIS will zoom to the location of the error shown in the
following figure. Here we can see two parcels overlapping. The parcel on the
right will be moved to the right to eliminate the overlap with the left parcel.

Overlapping parcel polygons

Chapter 6

[211]

Repairing an overlap between polygons
Here are the step by step directions for repairing the overlaps found in the sample
parcels.shp data.

1. Toggle on editing option on for the parcels layer and select the polygon to
edit with the Select Feature by Rectangle tool (). Each vertex will be
displayed as red graphic Xs.

2. The Node tool () will be used to move the leftmost parcel and eliminate
the overlap. It allows individual vertices to be moved.

1. Click on one of the parcel corners and the vertices will appear as
red boxes.

2. Click on the lower-left vertex of the right-hand side parcel to select it.
It will turn blue.

3. Drag the selected vertex until it snaps to the boundary of the parcel it
is overlapping. A blue line will appear showing the location of virtual
polygon boundary as you edit it, as shown in the following figure:

Vertex of the right-hand overlapping parcel being moved

Advanced Data Creation and Editing

[212]

3. Repeat the actions in the previous step for the vertex in the top-left corner.
4. Now, the vertices have been snapped to the boundary of the left-side parcel

and the overlap has been repaired. Click on Validate Extent in the Topology
Checker panel to ensure that the overlap has been solved. If so, no errors will
be listed in the Topology Checker error table.

5. Any remaining overlaps can be fixed repeating steps 1-4.

The repaired parcel is shown in the following figure:

Overlap repaired

Chapter 6

[213]

Example 3 – repairing a gap between polygons
This example we will continue to work with the parcel.shp polygon layer. Here,
we will focus on the first gap error listed in the Topology Checker error list. It has a
feature ID of 0.

1. Ensure that editing is still toggled on for the parcels layer.
2. Double-click on the error in the table so that QGIS will zoom to the area. You

will see a small horizontal gap between two parcel polygons, as shown in the
following figure:

A small gap between two parcels

3. The same editing parameters that were set in Example 2 will be used here.
4. Zoom in a bit closer to the problem area.
5. Select the parcel to the north with the Select Feature by Rectangle tool.
6. Using the node tool, select the lower-left vertex and drag it to snap with the

other two parcels and close the gap.

Moving a vertex to repair or close the gap

Advanced Data Creation and Editing

[214]

7. Verify that the issue has been resolved by clicking on Validate Extent in the
Topology Checker panel.

8. The remaining gaps can be repaired using these steps 1-7.
9. Toggle off editing for the parcels layer and save the edits.

If you have too many topological errors to repair manually,
you can import your data into a GRASS database. GRASS has
a topological vector data model. The GRASS command v.clean
will repair a lot of errors. The cleaned GRASS vector can then
be exported into the file format of your choosing.

Summary
This chapter covered more advanced ways to create GIS data from different sources.
We provided explanations and step-by-step examples of mapping raw coordinate
data, geocoding address-based data, georeferencing imagery, validating vector data
with topological rules, and topological editing. With the topics covered to this point,
you will be able to work with a variety of vector, raster, and tabular input data.

In the next chapter, we will switch from preparing and editing data to performing
spatial analyses. We will cover the QGIS processing toolbox. We will begin with a
comprehensive overview and a description of layout of the toolbox. We will then
explore the various algorithms and tools that are available in the toolbox with real-
world examples.

Chapter 7

[215]

The Processing Toolbox
In this chapter, we will explore the structure of the QGIS processing toolbox,
identify which algorithm providers are available, and how to use these specialized
algorithms. To accomplish these goals, we will ensure that the toolbox is properly
configured, use a variety of specialized vector and spatial algorithms from the
GRASS and SAGA libraries, and perform hydrologic analyses using the Terrain
Analysis Using Digital Elevation Models (TauDEM) library. We will cover the
following topics in this chapter:

• Introduction to the toolbox
• Configuring the toolbox
• Structure of the toolbox
• Performing spatial analyses using GRASS and SAGA
• Performing a hydrologic analyses with TauDEM

The Processing Toolbox

[216]

About the processing toolbox
The processing toolbox serves as a one-stop-shopping GUI for accessing algorithms
from both native QGIS tools and many third-party providers. Historically, the
algorithms from other geospatial packages were only accessible within the native
software environment or through a command-line environment. Algorithms from
the following providers are accessible using the toolbox:

• QGIS geoalgorithms
• GDAL/OGR
• GRASS
• SAGA
• TauDEM
• LAStools
• R
• Orfeo Toolbox
• Models
• Scripts

We will not make use of all the algorithm providers or explore all the available
algorithms in this chapter; however, the last two entries in the list offer additional
options for creating reusable graphical models and running Python scripts, which
are covered in Chapter 8, Automating Workflows with the Graphical Modeler, and
Chapter 9, Creating QGIS Plugins with PyQGIS and Problem Solving, respectively.

Configuring the processing toolbox
In this section, we will ensure that the processing toolbox is correctly configured to
access and execute the algorithms within the GRASS, SAGA, TauDEM, and LAStools
libraries. Many of the required libraries are automatically installed, but configuring
these tools will vary depending on your operating system and how you choose to
install QGIS.

Chapter 7

[217]

Finding support for your installation
To use some of the GRASS algorithms in this chapter, you will need to
make sure that you properly install GRASS 7. If you used the OSGeo
installer, you can use the advanced installer option to add GRASS 7 to
your installation, otherwise you will need to manually install GRASS 7
and set the path directory in the processing toolbox.
In-depth instructions for configuring SAGA are provided in Chapter 5,
Preparing Raster Data for Processing.
Instructions for configuring most third-party algorithms on
different operating systems can be found on the QGIS website
at http://docs.qgis.org/2.6/en/docs/user_manual/
processing/3rdParty.html.
Support for installing LAStools on Windows, Mac OS X, and Linux
can also be found at http://rapidlasso.com/category/
tutorials/.

To begin configuring the toolbox, we need to click on Options and configuration
under Processing, which is illustrated in the following screenshot. Note that if you
are using a Linux distribution, this configuration can be found by navigating to
Processing | Options | Providers.

The Processing Toolbox

[218]

To get started, you need to make sure that each of the providers that you intend
to use are activated, and depending on your operating system and installation
approach, you may need to specify the necessary folders to run TauDEM, LAStools,
and R. The next screenshot illustrates that each of the algorithms are activated and
the necessary folders are specified:

Once you click on OK, QGIS will update the list of algorithms accessible through
the processing toolbox. The next section will provide you with an overview of the
structure and organization of the toolbox interface.

Chapter 7

[219]

Understanding the processing toolbox
In this section, we will explore the organization and establish a common language
for describing the various components of the toolbox. Until this point, we haven't
actually seen the interface itself. We merely configured and possibly installed the
required dependencies to make the toolbox function. To view the toolbox, you need
to click on Toolbox under Processing, as illustrated in this screenshot:

The processing toolbox will appear on the right-hand side of the QGIS interface;
however, by default most algorithm providers are not visible. You need to click on
the Simplified interface option that is visible in the next screenshot in the lower
right-hand corner, which will then display the option to select the Advanced
interface option:

The Processing Toolbox

[220]

After selecting the Advanced interface option, you will finally have access to the full
list of algorithms that the toolbox provides, as illustrated in this screenshot:

Initially, you will only see a list of the various providers and a summary of the total
algorithms available from each provider. When you click on the + icon next to any
of the entries, the list expands to reveal subdirectories that group related tools. In
addition to manually navigating these directories, there is a search box at the top of
the toolbox. So, if you are already familiar with these third-party packages or are
looking for a specific tool, this may be a more efficient way to access the algorithms
of interest.

You can search algorithms by topic
Even if you aren't familiar with the algorithm providers, you can still
use the search box to explore what tools are available from multiple
providers. For example, if you are interested in finding different ways
to visualize or explore topographic relationships, you could search
for it by typing "topographic" in the text box and discover that there
are ten tools from three different providers that relate to topography!

Chapter 7

[221]

To open any algorithm of interest, you just need to double-click on the name and
the algorithm dialog interface will open. It looks similar to other tools that we have
already used in QGIS. For example, click on the + icon next to the GDAL/OGR
entry and double-click on Aspect. You will see the dialog interface as shown in the
following screenshot:

The Processing Toolbox

[222]

Any algorithm that you select will present you with a similar algorithm dialog box,
so it is worth exploring the functionality of the interface. Similar to other tools that
we have already used, clicking on any inverted black triangle will reveal drop-down
options that will allow us to select an option that is passed to the algorithm. The
dialog boxes within the processing toolbox also provide two additional tabs that may
provide additional information. The Log tab will record the history of any operations
performed using the tool, which is often useful for debugging errors, and the Help
tab provides a brief summary of the functionality and explanation of the various
options presented in the interface. However, if we click on the Help tab for the
Aspect tool, we are presented with the message "Sorry, no help is available for this
algorithm". This is not an uncommon experience; so, if the functionality or optional
parameters are unclear, we need to visit the website of the algorithm provider.

You can explore the functionality of each of the algorithms that we
are going to use in this section by going to the official website of each
provider:

• GRASS: http://grass.osgeo.org/
• SAGA: http://www.saga-gis.org/en/index.html
• TauDEM: http://hydrology.usu.edu/taudem/taudem5/
• LAStools: http://rapidlasso.com/LAStools/

The processing toolbox also provides one additional option for accessing the
underlying algorithms and that is through processing commander. To access this
tool, click on Commander under Processing and you will be presented with an
interface as shown in the following screenshot:

Chapter 7

[223]

Notice that by typing "grid" in either the commander box or the search box, we are
presented with a list of available algorithms. The primary difference between the
two is that when a tool is selected in the commander drop-down list, it automatically
opens. Therefore, once we develop a familiarity with the names of specific tools, the
processing commander may increase workflow productivity.

Now that the QGIS processing toolbox is properly configured and we have a basic
understanding of its overall functionality and organization, we can begin using
it to utilize tools that weren't historically available within the QGIS environment.
The intent with these exercises isn't to provide a comprehensive overview of all the
providers or algorithms but to illustrate the power and flexibility that the toolbox
brings to QGIS.

Using the processing toolbox
We will begin by using some of the GRASS algorithms and focusing primarily
on tools that aren't available through default plugins or drop-down menus. For
example, even though GRASS has the ability to calculate aspect, this functionality
is already available in QGIS and it can be found by navigating to Raster | Terrain
Analysis.

The original data used in this chapter can be obtained from these sources:

• http://oe.oregonexplorer.info/craterlake//data.html

• http://www.mrlc.gov/

Performing raster analyses with GRASS
The GRASS (short form for Geographical Resources Analysis Support System)
environment represents one of the first available open source GIS options. It has
a long history of providing powerful geospatial tools that were often overlooked
because the GRASS interface and data organization requirements weren't as intuitive
as other—often proprietary—options. The integration of GRASS algorithms within
the processing toolbox provides access to these powerful tools within an intuitive
GUI-based interface.

The Processing Toolbox

[224]

To explore the types of GRASS algorithms available through the toolbox, we will
work through a series of hypothetical situations and perform the following analyses:

• Calculating a least-cost path across a landscape
• Evaluating a viewshed

Please make sure that you have downloaded, unzipped, and added the necessary
data to QGIS and set the project CRS value to EPSG: 26710. We need to organize this
data so that the elevation layer is at the bottom of the data layer panel as illustrated
in the next screenshot:

Chapter 7

[225]

The ZIP folder contains the following files:

• Elevation file (dems_10m.dem)
• Boundary file (crlabndyp.shp)
• Surface water file (hydp.shp)
• Land use file (lulc_clnp.tif)
• Search and rescue office file (Start.shp)
• Injured hiker file (End.shp)
• Fire towers file (towers.shp

Calculating shaded relief
The basic requirement for many of the tools within the GRASS library is a digital
elevation model (DEM) or digital terrain model (DTM). However, since a DEM
is a layer that contains continuous data representing elevation, when we load a
DEM into QGIS, or any GIS for that matter, it has a flat appearance. Therefore, it is
sometimes difficult to visually evaluate how topography might influence the results
of our analyses.

So, our first foray into the GRASS library will make use of the r.shaded.relief tool
to create a shaded relief map or hillshade, which can provide some topographic
context for spatial analyses. Remember that you can access this algorithm by using
the processing commander, search bar, or by navigating through the GRASS GIS
commands list. Once the dialog box is open, we need to select the elevation layer of
interest (in this case, the elevation layer). Leave all the default parameters the way
they are (as illustrated in the next screenshot) and click on Run.

The Processing Toolbox

[226]

Changing the default save option
By default QGIS saves any new layer as a temporary file in memory.
To save all your output files to a directory, you need to click on the
small button containing three dots and specify the location where
file needs to be saved.

We could have easily used the built-in Terrain Analyses tools and executed the
Hillshade tool by navigating to Raster | Terrain Analyses, but the decision to
use GRASS was deliberate to illustrate that, more often than not, algorithms in
the processing toolbox offer more optional parameters for better control over the
resulting output. In this case, the output can be moved to the bottom of the data layer
panel and the blending mode of the elevation layer can be set to Darken. The results
of this blending operation are shown in the following screenshot:

Chapter 7

[227]

Although this tool would typically be considered more of a geoprocessing action
than an analytical tool, this type of algorithm has been used to evaluate topographic
shading at various times throughout a given year to estimate the persistence of snow
and characterize potential habitat. If the intent is to merely show a visual and not
perform any spatial analyses, remember (from Chapter 3, Styling Raster and Vector
Data) that we can symbolize the elevation layer using colors rather than greyscale to
better visualize changes in elevation.

Adjusting default algorithm settings for cartographic reasons
The default altitude and azimuth settings specify the position of the
sun relative to the landscape, which isn't an unrealistic value for Crater
Lake. However, it is possible to move the sun to an unrealistic position
to achieve better contrast between topographic features.
For an extensive exploration of shaded relief techniques, visit http://
www.shadedrelief.com/.
To calculate accurate azimuth and elevation values for varying
latitudes, visit http://www.esrl.noaa.gov/gmd/grad/solcalc/
azel.html.

The Processing Toolbox

[228]

Calculating the least-cost path
Least-cost path (LCP) analyses have been used to model historical trade routes
and wildlife migration corridors, plan recreation and transportation networks,
and maximize safe backcountry travel in avalanche-prone areas to name just a few
applications. To perform a LCP analysis in QGIS, we are going to use a variety of
tools from the processing toolbox and combine the resulting output from the tools.

Although there are numerous useful geoprocessing algorithms in the GRASS library,
we are going to focus on more advanced spatial analyses that better demonstrate
the analytical power residing in the processing toolbox. We are going to calculate a
least-cost path for a hypothetical situation where a search and rescue team has been
deployed to Crater Lake National Park to extract an injured hiker. The team may be
able to use roads for part of their approach but would like to identify the least cost
or the least rigorous approach to the hiker. Essentially, we are going to make some
simplistic assumptions about how much effort will be required to move across the
landscape by incorporating slope and land use into a raster layer representing the
cost of movement. This cost layer will then be used to identify the least-cost path
from the search and rescue office to the injured hiker.

In order to accomplish this analysis, we need to complete the following steps:

1. Calculate slope using r.slope.
2. Reclassify new slope raster using rules in slope_recode.txt.
3. Reclassify the land use raster using rules in lulc_reclass.txt.
4. Combine reclassified slope and land use layers.
5. Calculate cumulative cost raster using r.cost.
6. Calculate cost path using least-cost paths.

Chapter 7

[229]

Calculating the slope using r.slope
The necessary settings for calculating slope are illustrated in the following screenshot:

This dialog box indicates that slope is being calculated in percent, which will need to
be reflected in the rule set used to reclassify this layer. Essentially, we are making the
assumption that increasing slope values equate to increased physical exertion and
thus inflicts a higher cost on members of the search and rescue team.

The Processing Toolbox

[230]

Reclassifying a new slope raster and the land use
raster
To accomplish this, we are going to input the slope raster into r.recode and use the
slope_recode.txt file to inform the tool how to reclassify the slope values. It is
worth opening up the slope_recode.txt file to understand the GRASS formatting
requirements and evaluate the assumptions within this reclassification scheme,
which are also summarized in the following table:

Land use/Land class
type

Land use/Land class
code

Travel cost
assumption Recode value

Water 11 Highest cost 1000
Developed open land 21 Lowest cost 1
Developed low
intensity

22 Lowest cost 1

Developed medium
intensity

23 Lowest cost 5

Developed high
intensity

24 Moderate cost 20

Barren land 31 Lowest cost 1
Deciduous forest 41 Moderate cost 20
Evergreen forest 42 Moderate cost 50
Mixed forest 43 Moderate cost 20
Shrub/scrub 52 Low cost 10
Grassland 71 Lowest cost 5
Pasture/hay 81 Lowest cost 5
Cultivated crops 82 Moderate cost 20
Woody wetlands 90 Highest cost 1000
Wetlands 95 Highest cost 1000

Chapter 7

[231]

The following screenshot illustrates how to populate the r.recode algorithm:

We need to use this same tool to recode the values of the provided land use layer
using the lulc_recode.txt rule set. Again, it is worth exploring this file to
evaluate the assumptions made about the costs for moving through each land use
classification. For example, we have assumed that water has the highest cost and
developed open space has the lowest cost. To properly explore this layer, you will
need to import the lulc_palette.qml QGIS style file, which will categorize land use
by name (for example, water, mixed forest, and so on).

The Processing Toolbox

[232]

Combining reclassified slope and land use layers
Once we have created both the slope and land use cost grids, we can combine
them using the native QGIS Raster calculator tool to use with the r.cost algorithm.
Since neither layer contains any zero values, which would need to be preserved
through multiplication, we can combine them using addition as shown in the next
screenshot. We could also use the r.mapcalculator tool to combine these layers,
but this demonstrates how easy it is to move between native QGIS tools and those
housed in the processing toolbox.

Chapter 7

[233]

In this example, we used r.cost to create a new layer representing
the cost of traveling across the landscape. If we know that the path
will be traveled exclusively on foot, it may make more sense to use
the r.walk algorithm available through the GRASS library. For more
information about this, visit http://grass.osgeo.org/grass63/
manuals/r.cost.html.

Calculating the cumulative cost raster using r.cost
To summarize our progress so far, we have reclassified the slope and land use
layers and combined them so that we can now create a cost grid that can be used
to evaluate the cost associated with moving between individual cells. This analysis
requires two additional inputs, a starting and ending point that are provided as
separate shapefiles, Start.shp and End.shp. These points serve as a guide for how
the algorithm should characterize the cost of moving through an area of interest. The
following screenshot illustrates how to populate the r.cost tool:

The Processing Toolbox

[234]

Calculating the cost path using least-cost paths
This land use layer can now be used to calculate the least-cost path between each
individual cell. To accomplish this, we are going to make use of a tool from the
SAGA library, which is explored in more depth later in this chapter. This approach
again demonstrates the flexibility of the processing toolbox and how easy it is to
combine tools from various libraries to perform spatial analyses. We need to search
the toolbox for least-cost paths and identify the relevant point (in this example,
there will be only two point layers, so SAGA finds them by default), specify the cost
grid, and then define an output for the resulting least-cost path as illustrated in the
following screenshot:

Chapter 7

[235]

Now, we just need to organize the relevant layers, as shown in the next screenshot,
to inform the Crater Lake search and rescue team about the least-cost approach to the
injured hiker:

In this exercise, we made use of both GRASS and SAGA algorithms to calculate
a least-cost path. These algorithms allowed us to calculate a hillshade and slope,
reclassify raster layers, combine raster layers, create a cost grid, and calculate a least-
cost path from this cost grid. Although this exercise was clearly hypothetical and
limited in the number of parameters used to evaluate cumulative cost, it hopefully
demonstrates how easy it is to perform this type of analysis. Least-cost path
analyses have been used to model historical trade routes (Howey, 2007), wildlife
migration corridors (Morato et al. 2014), plan recreation and transportation networks
(Gurrutxaga and Saura, 2014), and maximize safe backcountry travel in avalanche
prone areas (Balstrøm, 2002) to name just a few applications.

The Processing Toolbox

[236]

For more information please see the following references:

• Howey, M. (2007). Using multi-criteria cost surface analysis to explore past regional
landscapes: a case study of ritual activity and social interaction in Michigan, AD
1200–1600. Journal of Archaeological Science, 34(11): 1830-1846

• Morato, R. G., Ferraz, K. B., de Paula, R. C., & Campos, C. d. (2014). Identification
of Priority Conservation Areas and Potential Corridors for Jaguars in the Caatinga
Biome, Brazil. Plos ONE, 9(4), 1-11. doi:10.1371/journal.pone.0092950

• Gurrutxaga, M. and Saura, S. (2014) Prioritizing highway defragmentation
locations for restoring landscape connectivity. Environmental Conservation, 41(2),
157-164. doi:10.1017/S0376892913000325

• Balstrøm, T. (2002). On identifying the most time-saving walking route in a
trackless mountainous terrain, 102(1), 51-58. 10.1080/00167223.2002.10649465

Evaluating a viewshed
Another advanced spatial analysis technique involves evaluating viewsheds to
address the intervisibility between features or the potential visual impact of vertical
structures such as wind turbines and radio or cell towers. This type of analysis is
often incorporated into an environmental impact evaluation but the technique has
other applications, such as evaluating which proposed viewing platform offers the
greatest viewable area or determining how best to position observers during an
aerial threat assessment. Although this tool has a specific niche application, working
through this section will allow us to make use of additional algorithms that have
broader applications.

We will begin by creating a new QGIS project and adding the following files:

• Elevation file (dems_10m.dem)
• Boundary file (crlabndyp.shp)
• Surface water file (hydp.shp)
• Fire towers file (towers.shp)

In this application, we are going to assume that the National Park Service has asked
us to evaluate the visual impact of building three proposed fire towers. We need
to perform a viewshed analysis and provide an estimate of the total area impacted
within the park.

Chapter 7

[237]

In order to accomplish this analysis, we need to complete the following steps:

1. Clip elevation to the boundary of the park using GDAL.
2. Calculate viewsheds for towers using r.viewshed.
3. Combine viewsheds using r.mapcalculator.
4. Calculate raster statistics using r.stats.

Clipping elevation to the boundary of a park using
GDAL
To reinforce the concept that we can make use of a variety of algorithms within
the processing toolbox to accomplish our analyses, we will use the clip raster by
mask layer tool that is available through the GDAL/ORG algorithms. We will clip
the elevation layer to the park boundary so that we save processing time by only
evaluating the viewshed within the park. We can find this tool by typing clip in the
search bar. The following screenshot illustrates how to set the parameters for this tool:

The Processing Toolbox

[238]

Calculating viewsheds for towers using r.viewshed
Once we have a clipped elevation layer, we can set the transparency of the value 0 to
100 percent in the transparency tab of the Layer Properties interface and begin the
process of calculating the viewshed using the r.viewshed tool. If you open this tool
using the processing commander or double-click on the entry within the toolbox,
you will be presented with a dialog box that contains the option to enter a coordinate
identifying the viewing position. However, we have three towers of interest, and
although we could manually execute this tool three different times, most of the
algorithms in the toolbox have the option to execute as batch process. By right-clicking
on the tool, we can select this option as illustrated in the following screenshot:

The resulting batch-processing interface allows us to enter the coordinates for all
three towers and export a separate viewshed for each tower. The toolbox options can
be set to the following values:

• Elevation: This is the elevation for the park
• Coordinate identify viewing position: This contains the coordinates for

each tower
• Viewing position height above ground: This is the viewing position height,

for example, 20
• Maximum distance from the viewing point: This is the maximum distance

from the viewing point, for example, 32000
• Consider Earth Curvature: This contains a Yes value if Earth's curvature

should be considered
• GRASS GIS Region 7 extent: This option is set to default
• GRASS GIS 7 region cellsize: This option is set to 0.0
• Output raster layer: Set output names as tower1, tower2, tower3
• Load in QGIS: This option is set to Yes if viewshed loads in QGIS

Chapter 7

[239]

If we had more than three towers, we could click on the Add row button
at the bottom of the batch-processing interface.

We can begin entering the necessary parameters using the coordinates provided in
the following table and the guidelines:

Tower number Coordinates
1 574599.082827, 4749967.314004
2 580207.025953, 4752197.343687
3 571656.050455, 4750321.28697

It is worth exploring the rationale behind some of the input parameters. The first two
are hopefully obvious: we need an elevation layer and observer points to evaluate
viewshed for any assumptions. However, setting the position height above ground
to 20 meters is an average value for typical fire towers. The maximum distance of
32,000 meters is the greatest distance between any of the towers and the edge of the
park elevation layer, and including Earth's curvature—even for small areas—at worst
increases processing time but provides a more accurate representation of visibility.

If you have a lot of observers, completely fill out the information for the
first observer and after you set the Output raster layer parameter, you
will be prompted to autofill the input boxes. If you select yes, the interface
will automatically populate the parameters and you will only need to
adjust the parameters that are different. For example, the coordinates will
need to be updated, and perhaps not all observers have the same height.

The output from this algorithm will need to be renamed since they will all be added
with the same name; fortunately, if you hover the mouse over each entry, QGIS will
report the full path name, as illustrated in the following screenshot:

The Processing Toolbox

[240]

Combining viewsheds using r.mapcalculator
In order to evaluate the cumulative visual impact of all the three towers, we need
to add them together. However, the algorithm outputs a grid that contains either
a degree angle representing the vertical angle with respect to the observer or null
values. If we attempt to add three layers that contain null values, the resulting
output will not accurately reflect the total visible area within the park. To address
this issue, we need to make use of the isnull function within r.mapcalculator. We
will use this function within a conditional statement to identify where there are null
values and replace them with a zero so that we can accurately combine all the three
layers. We need to open r.mapcalculator and use this conditional statement:

if(isnull(A),0,1)+ if(isnull(B),0,10) + if(isnull(C),0,100)

The query that we are asking the calculator to execute is if layer A is null, then
replace it with a value of zero, otherwise give the resulting grid a value of 1 and
then add it to the results from the other three layers, which are also evaluated for
null values. By replacing the original values with either 0, 1, 10, or 100, we are able
to evaluate the total cumulative viewshed and also differentiate between the impacts
of individual towers. The following screenshot illustrates how to ask these questions
within the raster calculator:

Chapter 7

[241]

The Processing Toolbox

[242]

The resulting output will contain values that can be used to interpret which towers
contribute to the cumulative viewshed. These values are summarized in the
following screenshot. To better visualize the cumulative viewshed within the park,
you can load the view_style.qml layer and adjust the colors to your preference
as follows:

Calculating raster statistics using r.stats
To evaluate the total cumulative impact, we can use r.stats to summarize the number
of pixels with these eight corresponding values. In the r.stats dialog, we need to
select the cumulative viewshed as the input raster, make sure that the Print area
totals and Print Category labels options are checked, and set an output filename.
By default, the One cell (range) per line option is checked and we need to uncheck
this option. The results of this algorithm will summarize the area in square meters
by category. In this case, the categories are equal to the eight values in the previous
screenshot. We can then sum the area for each combination to calculate the total
visual impact of these three towers in Crater Lake National Park as follows:

Chapter 7

[243]

We can also provide a more informative visual depiction of the impact, as
demonstrated in the next screenshot, using this approach, rather than the traditional
binary visible/not-visible viewshed maps:

In this exercise, we used a variety of GRASS algorithms to explore the analytical power
of the processing toolbox. We performed both common geoprocessing and advanced
spatial analyses to arrive at hypothetical scenarios that would be time consuming to
address without the support of a GIS; these analyses included the following:

• Creating a shaded relief map using r.shaded.relief
• Calculating slope using r.slope
• Reclassifying raster data using r.recode
• Creating a cost grid using r.cost

The Processing Toolbox

[244]

• Calculating a least-cost path using least-cost paths
• Calculating viewshed using r.viewshed
• Utilizing raster calculation functions within r.mapcalculator
• Summarizing raster attributes using r.stats

In the next section, we will continue exploring the types of analyses that are possible
using the SAGA algorithms that are available through the toolbox.

SAGA
The SAGA (short form for System for Automated Geoscientific Automation)
environment contains powerful tools, some of which have very specific applications;
for example, geostatistical analyses and fire or erosion modeling. However, we will
explore some of the SAGA tools that have broader applications and often dovetail
nicely with tools from other providers. Similar to GRASS, integrating the SAGA
algorithms within the processing toolbox provides access to powerful tools within a
single interface.

To explore some of the SAGA algorithms available through the toolbox, we will
work through a hypothetical situation and perform the analysis to evaluate the
potential roosting habitat for the Northern Spotted Owl.

We are going to continue using data from the provided ZIP file, and we will need the
following files:

• Elevation file (dems_10m.dem available in the GRASS data folder)
• Hillshade file (hillshade.tif created in the GRASS section)
• Boundary file (crlabndyp.shp)
• Surface water file (hydp.shp)
• Land use file (lulc_clnp.tif available in the GRASS data folder)

Chapter 7

[245]

Evaluating a habitat
GIS has been used to evaluate potential habitat for a variety of flora and fauna
in diverse geographic locations. Most of the habitats are more sophisticated than
the approach we will take in this exercise, but the intention is to demonstrate the
available tools as succinctly as possible. However, for simplicity's sake, we are going
to assume that the resource management office of Crater Lake National Park has
requested an analysis of potential habitat for the endangered Northern Spotted Owl.
We are informed that the owls prefer to roost at higher elevations (approximately
1,800 meters and higher) in dense forest cover, and in close proximity to surface
water (approximately 1,000 meters).

In order to accomplish this analysis, we need to complete the following steps:

1. Calculate elevation ranges using the SAGA Raster calculator tool.
2. Clip land use to the park boundary using Clip grid with polygon.
3. Query land use for only surface water using SAGA Raster calculator.
4. Find proximity to surface water using GDAL Proximity.
5. Query the proximity for 1,000 meters of water using GDAL Raster calculator.
6. Reclassify land use using the Reclassify grid values tool.
7. Combine raster layers using SAGA Raster calculator.

Calculating elevation ranges using the SAGA
Raster calculator
There are multiple ways to create a layer that represents elevation ranges or, in this
case, elevation zones that relate to potential habitat. One method would be to use
r.recode as we did in the GRASS exercise; another would be to use the Reclassify
grid values tool provided by SAGA, which we will use later in this exercise; but,
another very quick way is to only identify the areas above a certain elevation—in
this case, greater than 1,800 meters—using a raster calculator. This type of query will
produce a layer with a binary level of measurement, meaning the query is either true
or false. To execute the raster calculator, select the layer representing elevation only
in the park, enter the formula gt(a, 1800), name the output file, and click on OK.

The Processing Toolbox

[246]

The syntax we entered in the formula box tells the SAGA algorithm to look at the
first grid—in this case a—and if it has a value greater than (gt) 1,800 meters, the
new grid value should be one, otherwise it should be zero. The following screenshot
illustrates how this appears in the SAGA Raster calculator window. We could have
also used the native QGIS Raster calculator tool. So, the intent here is to demonstrate
that there are numerous tools at our disposal in QGIS that often perform similar
functions. However, the syntax is slightly different between the QGIS, GRASS, and
SAGA raster calculators; so, it is important to check the Help tab before executing
each of the tools.

Clipping land use to the park boundary using Clip
grid with polygon
After executing this tool, we will be presented with a new raster layer that identifies
the elevations above 1,800 meters with a value of 1 and all other values with a
value of 0. The next step is to clip the land use layer using the SAGA Clip grid with
polygon tool. If you remember, we clipped a raster layer in a previous exercise using
the native GDAL Clipper tool, so again this is merely demonstrating the number of
options we have to perform spatial operations.

Chapter 7

[247]

We need to select land use (lulc_clnp) as our input's raster layer, the park
boundary as our polygon's layer, name the output file as lulc_clip.tif, and click
on OK. Remember from an earlier exercise that you can load the lulc_palette.qml
file if you would like to properly symbolize the land use layer, but this step
isn't necessary.

Querying land use for only surface water using the
SAGA Raster calculator
Now, we can query this layer for the areas that represent surface water. We can again
use the SAGA Raster calculator tool and enter (a, 11) in the Formula box, as
illustrated in the next screenshot. In this example, we are stating that if the land use
layer (that is a) is equal to 11, the resulting output value will be 1, otherwise it will be 0.

Now, we have a raster layer that we can use to identify potential habitat within 1,000
meters of surface water.

The Processing Toolbox

[248]

Finding proximity to surface water using GDAL
Proximity
To accomplish this, we need need to create a layer representing proximity to surface
water and query that layer for areas within 1,000 meters of any surface water. Our
first step is to execute the GDAL Proximity (raster distance) tool in the processing
toolbox. We need to select the binary (true or false) layer representing surface water
(lulc_sw.tif), set the Values field to 1, leave the Dist units field as GEO, change
the Output raster type to Int32, leave all the other defaults as they are, and name the
output layer as illustrated in the next screenshot:

Chapter 7

[249]

The rationale for setting Values to 1 and Dist units to GEO is that we are asking the
algorithm to assume that the distance is measured in increments of 1 based on the
geographic distance—in this case meters—and not on the number of pixels. We can
now query the resulting grid for the area that is within 1,000 meters of surface water,
but it is important to recognize that we want to identify the areas that are less than
1,000 meters of surface water but greater than 0. If we just query for values less than
1,000 meters, we will produce an output that will suggest that the roosting habitat
exists within bodies of water.

Querying the proximity for 1,000 meters of water
using the GDAL Raster calculator
The easiest way to perform this query is by using the native QGIS Raster calculator
tool by clicking on Raster Calculator under Raster. The following screenshot
illustrates how to enter the "Proximity to Water@1" > 0 AND "Proximity to
Water@1" <= 1000 syntax to identify a range between 0 and 1,000 meters:

The Processing Toolbox

[250]

The resulting output will contain the values of 0 and 1, where 1 represents the cells
that are within 1,000 meters of surface water and 0 represents those that are beyond
1,000 meters. The next screenshot illustrates what this layer looks like after you set
the value of zero to transparent and the buffer itself to red:

The last habitat variable that we need to evaluate is the preference towards roosting
in dense forest cover. We are going to reclassify or recode the land use layer
assuming that the owls will make use of three primary classes that are deciduous,
evergreen, and mixed forest types in decreasing preference. This means that we are
going to use a simple ordinal ranking scheme to assign a new value of 3 to grid cells
that represent evergreen forest, a value of 2 for shrub cover, a value of 0 for water,
and a value of 1 for the remaining land types. We could assume zero for all other
cover types, but owls are unpredictable.

Chapter 7

[251]

Reclassifying land use using the Reclassify grid
values tool
To accomplish this, we could use r.recode as we did in a previous exercise, but
instead, we are going to use the SAGA Reclassify grid values tool. The advantage
of this tool is that we can enter our reclassification rules directly in the tool interface,
rather than reading them into the algorithm from a separate file. The following
screenshot provides the necessary values to reclassify the land use layer where 11
represents surface water, 42 represents evergreen forest, 52 represents shrub cover,
and all other values are equal to 1:

If your version of QGIS doesn't allow you to add or remove rows,
remember that you can also use the GRASS r.recode tool after creating
a recode rule file. This might be a good exercise to work through to
make sure you understand the formatting requirements for GRASS
recode rule files. For a more in-depth explanation, visit http://
grass.osgeo.org/grass65/manuals/r.recode.html.

To use the SAGA Reclassify grid values tool, we need to provide an input grid,
which in this case is the clipped land use layer (lulc_clip.tif), and set Method to
[2] simple table. The values that need to be reclassified (shown in the previous
screenshot) can be entered by clicking on the Fixed table 3x3 button. Make sure you
provide a name for the new reclassified grid, for example, lulc_rec.tif.

The Processing Toolbox

[252]

Combining raster layers using the SAGA Raster
calculator
Now, we have all the necessary layers to finalize our simplistic model of Northern
Spotted Owl habitat. Since we have zero values that need to be preserved, that is,
places where owls will never roost, we will multiply the three layers together using
the SAGA Raster calculator tool. The next screenshot illustrates how to populate the
raster calculator by selecting the reclassified elevation layer (elev_1800.tif) as the
main input layer and the reclassified water proximity (buf_water.tif) and land use
(lulc_rec.tif) layers as the two additional reclassified layers:

Chapter 7

[253]

We could have used the native GDAL Raster calculator tool or the GRASS
r.mapcalculator tool, but once again, this demonstrates how easy it is to switch
between the various toolbox options. Similar to the GRASS syntax, the SAGA
algorithm identifies the inputs in the order they are selected as a, b, and c. To ensure
that we understand the values reported in the resulting output from this calculation,
we need to remember the reclassified water and elevation layers are binary, so it will
have the values of 0 and 1, while the reclassified land use layer contains the values
from 0 to 3. Therefore, the new layer can only contain values of from 0 to 3 where 0
indicates no habitat, 1 indicates poor habitat potential, 2 indicates moderate habitat
potential, and 3 indicates good habitat potential, as illustrated in the next screenshot:

The Processing Toolbox

[254]

Hopefully, it is clear that this is a very simple model with many assumptions that any
ornithologist who actually studies the Northern Spotted Owl would not actually use
to evaluate habitat. However, the various tools and general approach that has been
taken to evaluate this hypothetical scenario could be applied by paying more rigorous
attention to the underlying assumptions about the variables that influence potential
habitat. The goals of working through this type of analysis were threefold: to showcase
a variety of useful SAGA algorithms, to demonstrate that there are similar tools with
subtle differences that are available through the toolbox, and to illustrate how easy it is
to switch between native QGIS tools and those found in the toolbox.

Exploring hydrologic analyses with
TauDEM
The TauDEM (short form for Terrain Analysis Using Digital Elevation Models)
environment contains a suite of tools with a specific emphasis on hydrologic
and surface flow analysis. GRASS and SAGA also contain some algorithms that
calculate similar parameters, but TauDEM has a comprehensive suite of tools in
a single location.

We are going to continue using data from the provided ZIP file, and we will need the
following files:

• Elevation file (dems_10m.dem, available in the GRASS data folder)
• Gauge shapefile (gauge.shp)
• Rivers file (hydl.shp)

To explore the functionality of TauDEM, we will characterize the watershed of Sun
Creek upstream to the town of Fort Klamath, California. To accomplish this, we will
perform the following tasks:

1. Remove pits from the DEM.
2. Calculate flow directions across the landscape.
3. Calculate the upstream area above Fort Klamath.

Chapter 7

[255]

4. Calculate a stream network raster grid.
5. Create a watershed-specific vector stream network.

Reminder about installing TauDEM
Using TauDEM requires you to carefully follow the instructions
for your particular operating system, as described at
http://docs.qgis.org/2.6/uk/docs/user_manual/
processing/3rdParty.html. This particular library is easier to
install and run on Windows and Linux than Mac OS X.

TauDEM requires the initial input to be a .tif file rather than the .dem file that we
used throughout this chapter. So, our first task is to export our original Crater Lake
elevation layer to a .tif file. We can accomplish this by right-clicking on the DEM
and clicking on Save As. By default, QGIS offers GTiff as the export option. We just
need to specify a new output file and we can begin using the TauDEM tools.

Reminder about accessing additional libraries
Remember that in order to access any of the algorithms available
through additional providers, we need to make sure that the
processing toolbox is set to the Advanced Interface.

Removing pits from the DEM
Before using any hydrologic algorithms, regardless of the algorithm provider, we
need to make sure that the DEM is hydrologically corrected. This means that we
need to ensure that it behaves like the natural landscape where surface flow moves
across the landscape and does not get trapped in pits, or depressions, in the DEM.
To accomplish this, we are going to use the Pit Remove tool on our new DEM file as
illustrated in the next screenshot.

The Processing Toolbox

[256]

Note that the DEM won't necessarily look any different, but the cells will behave in a
more appropriate fashion for modeling surface flow.

Calculating flow directions across the
landscape
This is the elevation grid that we will use to perform the remaining calculations.
Our next step is to use the D8 Flow Directions tool that creates two grids: a D8 flow
direction grid, which calculates what direction the data would flow in each grid cell,
and a D8 slope grid, which calculates a slope value for each grid cell. For illustration
purposes, we are only going to use the D8 tools, but there are additional options for
using the D-Infinity algorithms. The next screenshot illustrates how to populate this
tool with the new pitremoved elevation layer:

Chapter 7

[257]

Calculating the upstream area above Fort
Klamath
These two grids cover the entire area of the DEM, but we are only interested in
evaluating what the watershed looks like along Sun Creek upstream of Fort Klamath.
Many rivers are monitored by USGS gauging stations, which can be used as points
of interest to delineate the upstream contributing area. However, more often than
not, smaller streams typically aren't monitored, even though they are important for
local communities. So, we can create arbitrary outlet points that are defined along
the stream network. To focus our analyses on Sun Creek, we will make use of the
Gauge shapefile and use as our outlet what is often called a pour point. We will
use the D8 Contributing Area tool to identify the cells that drain through this pour
point. In other words, we are going to calculate the watershed above this particular
point on Sun Creek. The following screenshot indicates that we need the D8 flow
direction and the Gauge shapefile as input. For simplicity, we are going to use all the
algorithm defaults, but it is important to clarify that these parameters may need to be
changed depending on local conditions.

The Processing Toolbox

[258]

Before using any shapefile to calculate upstream contributing area,
it is worthwhile to ensure that every point is located on a grid cell
representing the stream network, otherwise the algorithm won't be
able to accurately characterize surface flow. To make sure each point is
located on the network, we can use the Move Outlets To Streams tool,
which will move each point to the nearest cell representing the network.

Chapter 7

[259]

Calculating a stream network raster grid
The resulting output looks similar to a watershed boundary and could easily be
converted to a polygon using the r.to.vect tool. However, in addition to identifying
the contributing watershed area, we can also model the potential stream network
that drains this watershed. If we make the provided River (hydl.shp) visible, we
can see that it has relatively low resolution and, for a watershed of this size, there
are likely to be other smaller tributaries that we can extract from the topography. To
accomplish this, we are going to use the Stream Definition By Threshold tool and
input the D8 contributing area for Sun Creek, as illustrated in the next screenshot:

The Processing Toolbox

[260]

Creating a watershed-specific vector stream
network
Essentially this algorithm identifies grid cells that have values greater than the default
threshold of 100. Cells with values greater than the threshold represent areas of high
flow accumulation; in other words, areas of the landscape that accumulate surface flow
and represent potential river networks. Our last step is to extract a vector layer from
this raster stream network. To accomplish this, we are going to use the Stream Reach
And Watershed tool and populate the interface, as shown in the next screenshot:

Chapter 7

[261]

In this example, we chose to create a single watershed. However, if we wanted
to identify sub-watersheds for each individual reach, we could select No for the
Delineate Single Watershed option. The resulting watershed and stream reach
shapefile are shown in the next screenshot with the original river's layer, illustrating
the improved visualization of potential surface flow upstream of the town:

Hopefully, this brief exercise demonstrates the potential applications of TauDEM for
exploring hydrologic conditions using high-resolution elevation data. Although the
final output consists of only models of how water might flow across the surface, the
clear alignment with the provided river's shapefile and the resulting stream network
shapefile suggests that the default assumptions are useful for delineating watersheds
from user-specified pour points and for estimating potential stream networks within
this watershed.

The Processing Toolbox

[262]

R
R is a standalone open source language and environment that is useful for
performing statistical analyses and graphically visualizing data. Users typically
make use of this language within a command-line interface or a GUI-based software
such as RStudio. Within either environment, users can work with geospatial data
by installing additional packages such as SP, RGDAL, SpatioTemporal, and so on.
However, we can also access a number of these powerful statistical tools through the
processing toolbox.

Similar to all the previous algorithm providers, we need to make sure
that R is properly configured. Although QGIS gets installed with the
required R scripts, in order to run them, we also need to download and
install R from http://www.r-project.org/.

The integration of R within QGIS offers access to some highly specialized spatial
analysis tools that are focused on home range analysis and point pattern analysis.
To explore some of the R algorithms available through the toolbox, we will use our
existing data to perform some common statistical tasks that are useful for evaluating
spatial data. We will use the following data layers in this section:

• Elevation file (dems_10m.dem, available in the GRASS data folder)
• Hillshade file (hillshade.tif, created in the GRASS section)
• Rivers (hydl.shp)
• Volcanic Vents file (vents.shp, in the R data folder)
• Slope file (slope.tif, created in GRASS section)

Exploring summary statistics and histograms
A common starting point for exploring spatial data is to evaluate the range of values
within a given data layer. Although QGIS offers similar information natively for
vector data when you navigate to Vector | Analysis Tools | Basic Statistics and
for raster layers through the Histogram window under Properties, R offers a few
more options and the ability to better visualize the data. For example, we might be
interested in the range of values for stream length within a given watershed.

To evaluate this using R, we can use the Summary statistics tool, select the river's
layer as our input, and define an output file to produce a text summary of the
underlying data, as illustrated in the following screenshot:

Chapter 7

[263]

The following screenshot illustrates the summary produced as a result of running the
Summary statistics tool:

The Processing Toolbox

[264]

However, often a more informative way of evaluating this type of data is through
a histogram to see how frequently a feature or characteristic of a feature occurs.
In this case, we can use the Histogram tool under Vector Processing to produce a
visual that summarizes the most and least frequently occurring stream length. This
is one parameter that is often used to characterize the surface hydrology of a given
watershed. The following screenshot illustrates the input parameters:

Chapter 7

[265]

The following screenshot illustrates the resulting histogram:

The Processing Toolbox

[266]

For this particular case, we see a higher frequency of shorter stream segments, which
makes sense in this particular topography because they typically represent numerous
small tributaries within a radial drainage network. Longer and more continuous
river segments would more likely be found in areas with less topographic variation.
This is illustrated in the next screenshot, which highlights stream segments that are
less than 1,000 meters long:

Chapter 7

[267]

We can perform a similar analysis with raster layers by using the Raster Histogram
tool under Raster Processing. For example, we might be interested in exploring the
variation in elevation or slope within a given region for evaluating development
potential or landslide susceptibility. The next screenshot illustrates the resulting
output after running this tool on the elevation layers:

The Processing Toolbox

[268]

The next screenshot illustrates the resulting output after running this tool on the
slope layers:

From these two simple histograms, we can quickly surmise that although there is
a lot of variation in the elevation throughout the Crater Lake National Park region,
the slope is rather unimodal and indicates a great occurrence of gentler slopes. As
previously mentioned, QGIS has a built-in viewer for exploring similar information,
but it is often less visually concise.

Chapter 7

[269]

Summary
This chapter provided an overview of the structure within the processing toolbox
and an introduction to the variety of advanced spatial analyses tools than can be
accessed through the toolbox. You specifically learned how to create a shaded relief
map, calculate the least-cost path, evaluate a viewshed, reclassify raster layers, query
and combine raster layers, and calculate raster statistics using GRASS algorithms.
You then learned how to crop raster layers using a polygon mask and reclassify,
query, and combine raster layers using SAGA algorithms. You learned how to
delineate a watershed and extract a vector stream network from a DEM using
TauDEM algorithms. And in our last exercise, we explored the integration of spatial
statistics using R packages to identify characteristics of landscape features. Perhaps
most importantly, we saw how interoperable the native QGIS tools are with the tools
executed from within the processing toolbox.

Although we explored these tools through hypothetical scenarios to illustrate how
these analyses might be applied to real-world questions, it is important to clarify that
this chapter is by no means exhaustive in its coverage of the complete suite of tools
or their various applications. There are additional powerful algorithms provided by
the R and LAStools environments.

In the next chapter, you will learn how to automate geospatial workflows using the
graphical modeler within the processing toolbox. We will explore the various types
of input options and available algorithms and develop an example model that we
can add to the toolbox as a reusable tool. You will also learn how to export models
to Python in preparation for the last chapter, which will explore Python scripting
within QGIS.

[271]

Automating Workflows with
the Graphical Modeler

This chapter will provide you with an overview of the graphical modeler (GM).
First, we will introduce the modeler and explore the various inputs and algorithms
available for models. Then, we will demonstrate via step-by-step examples how to
develop a model that can be added to the Processing Toolbox. We will also cover
more advanced topics, including nesting models and executing models iteratively.
The specific topics that we will cover in this chapter are as follows:

• An introduction to the graphical modeler
• Opening the graphical modeler
• Configuring the modeler and naming a model
• Adding inputs
• Adding algorithms
• Running a model
• Editing a model
• Documenting a model
• Saving, loading, and exporting models
• Executing model algorithms iteratively
• Nesting models
• Using batch processing with models
• Converting a model into a Python script

Automating Workflows with the Graphical Modeler

[272]

An introduction to the graphical modeler
A typical spatial analysis involves a series of GIS operations, with the output of one
operation as the input for the next one, until the final result is generated. Using the
graphical modeler, you can combine these individual steps into a single process. The
interface to the GM allows you to visually draw inputs, GIS algorithms, and outputs.
The entire analysis is then ready to run as a custom tool within the Processing Toolbox.
The custom tool will look like other tools in the Processing Toolbox. After assigning the
inputs, and naming the outputs, the entire analysis will run in a single step.

A major benefit of this approach is that the completed analytical workflow can
be modified and rerun. This allows stakeholders to understand how changing
thresholds or input values affect the results of an analysis. Let's assume that you
were assigned the task of developing a site-selection model for a new coffee shop.
To match one of the site-selection criteria, you buffered railroads by one kilometer.
However, a stakeholder later asks you how the result would change if the one-
kilometer distance was changed to half a kilometer. If you had completed the
original analysis with a traditional step-by-step approach, without using a model,
you would have to start from scratch to answer this question. However, if you
developed this problem as a model, you can simply change the distance parameter in
the tool and rerun the entire site-selection model. Similarly, the site-selection model
can also be run in a different city or neighborhood simply by pointing to different
(but equivalent) input layers. The model can also be shared with others.

Opening the graphical modeler
The graphical modeler can be opened from QGIS Desktop using either of the
following two ways:

• By clicking on Graphical Modeler under Processing
• By enabling the Processing Toolbox panel, navigating to Models | Tools,

and then clicking on Create new model

Chapter 8

[273]

The processing modeler opens as a new window. On the left-hand side of the
window, there are two tabs: Inputs and Algorithms. These are used to add both
types of elements to the modeler canvas that takes up the remainder of the window.
Above the modeler canvas, there are the [Enter model name here] and [Enter group
name here] input boxes to enter the model name and the group name. The buttons
for managing models can be found above the Input and Algorithm tabs, as shown in
the following screenshot:

The window itself is called processing modeler, and not
graphical modeler.

Automating Workflows with the Graphical Modeler

[274]

Configuring the modeler and naming
a model
Before starting a model, it is a good practice to configure the modeler. Models are
saved as JSON files with a .model extension. When you save a model, QGIS will
prompt you to save the model file to the Models folder. You can set the location of
the Models folder by navigating to Processing | Options in QGIS Desktop. Under
the Models section of the Processing options window, you can specify the location
of the Models folder. Click on the default folder path and the browse (ellipses)
button will appear, allowing you to select a different location:

To demonstrate the basics of using the graphical modeler, we will use a simple
example that identifies riparian tree stands in Alaska. It will have three inputs
and two algorithms. First, we will give our model a name and a group name. For
this example, as shown in the following screenshot, we have opened the graphical
modeler and named the model as Riparian trees and the model group as Landcover.
This is the group and the name by which the model will be displayed within the
Processing Toolbox.

Chapter 8

[275]

Graphical modeler with the model named as Riparian trees and the group named as Landcover

Then, we will click on the save button (). The Save Model dialog will open,
defaulting to the Models folder. Here, you need to choose a name for the *.model
file. We are naming it as RiparianTreeClipper.model.

The model name and group name must be set before the
model can be saved.

If models are saved to the Models folder, they will appear as model tools in the
Processing Toolbox panel. Once a model has been named and saved to the Models
folder, it will appear under its group in the Processing Toolbox. Again, the model
will appear with the name that was entered into the graphical modeler versus the
name of the *.model file. Models can be saved outside the Models folder, but they
won't appear in the Processing Toolbox panel.

Automating Workflows with the Graphical Modeler

[276]

You will need to close the model before it appears in the
Processing Toolbox panel.

The Processing Toolbox showing the Models category with the
Landcover group and the Riparian trees model.

The simplified interface is shown on the left and the advanced interface is on the right.

Adding inputs
To begin a model, you will need to define the inputs. The graphical modeler will
accept the following:

• Boolean
• Extent
• File
• Number
• Raster layer
• String
• Table
• Table field
• Vector layer

Chapter 8

[277]

To add an input, either double-click on the appropriate category from the Inputs
tab or drag the input onto the modeler canvas. The Parameter definition dialog
will open. Give the parameter a name and fill in any other details, which change
depending on the input that is chosen. When an input parameter is defined and
added to the model, it is essentially a conceptual parameter. It will not actually be
connected to a GIS data layer until you are ready to run the model.

For this example, we will add a vector layer. We will specify the geometry of the
vector data and classify it as a required parameter:

Once you click on OK, the input object is added to the modeler canvas. All the
objects in the modeler canvas can be selected with a mouse click and dragged to
reposition. Clicking on the pencil icon of an input will open the Parameter definition
dialog so that changes can be made to it. Clicking on the close button (X) will delete
the input from the model.

For our example, we will add a second vector layer. Trees is added as a required
polygon layer. Finally, we will add a number input. This will allow us to expose the
buffer distance value as an input that can be changed when the model is executed.
It will be named Buffer distance and it will be given a default value of 100, since
100 meters is the distance that we initially want to use.

Automating Workflows with the Graphical Modeler

[278]

In the graphical modeler, distances are expressed in
coordinate reference system units.

The following screenshot shows the model with the two vector layer inputs and a
number input:

A model with three inputs

Chapter 8

[279]

Adding algorithms
Algorithms are added to the graphical modeler in the same way as inputs. Find the
algorithm from the Algorithms tab, and either double-click on it or drag it onto the
modeler canvas. You can search for tools as you would in the Processing Toolbox.
Type the name into the search box at the top of the Algorithm tab.

The Processing Toolbox has two interface settings: Advanced and Simplified. The
interface setting that is currently being used in the Processing Toolbox determines
how the algorithms in the graphical modeler will be organized. This setting cannot
be changed from within the graphical modeler. Instead, to change the setting, the
GM has to be shut down, the interface setting has to be changed in the Processing
Toolbox, and then the graphical modeler has to be reopened. Other than this, finding
algorithms is the same as it is within the Processing Toolbox.

The Algorithms tab with buffer being used as the search term. The simplified interface is
shown on the left and the advanced interface is on the right.

Automating Workflows with the Graphical Modeler

[280]

In the Algorithms tab, there is a special category named Modeler-
only tools. The three tools—Calculator, Raster layer bounds, and
Vector layer bounds—do not appear in the Processing Toolbox. They
are tools that only make sense when they are used in the context of
the graphical modeler.

The Calculator tool is perhaps the most commonly used of the three
tools. It allows you to perform arithmetic calculations on numeric
outputs from other algorithms. For example, if you use one of the
statistical output tools such as Raster layer statistics in your model
or if you have numeric inputs, the associated numeric values will
be available to the Calculator algorithm. The calculator lists the
available numeric values within the model. They are labeled from
a to x with the description to the right. Below this is a text box for
entering a formula. For example, the formula given in the following
screenshot divides the Canopy density value by the Owl Habitat
Acres value and multiplies the result with the standard deviation
from the Raster layer statistics algorithm. The output from the
Calculator algorithm can be fed into other algorithms.

Chapter 8

[281]

The algorithm dialog will look very similar to how it would if you were running
it from the Processing Toolbox. There are inputs, tool parameters, and outputs.
However, there are some important differences because the graphical modeler is a
self-contained universe of data inputs. The differences are as follows:

• Input layers are limited to those that have been added to the model.
• Output can be left blank if it is an intermediate result that will be used as an

input for another algorithm. If the output is a layer that needs to be saved,
enter the name of this layer in the text box. When naming an output layer,
you won't actually need to provide an output filename. This will be done
when the tool is run. Instead, you just need to enter the name of the layer
(for example, stream buffer).

• Numerical values or string-value parameters can be entered as numbers
or strings. They can also be chosen from other inputs of the Number or
String type.

• The fields of an attribute table (or other standalone table) can be specified by
typing the field name or by using the Table field input. These fields will be
chosen when the model is run.

• Parent algorithms is an additional parameter found only in tools that are
run from graphical modeler. It allows you to define the execution order of
algorithms. Setting an algorithm as a parent forces the graphical modeler
to execute this parent algorithm before the current algorithm can be run.
When you set the output of one algorithm as the input for the next one, you
automatically sets the first algorithm as the parent. However, in complex
models, there may be several branches, and it may be necessary for an
operation in a separate branch of the model to be completed before another
operation can run.

Automating Workflows with the Graphical Modeler

[282]

For this example, we will be buffering streams by 100 meters and then clipping trees
by that buffer layer. The first algorithm that we will add is Fixed distance buffer.
Double-click on the tool from the Algorithm tab and the tool dialog will open. The
tool will be filled like the following screenshot. Notice that instead of setting an
explicit buffer distance, the Buffer distance input is being used. Also, note that no
output is named since this output will be considered as an intermediate dataset.

Chapter 8

[283]

Next, we'll add the Clip tool to the model using the following parameters:

• Set the Input layer field to Trees
• Set the Clip layer field to 'Buffer' from algorithm 'Fixed distance buffer'
• Type Riparian Trees under Clipped<OutputVector>
• Finally, click on OK

Automating Workflows with the Graphical Modeler

[284]

The final model looks like the following screenshot. The connecting lines show how
elements are connected in the workflow. The input, output, and algorithm elements
have different-colored boxes so that they can be distinguished. The algorithm boxes will
also include an icon representing the source library. For example, the Fixed distance
buffer and Clip tools are QGIS algorithms and have the Q icon within the element box.

Running a model
The model can be run either from the Processing modeler window or from the
Processing Toolbox panel. To run a model from the Processing modeler window,
click on the Run model button (). To run a model from the Processing Toolbox
panel, first save and close the model. Then, find the model by navigating to
Processing Toolbox | Models, right-click on it, and choose Execute from the context
menu. In our example, the model will be found in the Landcover group.

Chapter 8

[285]

The model dialog will open with the listed inputs. For the data layer input, you can
choose data loaded into QGIS by using the drop-down arrow or you can use the
browse button () to locate the data on disk. For this example, we are using
the AKrivers.shp and the trees.shp sample data. The Buffer distance field is set to
100 since this was the default value set for the number input. For the output, you can
choose to have the layer as a temporary one or choose a location and filename for it.
Here, the data is being saved as a shapefile. Click on Run to execute the model.

Automating Workflows with the Graphical Modeler

[286]

As the model runs, the dialog will switch to the Log tab, which provides output
as it runs.

All the model files and data inputs discussed in this chapter
are included with the Mastering QGIS sample data.

Editing a model
Existing QGIS models can be modified as needed. Right-clicking on a model in the
Processing Toolbox panel opens a context menu. Choosing Edit model will open the
model in the Processing modeler window. The model can also be deleted here by
clicking on Delete model.

Chapter 8

[287]

If a model is opened in the Processing modeler window, individual model input
and algorithms can be modified. As we mentioned in the Adding inputs section of
this chapter, clicking on the pencil icon of a model's input will open the Parameter
definition dialog so that changes can be made. Clicking on the close button (X) will
delete the input from the model.

From the modeler canvas, information about algorithm parameters can be exposed
by clicking on the + signs above and below an algorithm. This is a convenient way
to see algorithm parameters without opening each algorithm. Right-clicking on an
algorithm opens a context menu, as you can see in the following screenshot. Clicking
on Remove deletes the algorithm from the model as long as there are no other
algorithms depending on its output.

Automating Workflows with the Graphical Modeler

[288]

If you attempt to delete an algorithm in the middle of a workflow, you will see the
following message. The dependent downstream elements will have to be deleted
prior to deleting the algorithm.

Clicking on Edit from the algorithm context menu opens the algorithm dialog so that
changes can be made to the model. After editing an algorithm, the connections to other
model elements in the canvas will be updated. The algorithm parameters exposed by
clicking on the + signs above and below the algorithm will also be updated.

Clicking on Deactivate from the algorithm context menu will deactivate the algorithm
and all algorithms downstream that depend on that algorithm. An algorithm can be
reactivated at any point by right-clicking on it and choosing Activate. When you do
this, any other downstream algorithms that were deactivated earlier will have to be
individually reactivated.

Documenting a model
Model help can be written for any model by clicking on the Edit model help button
() within the Processing modeler window. This will open the Help editor
window that has three panels. At the top is an HTML page with placeholders for
the Algorithm description, Input parameters, and Outputs sections. At the bottom-
left corner, there is an element selection box and there is a box for entering text at
the bottom-right corner. To edit an element, select it in the Select element to edit
box. Once it is selected, use the Element description box to type a description or
necessary documentation. Click on OK when finished.

Chapter 8

[289]

Automating Workflows with the Graphical Modeler

[290]

This help information will then be available on the Help tab when the tool is in
the execution mode:

Saving, loading, and exporting models
Models can be saved anytime by clicking on the Save button () in the Processing
modeler window. It is best to save early and often when working on a model. As
we mentioned in the Configuring the modeler and naming a model section of this
chapter, the first time a model is saved, you will be prompted to name the model
file. Subsequent saves update the existing *.model file. There is also a Save as button
() that can be used to save a new version of a model.

Models that are not saved to the Modeler folder can be opened using either of the
following two ways:

• By enabling the Processing Toolbox panel, navigating to Models | Tools,
and then double-clicking on Add model from file

• By using the Processing modeler window, and clicking on the Open model
button ()
In either case, navigate to the *.model file.

Chapter 8

[291]

Models can also be exported as image files. This is useful if the workflow needs
to be presented or included in a report. To export a model, click on the Export as
image button () in the Processing modeler window. The model will be saved
as a PNG file.

QGIS now has an online collection of models and scripts that can be loaded. From
the Processing Toolbox panel, navigate to Models | Tools and double-click on Get
models from on-line scripts collection. The Get scripts and models window will
open. Choose the models to load and click on OK. The new models will be loaded
in the Models section of the Processing Toolbox panel under the Example models
group. This collection of online models will be continually expanded by QGIS users.

Automating Workflows with the Graphical Modeler

[292]

Executing model algorithms iteratively
Models, like all QGIS algorithms, can be executed iteratively. Here, we will
demonstrate this feature with one of the QGIS example models: DEMs_Clipped_to_
Watersheds.model. We will use two inputs, a DEM covering Taos, New Mexico and
a watersheds polygon layer for the area. The elevation.tif and watersheds.shp
sample data will be used.

Input data: watersheds and a DEM

The model has just one algorithm. It uses the Clip grid with polygon tool to clip the
DEM to watersheds. There are 21 watersheds covering this area.

Chapter 8

[293]

If the model is run normally, it will clip the DEM to the extent of all 21 watersheds
and produce one output elevation raster. However, if the Iterate over this layer
button () is clicked (see the following screenshot), the model will cycle through
each feature in the watershed layer and output a DEM that covers each individual
watershed. This will result in 21 individual elevation rasters. This sort of automation
is very easy to generate and can save you a lot of time.

Automating Workflows with the Graphical Modeler

[294]

The following figure shows the resulting 21 DEMs that are clipped to individual
watersheds:

The resulting 21 clipped DEMs

Nesting models
As we previously covered, when a model is saved to the Models folder, it will
appear in the Models category of the Processing Toolbox panel. What we didn't
mention earlier was that it will also appear in the Algorithms tab of the Processing
modeler window. This means that a previously written model can be used as an
algorithm in another model.

Models won't appear as algorithms if some of their component
algorithms are not available. This can happen if an algorithm
provider is deactivated in Providers, and you can find this by
navigating to Processing | Options. For example, if you have
used a SAGA tool in a model but have subsequently deactivated
SAGA tools, that model will not be available. As long as all the
algorithms in a model are visible in the Processing Toolbox
panel, a model will be available as an algorithm.

Chapter 8

[295]

To demonstrate this feature, we will build on the model that we used in the previous
section. The model clipped elevation data by watershed boundaries. With a DEM,
you can generate a metric called Topographic Wetness Index (TWI). The QGIS
sample model (TWI_from_DEM.model) shown in the following screenshot takes one
input, a DEM. From this input, it generates slope and catchment areas. These then
feed into the Topographic Wetness Index algorithm.

Automating Workflows with the Graphical Modeler

[296]

First, we will create a new copy of the DEMs Clipped to Watersheds model using the
save as button. We will name this new model file as TWI_for_watersheds.model.
The TWI From DEM model is located in the Algorithms tab and is added as an
algorithm to our new model. (Remember that models need to be saved to the Models
folder to appear as algorithms.) You will notice that the model icon in the modeler
canvas for the TWI From DEM algorithm identifies the algorithm as a model:

The DEM will be clipped to the watersheds layer, and the clipped DEM will be the
input to the TWI From DEM algorithm. This will create one output, a TWI raster
covering the watersheds. However, if the Iterate over this layer setting is used, the
DEM will be clipped to each of the 21 watersheds and the TWI will be calculated for
each. This will use both a nested model and the iterate feature in the same model.

Chapter 8

[297]

The following figure shows the output of the TWI for Individual Watersheds nested
model using the iterator feature:

Automating Workflows with the Graphical Modeler

[298]

As of version QGIS 2.6, you can have as many levels of
nested models as you wish. There is no limit!

Using batch processing with models
Models can also be used in batch mode just like other processing algorithms. To do
this, simply locate the model in the Processing Toolbox panel, right-click on it, and
choose Execute as batch process, as shown in the following screenshot:

Chapter 8

[299]

The tool will operate like any other geoalgorithm in QGIS. You can click on Add
rows, Delete rows, and Run when ready. With this method, the model can be
utilized on datasets from different geographies. This technique is also useful in cases
where you have to repeat several geoprocessing steps on a collection of files.

Converting a model into a Python script
In QGIS version 2.4, it was possible to convert a model tool to a Python script. It was
done by right-clicking on the model in the Processing Toolbox panel and choosing
Save as Python script. During the development of QGIS 2.6, the underlying code for
the graphical modeler was completely rewritten. As a result, there are many changes
and improvements in the new modeler. For example, *.model files are now stored
as JSON instead of XML, there is no depth limit to nesting models within models,
and algorithms and inputs can be dragged and dropped onto the modeler canvas.
The modeler is also more stable and less buggy. Unfortunately, the ability to export
a model as a Python script has not yet been implemented in the updated modeler.
There simply was not enough time to get this piece completed before the release of
QGIS 2.6. This functionality is expected to be implemented in a future QGIS release.
However, since models are algorithms, they can be executed from the Python
Console. This topic is covered in Chapter 10, PyQGIS Scripting.

Automating Workflows with the Graphical Modeler

[300]

Summary
In this chapter, we covered automating workflows with the QGIS graphical modeler.
We showed you how to set up, edit, document, and run a model. You learned
how to add inputs and algorithms to models. We also covered how to execute
models iteratively, nest models within models, and run them in batch mode. With
what has been covered to this point, you should understand how to work with a
variety of vector, raster, and tabular data. You should also be well versed with the
geoprocessing and analytic capabilities of QGIS.

In the next chapter, we will switch from conducting analyses with the graphical
modeler and the Processing Toolbox to expanding the functionality of QGIS with
Python. In Chapter 9, Creating QGIS Plugins with PyQGIS and Problem Solving, you will
learn how to create a QGIS plugin from scratch. The chapter will begin with a primer
on PyQGIS. You'll learn where you can get API information and other PyQGIS help.
We will then explore plugin file structure and the available functions. The chapter
will conclude with a simple step-by-step example of writing a QGIS plugin. This will
also include information on debugging your code.

[301]

Creating QGIS Plugins with
PyQGIS and Problem Solving
This chapter focuses on the basic information necessary to start developing a QGIS
plugin. Topics that will be approached will include the following:

• Where to get help to solve your PyQGIS problems
• How to setup a development environment that can resolve PyQGIS and PyQt

API names during code editing
• How to interactively test your snippet using the QGIS Python console and

some useful classes that can be used everywhere
• Creating a basic plugin using Plugin Builder
• Analyze your first basic plugin to know its structure
• Setting up a runtime debugging environment that can be useful in

developing complex plugins

Webography - where to get API
information and PyQGIS help
One of the characteristics of most free software projects is that their documentation
is freely available and can be used for learning. QGIS is one of the best-documented
projects, thanks to training material, a coding cookbook, and the automatic
documentation of its Application Programming Interfaces (APIs).

In this chapter, we will focus on main resources that are available on the web to learn
how to script QGIS and how to solve your scripting problems.

Creating QGIS Plugins with PyQGIS and Problem Solving

[302]

PyQGIS cookbook
The main resource is a community content-driven cookbook that gives a general
introduction to scripting QGIS. You can find this documentation at http://www.
qgis.org/en/docs/index.html.

You have to choose the QGIS target version of your plugin and then choose the
PyQGIS Developer Cookbook link. If you are interested in the latest QGIS APIs,
you have to choose the testing version or directly go to http://docs.qgis.org/
testing/en/docs/pyqgis_developer_cookbook/.

If you need a copy on your system, you can also download a PDF version of the
cookbook from http://docs.qgis.org/<qgis version or testing>/pdf/.

For example, if you need the documentation for the version 2.2, you have to direct
your browser to http://docs.qgis.org/2.2/pdf/.

However, if you need documentation of a version under development, you can visit
http://docs.qgis.org/testing/pdf/.

Once you open the PDF documentation page, you can choose your
preferred translation.

QGIS even versions (for example, 2.2, 2.4, 2.6, and so
on) are always stable versions. Odd versions are always
developing versions (for example, 2.3 or 2.5). Odd versions
are generally known as testing versions.

API documentation
APIs are the doors that use the components of a software program. As a program
evolves, the APIs can change affecting, in our case, all the plugins that directly
use them.

The biggest QGIS API changes append jumping from version 1.8 to 2.0, but
moving from one version to another, there are new APIs added and others are
deprecated because of the normal development life cycle of a complex software.
Generally, deprecation and new APIs are added to satisfy new features (for example,
multithreading visualization added in version 2.4 or the newer legend engine added
in version 2.6) or due to code refactoring (refer to http://en.wikipedia.org/wiki/
Code_refactoring).

Chapter 9

[303]

So, depending on API changes and on what QGIS version you want to integrate your
code into, you should use one API set or another, or better, write code that can be
executed in multiple QGIS versions.

API documentation is automatically generated from the QGIS code and can be found
at http://qgis.org/api/, where you can look for the class that you need.

For example, if you need to know public methods of the QgsVectorLayer class
in QGIS 2.4, you can refer to http://qgis.org/api/2.4/classQgsVectorLayer.
html or for the latest development version, http://qgis.org/api/
classQgsVectorLayer.html.

It should be mentioned that QGIS is mainly written in C++ and its API
documentation follows C++ notation. Most of the methods of the QGIS classes are
available as a Python bind. The way to discover if a method is exported to Python
is to test it in the QGIS Python Console or read about its class documentation in the
QGIS Python Console, as described in the next chapter.

The QGIS community, mailing lists, and IRC
channel
One of the advantages of the open source project is that you can talk directly to other
developers and frequently with the core developers of the project. QGIS has three
official ways to support development and problem resolution.

Mailing lists
All official mailing lists are listed at http://qgis.org/en/site/getinvolved/
mailinglists.html.

There are two extremely important lists from the user's point of view, one for
developers (QGIS core and plugin developers) and the other for users. Depending on
your profile, choose one list:

• Developer list: For this, refer to http://lists.osgeo.org/mailman/
listinfo/qgis-developer

• User list: For this, refer to http://lists.osgeo.org/mailman/listinfo/
qgis-user

These lists can be read and searched for using an online service at http://osgeo-
org.1560.x6.nabble.com/Quantum-GIS-f4099105.html, where you can also
find lists of other QGIS sub-projects or the mailing lists of several other local
QGIS user groups.

Creating QGIS Plugins with PyQGIS and Problem Solving

[304]

If you don't find your nearest local QGIS user group, first ask in the user or
developer mailing lists and, depending on the answer, try to create a new QGIS local
group and announce it to the community.

IRC channel
Internet Relay Chat (IRC) is a fantastic way to get real-time support from users and
developers. Remember that this help is always voluntary and the answers depend on
your politeness and the available time of the connected users.

You can connect to the #qgis channel at the http://www.freenode.net server with
your preferred IRC client via http://webchat.freenode.net/?channels=#qgis.

The philosophy of IRC problem solving is condensed in the first chat message sent
to you by the #qgis channel: it will be "Don't ask to ask, just ask and hang around
a while to see if someone answers. Please refer to http://osgeo.pastebin.com/
instead of pasting more than five lines."

The StackExchange community
Technical social networks like StackExchange have a GIS sub-project that can be
accessed from http://gis.stackexchange.com. Here you can look for problems
reported by other users about QGIS and the answers that are given by other users or
directly by QGIS core developers.

Messages relating to QGIS can be found looking for the qgis tag; for example,
http://gis.stackexchange.com/?tags=qgis.

Sharing your knowledge and reporting issues
In StackExchange, the IRC channel, and the mailing lists, you can actively support
other users who have problems that you have have already solved.

An important way to support a QGIS project, other than funding it, is by reporting
bugs that are packaged with a detailed use case and data that allows others to
replicate the problem. This will speed up bug fixing.

There are two kinds of issues: those that are related to QGIS or its core plugins (such
as Processing) and those that are related to third-party plugins that you can install
with Plugin Manager.

Chapter 9

[305]

To report a QGIS issue or a core plugin issue, you need an OSGeo account, created
at https://www.osgeo.org/cgi-bin/ldap_create_user.py, using which you can
log in to the QGIS Redmine bug tracker to report issues at http://hub.qgis.org/
projects/quantum-gis/issues.

Beware! Check to make sure your issue hasn't already
been reported by looking in the issues list.

A good guide to reporting a QGIS issue is available at http://qgis.org/en/site/
getinvolved/development/index.html#bugs-features-and-issues.

Reporting a third-party plugin issue depends on the plugin developer and where
he/she decides to host the bug tracker. You can find this information in the plugin
manager as shown in the following screenshot:

If you are looking for the link tracker, it will be found in the area marked by the red
box in the second link, tracker. Other useful links can be found in the area marked
in red. The first link points to the homepage plugin, where the plugin is described.
The third link points to the the code repository of the plugin. In the QGIS plugin
central repository, every plugin is accepted only if it has a lease tracker and a code
repository.

Creating QGIS Plugins with PyQGIS and Problem Solving

[306]

The Python Console
The Python Console is a wonderful instrument to explore and learn PyQGIS. It's
available in every QGIS installation and can be opened by selecting the Python
Console voice in the Plugins menu.

The Python Console is a dockable interface, and like all dockable interfaces, you can
change its position inside QGIS or separate it. You can try moving the console by
dragging and dropping it.

The console is shown in this screenshot:

As you can see, the console is composed of a button toolbar marked by the red box.
The bigger Python Console is marked by the upper-right red box and is where all
the command results are shown, and finally a bottom command line, marked by the
bottom-right red box, is where you can edit commands.

Chapter 9

[307]

Here, we describe how to test code interactively and explore the PyQGIS classes.
However, we will not explain all the possibilities of the Python Console. These are
well documented and you can find them at http://docs.qgis.org/testing/en/
docs/pyqgis_developer_cookbook/intro.html#python-console.

Getting sample data
To continue experimenting with PyQGIS we need a test dataset. The QGIS project
has training material and sample data that we'll use in our snippet.

The QGIS sample data can be downloaded from http://qgis.org/downloads/
data/.

My first PyQGIS code snippet
To break the ice, we will create our first PyQGIS code to show the unique ID of a
selected layer loaded in QGIS.

1. To start with, we will first load the layer, airports.shp, which is available in
the shapefiles directory of qgis_sample_data.

2. After it has been loaded successfully, select it in the list of layers; doing this
will make it the active layer for QGIS. We can also do this by writing the
following line in the the Python Console command line:
layer = iface.activeLayer()

3. After editing the code and hitting Return, the edited command code is shown
in the console.

4. The reference of the current active layer is archived in the variable named
layer. Now, we can show the layer ID by typing the following code
command in the command line after pressing Return:

print layer.id()

The output will display something similar to airports20141001174143539.

Creating QGIS Plugins with PyQGIS and Problem Solving

[308]

My second PyQGIS code snippet – looping
the layer features
In this paragraph, we'll introduce how to loop in Python and how to apply loops
to explore the content of the layer loaded in the previous paragraph.
Write the following snippet in the Python Console, taking special care with the
code indentation:

for feature in layer.getFeatures():
 print "Feature %d has attributes and geometry:" % feature.id()
 print feature.attributes()
 print feature.geometry().asPoint()

This will print a pattern like the following:

Feature with id 21 has attributes and geometry:
[22, u'US00342', 858.0, u'Airport/Airfield', u'PATL', u'TATALINA
 LRRS', u'Other']
(-328415,4.71636e+06)

The layer.getFeatures() method returns an object that can be
iterated inside a for Python instruction, getting a QgsFeature instance
for every loop. The feature.attributes() method returns a list
(inside the brackets, []) of the integer and unicode strings (the u''
values). The feature.geometry() method returns QgsGeometry
that is converted in QgsPoint to be printed as a tuple (inside the ()
parenthesis) of coordinates.

It is strongly recommended that you explore the preceding classes. You can also
practice by referring to the documentation at http://qgis.org/api/. Start by
exploring the QgisInterface and QGis classes.

Indentation is an important part of the Python language; in fact nesting the code in
Python is done using indentation as specified in the standard followed globally. You
can find this at http://legacy.python.org/dev/peps/pep-0008/.

Exploring iface and QGis
The iface class used in the preceding snippets is important in every PyQGIS code;
it is used to access most graphical QGIS components, from displayed layers to the
toolbar buttons.

Chapter 9

[309]

The iface class is a Python wrapper for the C++ class,
QgisInterface, which is documented at http://qgis.org/api/
classQgisInterface.html. Most QGIS classes have a Qgs prefix.
Some special classes can have the Qgis or QGis prefixes.
The prefix Qgs is the Qt namespace registered by Gary Sherman, the
QGIS creator, so Q stands for Qt and gs stands for Gary Sherman.

The most common use of the iface class is to get a reference of the canvas where
maps are displayed:

canvas = iface.mapCanvas()

The class can also be used as a shortcut to load raster or vector layers; for example
loading the raster, path/to/my/raster.tif, and naming it myraster in the legend
panel. This can be done by typing the following command:

iface.addRasterLayer("path/to/my/raster.tif", "myraster")

Pay attention to writing paths with Windows. A path string, such as C:\
path\to\raster.tif, has the special escape character, \, so rewrite
it by double escaping C:\\path\to\raster.tif or using the Unix
notation, C:/path/to/myraster.tif, or notify Python with a raw
string adding an "r" as in r, C:\path\to\raster.tif. Generally, it's
good practice to create path strings using a Python library like os.path.

QGis is another class that contains some useful constants, such as a QGIS version or
some default values. We can find out the QGIS version name running on our system
by typing in the following command:

print QGis.QGIS_RELEASE_NAME, QGis.QGIS_VERSION_INT

For example, if the output is Chugiak 20400, then this value represents the version
name and the version integer representation (which is version 2.4). This is useful
to programmatically create a plugin that can run on different QGIS versions. The
following snippet helps to distinguish the code among them:

if Qgis.QGIS_VERSION_INT < 20400:
 <here the code compatible with older version>
else:
 <here the code compatible with version higher or equal to 2.4>

Creating QGIS Plugins with PyQGIS and Problem Solving

[310]

Exploring a QGIS API in the Python
Console
The QGIS APIs can be browsed in the documentation web page, but if you want to
access the documentation directly in the Python Console, you can use some useful
Python commands. The help command shows a synthesis of the API information
available in the web documentation. Try to edit Python Console with the command:

help(iface)

The console will show all the methods of the QgisInterface class and a synthetic
example of how to use this in Python syntax instead of C++ syntax. For example, if
you want to show the result type of the call iface.activeLayer type:

help(iface.activeLayer)

The following lines will be displayed:

Help on built-in function activeLayer:
activeLayer(...)
QgisInterface.activeLayer() -> QgsMapLayer

This shows that the activeLayer call returns data that is a QgsMapLayer data type.

The Python dir() function gives you more detailed information, showing a list of all
the methods belonging to a class.

Try typing dir(iface) and compare it with the result of the
previous help(iface) command.

Creating a plugin structure with Plugin
Builder
A QGIS plugin can be created manually with a simple editor, but the simplest and
most complete way to start to create a plugin is to use another Python plugin called
Plugin Builder.

Plugin Builder generates the file infrastructure of the plugin, thus avoiding writing
repetitive code. Plugin Builder creates only basic and generic plugins, which can be
modified to add specific user functionalities.

Chapter 9

[311]

It is a graphical interface used to introduce the main parameters to create a plugin. It
will generate a generic plugin with the following interface:

This is an almost empty dialog with two buttons. Every piece of this interface can be
modified and customized to reach the plugin goal.

Installing Plugin Builder
The first step is to install Plugin Builder using the Plugin Manager by navigating to
Plugins | Manage and Install Plugins....

It's strongly suggested you install the experimental version of the plugin, as it is
more complete and is the simplest to use. Its version should be greater than
version 2.0.3.

To find the experimental version of the Plugin Builder in Plugin Manager, it's
necessary to configure the manager to show the experimental plugin by ticking the
checkbox when you navigate to Settings | Show also experimental plugins.

Locating plugins
The Plugin Builder, as every third-party Python plugin is by default, is installed in
your home directory at the following path:

<your home path>/.qgis2/python/plugins/

Creating QGIS Plugins with PyQGIS and Problem Solving

[312]

Over here, you'll find your Plugin Builder code at the pluginbuilder directory. You
will notice that each installed plugin has a proper code directory. We'll create a new
plugin that, to be loaded by default by QGIS, has to be created in the Python plugin
directory. It's possible to change the default plugin directory path, but this is outside
the scope of this topic.

Creating my first Python plugin – TestPlugin
Starting the Plugin Builder will open a GUI to insert the basic parameters to
set up the generation of your first QGIS plugin. The interface is shown in the
following screenshot:

Each parameter is self-explanatory through tooltips and can be seen by moving the
cursor on each parameter line.

Chapter 9

[313]

Setting mandatory plugin parameters
There is a set of mandatory parameters that are always checked by the QGIS plugin
repository when a plugin is uploaded. These parameters are also manually checked
by QGIS members to approve the plugin officially in the central repository. The
parameters are as follows:

• Class name: This is the name of the class that will contain the plugin
business logic. It will be named in the CamelCase format (refer to http://
en.wikipedia.org/wiki/CamelCase) to be aligned with the Python
standard. This name will be used by Plugin Builder to generate a directory
that will contain the generated code. Edit the value, TestPlugin.

• Plugin name: This refers to the colloquial name of the plugin and is what
will be shown in the Plugin Manager and in the QGIS Plugins menu. Enter
the value, My First Test Plugin.

• Description: This is a string containing the description or the plugin scope.
Enter the value, This is the description of the plugin.

• Module name: In Python, a group of classes can be addressed and imported
as a module. The module name should be in lowercase and, if necessary,
with underscores to improve readability. We shall insert the value,
test_plugin.

• Version number: This is the version number of the plugin. It can be any
number. Generally, the versioning has this format,<MAJOR>.<MINOR>.<PATC
H>,where:

 ° A MAJOR version will specify that there are incompatible API changes
from the previous majors

 ° A MINOR version will specify that there are new functionalities in a
backwards compatible manner

 ° A PATCH version will specify that there are backwards compatible
bug fixes

At the moment, we can leave the default value set at 0.1.

• Minimum QGIS version: This refers to the minimum QGIS version in which
the plugin will run. Each QGIS version has its own API set; the plugin can
be compatible with a specified newer version but not with older ones if it's
not programmed to be compatible. The minimum QGIS version is used by
the QGIS plugin manager to show only plugins that are compatible with the
running QGIS. This means that in QGIS 2.0 it's not possible to see the plugin
for 1.8 or plugins that are designed to work only with 2.4 or newer versions.
We can leave the default value 2.0.

Creating QGIS Plugins with PyQGIS and Problem Solving

[314]

• Text for the menu item: This refers to the text of the submenu opened
under the voice, Plugin Name, described previously. We can insert the Test
Plugin starter value.

• Author/Company and Email address: The parameters are obvious and are
used to contact the developer if a user finds problems in the plugin. For
example, you can set your name, surname, or company name, and your
e-mail address.

Setting optional plugin parameters
There are also optional parameters that are really useful if your plugin would be
available for other users. The parameters are as follows:

• Repository: A repository can be added later; it is the location where the
plugin code is located. Its common to use a Version Control System (VCS)
repository to maintain your code. Some popular VCSs are Git or Subversion
and some related to Git. There are famous online services available at
http://www.github.com or https://bitbucket.org/, where you can
upload your project and maintain modifications. For example, the repository
of the code of the Plugin Builder is https://github.com/g-sherman/Qgis-
Plugin-Builder. For our plugin, we can leave this blank
for now.

• Bug tracker: It's good practice to maintain a service to track the bugs of
the plugin. Plugin users can file issues by preparing test cases that help to
reproduce the bug. Tracking traces of the bugs and their solutions help us
to know the evolution of the plugin. Usually the use of a VCS web service
as shown previously, provides a bug-tracking service. For example, the
bug tracker for the plugin called Plugin Builder is provided by the QGIS
infrastructure and can be found at the http://hub.qgis.org/projects/
plugin-builder/issues. For our plugin, we can leave this blank at
the beginning.

• Home page: If the plugin has a web page where it is described, its good
practice to add a plugin home page where you can leave usage instructions
and the usages of the plugin. We can leave this blank at the start.

• Tags: This field is really important to allow QGIS users to find the plugin. It's
used by the plugin manager to look for plugin keywords. For example, if the
plugin is managing GPS data, its tags could be: gps, gpx, satellite, and so
on. Try to find the tags that best describe the plugin and edit them separated
with commas.

Chapter 9

[315]

• The last checkbox of the Plugin Builder interface is checked if the plugin is in
the experimental stage. By default, the Plugin Manager shows only plugins
that are not experimental. To list the experimental plugins, it's necessary
to tick the relative checkbox option in the Plugin Manager configuration.
During the first developmental stage of the plugin, it's good practice to set it
as experimental.

Generating the plugin code
After setting all the necessary plugin parameters, it's time to generate the code by
clicking on the OK button, which will open a path selection dialog, which will select
the location of the new plugin. Selecting the same directory that contains the plugin,
Plugin Builder allows QGIS to find the new plugin. The default path should be is:

<your home path>/.qgis2/python/plugins/

However, you can create your plugin anywhere. Just remember to link or deploy it
in the plugin directory to allow QGIS to load it.

After selecting a path, the code will be generated, creating a new directory in the
selected path. In our case, the new directory will have the name, TestPlugin.

At the end of the code generation, there will appear a dialog with a message
explaining the steps to complete plugin creation.

The generated plugin is not available yet; it's necessary to restart QGIS and activate it
in the Plugin Manager interface. The plugin is now fully functional, but after the first
activation, its button in the QGIS toolbar will be without an icon.

Compiling the icon resource
To make the icon visible, it's necessary to compile the icon resource so as to have it
available in Python. Resource compilation is a process to render an icon's platform
independent of the Qt framework, which is the graphical infrastructure on which
QGIS is built.

To compile the icon resource, it's necessary to have installed the GNU make and the
pyrcc4 command.

In Windows, using the OSGeo4W QGIS installation, this command will be
automatically installed and can be addressed only inside the OSGeo4W shell. On
other platforms, they have to be installed using another command

The make command is usually available in every Linux operating system distribution.

Creating QGIS Plugins with PyQGIS and Problem Solving

[316]

The pyrcc4 command is the Qt resource compiler for Qt4 and it's available in the
pyqt4-dev-tools qt4-designer packages.

After the make and pyrcc4 commands are installed, make has to be called inside the
directory of the plugin. The make command will use the instructions included in the
file called Makefile that instructs us about all the aspects of plugin compilation. The
result of the make command is shown in this next screenshot:

In the preceding screenshot, we can see that the make command instructs pyrcc4 to
compile the resources.qrc file, generating the Python version, resources_rc.py.

After compiling the icon resource and restarting QGIS, the plugin button will have
an icon which is the default icon set by the Plugin Builder.

To change the icon, just change icon.png with a new image leaving the filename
unchanged, and then recompile the icon resource.

It's possible to change the filename and add more icon resources,
but this is out the scope of the current chapter, so please refer to
the Qt documentation for this.

Chapter 9

[317]

The plugin file structure – where and what to
customize
Our TestPlugin code has been created in this folder:

<your home path>/.qgis2/python/plugins/

Here, we can find a complex file structure, where only a subset of files are strictly
necessary for plugins and are in the scope of this book. The basic files are the
following ones:

• __init__.py

• metadata.txt

• Makefile

• icon.png

• resources.qrc

• resources_rc.py

• test_plugin_dialog_base.ui

• test_plugin_dialog.py

• test_plugin.py

Each file has its own role inside the plugin, but only a few of them have to be
modified to develop a custom plugin.

Other than basic files, the Plugin Builder generates other files and directories useful
to manage more complex plugin projects. The files and directories are as follows:

• help/

• i18n/

• scripts/

• test/

• pylintrc

• plugin_upload.py

• README.html

• README.txt

Creating QGIS Plugins with PyQGIS and Problem Solving

[318]

Exploring main plugin files
Here, we will describe the role of each of the main files that compose a plugin:

• The __init__.py file is the common Python module starting file and it's also
the entry point for QGIS to load the plugin. Usually, it doesn't have to be
modified to create a plugin.

• The metadata.txt file is a text file containing all the information about
the plugin. This file is read by Plugin Manger to manage the plugin inside
QGIS. For example, in this file there are the plugin classification tags or the
minimum QGIS version in which the plugin can be run.

• Makefile is a set of instructions used by the make command to compile
resources and to manage some shortcuts to compile documentation or to
clean previously compiled files, and so on. Usually, it's not necessary to edit
it.

• The icon.png file is the plugin icon. As explained previously, it would be
modified with a definitive plugin icon.

• The resources.qrc file is the file that instructs Qt about how to manage
the icon. Usually, it's not necessary to edit it other than adding more icons
or changing the filename of the icon.png file. More information about the
resource file can be found in the Qt documentation at http://qt-project.
org/doc/qt-4.8/resources.html.

• The resource_rc.py file is the compiled version of the resource.qrc file,
and it's generated after compilation with the make command.

• The test_plugin_dialog_base.ui file is a file in XML format, describing
the layout of the user interface of the plugin. It's strictly necessary only if
the plugin needs its own GUI. The GUI structure can be edited manually,
but usually it's better to use the Qt framework to edit it. The framework is
called Qt Designer or Qt Creator and it can be downloaded from http://qt-
project.org/downloads. The GUI design with the Qt framework is beyond
the scope of this book, but the framework has good tutorials explaining how
to customize graphic interfaces.

• The test_plugin_dialog.py file contains the logic of the preceding plugin
GUI layout. This is the place where you add the logic of the plugin related
to the GUI. For example, buttons that are disabled when a specific value is
inserted, and so on.

• The test_plugin.py file is the container of the business logic of the plugin.
It is complex, but usually only some parts have to be modified to insert the
plugin logic. Modifying how this code will be managed will be dealt with
shortly.

Chapter 9

[319]

Plugin Builder generated files
The Plugin Builder generates more than basic files because it creates a template to
manage complex Python plugin projects. A project can involve unit testing, detailed
documentation, translation, code analysis, and so on. Here is a summary of these
files:

• The help directory contains all the files necessary to automatically generate
documentation in different formats, from HTML to PDF.

• The i18n directory contains files where we can add translations in
other languages.

• The script directory contains some tools to facilitate the plugin
development and deployment.

• The test directory contains unit tests for the plugins. It also contains utility
classes to support unit testing.

• The pylintrc file is a configuration file for Pylint, a framework of
code analysis.

• The plugin_upload.py file is a command-line utility to upload the plugin in
the QGIS plugin repository.

• The README files contain the messages displayed at the end of
plugin generation.

A simple plugin example
The goal of this section is to customize TestPlugin to classify the loaded
layers in the raster and vectors and respectively populate two comboboxes
with the layer names.

Adding basic logic to TestPlugin
As said previously, to customize TestPlugin, we have to modify some code portions
in the files, test_plugin_dialog_base.ui for the GUI layout, test_plugin_
dialog.py for the GUI logic, and test_plugin.py for the plugin logic.

Modifying the layout with Qt Designer
The default plugin GUI layout has only two buttons, Ok and Cancel. Here, we will
add two comboboxes that will be populated by the logic of the plugin in test_
plugin.py.

Creating QGIS Plugins with PyQGIS and Problem Solving

[320]

To edit the test_plugin_dialog_base.ui GUI layout, open it with Qt Designer,
which will show the interface of the following screenshot:

This is the graphical representation of the test_plugin_dialog_base.ui XML file.
With Qt designer we can reorganize the layout, adding new graphical elements and
also connect events and triggers related to the interface. In the preceding screenshot,
the four red boxes mark the Designer sections:

• The Layout Area is the area where the plugin GUI is rendered.
• The Widget Box section contains the list of predefined GUI components.

Here, we'll look for the combobox to add to the GUI layout.
• The Object Inspector section gives the hierarchy of graphical components

composing the GUI layout.
• The Property Editor section gives a list of all the properties of the graphical

components that can be customized.

Chapter 9

[321]

Adding two pull-down menus
The next steps will be to create the layout as shown in the following screenshot:

To create this layout, drag two comboboxes to the central GUI layout. The Combo
Box option can be found by scrolling in the Widget Box section. In the same way,
we'll add two labels on the top of each combobox.

To edit the labels, just double-click on them to enter into the label edit mode. This
action is equivalent to changing the Text property in the Property Editor section.

After creating the layout, we can associate each combobox with an object name that
will be used to distinguish the function of each combobox. To do this, we will change
the objectName property in the Property Editor section. For example, we can set
the name of the raster combobox as rastersCombo. In the same, way we rename the
vector combobox as vectorsCombo.

The string used as objectName will be the name of the Python variable that refers to
the graphical element. It will be used in the Python code when we want to get or set
some property of the graphical element.

Modifying the GUI logic
Our plugin doesn't need modification in the dialog code, test_plugin_dialog.py,
because all the GUI updates will be guided by the test_plugin.py code directly
populating the rasterCombo and vectorsCombo elements. This is a design decision;
in other cases, it could be better or cleaner to have the logic inside the dialog code to
hide combo names using the dedicated function added to the dialog.

Creating QGIS Plugins with PyQGIS and Problem Solving

[322]

Modifying the plugin logic
Our core plugin logic has to be added. This can be done by modifying the test_
plugin.py code. In many cases, such as in simple plugins or batch-processing
instructions, only the run(self) function has to be modified inside the plugin code.

The run() function is the function that is called every time the plugin button is
clicked on in the QGIS toolbox or the plugin is run from the plugin menu. In the
run() function we have to:

• Collect all loaded layers
• Classify in raster and vector layers
• Populate the comboboxes in the plugin GUI
• Show the GUI with the new values loaded

To get all the listed layers, we'll have to ask the container of all the displayed layers,
that is, the QgsMapLayerRegistry class. To do this, we will use the
following code:

from qgis.core import QgsMapLayerRegistry
layersDict = QgsMapLayerRegistry.instance().mapLayers()

The first line imports the class, QgsMapLayerRegistry, from the Python module
qgis.core.

You can import classes everywhere in the code, but it's good
practice to import them at the beginning of the file.

Forgetting to import the class will cause an error during runtime. The error will be
as follows:

Traceback (most recent call last):
File "<input>", line 1, in <module>
NameError: name 'QgsMapLayerRegistry' is not defined

In the second line, the result variable, layersDict, is a Python dictionary; it contains
a set of key-value pairs where the key is the unique ID of the layer inside QGIS, and
the value is an instance of the QgsMapLayer class that can be a vector or raster layer.

The variable, layersDict, has the suffix, Dict, only for a didactic
reason, but it could simply be named layers.

Chapter 9

[323]

Classifying layers
The next step is creating a list of vector and raster layer names. This can be achieved
by looping layersDict in the following way:

from qgis.core import QgsMapLayer
vectors = []
rasters = []
for (id, map) in layersDict.items():
 if (map.type() == QgsMapLayer.VectorLayer):
 vectors.append(map.name())
 elif (map.type() == QgsMapLayer.RasterLayer):
 rasters.append(map.name())
 else:
 print "Not Raster nor Vector for layer with id:", id

The first line, which is the import line, is necessary to allow the use of the
QgsMapLayer class.

The next two lines initialize two empty Python lists that will be filled with the layer
names. Adding an element to an array is done with the Python command, append.

The layers are looped, separating each key-value couple directly into a couple of
variables named id and map. The id variable is used to display a warning message
in line 10.

The map variable is used with the methods, type() and name(), of the QgsMapLayer
class. The map.type() call returns an enumerator value that can be 0, 1, or 2,
but it's better to compare it with the symbolic name of this constant to allow
more readability.

Populating the combobox
After classifying the loaded layers, we set the values of the combobox of the plugin
interface. This can be done with the following code:

self.dlg.rastersCombo.insertItems(0, rasters)
self.dlg.vectorsCombo.insertItems(0, vectors)

We named our comboboxes with object names, rastersCombo and vectorsCombo, in
the two code lines earlier; comboboxes are populated with a standard QComboBox
with the insertItems(...) call passing the two lists of layers. The 0 parameter is
the index where we start to add new elements.

Creating QGIS Plugins with PyQGIS and Problem Solving

[324]

Understanding self
In the two preceding lines, there is the keyword, self, that may confuse everyone
when approaching object-oriented programming for the first time. To explain it, try
to follow where the TestPluginDialog() interface is created and saved.

At the beginning of the test_plugin.py code, the function, __init__(self,
iface), is where the Plugin GUI is created for the first time with the instruction:

self.dlg = TestPluginDialog()

This means that the result of the creation of the dialog, the TestPlugiDialog()
constructor call, is saved in the dlg variable that belongs to the current instance
of the plugin. In this case, dlg is called an object or instance variable, where the
instance of the plugin is referred to with the self variable.

The variable, self ,is almost always available in every Python function; this allows
us to access the dlg variable everywhere in the code.

Showing and running the dialog
We don't have to write any code here, because it will be generated by the Plugin
Builder. The action to show how a dialog is saved in the self.dlg instance variable
is shown here:

show the dialog
self.dlg.show()
Run the dialog event loop
result = self.dlg.exec_()
See if OK was pressed
if result:
 # Do something useful here - delete the line containing pass and
 # substitute with your code.
 pass

This code is self-explanatory by the comments generated by the Plugin Builder

Some improvements
As you can see for yourself, the plugin doesn't work well if it is run more than one
time. The content of comboboxes grow on every run of the plugin. It's left to the
reader to find a solution how to avoid this behavior.

Chapter 9

[325]

More detail of the code
The complete code of this example, as usual, can be obtained from the source code of
the book.

Here, we'll give a bird's-eye view in the test_plugin.py source code that contains the
TestPlugin class. This class has other methods than run(self); these are as follows:

• __init__(self, iface)

• tr(self, message)

• initGui(self)

• add_action(self, icon_path, text, callback, enabled_flag=True,
add_to_menu=True, add_to_toolbar=True, status_tip=None, whats_
this=None, parent=None)

• unload(self)

The following provides a brief description of these methods:

• The __init__(self, iface) method is always present in every
Python class and it is the constructor, which means that it is called every
time you find a call, such as TestPlugin(iface), as you can find in the
__init__.py code.
In our case, the constructor needs the iface variable passed as a parameter
during construction.
The constructor has the role of initializing the current translation, creating
the plugin dialog GUI, and also creating the toolbar where the plugin button
is to be added.

• The tr(self, message) method is just a shortcut to access the Qt
translation engine of string messages.

• The initGui(self) method gets the icon resource and instructs how to
interact with QGIS menu calling the add_action(...) method. This method
is always called when the plugin is loaded in QGIS.

It is important to remember the difference between loading a plugin
and running a plugin.
Loading is done using the Plugin Manager or automatically at
the start of QGIS if the plugin was already loaded in the previous
session.
Running the plugin is when the user starts the plugin by clicking on
the plugin icon or activating it in the plugin menu.

Creating QGIS Plugins with PyQGIS and Problem Solving

[326]

• The add_action(...) method has a lot of parameters that allow for fine
configuration, but most of them are used with their default values, True or
None. The main goal of this method is to create the menu in the plugin menu
and to create the button to call the run() method. In Qt, these kind of buttons
are objects of the QAction class.

• The unload(self) method is used to unroll all the QGIS GUI elements
added with the previous add_action(...) method.

This method is always called when the plugin is unloaded in QGIS using the
Plugin Manager.

Setting up a debugging environment
Software development is a complex task and there's no software without bugs.
Debugging is the process to remove software failures. Debugging is a task that can
involve some other software to facilitate the debugging process.

A plugin can become complex, requiring debugging tools to discover problems.
The complexity of the debugging process can start by inserting some prints inside
the code or adding log messages to finish controlling the execution instructions by
instructing how to find execution problems.

Inserting a breakpoint to stop the execution at a certain point of the code of a third-
party QGIS plugin can be useful to discover how it works.

What is a debugger?
There is a set of possible tools to debug the Python code, but we'll focus only on
PyDev, which reduces the number of installation steps and allows remote debugging
without modification of the plugin code.

PyDev is an Eclipse plugin, where Eclipse is a free software programmable
framework used to develop almost everything. PyDev can be added to a local
installation of Eclipse, adding it from the marketplace, but to reduce the number
of installation steps, it's suggested that you install Aptana Studio 3, an Eclipse
customization with PyDev already installed.

Chapter 9

[327]

Installing Aptana
Aptana Studio 3 can be downloaded from the project homepage at http://aptana.
com/. Just unzip the folder and execute the executable file, AptanaStudio3, inside
the unzipped folder.

The installation version of Aptana Studio 3 should be at least version 3.6.1, because
some previous versions have bugs that don't facilitate code writing. If a version
greater than 3.6 is not available, then it's necessary to upgrade to the beta version.
To upgrade, follow the instructions mentioned at http://preview.appcelerator.
com/aptana/studio3/standalone/update/beta/.

Setting up PYTHONPATH
To allow QGIS to be connected with the PyDev daemon, it's necessary that the
PyDev daemon path be added to the PYTHONPATH environment variable.

To find the path to add, look for the pydevd.py file; it will be in the AptanaStudio
installation path. If you find more than one version, get the path that has the
highest version number.

For example, in my Linux installation there are the following paths:

/users/ginetto/Aptana_Studio_3.6/plugins/org.python.
pydev_3.0.0.1388187472/pysrc/pydevd.py
/users/ginetto/Aptana_Studio_3.6/plugins/org.python.
pydev_3.8.0.201409251235/pysrc/pydevd.pyc

In this case, we should use the following path:

/users/ginetto/Aptana_Studio_3.6/plugins/org.python.
pydev_3.8.0.201409251235/pysrc

Creating QGIS Plugins with PyQGIS and Problem Solving

[328]

This path can be added in the session, PYTHONPATH, or directly in the QGIS
environment by modifying PYTHONPATH by navigating to Options | System in the
Environment section, as shown in the following screenshot:

This way it will be possible to import the Python module, pydevd, in the QGIS
Python Console and set the connection to the PyDev debug server, as described in
the next paragraph.

To test if the path is set correctly, try to type the following code in the QGIS
Python Console:

import pydevd

If it generates an error, it means that PYTHONPATH is not set correctly with the path of
the pydevd module.

Starting the Pydevd server
The first step to connect to PyDev server is to start the server in the Aptana
environment. This can be achieved by opening the Debug perspective of Aptana and
then starting the server with the relative start/stop buttons. The buttons and Debug
perspective are shown here:

Chapter 9

[329]

The Debug perspective can be opened by clicking on the right-hand side button
circled in red. If the Debug perspective button is not available, it can be added to the
Aptana menu. Navigate to Window | Open Perspective | Other.

The Start/Stop server button is pointed out by the red circle on the left.

While starting the server, some messages will appear in the Debug window
highlighted by the red box in the upper-left section; this means that the server is
running. In the Debug window, all connected clients will be listed.

In the red box on the bottom, the Aptana console window shows that the server
answers to the port, 5678; this is the information that we'll use to connect from QGIS.

Connecting QGIS to the Pydevd server
After running the PyDev server we'll connect to it from QGIS. In the QGIS Python
Console, type the following code:

import pydevd
try:
 pydevd.settrace(port=5678, suspend=False)
except:
 pass

Creating QGIS Plugins with PyQGIS and Problem Solving

[330]

The preceding code first imports the pydevd module and then connects to the server
with the settrace method. The connection is inside try/catch to allow catching an
exception raised in case settrace cannot connect. The connection will take some
seconds to connect. If the connection fails, the Python Console will show a message
similar to the following one:

Could not connect to 127.0.0.1: 5678
Traceback (most recent call last):
File "/mnt/data/PROGRAMMING/IDE/Aptana_Studio_3/plugins/org.python.
pydev_3.8.0.201409251235/pysrc/pydevd_comm.py", line 484, in
StartClient
s.connect((host, port))
File "/usr/lib/python2.7/socket.py", line 224, in meth
return getattr(self._sock,name)(*args)
error: [Errno 111] Connection refused

If the connection is successful, the Aptana Debug Perspective will change showing
the connected clients.

Debugging session example
Here, we will show how to debug the TestPlugin remotely. We'll also learn
how to insert a code breakpoint, to stop executions, and to show variable
values during executions.

The steps to follow are as follows:

1. Create a PyDev project that points to the source code of the TestPlugin.
2. Add a breakpoint to the TestPlugin run() function in the Aptana Debug

Perspective.
3. Start the PyDev Debug server.
4. Connect to the PyDev server from QGIS.
5. Run the plugin.
6. Explore the variable values.
7. Continue the execution of the plugin.

Chapter 9

[331]

Creating a PyDev project for TestPlugin
To be able to add code breakpoints it's necessary to load test_plugin.py. This
can be simply opened as a file, but it's better to learn how to have a view of the
entire plugin as a PyDev project. This allows us to use Aptana as a debug and
develop environment.

This is done in two steps:

1. Creating a PyDev project in Aptana Studio 3.
2. Linking the source code to the project.

Creating a PyDev project called TestPlugin is done by navigating to File | New
Project. This will open a wizard where we'll have to look for a PyDev Project entry.
Select it and click on the Next button at the bottom. Here, the wizard will pass to the
phase to insert the project name, TestPlugin, and then click on the Finish button at
the bottom. A new project called TestPlugin will be shown in the PyDev Package
Explorer Aptana section.

The next step is to add the folder of our TestPlugin code inside the project. To add
it, select the TestPlugin PyDev project; right-click on it to add a new folder, as shown
in this following screenshot:

Creating QGIS Plugins with PyQGIS and Problem Solving

[332]

Here, we can see the contextual menu to add a new folder for the selected project.
This action will open a GUI where we can create or link a new folder. In our case,
it's useful to link to the existing plugin code, which can be done using the Advanced
features of the GUI, as shown here:

After linking the folder, it will appear under the TestPlugin PyDev project where
we can look for the test_plugin.py code. Double-click on the file; it will be opened
on the right-hand side of Aptana, as shown in the following screenshot:

Chapter 9

[333]

Adding breakpoints
Breakpoints are debugger instructions to stop execution at a specified line to allow
users to investigate variable values and eventually change their values manually.

Our scope is to add a simple breakpoint and check that the plugin execution stops
exactly at that point, passing the control to the remote debugger.

Creating QGIS Plugins with PyQGIS and Problem Solving

[334]

To add a breakpoint, open the Debug perspective and double-click on the left-hand
side of the line number, for example, the line with the for (id, map) code in
layersDict.items(). Aptana will add a breakpoint, as shown in this screenshot:

The line where the breakpoint is added is marked with the red box on the left, and
a new breakpoint will be listed in the Breakpoints list, as marked by the red box on
the upper-right corner.

Debugging in action
Now it's time to test the debug session. Let's start the PyDev debug server and
connect to it, as described previously.

In QGIS, run TestPlugin; QGIS will now freeze because it's starting to execute the
run() method of the test_plugin.py code and a breakpoint is encountered. So, the
control is passed to the PyDev debugger; the Aptana Debug perspective will appear
similar to this:

Chapter 9

[335]

Here, the red box on the left shows where the code is stopped, adding an arrow to
the previous green bullet. The Variables Aptana section, marked with the red box on
the right, displays variables used in the code and their values.

There are buttons, marked in the preceding screenshot by the upper-red box,
to run statements in a step-by-step way, to enter in a function or continue with
an execution.

A detailed description of how to work with the PyDev Debug perspective is out of
the scope of this chapter, but it's possible to find more documentation on PyDev at
http://pydev.org/manual_adv_debugger.html.

Summary
In this chapter, we approached three important topics on developing plugins. First,
how to get help to solve programming problems; second, how to create a basic
plugin as a template to develop more complex plugins; and finally, how to debug
it. These topics demonstrate basic skills to manage plugin development that can
become complex during their design and development.

The chapter focused on creating a basic infrastructure to easily solve problems that
could be found during the development of a working plugin.

In the next chapter, we will explore the PyQGIS programming in depth and learn
to manage raster, vector, algorithm, and QGIS interface interactions. These skills will
be useful to add specific business functions to QGIS to solve practical
processing problems.

[337]

PyQGIS Scripting
This chapter is focused on a specific use case or user. QGIS can be used in many
different ways, and the GIS user is an eclectic user who has many different ways to
interact with data and QGIS instruments. The main focus of this chapter is a user
who has an algorithm and wants to integrate it with QGIS.

An algorithm can be an external program, such as a water-modeling tool, or a
processing toolbox's set of instructions.

It's possible to interact with QGIS in many different ways, from experimenting with
PyQGIS in the Python console to creating plugins that control events generated by
QGIS. This chapter will give you an overview on the following topics:

• Learning Python
• Loading rasters by code
• Loading vectors by code from files or database
• Describing vector structure and how to browse and edit features
• Using Processing Toolbox algorithms by code and executing your custom

algorithm
• Calling external algorithms
• Interacting with canvas events to draw or pick values from a raster or vector

Where to learn Python basics
This chapter is not intended to give you an introduction to Python programming.
There are a lot of free online resources and MOOC (http://en.wikipedia.org/
wiki/Massive_open_online_course) courses on the web.

PyQGIS Scripting

[338]

The main resources can be obtained directly from the Python homepage at https://
www.python.org/about/gettingstarted/, where there is a big collection of guides
and free books and tutorials.

Tabs or spaces, make your choice!
During programming in Python, it's important to give special attention to edit code
with correct indentation. Avoid mixing spaces and tabs because it can generate
errors that can be difficult to understand, especially for someone who is a beginner at
Python programming.

Loading layers
Loading layers in QGIS involves different steps, which are as follows:

1. Load the layer. This step creates a variable with the layer information and
related data.

2. Register the layer in QGIS so that it can be used by other QGIS tools.

Loading a layer means loading a reference to the layer and its metadata. The layer is
not necessarily loaded in memory, but is usually fetched only when data is accessed
to be processed or visualized.

Loading and registering a layer are separate steps. A layer can be loaded, processed,
and modified before it is visualized, or it can be loaded as temporary data for an
algorithm. In this case, it's not necessary that the QGIS framework would be aware of
the layer.

The iface object has shortcuts to load raster and vector
layers in a single step instead of loading and registering
them via separated steps.

Every layer type is managed by a provider manager. QGIS has some internal
implemented providers, but most of them are external libraries. The list of available
providers depends on the QGIS installation. This list can be obtained by typing the
following code snippet in the QGIS Python console:

>>> QgsProviderRegistry.instance().providerList()
[u'WFS', u'delimitedtext', u'gdal', u'gpx', u'grass',
u'grassraster', u'memory', u'mssql', u'ogr', u'ows', u'postgres',
u'spatialite', u'wcs', u'wms']

Chapter 10

[339]

The preceding result shows a Python list of strings that have to be used when a
PyQGIS command needs the provider parameter.

Managing rasters
Like most free software projects, the QGIS community doesn't want to reinvent
the wheel if it's not strictly necessary. For this reason, most raster formats that are
managed by QGIS can be loaded, thanks to the GDAL library that is documented at
http://gdal.org/.

To code the loading of our first raster named landcover.img that is available in the
qgis_sample_data folder, execute the following code snippet in the QGIS Python
console by adapting the path to landcover.img based on your operating system and
data location:

myRaster =
QgsRasterLayer("/qgis_sample_data/raster/landcover.img")

In this way, the layer is loaded and referred to with the myRaster variable. If we
want the layer to be visible in the legend with the name MyFirstRaster, we need to
modify the preceding code snippet by adding a second parameter, as follows:

myRaster =
QgsRasterLayer("/qgis_sample_data/raster/landcover.img",
"MyFirstRaster")

Two things should be noted: the first is that loading a raster layer is
usually not necessary to specify the raster provider because it is GDAL by
default. The second is that loading a layer is not the same as visualizing
it in QGIS; a layer reference is loaded in memory to be processed and it is
eventually visualized.

One of the basic actions after loading a layer, raster or vector, is to ensure that it has
been loaded correctly. To verify this, execute the following code:

myRaster.isValid()

It should return True if the layer has been loaded correctly. The following snippet
does some recovery actions in case loading fails:

if not myRaster.isValid():
 <do something if loading failed>

PyQGIS Scripting

[340]

Exploring QgsRasterLayer
The myRaster variable is an instance of the QgsRasterLayer class. This
means that all methods of the raster are documented at http://qgis.org/
api/classQgsRasterLayer.html. This class is a specialization of the generic
QgsMapLayer class.

Remember that API documentation refers to C++ APIs, but not all
methods are visible to Python. If you want to have all the methods
available in Python, use the Python help command by typing the
help(QgsRasterLayer) command in the Python console.

For example, we can get some raster information by calling the methods,
as follows:

print myRaster.height(), '-', myRaster.width()

The preceding code will produce the following output:

5046337 - 5374023

To get the extent of the layer, it is necessary to use the extent() method of the
QgsMapLayer class; so, execute the following code:

print myRaster.extent()

This will generate a strange result that is similar to the following output:

<qgis._core.QgsRectangle object at 0xaa55dd0>

This shows that the result of the extent() method is a QgsRectangle instance
where it is possible to call all the methods belonging to QgsRectangle. For example,
the bounding box coordinates can be printed with the following code snippet:

ext = myRaster.extent()
print ext.xMinimum(), ext.yMinimum(), '-', ext.xMaximum(),
ext.yMaximum()

This will produce the following result:

-7117600.0 1367760.0 - 4897040.0 7809680.0

Chapter 10

[341]

Visualizing the layer
Finally, we can visualize the raster using the centralized QGIS layer manager called
QgsMapLayerRegistry. This class is like the hub where we can manage layer
loading and unloading. It's useful to read the list of its methods in the QGIS API
documentation.

QgsMapLayerRegistry is a singleton class. This means that it can't be instantiated
multiple times like QgsRasterLayer. For example, we can have different loaded raster
layers and each one is an instance of the QgsRasterLayer class, but it's not possible to
have different QgsMapLayerRegistry instances. This is because it is blocked by code
and it's possible to get only the unique instance using the instance() method.

Finally, to visualize the layer, we have to execute the following code:

QgsMapLayerRegistry.instance().addMapLayer(myRaster)

This will produce an output similar to the following:

<qgis._core.QgsRasterLayer object at 0x955f3b0>

Another way to load it is by using a method similar to the one shown in the
following code:

QgsMapLayerRegistry.instance().addMapLayers([myRaster])

This gives a similar result as before, but with two more brackets because it returns
a list:

[<qgis._core.QgsRasterLayer object at 0x955fc20>]

The latter addMapLayers method differs from addMapLayer because it accepts a list
of layers, mixing rasters, and vectors. Layers will be displayed at the same time by
following the list order.

PyQGIS Scripting

[342]

After the image is loaded, QGIS will appear as shown in the following screenshot:

The preceding screenshot displays the image loaded in QGIS with a default
false-color rendering palette.

Managing vector files
Similar to the raster layer in the previous section, most of the vector formats
managed by QGIS are supported by the OGR library, a part of the GDAL library.
OGR is documented at the same link of the GDAL library. All vector formats
managed by OGR are listed at http://www.gdal.org/ogr_formats.html.

To read vector data, it's always necessary to specify the provider because it can be
provided by different sources.

Chapter 10

[343]

To code the loading of our first shapefile named alaska.shp that is available in
qgis_sample_data, execute the following code snippet in the QGIS Python console:

myVector =
QgsVectorLayer("/qgis_sample_data/shapfiles/alaska.shp",
"MyFirstVector", "ogr")

This way the layer is loaded and referred by the myVector variable. After adding
the layer to QgsMapLayerRegistry, it will be visualized in the legend with the
name MyFirstVector. In the QgsVectorLayer constructor call, is possible to find
a third string parameter, ogr, that specifies to use the OGR library to load the
alaska.shp file.

As usual, we will check whether the loaded layer is valid using the following code:

myVector.isValid()

Managing database vectors
If vector data is hosted in a spatial database, it can be loaded by specifying the
location and connection information using the QgsDataSourceURI class. A URI
(short form for Uniform Resource Identifier) is how a resource can be identified on a
network like the World Wide Web.

The following code snippet shows how to fill the URI with the necessary information
to connect to a remote spatial database as PostGIS:

uri = QgsDataSourceURI()
uri.setConnection("localhost", "5432", "myDb", "myUserName",
"myPassword")
uri.setDataSource("public", "myTable", "the_geom", "myWhere")
print uri.uri()

The first line creates an instance of QgsDataSourceURI that is filled with other
information in the next lines.

The setConnection method accepts the IP or the symbolic name of the database
engine, the connection port, the database name, the username, and the password.
If the password is set to None, QGIS will ask you for the password for connecting
to database.

The setDataSource parameter refers to the schema name, the table name, and the
geometry column where the geometry is archived. Finally, an optional where string
could be set to directly filter data, in this case, myWhere.

PyQGIS Scripting

[344]

You can load a query without having it as a table. Just write your
query, instead of the table name, and place round brackets around it.
For example, the previous setDataSource method will become uri.
setDataSource("public", "(<here your query>)", "the_
geom", "myWhere").

The last line shows you the URI string that will be used to point to the vector data. It
will be a string similar to the following one:

dbname='myDb' host=localhost port=5432 user='myUserName'
password='myPassword' table="public"."myTable" (the_geom)
sql=myWhere

An alternative way is to create the URI string manually, rather than populating the
QgsDataSourceURI class, but it's generally more readable and less error-prone to
write the previous code than a complex string.

If the database is on a SpatiaLite file, it's necessary to substitute the setConnection
method with the following code:

uri = QgsDataSourceURI()
uri.setDatabase("/path/to/myDb.sqlite")
uri.setDataSource("", "myTable", "the_geom", "myWhere")
print uri.uri()

This generates the following URI string:

dbname='/path/to/myDb.sqlite' table="myTable" (the_geom)
sql=myWhere

After the URI string is created, we can use it to create a new vector layer with the
following code:

myVector = QgsVectorLayer(uri.uri(), "myVector", "postgres")

The third string parameter specifies the data provider, which in the case of vector
data that is hosted on a SpatiaLite database would have the value as spatialite.

As usual, to visualize the vector, we have to use the following code:

if myVector.isValid():
 QgsMapLayerRegistry.instance().addMapLayer(myVector)

Chapter 10

[345]

The preceding code visualizes the vector only if it has been correctly loaded. Failures
can happen for reasons such as errors in parameter settings, a restriction of the vector
provider, or a limitation by the database server. For example, a PostgreSQL database
can be configured that would allow access to a vector table only for a specific group
of users.

Vector structure
The QgsVectorLayer class is more complex that its raster equivalent. To describe
it, we will first approach basic layer parameters and then we will explore how the
vector is organized. We will explore some classes that are involved in the vector
structure that represent rows and headers.

The basic vector methods
We will explore the vector class working on a real vector; we will load alaska.shp
in the myVector variable.

This variable is an instance of the QgsVectorLayer class. This means that all methods
of the vector are documented at http://qgis.org/api/classQgsVectorLayer.
html. As for rasters, this class is a specialization of the generic QgsMapLayer class.

To get the extent of the layer, it's necessary to use the extent() method of the
QgsMapLayer class:

print myVector.extent().toString()

Executing the preceding code will generate the following result:

-7115212.9837922714650631,1368239.6063178631011397 :
4895579.8114661639556289,7805331.2230994049459696

This shows the corner coordinates in the format xmin,ymin: xmax,ymax.

To know how many records or features contain the vector, use the following code:

myVector.featurecout()

This will produce the result of 653L records.

In the result, L means that it is a Python long integer, which is an integer limited only
by the available memory.

PyQGIS Scripting

[346]

As we saw earlier, vectors can be sourced from different providers, each one with its
proper capabilities and limitations. To discover the capability of myVector, use the
following method:

myVector.capabilitiesString()

This will give the following result:

u'Add Features, Delete Features, Change Attribute Values, Add
Attributes, Delete Attributes, Create Spatial Index, Fast Access
to Features at ID, Change Geometries, Simplify Geometries with
topological validation'

A Unicode string describes all the possible actions available on the vector.

Describing the vector structure
Compared to rasters, vectors are more complex. A vector involves a set of classes
that are used to represent every piece of the vector, from the header to the
single attribute.

We can think of a vector as a table with rows and columns, and one header that
describes each column of the table. Each row has its own geometry and attributes
that is archived in the columns of the row. Each vector could contain only a geometry
type. For example, it can be composed of only points, lines, polygons, or collections
of these geometry types.

The structure of the classes involved in a vector table is shown in the
following picture:

A description of these classes is the subject of the following paragraphs.

Chapter 10

[347]

Describing the header
The container of the header information is the QgsFields class that contains
methods to point to every column description. A column description is abstracted by
the QgsField class.

To get the header container for myVector, we use the following code:

header = myVector.pendingFields()

Here, header will store a QgsFields instance. The pendingFields() method is
named pending because it always refers to the current state of the vector. This is also
the case for editing the vector, and adding or removing columns.

We can use QgsFields methods to add or remove columns, get the column index
by name with indexFromName, or get a specific field using its index with the
following code:

field_0 = header[0]

Usually, it is more useful to manage all the column data as a list. For this reason,
there is a specific method; for example, to iterate on all column fields use
this snippet:

for column in header.toList():
 <do something with the variable "column" that is a QgsField>

Each QgsField has its methods to obtain the column name with name(), get
its type() and typeName() methods, and also get its precision() method if it
is numeric.

In the following code, we can explore the characteristics of the header of myVector:

header = myVector.pendingFields()
print "How many columns?", header.count()
print "does the column 4 exist?", header.exists(4)
print "does the column named 'value' exist?", header.
indexFromName('value')
print "Column 0 has name", header[0].name()
for column in header.toList():
 print "name", column.name()
 print "type", column.typeName()
 print "precision", column.precision()

PyQGIS Scripting

[348]

This will produce the following output:

How many columns? 3
does the column 4 exist? False
does the column named 'value' exist? -1
Column 0 has name cat
name cat
type Real
precision 0
name NAME
type String
precision 0
name AREA_MI
type Real
precision 15

Describing the rows
Each row of myVector is a QgsFeature instance. The feature contains all attribute
values and a geometry. There are also as many values as QgsField in the header.

Each feature has its own unique ID that is useful to retrieve the feature directly. For
example, to retrieve the feature with ID 3, we use the following code:

features = myVector.getFeatures(QgsFeatureRequest(3))
feature = features.next()

The preceding code could appear overcomplicated to retrieve a single feature; in the
next section, we will show you the reason for this complexity by explaining the role
of the QgsFeatureRequest class to retrieve features.

With the feature, we can retrieve all the attributes and the geometry of the feature
using the following code:

print feature.attributes()
geom = feature.geometry()
print geom

This will produce something similar to the following result:

[4.0, u'Alaska', 0.322511]
<qgis._core.QgsGeometry object at 0x99f0050>

This shows an array of values we get from the attributes() call and an instance of
a QgsGeometry result of the geometry() method that is saved in the geom variable.

Chapter 10

[349]

Exploring QgsGeometry
The QgsGeometry class is a complex and powerful class that can be used for a lot of
geometry operations, and most of them are based on the capability of the underlying
GEOS library.

GEOS means Geometry Engine - Open Source. It is an extensively
used library to manage geometry entities. You can find more
information about this at http://trac.osgeo.org/geos/.

It's difficult to describe the richness of this class and all the available methods; for
this reason, it's best to read the API documentation. Here, we will give you only a
brief introduction to some of the useful and commonly used methods.

It's possible to have the length() and area() methods of the geometry, when these
values have sense depending on geometry type(). For the geom, get in the previous
paragraph the following code:

print "Is this a Polygon?", geom.type() == QGis.Polygon
print "it's length is", geom.length()
print "it's area measure", geom.area()
print "Is it multipart?", geom.isMultipart()

This will generate the following output:

Is this a Polygon? True
it's length is 19143.8757902
it's area measure 8991047.15902
Is it multipart? False

The area and length unit depend on the myVector CRS and can be obtained with the
following code:

myVector.crs().mapUnits()

This returns 0 for QGis.Meters, 1 for QGis.Feet, or 2 for QGis.Degrees.

Other interesting methods of the QgsGeometry class are related with spatial
operators such as intersects, contains, disjoint, touches, overlaps, simplify,
and so on.

Useful methods can be found to export geometry as a Well-Know Text (WKT) string
or to GeoJSON with exportToWkt and exportToGeoJSON.

PyQGIS Scripting

[350]

There are a bunch of static methods that can be used to create geometry from a WKT
or QGIS primitives such as QgsPoint, QgsPolygon, and so on. A static method is
a method that can be called without an instance variable. For example, to create
geometry from a point that is expressed as a WKT, we can use the following code:

myPoint = QgsGeometry.fromWkt('POINT(-195935.165 7663900.585
)')

Notice that the QgsGeometry class name is used to call the fromWkt method. This is
because fromWkt is a static method.

In the same way, it's possible to create myPoint from QgsPoint with the
following code:

newPoint = QgsPoint(-195935.165, 7663900.585)
myPoint = QgsGeometry.fromPoint(newPoint)

The two ways that we just described are equivalent and generate QgsGeometry in the
myPoint variable.

Iterating over features
Now, it's time to discover how to get all the features or a subset of them. The main
way to iterate over all features or records of myVector is by using the following code
that shows the ID of each feature:

for feature in myVector.getFeatures():
 feature.id()

This will print a list of all the 653 record IDs as shown here:

0L
1L
...[cut]...
652L

It's not always necessary to parse all records to get a subset of them. In this case, we
have to set the QgsFeatureRequest class parameters to instruct getFeatures and
then retrieve only a subset of records; in some cases, we must also retrieve a subset of
columns.

Chapter 10

[351]

The following code will get only a subset of features and columns:

rect = QgsRectangle(1223070.695, 2293653.357 , 9046974.211,
4184988.662)

myVector.setSubsetString(' "AREA_MI" > 1000 ')
request = QgsFeatureRequest()
request.setSubsetOfAttributes([0, 2])
request.setFilterRect(rect)

for index, feature in enumerate(myVector.getFeatures(request)
):
 print "The record %d has ID %d" % (index, feature.id())

This will produce the following list of only eight records:

The record 0 has ID 223
The record 1 has ID 593
The record 2 has ID 596
The record 3 has ID 599
The record 4 has ID 626
The record 5 has ID 627
The record 6 has ID 630
The record 7 has ID 636

In the preceding code, the first line creates a QgsRectangle method that is used in
the setFilterRect() method to get only features that are within the rectangle.
Then, only the values of columns 0 and 2 are fetched, setting the filter with
setSubsetOfAttributes.

It should be noted that the QgsFeatureRequest class has the
setFilterExpression method that is useful to select only features
that are bigger than 1000, but it can't be used in the upper case. The
QgsFeatureRequest code forces to exclusively use a spatial filter
or an expression filter. For this reason, to filter at the same time by
expression and by bound box, it's necessary to set the expression at
a layer level with the setSubsetString method.

The enumerate statement is a Python instruction to get something that can
enumerate and return pairs of elements with the first element as the index and the
second as the enumerated element.

PyQGIS Scripting

[352]

Describing the iterators
The preceding code uses the PyQGIS getFeatures statement that doesn't return
features directly but instead returns an iterator. In fact, executing the code
myVector.getFeatures() produces an output similar to the following one:

<qgis._core.QgsFeatureIterator object at 0xd023c20>

An iterator is a Python object that gets the record every time it is asked to get one; in
our case, the for statement requests a record after every iteration.

The iterator works like a proxy: it doesn't load all the features in memory, but gets
them only when it is necessary. In this way, it is possible to manage big vectors
without memory limitations.

Editing features
After being able to parse all the features, it's necessary to learn how to modify them
to satisfy our processing needs. Features can be modified in two ways:

• Using the data providers of the vector
• Using the methods of QgsVectorLayer

The difference that exists between these two ways is the ability to interact with some
editing features of the QGIS framework.

Updating canvas and symbology
We will now modify the Alaska shapefile in the following subsections. If we modify
some geometry of the legend classification, it will be necessary to refresh the canvas
and/or layer symbology. The canvas can be refreshed with the following command:

iface.mapCanvas().refresh()

The symbology of a modified QgsVectorLayer instance saved in the myVector
variable can be updated with the following code:

iface.legendInterface().refreshLayerSymbology(myVector)

Chapter 10

[353]

Editing through QgsVectorDataProvider
Each QgsMapLayer, as a QgsVectorLayer instance, has its own data provider that
can be obtained with the dataProvider() method. This is shown in the following
code snippet that is executed in the Python console:

myVector =
QgsVectorLayer("/qgis_sample_data/shapfiles/alaska.shp",
"MyFirstVector", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([myVector])
myDataProvider = myVector.dataProvider()
print myDataProvider

This will print something similar to <qgis._core.QgsVectorDataProvider
object at 0xaabdc20> on the Python console. This is the instance of the
QgsVectorDataProvider class.

The data provider will directly access the stored data, avoiding any control by QGIS.
This means that no undo and redo options will be available and no events related to
the editing actions will be triggered.

The code snippets that follow describe how to interact with vector data directly using
the data provider. These code samples will modify the Alaska shapefile set of files,
so it's better to have a copy of the original files to restore them after you apply the
following examples.

Some of the following examples will work directly on features of myVector. We can
get a feature directly using the QgsFeatureRequest. For example, to get the feature
with ID 599, we can use the following code snippet:

features = myVector.getFeatures(QgsFeatureRequest(599))
myFeature = features.next()

The feature 599 is the biggest polygon available in the Alaska shapefile. Remember
that getFeatures returns an iterator and not the feature directly, so it's necessary to
use next() to get it.

The next() method could generate a StopIteration exception when the iterator
arrives at the end of the features' list; for example, when the getFeatures result is
empty. In our case, we don't care about this exception because we are sure that the
feature with ID 599 exists.

PyQGIS Scripting

[354]

Changing a feature's geometry
After getting feature 599, we can change its geometry. We'll substitute its current
geometry with its bounding box. The code snippet to do this is as follows:

oldGeom = myFeature.geometry()
bbox = oldGeom.boundingBox()
newGeom = QgsGeometry.fromRect(bbox)
newGeomMap = { myFeature.id() : newGeom }
myDataProvider.changeGeometryValues(newGeomMap)

After we refresh the canvas, the shapefile will appear as in the following screenshot:

The changeGeometryValues() method accepts a QgsGeometryMap object. This is
the Python dictionary that contains the ID of the feature to change as a key and the
new geometry as a value.

Changing a feature's attributes
After getting feature 599, we can change its attributes in a way similar to how we
changed the geometry of the feature in the previous subsection.

In this case, the map is a QgsChangedAttributesMap class that will be a Python
dictionary. This is composed of a key, the ID of the feature to change, and another
dictionary as a value. This last dictionary will have the index of the column to
change as the key and the new value that has to be set as the value. For example, the
following code snippet will change the area value to 0 for column 2 of feature 599:

Chapter 10

[355]

columnIndex = myVector.pendingFields().fieldNameIndex("AREA_MI")
newColumnValueMap = { columnIndex : 0 }
newAttributesValuesMap = { myFeature.id() : newColumnValueMap }
myDataProvider.changeAttributeValues(newAttributesValuesMap)

You can check whether the value of the parameter has changed by navigating to
View | Identity Features.

If you want to change more than one attribute, you just have to add more key/value
pairs in the newColumnValueMap dictionary, using the following syntax:

newColumnValueMap = { columnIndex1:newValue1, …,
columnIndexN:newValueN}

Deleting a feature
A feature can be deleted by pointing at it with its ID. The ID of the feature can be
obtained with the id() method of the QgsFeature class. The following snippet will
remove feature 599:

myDataProvider.deleteFeatures([599])

After you refresh the canvas, myVector will be shown as in the following screenshot:

PyQGIS Scripting

[356]

Adding a feature
After we reload the original Alaska shapefile, we will again get the feature 599 that
we will use as the base to create a new feature. The geometry of this new feature will
be set as the bounding box of feature 599; this is done using the following code:

get data provider
myDataProvider = myVector.dataProvider()
get feature with id 599
features = myVector.getFeatures(QgsFeatureRequest(599))
myFeature = features.next()
create geometry from its bounding box
bbox = myFeature.geometry().boundingBox()
newGeom = QgsGeometry.fromRect(bbox)
create a new feature
newFeature = QgsFeature()
set the fields of the feature as from myVector
this step only sets the column characteristic of the feature
not its values
newFeature.setFields(myVector.pendingFields())
set attributes values
newAttributes = [1000, "Alaska", 2]
newFeature.setAttributes(newAttributes)
set the geometry of the feature
newFeature.setGeometry(newGeom)
add new feature in myVector using provider
myDataProvider.addFeatures([newFeature])

The preceding code is explained in the inline comments and it adds a new feature.
The new feature can be checked by opening the attribute table and selecting the last
record. This will produce an interface that is similar to the following screenshot:

Chapter 10

[357]

When you select the last record in the attribute table, it will be highlighted.

Editing using QgsVectorLayer
Editing using QgsVectorLayer gives you much more power to interact with the
QGIS interface and to control the editing flow.

The QgsVectorLayer methods to modify the attributes or geometry of a feature are
slightly different than the method used in QgsVectorDataProvider, but the main
characteristic is that all these methods work only if the layer is in the editing mode,
otherwise they return False to notify failure.

An editing session on the myVector vector follows the steps described in the
following pseudocode:

myVector.startEditing()
< do vector modifications saved in myVector.editBuffer() >
if <all ok>:
 myVector.commitChanges()
else:
 myVector.rollback()

Each step generates events that can be cached if they are useful for our processing
scopes. The list of generated events can be read in the QgsVectorLayer
documentation. For example, startEditing() will generate the editingStarted()
event, adding a feature will generate the featureAdded() event, committing
changes will emit the beforeCommitChanges() event before applying changes, and
then the editingStopped() event will be generated.

PyQGIS Scripting

[358]

A useful exercise for you is to create a simple script to connect all these events to
print commands. This is a good way to learn the event sequence that is generated
during vector editing.

For example, the following code snippet in the editing console will print a message
every time someone starts to edit the vector layer, myVector:

def printMessage():
 print "Editing is Started"

myVector.editingStarted.connect(printMessage)

In the last line, we instruct Python to call the printMessage function every time
the editingStarted event is emitted by myVector. In this case, the printMessage
function is usually known as a callback or a listener.

Discovering the QgsVectorLayerEditBuffer class
It's possible to have a fine-grained control of the editing session managing event of
the QgsVectorLayerEditBuffer class that stores all modifications of the layer. It's
also possible to access the buffer using the vector layer with the following code:

myEditBuffer = myVector.editBuffer()

A detailed description of this class is outside the scope of this chapter, but it's
strongly suggested to explore it to discover all the PyQGIS editing opportunities
such as setting the attribute of a new feature based on some parameters of the nearest
geometry of another layer.

Changing a feature's geometry
After we have reloaded the original Alaska shapefile and got feature 599, we can
change its geometry. We'll substitute the current geometry with its bounding box,
and the code snippet to do this is as follows:

oldGeom = myFeature.geometry()
bbox = oldGeom.boundingBox()
newGeom = QgsGeometry.fromRect(bbox)
myVector.startEditing()
myVector.changeGeometry(myFeature.id(), newGeom)
myVector.commitChanges()

In this case, it's not necessary to refresh the canvas because a canvas refresh is
triggered by events generated during a commit. After the commit, the interface will
appear similar to the image shown in the Adding a feature section.

Chapter 10

[359]

In the preceding code, you can see that the changing geometry has a different API
using the data provider. In this case, we can change a feature each time.

Changing a feature's attributes
After we get feature 599, we can change its attributes in a way similar to how we
changed the geometry of the feature in the previous section. The following snippet
will change the area value to 0 for column 2 of feature 599;

columnIndex = myVector.pendingFields().fieldNameIndex("AREA_MI")
myVector.startEditing()
myVector.changeAttributeValue(myFeature.id(), columnIndex, 0)
myVector.commitChanges()

You can check whether the value of the parameter has been changed by navigating
to View | Identity Features.

In the preceding code, notice that the changing attribute has a different API using the
data provider. In this case, we can change features one at a time.

Adding and removing a feature
Since the procedure is really similar to those applied using the data provider, you
can test these actions by removing and adding features inside an editing session.

Running processing toolbox algorithms
QGIS's versatility is due mainly to two reasons. The first is the ability to customize
it by adding functions, thanks to its plugin structure. The second is the power of the
processing toolbox that can connect different backend algorithms such as GRASS
GIS, SAGA, GDAL/OGR, Orfeo Toolbox, OSM Overpass, and many more with
dedicated providers.

In this way, for example, we can access all GRASS processing algorithms by using
QGIS as the project and presentation manager. Another important ability of the
processing toolbox is that it can be used to join together all the backend algorithms,
allowing you to connect the best algorithms. For example, we can connect GRASS as
a producer for another algorithm that is better developed in another backend such
as SAGA. Here, QGIS processing becomes the place where you can add your specific
algorithm in a more complex and integrated workflow.

PyQGIS Scripting

[360]

This section is focused on how to code the execution of algorithms that are already
available in the processing toolbox. The main points to learn are as follows:

• Looking for a processing toolbox algorithm
• Discovering parameters accepted by the algorithm
• Running the algorithm

In the following sections, we will be using the processing commands after we have
imported the processing module with the following code:

import processing

If the processing module is not imported, every processing command will generate
an error such as the following one:

Traceback (most recent call last):
 File "<input>", line 1, in <module>
NameError: name 'processing' is not defined

Looking for an algorithm
The processing toolbox contains a huge list of algorithms that can be searched for
using keywords. Similar to how we can look for an algorithm in the processing
toolbox GUI, it's possible to search for an algorithm using the PyQGIS commands.

For example, to look for commands to convert something, we can execute the
following command at the Python console:

import processing
processing.alglist("convert")

This will generate some output lines, and among them, we will find the command
that we are looking for:

Convert format---------------------------------------
>gdalogr:ogr2ogr

If it's not the previous command, it can be this (depending on the processing
toolbox version):

Convert format---------------------------------------
>gdalogr:convertformat

Chapter 10

[361]

If the version of the processing toolbox is greater than 2.2, substitute
the gdalogr:ogr2ogr string with gdalogr:convertformat. To
find out the version of the processing toolbox, look for it in the QGIS
plugin manager.

This string is composed of two parts; Convert format is the command as shown
in the processing toolbox GUI and gdalogr:ogr2ogr is the command recognized
by the processing commander. This means that in our PyQGIS script, we can refer to
the algorithm with the name gdalogr:ogr2ogr. In this case, the ogr2ogr algorithm
belongs to the gdalogr backend. The alglist method looks for only the left part.
Notice that the alglist method will also show custom scripts. This means that
a custom script or model will be accessible in the PyQGIS interface of the
processing toolbox.

Getting algorithm information
Every processing algorithm has its own GUI with input and output parameters. You
may wonder about the parameters, their names, and the values that may be used in
the same algorithm using PyQGIS scripts? To discover these elements, we will use
the alghelp processing command.

This command accepts the command name that is used internally by processing as
a parameter; for example the gdalogr:ogr2ogr string that we saw in the previous
paragraph. We can get help for this command by using the following code:

import processing
processing.alghelp("gdalogr:ogr2ogr")

The preceding code snippet will produce the following output that would depend on
the installed version of GDAL/OGR;

processing.alghelp("gdalogr:ogr2ogr")
ALGORITHM: Convert format
 INPUT_LAYER <ParameterVector>
 DEST_FORMAT <ParameterSelection>
 DEST_DSCO <ParameterString>
 OUTPUT_LAYER <OutputVector>

DEST_FORMAT(Destination Format)
 0 - ESRI Shapefile
 1 - GeoJSON
 2 - GeoRSS

PyQGIS Scripting

[362]

 3 - SQLite
 ...[cut]...
 16 - S-57 Base file
 17 - Keyhole Markup Language

As you can see, these are the same parameters that were accepted in the algorithm
GUI. There is also the list of format-accepted values.

Running algorithms from the console
Running a processing algorithm can be done by using the runalg method or the
runandload method. The first one generates the output without visualizing it and
is useful when you want to generate temporary data. The second method loads and
visualizes the output layer in QGIS.

The parameters accepted in this method are the processing command name strings
followed by all the parameters, depending on the command used.

We will perform an exercise and convert the alaska.shp shapefile that is available
in qgis_sample_data/shapefiles into the SpatiaLite format. This format is a very
powerful SQLite spatial database that creates a self-contained spatial database in
a single file. The SQLite format is referred to with the value 3 as specified in the
algorithm help shown before.

To export algorithms into this format, we'll follow these steps:

• Load the Alaska shapefile in QGIS
• Run the convert algorithms
• Load the result in QGIS

Assuming that the alaska.shp shapefile has been loaded in QGIS, we will run the
algorithm based on the parameters shown in the previous section; this is done using
the following snippet:

processing.runalg("gdalogr:ogr2ogr", "alaska", 3, None,
"F:/temp/alaska")

In the preceding code, it should be noted that the fourth parameter is None instead
of an empty string, but for the processing toolbox both are equivalent. The fifth
parameter is the output file name, but it could be set to None. In this case, the output
will be generated in a temporary file.

Chapter 10

[363]

The return value of runalg is a dictionary with a key and the output name as
specified in the alghelp, and the value of the key is the reference of the filename
generated by the algorithm. In the preceding example, the output dictionary is
something like the {'OUTPUT_LAYER': 'F:/temp/alaska.sqlite'} dictionary.

The last step is displaying the layer. This can be done in two ways: by loading a
vector layer as usual or by running the algorithm with the runandload method as
specified earlier. In this case, the following code will generate and load a new layer:

processing.runandload("gdalogr:ogr2ogr", "alaska", 3, None,
"F:/temp/alaska")

This is shown in the following screenshot:

The new layer will be called Output layer, which is the beautified name of the
parameter in the dictionary returned by runalg.

Running your own processing script
Running a custom processing script is not much different from running a generic
processing command. We only need to find out how the custom script is addressed
by the toolbox.

To discover all this information, we will create and run a simple processing script.

PyQGIS Scripting

[364]

Creating a test processing toolbox script
We will start by opening the processing toolbox by navigating to Processing |
Toolbox. Next, navigate to Scripts | Tools | Create new script in the toolbox. These
actions will open a new interface where we can paste the following code snippet:

import time
for index in range(100):
 progress.setPercentage(index)
 print index
 time.sleep(0.1)

We will save it with the name emptyloop. The code is shown in the
following screenshot:

The default directory where processing will look for user scripts is <your home
dir>/.qgis2/processing/scripts/.

So, our file script will be available with the name <your home dir>/.qgis2/
processing/scripts/emptyloop.py.

The preceding script will count from 0 to 99. In addition, the algorithm will set the
progress bar and write the step number in the Python console. The last instruction
will wait for 0.1 seconds before running a loop again.

Looking at the custom script
Now, run the following processing command:

processing.alglist("empty")

This will generate the following output:

emptyloop--
>script:emptyloop

This shows that the processing toolbox knows our custom script with the name
script:emptyloop.

Chapter 10

[365]

Running the script
We can run the custom script as usual in the Python console with the
following command:

processing.runalg("script:emptyloop")

This will increment the progress bar and will print progress in the console, as shown
in the following screenshot:

In this case, the progress bar will be opened in QgsMessageBar in the QGIS canvas
because the algorithm is executed from the Python console.

Running an external algorithm or
command
Often there are a bunch of legacy programs or scripts for which there are no
resources to port them into another language or framework. Thanks to Python and
PyQGIS, it's simple to integrate your existing programs into QGIS.

PyQGIS Scripting

[366]

Running a simple command
We can run an external command in different ways, but we will explore how to do it
with the processing toolbox that supports the progress bar, which is often useful to
log algorithm steps.

To execute an external command, we will follow these steps:

1. Create a processing toolbox script called runping.
2. Code the script.
3. Test the script.

Step one is similar to that described in the Creating a test processing toolbox script
section.

The code of the script is in the following code snippet:

import subprocess
import time

proc = subprocess.Popen(
 ["ping", "-c", "10", "localhost"],
 stdout=subprocess.PIPE,
 stdin=subprocess.PIPE,
 stderr=subprocess.PIPE)

counter = 0
for line in iter(proc.stdout.readline, ''):
 print line
 progress.setPercentage(counter)
 counter += 10

The preceding code runs the ping command to localhost and stops after 10 pings.

In case of Windows OS, replace ["ping", "-c", "10",
"localhost"] with ["ping", "-n", "10", "localhost"].

There are different ways to run a system command in Python. The preceding
method, using the subprocess module, allows for a non-blocking run and
interaction with the program using the stdin pipe.

Chapter 10

[367]

After creating a subprocess.Popen pipe, the code snippet starts a for loop to read
the standard output of the stdout program printing the messages in the console.

If your command is stuck in the QGIS interface, try to wrap it in a
Python script and run the wrapper with ["python", "-i", "<your
command wrapper>"] where your command wrapper could be simply
a one-line code like import os; os.system("<your command>").

Run the runping script in the processing toolbox GUI by double-clicking on it. Its
execution will produce the following screenshot:

This shows progress in the progress bar of the processing toolbox and the output of
the command in the Python console.

Interacting with the map canvas
A plugin will commonly interact with the map canvas to get some useful
information. This information could be, for example, point coordinates or features
identified by these coordinates. We can use them to draw geometry entities like
points, lines, or polygons.

PyQGIS Scripting

[368]

Getting the map canvas
The QgsMapCanvas class is the class that represents a QGIS canvas. There can be
different canvas instances, but the main canvas instance can be referenced with the
following code snippet:

mapCanvas = iface.mapCanvas()

The QgsMapCanvas class generates some useful events to support location-based
plugins. For example, xyCoordinates() sends point locations based on canvas
coordinates and the keyPressed() event allows us to know which mouse button has
been clicked on the canvas.

Explaining Map Tools
The most powerful method to interact with a map canvas class is to set one of the
predefined Map Tools or create a custom one that is derived from the predefined
Map Tools classes.

In this chapter, we will not create custom Map Tools using inheritance and
overloading, which are two basic concepts of the object-oriented programming
paradigm. The following paragraphs are focused on using Map Tools that already
exist and customizing them without deriving classes and overloading methods.

The base class for Map Tools is QgsMapTool, which has a set of specializations that
can be useful for most of the user interaction with the canvas. These derived tools are
listed as follows;

• QgsMapToolEmitPoint: This is focused on intercepting point clicks on canvas
and returning the map coordinates

• QgsMapToolIdentify: This is focused on getting layer values at specified
point-clicked coordinates

• QgsMapToolIdentifyFeature: This is similar to the previous tool, but results
also reference the pointed features

• QgsMapToolPan: This is focused on managing panning and its events
• QgsMapToolTouch: This is focused on managing touch events on the canvas
• QgsMapToolZoom: This is focused on managing zoom events

Chapter 10

[369]

Setting the current Map Tool
For each map canvas, only one map tool runs at a time. When it's necessary to set a
Map Tool, it's good practice to get the previous one, and set it back again at the end
of use of the new Map Tool. The following code snippet shows you how to get an old
Map Tool, set a new one, and restore the previous one:

import the map tool to use
from qgis.gui import QgsMapToolZoom
get previous map tool and print it
oldMapTool = iface.mapCanvas().mapTool()

print "Previous map tool is a", oldMapTool
create a zoom map tool pointing to the current canvas
the boolean parameter is False to zoom in and True to zoom out
newMapTool = QgsMapToolZoom(iface.mapCanvas(), False)
set the current map tool and print it
iface.mapCanvas().setMapTool(newMapTool)
print "Current map tool is a", iface.mapCanvas().mapTool()
#
here is your code
#
set the previous map tool and print it
iface.mapCanvas().setMapTool(oldMapTool)
print "Current map tool is a ", iface.mapCanvas().mapTool()

The preceding code will generate an output that is similar to the following
console lines:

Previous map tool is a <qgis._gui.QgsMapToolPan object at
0x7fe4a0e2e4d0>
Current map tool is a <qgis._gui.QgsMapToolZoom object at
0x7fe4a13a04d0>
Current map tool is a <qgis._gui.QgsMapToolPan object at
0x7fe4a0e2e4d0>

You will notice that changing the current Map Tool with setMapTool() will also
change the cursor icon.

PyQGIS Scripting

[370]

Getting point-click values
In this paragraph, we will create a code that will be useful to get point-click
coordinates and print them in the console. We will use the QgsMapToolEmitPoint
Map Tool, but the structure of the following code can be applied to other available
Map Tools as well.

We will write all the code in the Python console, but it can be used in a custom
plugin; for example, to create a GUI interface to trace mouse movement or to plot a
polygon that is based on clicked points.

We will use the following steps for getting the clicked points:

1. Save the previous Map Tool.
2. Create a QgsMapToolEmitPoint Map Tool.
3. Create an event handler for the map canvas to trace mouse movement.
4. Register the event above the event handler to the xyCoordinate event.
5. Create an event handler for the Map Tool to trace clicked points by setting

the following conditions:
 ° If the left button clicked, then print coordinates
 ° If the right button clicked, then restore the previous Map Tool

6. Register the event handler to the click event generated by the Map Tool.
7. Activate the new QgsMapToolEmitPoint Map Tool.

These steps are coded in the next paragraphs.

Getting the current Map Tool
To return to the current Map Tool after setting the new one, we need to save it in
a variable that can be used later. We can get the current Map Tool by using the
following code snippet:

previousMapTool = iface.mapCanvas().mapTool()

Creating a new Map Tool
We can create the Map Tool with this simple code snippet:

from qgis.gui import QgsMapToolEmitPoint
myMapTool = QgsMapToolEmitPoint(iface.mapCanvas())

You will notice that each Map Tool constructor needs a parameter that is the canvas
on which it will operate.

Chapter 10

[371]

Creating a map canvas event handler
An event handler is useful to execute actions that are based on user interaction with
the canvas. First, we will create the handler that prints coordinates based on mouse
movements on the canvas.

The event handler will receive the parameters passed by the event to which
it is attached. The event handler will be attached to the QgsMapCanvas event,
xyCoordinates(QgsPoint), and it can be coded using the following code snippet:

def showCoordinates(currentPos):
 print "move coordinate %d - %d" % (currentPos .x(),
currentPos.y())

After creating the handler, we have to attach it to the canvas event with the
following code:

iface.mapCanvas().xyCoordinates.connect(showCoordinates)

If you want to remove the handler, use the following code:

iface.mapCanvas().xyCoordinates.disconnect(showCoordinates)

Ensure that you write the function name as showCoordinates because if you
don't pass any parameters to the disconnect call, then all handlers attached to the
xyCoordinates event will be removed.

Creating a Map Tool event handler
An event handler will be attached to the QgsMapToolEmitPoint event,
canvasClicked(QgsPoint, Qt.MouseButton), and then it can be coded using the
following code snippet:

import the Qt module that contain mouse button definitions like
Qt.LeftButton or Qt.RightButton used later
from PyQt4.QtCore import Qt
create handler
def manageClick(currentPos, clickedButton):
 if clickedButton == Qt.LeftButton:
 print "Clicked on %d - %d" % (currentPos .x(),
currentPos.y())
 if clickedButton == Qt.RightButton:
 # reset to the previous mapTool
 iface.mapCanvas().setMapTool(previousMapTool)
 # clean remove myMapTool and relative handlers
 myMapTool.deleteLater()

PyQGIS Scripting

[372]

After creating the handler, we have to attach it to the Map Tool event using the
following code:

myMapTool.canvasClicked.connect(manageClick)

Setting up the new Map Tool
Now it's the time to activate the new Map Tool to pass canvas control to its event
handlers. This can be done with the following code:

iface.mapCanvas().setMapTool(myMapTool)

After executing the preceding command, the new Map Tool will be activated and it
will print coordinates in the console as shown in the following screenshot:

Right-click on the canvas to return to the previous Map Tool, but you still need to
remove the canvas event handler. As explained in the previous paragraph, removing
the xyCoordinates handler is done by executing the following code:

iface.mapCanvas().xyCoordinates.disconnect(showCoordinates)

Chapter 10

[373]

Using point-click values
The previous paragraph explained how to get a point-click coordinate. This
coordinate can be used to get the correspondent value in a raster layer or to get the
underlying feature of a vector layer.

To identify a feature for a vector layer, it's better to use the dedicated Map Tool
QgsMapToolIdentifyFeature directly, but for a raster layer that has point
coordinates, we can use the QgsRasterDataProvider.identify() method to get
raster values at a specified point.

By loading and selecting the landcover raster from qgis_sample_data/raster, we
can modify the manageClick method of the previous example in the following way:

def manageClick(currentPos, clickedButton):
 if clickedButton == Qt.LeftButton:
 provider = iface.activeLayer().dataProvider()
 result = provider.identify(currentPos, QgsRaster.
IdentifyFormatValue)
 if result.isValid():
 print "Value at %d - %d" % (currentPos.x(),
currentPos.y())
 print result.results()
 if clickedButton == Qt.RightButton:
 # reset to the previous mapTool
 iface.mapCanvas().setMapTool(previousMapTool)
 # clean remove myMapTool and relative handlers
 myMapTool.deleteLater()

PyQGIS Scripting

[374]

Running the code of the previous paragraph with the manageClick function will
generate an output similar to the following screenshot:

The result of the identify() call is a QgsRasterIdentifyResult object that
contains all the information of the result. In this case, the return of results() is
a Python dictionary with the band number as the key and the raster value in the
clicked point as the value.

Exploring the QgsRubberBand class
A rubber band is the graphical canvas item that can be used to draw geometry
elements on the canvas, for example, points, lines, or polygons. It is generally used
in combination with a customized Map Tool to get click coordinates that are used to
add or move points of the rubber band object.

Chapter 10

[375]

The following code snippet will upgrade the previous example, to get canvas-click
coordinates, to draw a polygon in the canvas:

from PyQt4.QtCore import Qt
from PyQt4.QtGui import QColor
from qgis.core import QGis
from qgis.gui import QgsMapToolEmitPoint, QgsRubberBand

previousMapTool = iface.mapCanvas().mapTool()
myMapTool = QgsMapToolEmitPoint(iface.mapCanvas())

create the polygon rubber band associated to the current canvas
myRubberBand = QgsRubberBand(iface.mapCanvas(), QGis.Polygon)
set rubber band style
color = QColor("red")
color.setAlpha(50)
myRubberBand.setColor(color)

def showCoordinates(currentPos):
 if myRubberBand and myRubberBand.numberOfVertices():
 myRubberBand.removeLastPoint()
 myRubberBand.addPoint(currentPos)

iface.mapCanvas().xyCoordinates.connect(showCoordinates)

def manageClick(currentPos, clickedButton):
 if clickedButton == Qt.LeftButton:
 myRubberBand.addPoint(currentPos)
 # terminate rubber band editing session
 if clickedButton == Qt.RightButton:
 # remove showCoordinates map canvas callback
 iface.mapCanvas().xyCoordinates.disconnect(showCoordinates)
 # reset to the previous mapTool
 iface.mapCanvas().setMapTool(previousMapTool)
 # clean remove myMapTool and relative handlers
 myMapTool.deleteLater()
 # remove the rubber band from the canvas
 iface.mapCanvas().scene().removeItem(myRubberBand)

myMapTool.canvasClicked.connect(manageClick)

iface.mapCanvas().setMapTool(myMapTool)

PyQGIS Scripting

[376]

Executing the preceding code and clicking on the canvas with the left mouse button
will produce results similar to the following screenshot:

The image in the preceding screenshot has the alaska.shp layer as base map to
show the evidence of the transparency of the drawn rubber band.

Summary
This chapter offered you a simplified way to interact with QGIS and it is more
oriented towards a GIS analyst than a GIS programmer or a computer scientist. The
chapter is also oriented to GIS companies that are interested in reusing code that is
already developed but was probably developed for GIS platforms that are not free.

This chapter gives basic knowledge on how to interact with QGIS using the PyQGIS
programming language.

Chapter 10

[377]

We saw how to programmatically load different kinds of layers, from raster to
vector. We also explained vectors and how to manage different kinds of vector
resources, from filesystems to remote database connections. We also explored the
vector structure in more detail and you learned how to browse and edit its records.
Different kinds of editing workflows were proposed in the chapter so that you can
interact with the QGIS framework in a better manner.

You learned how to launch processing toolbox algorithms and user-developed
processing toolbox scripts to enhance QGIS with new functionalities. You also
learned how to launch external commands or scripts to offer a way to integrate
already developed code, and thereby reduce developing and testing costs.

Lastly, we explored the QGIS map canvas and how to interact with that using Map
Tools. We obtained canvas coordinates and created new Map Tools to draw canvas
objects. This will give you the basic skills needed to create new plugins that interact
with layers displayed in the QGIS canvas.

[379]

Index
A
Add item button 60
address-based data

address geocoding, working 177, 178
geocoding 176, 177

address geocoding
local street network data, using 181-183
web services, using 178-180
working 177, 178

Add rule button 86
advanced field calculations, writing

about 134
current date, calculating 135
current date, formatting 135
geometric values, inserting 136
population-dependent label string,

calculating 137-139
algorithms

adding 279-284
Application Programming

Interfaces (API) 301
Aptana

installing 327
URL, for downloading 327

B
basic vector geoprocessing tools

Buffer tool 123
Convex Hull tool 125
Dissolve tool 126, 127
spatial overlay tools 119
using 118

batch processing
using, with model 298, 299

buffers
creating, with Buffer tool 123, 124

C
Calculator tool 280
CamelCase format

URL 313
categorized vector style 81, 82
changeable panels, color picker

about 54
color ramp panel 54
color sampler 57
color swatches panel 55, 56
color wheel panel 55

Clip grid with polygon tool 292
Clip tool 120
code refactoring

URL 302
ColorBrewer color ramp

adding 63
color picker

about 52
available components 53, 54
changeable panels 54

color ramp
adding 60
ColorBrewer color ramp, adding 63
cpt-city color ramp, adding 64, 65
editing 65
exporting 59
Gradient color ramp, adding 61

[380]

importing 60
managing 57
QGIS color ramp collection, managing 58
Random color ramp, adding 62
removing 59
renaming 59

colors
managing 52
selecting 52

common parameters, diagrams
position parameter 94, 95
size parameter 94

complex aspatial queries 140-143
complex spatial queries 140-143
convex hulls

generating, with Convex Hull tool 125
coordinate data

points, creating 169-173
well-known text (WKT) representations of

geometry, mapping 174-176
coordinate reference system (CRS)

about 184
defining 127-129
Proj.4 definition format 127, 128
working with 10, 11

cpt-city color ramp
adding 64, 65
URL 65

custom coordinate reference system
defining 129, 130

custom processing script
running 363-365
test processing toolbox script, creating 364
viewing 364

D
data

databases, loading 8, 9
editing 14, 15
importing, into SpatiaLite database 33
loading 6
raster data, loading 7, 8
vector data, loading 6, 7
web services 9

database
concepts 27

data types 28
geometry types 28
SQL 29, 30
table relationship 29
tables 28

database management system (DBMS) 30
data, editing

about 14, 15
blending modes 20-22
contrast enhancement 19, 20
raster data, styling 18
snapping 15
vector data, styling 16, 17

debugger 326
debugging environment

Aptana, installing 327
debugger 326
Pydevd server, starting 328
PYTHONPATH, setting up 327
QGIS, connecting to Pydevd server 329
setting up 326

default algorithm settings
adjusting 227

diagrams
attributes, adding to 95
common parameters 94
histogram chart diagram, creating 100, 101
pie chart diagram, creating 96, 97
text chart diagram, creating 98, 99
used, for displaying thematic data 93

Difference tool 120
digital elevation model (DEM) 225
digital terrain model (DTM) 225
dir() function, Python 310
Dissolve tool

using 126

E
Edit rule button 86
external algorithm

running 365
simple command, running 366

external command
running 366, 367

Extract Nodes tool 112

[381]

F
feature.attributes() method 308
feature.geometry() method 308
features

dissolving, with Dissolve tool 126
editing 352
iterating over 350, 351
iterators, describing 352

features, editing
canvas, updating 352
QgsVectorDataProvider, using 353
QgsVectorLayer, using 357
symbology, updating 352

field calculations
about 131
advanced calculations, writing 134
field calculator interface, exploring 132

field calculator interface
exploring 132-134
function, types 134

floating-point
and integer rasters, converting 148

functionality
adding, with plugins 24, 25

G
GDAL

used, for clipping evaluation layer 237
GDAL Proximity

used, for finding proximity to
surface water 248, 249

GDAL Raster calculator
using 249, 250

GDAL Script tool 197
Geographical Resources Analysis Support

System. See GRASS
geometry errors

checking for 107-109
geometry values

adding, to attribute table 117
Georeferencer GDAL plugin

using 185-188
georeferencing, with second dataset

about 188
ground control points, entering 189-191

operation, completing 197
transformation settings 191-196

Geospatial Data Abstraction
Library (GDAL)

about 2, 8
URL 8

GitHub
URL 314

Google Geocoding API
URL 180

Gradient color ramp
adding 61

graduated vector style 83, 84
graphical modeler

about 272
configuring 274, 275
differences 281
opening 272, 273

GRASS
URL 222, 233, 251
used, for performing raster

 analyses 223, 225
ground control points (GCP)

about 184
entering 189, 191

H
habit evaluation, SAGA

about 245
elevation ranges, calculating with SAGA

Raster calculator 245
GDAL Raster calculator, using 249, 250
land use, clipping with clip grid

with polygon 246
land use, querying with SAGA

Raster calculator 247
proximity to surface water, finding with

GDAL Proximity 248, 249
Reclassify grid values tool, using 251
SAGA Raster calculator, using 252

histogram chart diagram
creating 100, 101

hydrologic analyses
exploring, with TauDEM 254-261
flow directions, calculating across

 landscape 256

[382]

pits, removing from TauDEM 255
stream network raster grid, calculating 259
upstream area above Fort Klamath,

calculating 257, 258
watershed-specific vector stream network,

creating 260, 261

I
Identify tool 183
iface class

exploring 308, 309
imagery, georeferencing

about 184
Georeferencer GDAL plugin,

using 185-188
ground control points (GCP),

identifying 184
point file, using 197-200
second dataset, using 188

inputs
adding 276-278

installations
QGIS 2
QGIS, on Mac OS X 2
QGIS, on Ubuntu Linux 2
QGIS, on Windows 2

integer rasters
and floating-point, converting 148

Internet Relay Chat (IRC) channel 304
interpolation method

raster surfaces, converting via 164-166
Intersect tool 121, 122
Inverse Distance Weighted (IDW) 164
inverted polygons vector style 90, 91

K
KML

importing, into SpatiaLite database 33, 34
knowledge

sharing 304

L
LAStools

URL 222
URL, for installing 217

layer.getFeatures() method 308
layers

database vectors, managing 343, 344
loading 338
rasters, managing 339
vector files, managing 342

least-cost path (LCP)
calculating 228
cumulative cost raster, calculating with

r.cost tool 233
land use raster, reclassifying 230, 231
new slope raster, reclassifying 230
reclassified slope, combining with land

use layers 232, 233
slope, calculating with r.slope tool 229
used, for calculating cost path 234-236

lines
converting, to polygons 110
nodes, extracting from 112

Linux
SAGA, installing on 153, 154
SAGA, troubleshooting on 153

M
Mac OS X

QGIS, installing on 2
SAGA, installing on 153
SAGA, troubleshooting on 153

mailing lists
developer list 303
URL 303
user list 303

main plugin files
__init__.py file 318
icon.png file 318
Makefile 318
metadata.txt file 318
resource_rc.py file 318
resources.qrc file 318
test_plugin_dialog_base.ui file 318
test_plugin_dialog.py file 318
test_plugin.py file 318

MakePoint function 39
mandatory plugin parameters, setting

Author/Company and Email address 314
class name 313

[383]

description 313
minimum QGIS version 313
module name 313
plugin name 313
text for the menu item 314
version number 313

map canvas
current Map Tool, setting 369
Map Tools 368
obtaining 368
point-click values, obtaining 370
point-click values, using 373, 374
QgsRubberBand class, exploring 374, 376

maps
composing 23

Merge Shapefiles to One tool 106
MMQGIS plugin

about 176
URL 176

model
algorithms, executing iteratively 292, 293
batch processing, using 298, 299
converting, to Python 299
documenting 288, 290
editing 286-288
exporting 290, 291
loading 290, 291
naming 274, 275
nesting 294-298
running 284-286
saving 290, 291

MOOC
URL 337

multi band rasters
styling 73, 74

O
Open Source Geospatial

Foundation (OSGeo)
about 1
URL 11, 127

optional plugin parameters, setting
bug tracker 314
home page 314
repository 314
tags 314

overlaps, repairing
between polygons 211, 212
editing parameters, setting 209, 210

P
paletted raster band renderer 66
pie chart diagram

creating 96, 97
Plugin Builder

installing 311
plugins, locating 312
URL 314
used, for creating plugin structure 310

plugin file structure
about 317
main plugin files, exploring 318
Plugin Builder generated files 319

plugin logic
code 325
combo box, populating 323
dialog, displaying 324
dialog, showing 324
improvements 324
layers, classifying 323
modifying 322, 323
self keyword 324

plugins
used, for adding functionality 24, 25

point-click values
current Map Tool, obtaining 370
map canvas event handler, creating 371
Map Tool event handler, creating 371, 372
new Map Tool, creating 370
new Map Tool, setting up 372
obtaining 370

point displacement vector style
about 88, 90
parameters 89, 90

points
creating, from coordinate data 169-173

polygon centroids
creating 110

polygons
converting, to lines 110
nodes, extracting from 112

processing commander 222

[384]

processing toolbox
about 216-222
algorithms, accessing 216
configuring 216-218
sources 223
using 223

processing toolbox algorithms
custom processing script, running 363
information, obtaining 361
running 359, 360
running, at console 362, 363
searching 360

Proj.4
about 11
URL 11

Proj.4 definition format
about 127
parameters, for CRS 128
URL 127

PyDev server
QGIS, connecting to 330
starting 328

PyQGIS cookbook
references 302
URL 302

Python
basics 337
model, converting to 299
spaces selecting 338
tabs, selecting 338
URL 308

Python Console
about 306
PyQGIS code snippet 307, 308
QGIS API, exploring 310
sample data, obtaining 307
URL 307

PYTHONPATH
setting up 327, 328

Q
QGIS

about 1, 4
downloading 2
exploring 308, 309
installing 2, 3

installing, and FOSSGIS Packages 3
installing, on Mac OS X 2
installing, on Ubuntu Linux 2
installing, on Windows 2
QGIS Browser interface 5
QGIS Desktop interface 4
reference links 303
URL 2, 217, 303, 309
URL, for Ubuntu versions 3

QGIS API
exploring, in Python Console 310

QGIS Browser
about 5
data tree view 6
information panel 6
toolbar 5, 6

QGIS color ramp collection
managing 58-65

QGIS community 303
QGIS Desktop

map display 4
menu bar 4
panels 4
toolbars 4, 5

QGIS installation, on Windows
OSGeo4W Network Installer option 2
QGIS Standalone Installer option 2

QGIS issue
reporting 304
reporting, URL 305

QGIS Python Plugins Repository
URL 25

QGIS Redmine bug tracker
URL 305

QGIS sample data
URL 307

QgsRasterLayer class 340
QgsVectorDataProvider

editing through 353
feature, adding 356
feature, deleting 355
feature geometry, changing 354, 355

QgsVectorLayer
feature, adding 359
feature attribute, changing 359
feature, removing 359

[385]

QgsVectorLayerEditBuffer class,
discovering 358

used, for editing 357, 358
Qt Designer

URL, for downloading 318
used, for modifying TestPlugin

 layout 319, 320
queries

creating 45
spatial view, creating 46-48
spatial view, dropping 48, 49
SQL query, creating 45, 46

R
R

about 262
histograms, exploring 262-268
summary statistics, exploring 262-268
URL 262

Random color ramp
adding 62

raster analyses, performing with GRASS
about 223, 224
LCP, calculating 228
shaded relief, calculating 225-227
slope using r.slope, calculating 229
viewshed, evaluating 236

raster composite (r.composite) tool
creating 74-76
parameters 75

raster mosaic
creating 156-158

raster overviews (pyramids)
generating 158-160

rasters
and vector data models, converting 161
color rendering 76-78
converting, to vector 161
floating-point and integer rasters,

 converting 148
layer, visualizing 341
managing 339
QgsRasterLayer, exploring 340
reclassifying 145-147
resampling 79, 149-152
rescaling 155

SAGA, installing on different
platforms 152-154

SAGA, installing on Linux 153
SAGA, installing on Mac OS X 153
SAGA, installing on Windows 153
SAGA, troubleshooting on different

 platforms 152-154
SAGA, troubleshooting on Linux 153, 154
SAGA, troubleshooting on Mac OS X 153
SAGA, troubleshooting on Windows 153
single band rasters, styling 65
vector, converting to 162-164

raster surfaces
creating, via interpolation 164-166

r.cost tool
used, for calculating cumulative

cost raster 233
Reclassify grid values tool

used, for reclassifying land use 251
Remove item button 59
Remove rule button 86
resampling method

about 160
Average 79
Bilinear 79
Cubic 80, 193
Cubic Spline 193
Lanczos 193
Linear 193
Nearest neighbour 193

resources.qrc file
URL 318

r.mapcalculator
used, for combining viewsheds 240-242

root mean square error (RMSE) 195
r.reclass

about 147
URL 147

r.slope tool
used, for calculating slope 229

r.stats
used, for calculating raster

statistics 242-244
rule-based vector style 85-87
run() function 322

[386]

r.viewshed
used, for calculating viewsheds

 for towers 238, 239

S
SAGA

about 244
habitat, evaluating 245
installing, on Linux 153, 154
installing, on Mac OS X 153
installing, on Windows 153
troubleshooting, on different

 platforms 152-154
troubleshooting, on Linux 154
troubleshooting, on Mac OS X 153
troubleshooting, on Windows 153
URL 222

SAGA Raster calculator
used, for calculating elevation ranges 245
used, for combining raster layers 252, 253
used, for querying land use 247

SAGA Reclassify grid values tool
using 251

second dataset
used, for georeferencing 188

settrace method 330
shaded relief

calculating 225-227
URL 227

shapefile
importing, into SpatiaLite database 35, 36
merging 106
tables, exporting as 40, 41

singleband gray band renderer 67-69
singleband pseudocolor

band renderer 70-73
single band rasters

paletted raster band renderer 66
singleband gray band renderer 67-69
singleband pseudocolor band

renderer 70-73
styling 65

single symbol vector style 80, 81
Solar Position Calculator

URL 227

spatial database
creating 30-32

spatial indices
creating 107

SpatiaLite database
data, importing 33
KML, importing 33, 34
shapefile, importing 35, 36
tables, importing 36-40

spatial overlay tools
about 119
Clip tool 120
Difference tool 120
Intersect tool 121, 122
Symmetrical Difference tool 121, 122
Union tool 123

spatial view
creating 46-48
dropping 48

SQL
about 29, 30
query, creating 45, 46
URL 45

StackExchange community
about 304
URL 304

Structured Query Language. See SQL
styles

loading 101, 102
restoring 102
saving 101, 102
setting 101, 102

Symmetrical Difference tool 121, 122
System for Automated Geoscientific

Automation. See SAGA

T
table

creating 41, 42
deleting 44
emptying 45
exporting, as shapefile 40
importing, into SpatiaLite database 36-40
managing 41
properties, editing 43, 44
renaming 43

[387]

tables
joins 12-14
working with 11

TauDEM
about 215
pits, removing 255
URL 222
used, for exploring hydrologic

analyses 254-261
Terrain Analysis Using Digital Elevation

Models. See TauDEM
TestPlugin

basic logic, adding 319
breakpoints, adding 333, 334
creating 312
customizing 319
debugging 330-335
GUI logic, modifying 321
icon resource, compiling 315, 316
layout, modifying with

Qt Designer 319, 320
mandatory plugin parameters,

setting 313, 314
optional plugin parameters,

setting 314, 315
plugin code, generating 315
plugin logic, modifying 322
pull down menus, adding 321
PyDev project, creating 331, 332

text chart diagram
creating 98, 99

thematic data
displaying, with diagrams 93

Topographic Wetness Index (TWI) 295
topological editing

topological errors, repairing via 207
topological errors

duplicate geometries, resolving 208
gap between polygons, repairing 213, 214
overlaps, repairing 208
repairing, via topological editing 207-214

Topology Checker
installing 200
using 203-206

Triangular Interpolation (TIN) 164

U
Ubuntu Linux

QGIS, installing on 2
Union tool

used, for overlaying polygon layers 123

V
vector

converting, to raster 162-164
raster, converting to 161, 162

vector data models
and raster, converting 161

vector data topology
checking 200
rules 200
Topology Checker, installing 200

vector data topology, rules
for line features 201
for point features 201
for polygon features 202
Topology Checker, using 203

vector formats, OGR
URL 342

vector geometries
converting 109
features, densifying 113-115
features, simplifying 113-115
geometry columns, adding to

attribute table 117
lines, converting to polygon 110
multipart and singlepart

feature, converting 115, 116
nodes, extracting from lines 112
nodes, extracting from polygons 112
polygon centroids, creating 110
polygon, converting to lines 110
polygons around individual

pints, creating 111, 112
vector layer

rendering 91-93
rendering, parameters 92

vectors
styling 80

[388]

vector structure
basic vector methods 345
describing 345, 346
header, describing 347
rows, describing 348, 349
vector structure, describing 346

vector styling
about 80
categorized vector style 81, 82
graduated vector style 83, 84
inverted polygons vector style 90, 91
point displacement vector style 88-90
rule-based vector style 85-88
single symbol vector style 80, 81

Version Control System (VCS)
Git 314
Subversion 314

views
creating 45

viewshed
combining, with r.mapcalculator 240-242

elevation layer, clipping to park boundary
with GDAL 237

evaluating 236
for towers, calculating with

r.viewshed tool 238, 239
raster statistics, calculating

with r.stats 242-244

W
well-known text (WKT) representations of

geometry
about 170
mapping 174-176

Windows
QGIS, installing on 2
SAGA, installing on 153
SAGA, troubleshooting on 153

Thank you for buying
Mastering QGIS

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning QGIS
Second Edition
ISBN: 978-1-78439-203-1 Paperback: 150 pages

Use QGIS to create great maps and perform all the
geoprocessing tasks you need

1. Load, visualize, and edit vector and raster data.

2. Create professional maps and applications to
present geospatial data.

3. A concise guide, packed with detailed real-
world examples to get you started with QGIS.

Building Mapping Applications
with QGIS
ISBN: 978-1-78398-466-4 Paperback: 264 pages

Create your own sophisticated applications to
analyze and display geospatial information using
QGIS and Python

1. Make use of the geospatial capabilities of QGIS
within your Python programs.

2. Build complete standalone mapping
applications based on QGIS and Python.

3. Use QGIS as a Python geospatial development
environment.

Please check www.PacktPub.com for information on our titles

PostGIS Cookbook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial data in a
PostGIS database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS and
WFS using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data, and
routing data into usable forms.

3. Visualize data from the PostGIS database using
a desktop GIS program such as QGIS and
OpenJUMP.

Building Web Applications with
ArcGIS
ISBN: 978-1-78355-295-5 Paperback: 138 pages

Build an engaging GIS Web application from scratch
using ArcGIS

1. Learn how to design, build, and run high
performance and interactive applications with
the help of ArcGIS.

2. Incorporate ArcGIS for Server services to allow
end users to visualize, query, and edit GIS data
using the ArcGIS JavaScript APIs.

3. Step-by-step tutorial that teaches you how to
design and customize a GIS web application
from scratch.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Refreshing Look at QGIS
	QGIS download and installation
	Installing QGIS on Windows
	Installing QGIS on Mac OS X
	Installing QGIS on Ubuntu Linux
	Installing QGIS only
	Installing QGIS and other FOSSGIS Packages

	Tour of QGIS
	QGIS Desktop
	QGIS Browser

	Loading data
	Loading vector data
	Loading raster data
	Loading databases
	Web services

	Working with coordinate reference systems
	Working with tables
	Table joins

	Editing data
	Snapping
	Styling vector data
	Styling raster data
	Contrast enhancement
	Blending modes

	Composing maps
	Adding functionality with plugins
	Summary

	Chapter 2: Creating Spatial Databases
	Fundamental database concepts
	Database tables
	Table relationships
	Structured Query Language

	Creating a spatial database
	Importing data into a SpatiaLite database
	Importing KML into SpatiaLite
	Importing a shapefile into SpatiaLite
	Importing tables into SpatiaLite

	Exporting tables out of SpatiaLite as a shapefile
	Managing tables
	Creating a new table
	Renaming a table
	Editing table properties
	Deleting a table
	Emptying a table

	Creating queries and views
	Creating a SQL query
	Creating a spatial view
	Dropping a spatial view

	Summary

	Chapter 3: Styling Raster and Vector Data
	Choosing and managing colors
	Always available color picker components
	Changeable panels in color picker
	Color Ramp
	Color wheel
	Color swatches
	Color sampler

	Managing color ramps
	Managing the QGIS color ramp collection
	Renaming a color ramp
	Removing a color ramp
	Exporting a color ramp
	Importing a color ramp
	Adding a color ramp
	Editing a color ramp

	Styling single band rasters
	Paletted raster band rendering
	Singleband gray raster band rendering
	Singleband pseudocolor raster band rendering

	Styling multiband rasters
	Creating a raster composite
	Raster color rendering
	Raster resampling
	Styling vectors
	Single-symbol vector styling
	Categorized vector styling
	Graduated vector styling
	Rule-based vector styling
	Point-displacement vector styling
	Inverted polygons vector styling

	Vector layer rendering
	Using diagrams to display thematic data
	Parameters common to all diagram types
	Diagram size parameters
	Diagram position parameters
	Adding attributes to diagrams

	Creating a pie chart diagram
	Creating a text chart diagram
	Creating a histogram chart diagram

	Saving, loading, and setting default styles
	Saving a style
	Loading a style
	Setting and restoring a default style

	Summary

	Chapter 4: Preparing Vector Data for Processing
	Merging shapefiles
	Creating spatial indices
	Checking for geometry errors
	Converting vector geometries
	Creating polygon centroids
	Converting polygons to lines and lines to polygons
	Creating polygons surrounding individual points
	Extracting nodes from lines and polygons
	Simplifying and densifying features
	Converting between multipart and singlepart features
	Adding geometry columns to an
attribute table

	Using basic vector geoprocessing tools
	Spatial overlay tools
	Using the Clip and Difference tools
	Using the Intersect and Symmetrical
Difference tools
	Overlaying polygon layers with Union

	Creating buffers
	Generating convex hulls
	Dissolving features

	Defining coordinate reference systems
	Understanding the Proj.4 definition format
	Defining a new custom coordinate reference system

	Advanced field calculations
	Exploring the field calculator interface
	Writing advanced field calculations
	The first example – calculating and formatting current date
	The second example – inserting geometry values
	The third example – calculating a population-dependent label string

	Complex spatial and aspatial queries
	Summary

	Chapter 5: Preparing Raster Data for Processing
	Reclassifying rasters
	Converting datasets from floating point to
integer rasters
	Resampling rasters
	Installing and troubleshooting SAGA on
different platforms

	Rescaling rasters
	Creating a raster mosaic
	Generating raster overviews (pyramids)
	Converting between raster and vector data models
	Converting from raster to vector
	Converting from vector to raster (rasterize)

	Creating raster surfaces via interpolation
	Summary

	Chapter 6: Advanced Data Creation and Editing
	Creating points from coordinate data
	Mapping well-known text representations
of geometry

	Geocoding address-based data
	How address geocoding works
	The first example – geocoding using web services
	The second example – geocoding using local street network data

	Georeferencing imagery
	Ground control points
	Using the Georeferencer GDAL plugin
	The first example – georeferencing using a second dataset
	Getting started
	Entering ground control points
	Transformation settings
	Completing the operation

	The second example – georeferencing using
a point file

	Checking the topology of vector data
	Installing the topology checker
	Topological rules
	Rules for point features
	Rules for line features
	Rules for polygon features

	Using the Topology Checker

	Repairing topological errors via topological editing
	Example 1 – resolving duplicate geometries
	Example 2 – repairing overlaps
	Setting the editing parameters
	Repairing an overlap between polygons

	Example 3 – repairing a gap between polygons

	Summary

	Chapter 7: The Processing Toolbox
	About the processing toolbox
	Configuring the processing toolbox
	Understanding the processing toolbox
	Using the processing toolbox

	Performing raster analyses with GRASS
	Calculating shaded relief
	Calculating least-cost path
	Calculating slope using r.slope
	Reclassifying new slope raster and the land use raster
	Combining reclassified slope and land use layers
	Calculating cumulative cost raster using r.cost
	Calculating cost path using least-cost paths

	Evaluating a viewshed
	Clipping elevation to the boundary of the park using GDAL
	Calculating viewsheds for towers using r.viewshed
	Combining viewsheds using r.mapcalculator
	Calculating raster statistics using r.stats

	SAGA
	Evaluating a habitat
	Calculating elevation ranges using the SAGA Raster calculator
	Clipping land use to the park boundary using Clip grid with polygon
	Querying land use for only surface water using SAGA Raster calculator
	Finding proximity to surface water using GDAL Proximity
	Querying the proximity for 1,000 meters of water using GDAL Raster calculator
	Reclassifying land use using the Reclassify grid values tool
	Combining raster layers using SAGA Raster calculator

	Exploring hydrologic analyses with TauDEM
	Removing pits from the DEM
	Calculating flow directions across the landscape
	Calculating the upstream area above Fort Klamath
	Calculating a stream network raster grid
	Creating a watershed-specific vector stream network

	R
	Exploring summary statistics and histograms

	Summary

	Chapter 8: Automating Workflows with the Graphical Modeler
	An introduction to the graphical modeler
	Opening the graphical modeler
	Configuring the modeler and naming
a model
	Adding inputs
	Adding algorithms
	Running a model
	Editing a model
	Documenting a model
	Saving, loading, and exporting models
	Executing model algorithms iteratively
	Nesting models
	Using batch processing with models
	Converting a model into a Python script
	Summary

	Chapter 9: Creating QGIS Plugins with PyQGIS and Problem Solving
	Webography - where to get API information and PyQGIS help
	PyQGIS cookbook
	API documentation
	The QGIS community, mailing lists, and IRC channel
	Mailing lists
	IRC channel
	The StackExchange Community
	Sharing your knowledge and reporting issues

	The Python Console
	Getting sample data
	My first PyQGIS code snippet
	My second PyQGIS code snippet – looping the layer features

	Exploring iface and QGis
	Exploring a QGIS API in the Python Console
	Creating a plugin structure with Plugin Builder
	Installing Plugin Builder
	Locating plugins
	Creating my first Python plugin – TestPlugin
	Setting mandatory plugin parameters
	Setting optional plugin parameters
	Generating the plugin code
	Compiling the icon resource
	Plugin file structure – where and what to customize

	A simple plugin example
	Adding basic logic to TestPlugin
	Modifying the layout with Qt Designer
	Modifying GUI logic
	Modifying plugin logic

	Setting up a debugging environment
	What is a debugger?
	Installing Aptana
	Setting up PYTHONPATH
	Starting the Pydevd server
	Connecting QGIS to the Pydevd server

	Debugging session example
	Creating a PyDev project for TestPlugin
	Adding breakpoints
	Debugging in action

	Summary

	Chapter 10: PyQGIS Scripting
	Where to learn Python basics
	Tabs or spaces, make your choice!

	Loading layers
	Managing rasters
	Exploring QgsRasterLayer
	Visualizing the layer

	Managing vector files
	Managing database vectors

	Vector structure
	The basic vector methods
	Describing the vector structure
	Describing the header
	Describing the rows

	Iterating over features
	Describing the iterators

	Editing features
	Update canvas and symbology
	Editing through QgsVectorDataProvider
	Changing a feature's geometry
	Deleting a feature
	Adding a feature

	Editing using QgsVectorLayer
	Discovering the QgsVectorLayerEditBuffer class
	Changing a feature's attributes
	Adding and removing a feature

	Running processing toolbox algorithms
	Looking for an algorithm
	Getting algorithm information
	Running algorithms from the console
	Running your own processing script
	Creating a test processing toolbox script
	Looking at the custom script
	Running the script

	Running an external algorithm or command
	Running a simple command

	Interacting with the map canvas
	Getting the map canvas
	Explaining Map Tools
	Setting the current Map Tool
	Getting point-click values
	Getting current Map Tool
	Creating the new Map Tool
	Creating a map canvas event handler
	Creating a Map Tool event handler
	Setting up the new Map Tool

	Using point-click values
	Exploring the QgsRubberBand class

	Summary

	Index

