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Abstract: Many tropical forest landscapes are now complex mosaics of intact forests, recovering
forests, tree crops, agroforestry, pasture, and crops. The small patch size of each land cover type
contributes to making them difficult to separate using satellite remote sensing data. We used
Sentinel-2 data to conduct supervised classifications covering seven classes, including oil palm,
rubber, and betel nut plantations in Southern Myanmar, based on an extensive training dataset
derived from expert interpretation of WorldView-3 and UAV data. We used a Random Forest classifier
with all 13 Sentinel-2 bands, as well as vegetation and texture indices, over an area of 13,330 ha.
The median overall accuracy of 1000 iterations was >95% (95.5%–96.0%) against independent test
data, even though the tree crop classes appear visually very similar at a 20 m resolution. We conclude
that the Sentinel-2 data, which are freely available with very frequent (five day) revisits, are able to
differentiate these similar tree crop types. We suspect that this is due to the large number of spectral
bands in Sentinel-2 data, indicating great potential for the wider application of Sentinel-2 data for the
classification of small land parcels without needing to resort to object-based classification of higher
resolution data.

Keywords: classification; UAV; WorldView; Sentinel-2; palm oil; Random Forest; Myanmar;
Google Earth Engine; rubber; betel nut

1. Introduction

Land use change in the tropics has a significant impact on the carbon cycle, and thus global
climate change, but it is poorly quantified [1,2]. In mitigating climate change through conserving
and enhancing forest carbon stocks, monitoring the changes in land cover and land use provides
crucial information for policy development and enforcement in areas such as forest conservation,
watershed, and environmental protection [2]. While there are sufficient data on deforestation provided
by systematic and free-to-use remote sensing [3], what happens to land after deforestation (or the
drivers of deforestation) varies by location [4] and there are no global products providing these data,
making local classification of the resulting land use necessary for both carbon accounting and policy
implementation purposes.

There are a number of ways in which the area of different land cover and land use types within
an area, and how they are changing, can be assessed. These range from agricultural census surveys
to various types of remote sensing. The most commonly used approaches in the tropics include
wall-to-wall mapping using remotely sensed images and/or sample-based approaches for area
estimation [5–8]. However, classifying landscapes can be challenging in the tropics today, as the
average farm size has been decreasing in developing countries [9,10]. In Asia, this change has been
especially pronounced, with the average size of agricultural holdings falling from 2.5 hectares in
1950 to one hectare in 2000, where the fragmentation of holdings driven by population growth is
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prevalent (Figure 1) [10,11]. More recently, rubber production has shifted from being dominated by
large plantations, to being dominated by smallholders in Southeast Asia, resulting in 80% of global
rubber production being managed by smallholders with plantations 2–3 ha in size [12]. To overcome
the challenge of this decrease in patch size, high spatial resolution images from unmanned aerial
vehicles (UAV, ground resolutions typically 1–50 cm) and hyperspatial satellites such as WorldView-3
(WV3, with the highest resolution band at a 31 cm resolution) can be used, which provide detailed
visual information on vegetation on the ground. While these images typically feature few spectral
bands (normally optical RGB plus potentially one infrared band), limiting their ability to differentiate
land cover types based on spectral characteristics, their high resolution enables the human eye to
differentiate most land cover types based on, for example, the shape and density of trees, and the
advancement of object-based classification methods has meant that automated processes can also take
advantage of this spatial information to produce accurate classifications [13–16]. However, the high
costs and complexity of both the object-based image analysis, and the high cost and low availability of
data at a sufficient resolution, remain as challenges for wider application [17,18].

Remote Sens. 2018, 10, x FOR PEER REVIEW  2 of 15 

 

[10,11]. More recently, rubber production has shifted from being dominated by large plantations, to 
being dominated by smallholders in Southeast Asia, resulting in 80% of global rubber production 
being managed by smallholders with plantations 2–3 ha in size [12]. To overcome the challenge of 
this decrease in patch size, high spatial resolution images from unmanned aerial vehicles (UAV, 
ground resolutions typically 1–50 cm) and hyperspatial satellites such as WorldView-3 (WV3, with 
the highest resolution band at a 31 cm resolution) can be used, which provide detailed visual 
information on vegetation on the ground. While these images typically feature few spectral bands 
(normally optical RGB plus potentially one infrared band), limiting their ability to differentiate land 
cover types based on spectral characteristics, their high resolution enables the human eye to 
differentiate most land cover types based on, for example, the shape and density of trees, and the 
advancement of object-based classification methods has meant that automated processes can also 
take advantage of this spatial information to produce accurate classifications [13–16]. However, the 
high costs and complexity of both the object-based image analysis, and the high cost and low 
availability of data at a sufficient resolution, remain as challenges for wider application [17,18]. 

 
Figure 1. Average size of agricultural holding in 2000 (data adapted from [9]). 

Our study investigated whether publicly available data, namely Sentinel-2 (S2), can map 
complex landscapes in Southern Myanmar, including oil palm, rubber, and betel nut plantations 
using a Random Forest classifier on Google Earth Engine. Unlike UAV and WV3 data, widely 
available satellite data (which is typically at best a 10–30 m resolution, with the standard platforms 
of Landsat and Sentinel-2) cannot be used to visually detect individual trees (Figure 2). However, 
Sentinel-2 has great potential for mapping vegetation types in complex landscapes as it is a 
multispectral instrument with 13 bands, some of which (for example, the ‘red edge’ bands) cover very 
narrow portions of the spectrum, less than 20 nm wide, giving it some of the advantages in 
classification that were traditionally only available to a true hyperspectral sensor. The resolutions of 
the bands vary, with four at a 10 m resolution, and the rest at a 20 or 60 m resolution. Taking 
advantage of the spectral bands with a 10–20 m pixel size, several studies have estimated the extent 
of land cover types (e.g., cropland, wetland, snow cover) and produced maps of certain forest types 
(e.g., savanna, deciduous forests) and urban landscapes [19–24]. Furthermore, with a high revisit 
frequency of five days, agricultural monitoring systems are being developed using Sentinel-2 data, 
taking advantage of its temporal as well as spectral resolution [25]. However, to our knowledge there 
has been no attempt to classify a landscape with as complex a mixture of small patches of similar tree 
crops as our study site in Myanmar using S2 data, despite the prevalence of such landscapes across 
the tropics. This is likely because hyperspatial images are typically used to conduct such 
classifications (but over small spatial areas, due to limited data availability and the high cost of 
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Our study investigated whether publicly available data, namely Sentinel-2 (S2), can map complex
landscapes in Southern Myanmar, including oil palm, rubber, and betel nut plantations using a
Random Forest classifier on Google Earth Engine. Unlike UAV and WV3 data, widely available
satellite data (which is typically at best a 10–30 m resolution, with the standard platforms of Landsat
and Sentinel-2) cannot be used to visually detect individual trees (Figure 2). However, Sentinel-2 has
great potential for mapping vegetation types in complex landscapes as it is a multispectral instrument
with 13 bands, some of which (for example, the ‘red edge’ bands) cover very narrow portions of
the spectrum, less than 20 nm wide, giving it some of the advantages in classification that were
traditionally only available to a true hyperspectral sensor. The resolutions of the bands vary, with four
at a 10 m resolution, and the rest at a 20 or 60 m resolution. Taking advantage of the spectral bands
with a 10–20 m pixel size, several studies have estimated the extent of land cover types (e.g., cropland,
wetland, snow cover) and produced maps of certain forest types (e.g., savanna, deciduous forests)
and urban landscapes [19–24]. Furthermore, with a high revisit frequency of five days, agricultural
monitoring systems are being developed using Sentinel-2 data, taking advantage of its temporal as
well as spectral resolution [25]. However, to our knowledge there has been no attempt to classify
a landscape with as complex a mixture of small patches of similar tree crops as our study site in
Myanmar using S2 data, despite the prevalence of such landscapes across the tropics. This is likely
because hyperspatial images are typically used to conduct such classifications (but over small spatial
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areas, due to limited data availability and the high cost of purchasing/collecting and processing such
data). Furthermore, S2 data, along with other satellite data, are generally considered for and associated
with broader scale analyses.
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Figure 2. Examples of images of the same location using UAV, WV3, and Sentinel-2 in February 2017
and March 2018 (shown in RGB).

Classification methods using machine learning algorithms such as decisions trees, support vector
machines, and Random Forests are becoming more popular because of their high accuracy and ability
to process complex datasets and produce good results with large numbers of input classification bands
and training points [26–28]. Random Forests were selected to classify the S2 data, as it is an algorithm
proven to improve the classification accuracy compared to simpler methods, due to its ensemble
learning techniques, and it is thus often applied for multispectral and hyperspectral satellite imagery
in small areas [28–30]. We also incorporated a texture index in the classification, in order to take
advantage of the 10 m information in some S2 bands (even though we performed the classification at
20 m, the resolution of most S2 bands), as local texture is known to increase accuracy [14,31].

Mapping using complex machine learning classifier models and many classifier layers requires a
large amount of representative datasets to train the classifier while avoiding over-fitting [32,33].
Therefore, the quality and quantity of training samples affect the classification results [32–34].
Such samples can be collected from the field or high resolution images, which allows users to see
individual trees [33,35]. We used high resolution images from UAV and WorldView-3 to manually
delineate reference data through object recognition, producing a dataset with similar characteristics to
ground truth points collected in the field, but at a much lower financial and time cost per point.

In summary, the study aimed to answer the following questions: (1) how accurately we can map
areas with small plantations with S2 using a Random Forest classifier; and (2) are such maps accurate
and consistent enough that they could be used to confidently detect area changes over a 12-month
period? Using our sites in Southern Myanmar as a case study, we are proposing a cost-effective,
simple, and transparent approach for mapping small plantations in increasingly common and complex
landscapes, which can be applied in other parts of Asia and Africa, where this type of landscape and
rapid landcover change are prevalent.
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2. Materials and Methods

2.1. Study Site

We conducted our analysis in two areas, totaling 13,330 ha, containing oil palm (Elaeis guineensis)
plantations in the Dawei district, Tanintharyi region, Myanmar (Figure 3). The Tanintharyi region is in
southern Myanmar and west of Thailand, where the development of oil palm plantations started in
1999. Among three districts in the region, Dawei is located to the north, and in general, has older oil
palm plantations than those areas to the south. Oil palm companies in this area are believed to be less
active, as the dryer climate creates less favourable conditions for oil palm plantations, compared to the
other two districts in the south [36]. However, it has been reported that a conflict between villagers and
one oil palm company in Area B resulted in a lawsuit in 2016, indicating that there are some actively
managed plantations in the area [37].

There are two other types of tree crops grown to a significant extent in the area:
rubber (Hevea brasiliensis) and betel nut (Areca catechu) plantations. Fortunately all three are planted in
different ways and have characteristic shapes, making it possible to distinguish them using hyperspatial
remote sensing. Rubber plantations tend to be polygonal in shape with semi-circular portions and
each plantation is smaller than an oil palm plantation. At the same time, rubber plantation areas can
be large as often there are many plantations established next to each other (Figure 4a), whereas oil
palms are typically planted in one large area (Figure 4b). Furthermore, rubber plants tend to be planted
in straight lines, while oil palm trees are planted in a triangular form using a 9 m distance between
trees. Betel nut trees are slender palm trees with numerous linear leaflets (Figure 4c) [38]. Betel nut
plantations are much smaller than the other two crops, and are normally planted in small patches,
often abutting or among the other tree crops, along the roads, or between houses. While there are
these crop specific plantation styles, they are also seen planted next to each other or in close proximity
(Figure 4d).
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A 
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February 2018 
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Figure 4. High resolution imagery of the study sites showing (a) rubber plantations (WV3);
(b) oil palm plantation (UAV); (c) betel nut trees in comparison to oil palm trees on the lower
left (UAV); (d) all three crops (WV3). UAV images were provided by the Centre for Development
and Environment (CDE)—OneMap Myanmar, Yangon, Myanmar; WorldView-3 imagery © 2018
DigitalGlobe, Inc.—provided by European Space Imaging. North is at the top of each image in
the figure.

2.2. Dataset

2.2.1. Sentinel-2 Images for Classification

Sentinel-2 images for the two areas were obtained in Google Earth Engine as image collections
within the months of February 2017, and February and March 2018, corresponding to the months
when UAV and WV3 images were collected in each area (Table 1). Google Earth Engine allows users to
create a single-value composite from a stack of all images collected (an image collection) by selecting
the median value of each band for each pixel in the collection. Using images of less than a 10% cloudy
pixel to build up the collection ensured that the median composites were cloud free over the set time
periods. This was possible because most of the areas had clear images during the study periods.
However, a composite for Area A in February 2017 contained clouds in the site when using median
values, thus the least cloudy image was used instead of the median values of the images. The code
used to process and classify S2 images is available in Supplementary Material.
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Table 1. Sentinel-2 images used for classification.

Area Month Year Tile Cloudy Pixel % Granule ID

A

February 2017 47PLS 0 L1C_T47PLS_A008681_20170219T035623

February 2018

47PLS 9.7756 L1C_T47PLS_A013829_20180214T040242
47PLS 0 L1C_T47PLS_A004992_20180219T034801
47PMS 0.6386 L1C_T47PMS_A004992_20180219T034801
47PLS 1.8035 L1C_T47PLS_A013972_20180224T040129

B

February 2017 47PMS 0.3121 L1C_T47PMS_A008538_20170209T035553
47PMS 0 L1C_T47PMS_A008681_20170219T035623

March 2018

47PMS 0.2107 L1C_T47PMS_A005135_20180301T035914
47PMS 0 L1C_T47PMS_A014115_20180306T035825
47PMS 0.0943 L1C_T47PMS_A014258_20180316T034812
47PMS 0.0604 L1C_T47PMS_A005421_20180321T040215

While certain spectral bands will inevitably be more important than others for the classification,
in general, it has been shown that the more spectral bands are included, the better the accuracy, until a
certain threshold is reached; following this, the accuracy becomes established [39–46]. Therefore, all of
the spectral bands in the Sentinel-2 images were selected to train the classifier (Table 2). In addition,
two indices were included: the normalised difference vegetation index (NDVI; Equation (1)) [47] to give
the greenness of vegetation; and the standard deviation of NDVI (moving window square 5 × 5 kernel),
both calculated at a 10 m resolution. The standard deviation of NDVI gives the texture of greenness,
which is commonly used for object-based classification using high resolution images [14,31]. After adding
the spectral bands, NDVI, and texture index, the images were scaled to a 20 m spatial resolution.

NDVI =
(NIR − RED)

(NIR + RED)
(1)

where NIR is B8 and RED is B4.

Table 2. Spectral bands in Sentinel-2.

Name Resolution Wavelength Description

B1 60 m 443.9 nm (S2A)/442.3 nm (S2B) Aerosols
B2 10 m 496.6 nm (S2A)/492.1 nm (S2B) Blue
B3 10 m 560 nm (S2A)/559 nm (S2B) Green
B4 10 m 664.5 nm (S2A)/665 nm (S2B) Red
B5 20 m 703.9 nm (S2A)/703.8 nm (S2B) Red Edge 1
B6 20 m 740.2 nm (S2A)/739.1 nm (S2B) Red Edge 2
B7 20 m 782.5 nm (S2A)/779.7 nm (S2B) Red Edge 3
B8 10 m 835.1 nm (S2A)/833 nm (S2B) NIR
B8a 20 m 864.8 nm (S2A)/864 nm (S2B) Red Edge 4
B9 60 m 945 nm (S2A)/943.2 nm (S2B) Water vapor
B10 60 m 1373.5 nm (S2A)/1376.9 nm (S2B) Cirrus
B11 20 m 1613.7 nm (S2A)/1610.4 nm (S2B) SWIR 1
B12 20 m 2202.4 nm (S2A)/2185.7 nm (S2B) SWIR 2

2.2.2. Reference Data Points from UAV and WorldView-3

We obtained high resolution images of two areas (12,306 ha and 1024 ha) surrounding oil
palm plantations in the Dawei district, Tanintharyi region, Myanmar (Figure 3) [48,49]. The images
were collected on 8 and 9 February 2017 by unmanned aerial vehicles (UAV) and on 12 February
and 3 March 2018 by WorldView-3 (WV3) in Area A and B, respectively. The UAV images are at
approximately an 8 cm spatial resolution and have three spectral bands (red, green, blue), while WV3
images are provided at a 30 cm resolution with four spectral bands, including red, green, and blue,
as well as a near infrared (NIR) band (Table 3). The WV3 data is a geometrically- and terrain-corrected
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pan-sharpened product provided by DigitalGlobe, using the 31 cm resolution panchromatic band to
increase the resolution of four of the 1.24 m resolution multispectral bands (RGB and near infrared).
The UAV images were processed and mosaicked with Agisoft Photoscan [48]. Both images were
georeferenced to the S2 images using the Georeferencer GDAL plug-in on QGIS.

Table 3. Technical specifications of the sensors used in the study and image acquisition dates.

Sensor Area Camera/Sensor Spatial Resolution Spectral Bands Date Acquired

UAV
A Phantom 4 Professional built-in

camera (20MP, FOV 84◦) 8 cm 3 (RGB)
8 February 2017

B 9 February 2017

WV3
A WorldView-3 (4-band pan-sharpened

multispectral product)
30 cm (as provided) 4 (RGB, NIR)

12 February 2018
B 3 March 2018

Reference data for training and validation were collected from these images where there were
no visible changes in the land cover between the two periods, and where clear images were available.
The data were collected according to seven classes of land cover: oil palm, rubber, betel nut,
forests (non-plantation, dense tree cover), non-forest (shrubs, regrowth, and other vegetation),
bare land, and water. Various plantations in the region were visited from 5 to 25 March 2017 in
order to understand the land cover types.

The dot grid photointerpretation method was used in collecting reference data from the
hyperspatial imagery (Figure 5) [50,51]. The dot grid method is a traditional approach used by foresters
for area estimation [52,53]. We preferred this method over delineating polygons manually because
of its systematic nature, lack of subjectivity, and the speed of collecting samples. The dots were
systematically superimposed over the images at 10 m intervals. If the dot fell on a certain class, it was
collected as reference data of that class (Figure 5a). In the case of oil palm trees, the dot could fall
between palm leaflets; in this case, we included that dot as reference data for the oil palm if the dot fell
between the leaflets but within the circle connecting the edges of the palm fronds (Figure 5b). Since the
classification was performed at 20 m, we avoided collecting samples of different classes that were too
close to each other, in order to avoid mixed samples within 20 × 20.
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Figure 5. Dot-grid photointerpretation method showing an example of reference data collected for (a)
oil palm, betel nut, and shrub (UAV, Area A, 2017); (b) oil palm trees were identified with orange dots
if they fell within the circle of palm canopy (UAV, Area B, 2017).

In total, 25,032 reference points (number of dots, placed at 10 m intervals) were collected,
among which 50% of the points in each class were randomly selected for training, and the other
for accuracy assessment (Table 4). A large number of training points is required when using a machine
learning algorithm and a many band multi-spectral image [29,33,34,54]. While there is no literature
providing the minimum number of training samples for machine learning algorithms, it has been
suggested that the number of features (e.g., wavebands) multiplied by 30 can be used as a guidance [35].
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Our samples exceeded this benchmark by 1.5 to 10, except for betel nut plantations in Area B and water
class in both areas, which were limited due to the characteristics of the area (limited area of betel nut
trees). While there was an attempt to balance the number of points per class, the final set of reference
data includes more points for some classes, as it was a result of repeated running of the classifier and
the addition of more training data in areas where misclassification was seen to have occurred.

Table 4. Reference data collected for training and validation.

Area Forest Oil Palm Rubber Betel Nut Non-Forest 1 Bare Land Water Total

A 2228 4216 3191 915 4881 1667 303 17,401
B 1588 988 1577 681 1257 1346 194 7631

Total 3816 5204 4768 1596 6141 3013 497 25,032
1 Shrub, regrowth, other plantations.

2.3. Random Forest Classification Algorithm

The Random Forest classification utilises ensemble methods with multiple tree-type classifiers [26].
Each tree casts a single vote for the most frequent class to the input data by using a randomly generated
subset of input variables for that tree [26,28–30]. Therefore, two parameters for the Random Forest
classifier had to be set: the number of classification trees; and the number of prediction variables
per node (Table 5). As the number of trees increased, the generalization error rate decreased [26,
29]. Based on our experiment and considering the computational burden on Google Earth Engine,
we selected 30 trees. The number of prediction variables is used at each node to grow the tree, and is
generally set at the square root of input variables for classification models like this [28,55]. Therefore,
we set the number of variables as four (~the square root of 15). The full Google Earth Engine code
used to classify S2 images is available in Supplementary Material.

In addition, we estimated accuracy rates of the maps and the area change between the two time
periods [56]. In order to produce robust classification results for area change, the classification of S2
images was run 1000 times by randomly selecting 50% of reference data from each class for training,
and testing against the other 50% [57]. The area of each class produced by each run was used to
estimate the confidence intervals for the area change.

Table 5. Summary of parameters and inputs for Random Forest.

Random Forest Parameters INPUT Variables

Number of trees Number of prediction variables per node Number of variables
(Spectral bands and indices)

30 4 15 (all B bands, NDVI, texture)

3. Results

3.1. Classification Accuracy

Using the reference samples from high resolution imagery as training data for a Random Forest
classifier with 30 trees and four prediction variables, Sentinel-2 data were able to classify both areas at
overall accuracy rates of 95% and higher for all the four images (Figure 6 and Table 6). This overall
accuracy figure indicates the proportion of the area mapped correctly [56].
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right; (b) Area B in March 2018 with the WV3 image on the right.

Table 6. Overall classification accuracy using Sentinel-2 data at a 20 m spatial resolution with
1000 Random Forest classification runs.

Area Month/Year Median 2.5% Bound 97.5% Bound

A
February 2017 95.9% 95.4% 96.4%
February 2018 96.0% 95.5% 96.5%

B
February 2017 95.5% 94.5% 96.4%

March 2018 95.6% 94.6% 96.4%

Accuracy rates per class were also consistently high across the classes, with more than 84.7%
and 93.5% median accuracy rates for user’s accuracy (UA) and producer’s accuracy (PA), respectively
(Tables 7 and 8). UA is the proportion of the area mapped as a particular class that matches with the
testing data, while PA is the proportion of the area that is a particular class in the testing data and
is mapped correctly as that class [56]. Excluding water, the highest average accuracy was 98.4% for
rubber (PA), while the lowest average was 84.7% for betel nut (UA).
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Table 7. Median user’s accuracy per class across the four images.

Area Month Year Oil Palm Rubber Betel Nut Forest Non-Forest 1 Bare Land Water

A
February 2017 95.1% 96.0% 84.7% 96.4% 98.1% 96.1% 97.5%
February 2018 94.8% 97.1% 86.8% 96.9% 97.8% 96.1% 95.9%

B
February 2017 94.6% 95.2% 93.5% 97.1% 94.8% 97.0% 94.5%

March 2018 93.5% 96.5% 91.8% 96.9% 97.0% 96.0% 91.9%
1 Shrub, regrowth, other vegetation.

Table 8. Median producer’s accuracy per class across the four images.

Area Month Year Oil Palm Rubber Betel Nut Forest Non-Forest 1 Bare Land Water

A
February 2017 93.8% 96.6% 97.5% 97.0% 96.1% 96.4% 99.4%
February 2018 94.8% 98.1% 98.1% 96.9% 96.0% 94.9% 99.3%

B
February 2017 94.6% 94.6% 94.4% 95.6% 95.2% 95.9% 97.7%

March 2018 93.5% 98.4% 94.1% 94.5% 94.0% 96.9% 94.0%
1 Shrub, regrowth, other vegetation.

Although the overall accuracy showed that more than 95% of reference data used for validation
was correctly classified, by manually investigating the imagery, we found that some areas we knew to
be young rubber plantations were classified as shrubs. Furthermore, the areas with dark shadows of
trees, rubber plants, or shrubs were sometimes classified as oil palm, along with the edges of rubber
plantations or shrubs. Conversely, some oil palm plantations with less shadow contrast (e.g., oil palm
plantations that have been poorly weeded and contain shrubs between the trees) were classified as
rubber or shrubs. These misclassifications tend to occur more in the larger area (Area A) and also in
the area further from the closest reference data.

3.2. Area Change with Sentinel-2

The area changes from 2017 to 2018 were examined by considering the differences between the
years, compared to the spread of values from the 1000 iterations. Figure 7 shows boxplots for each area
in 2017 and 2018: the median value of the area size (hectare) of each class, the minimum and maximum
values, and the 25th and 75th percentiles indicating 50% of the distribution of the data. We considered
it likely that there was a significant change if there was no overlap in the interquartile ranges of the
two sets of data (represented graphically as no overlap in the box portion of the boxplots in Figure 7).
In Area A, the changes were significant for three classes: rubber, betel nut, and bare land. In Area B,
most of the classes show differences in area, except for forest and water classes (Figure 7).

Taking the median values of the results, in Area A, bare land increased by 24%. This indicates the
clearing of trees between 2017 and 2018, which seems to be accompanied by decreases in betel nut and
shrub areas. The rubber plantations also showed a decline of 10%; however, the visual interpretation
shows a clear increase of rubber, especially in the south of Area A. This may be due to an overestimation
of rubber plantations in 2017, as most of the rubber plantations were young, making them difficult
to distinguish from other classes, especially shrubs, resulting in more pixels classified as rubber
sporadically across the area, as well as around the edges of various vegetation types.

In Area B, shrub area and oil palm plantations increased by 17% and 11%, respectively. It should
be noted that increases in plantations do not indicate planting of the crop between 2017 and 2018,
as such new plantations are more likely to be classified as bare land or shrubs. Rather, the increases
show the growth of crops that were planted a few years earlier, to the point where they become
detectable. The rubber plantations also show an increase of 8%. Similarly to Area A, most of the rubber
plantations were young in 2017, and the classified map shows a widespread increase of rubber in 2018.
These increases in plantations and shrubs are consistent with a decrease in bare land.
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4. Discussion

The main advantage of Sentinel-2 (S2) data is its multispectral instruments with 13 bands,
which we believe was the main factor in achieving high accuracy rates (Figure S1). Therefore, for the
purpose of classification, it is not necessary to have a spatial resolution sufficient to see individual trees
in order to differentiate tree crops. In fact, the level of accuracy achieved in this study (>95%) is higher
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than the average accuracy rates achieved with hyperspatial images with object-based classification
methods [14–16].

The high spatial resolution of S2, at 10 to 20 m, should be sufficient to classify even very small
plantations, making it the ideal tool for mapping fragmented landscapes. While this study used the
20 m spatial resolution for classification, using lower spatial resolutions will likely achieve an even
higher accuracy, depending on the purpose of classification and the type (and size distributions) of
plantations in the area. In addition, more texture indices may improve the performance of the classifier.

A close examination of the maps, however, revealed limitations of classification accuracy when
classifying a large area. The difficulty in classifying the area without reference data nearby implies
that more reference data are necessary. However, adding more data will be limited, depending on the
computation capacity of the program used. Therefore, the target area has to be limited to a certain
extent, considering the computational burden, time, and labour, when classifying complex landscapes.

Furthermore, the levels of maturity or growth of plantations in the reference data affect the ability
of the classifier, as evidenced by the impacts of young rubber plantations in 2017. As young plantations
tend to confuse the classifier, it is recommended that the year or area where sufficient reference data
with mature plantations are available is selected, and it should be accepted that plantations of particular
species will only become visible in the classification after a few years of growth. While it is possible to
classify crops like betel nut plantations that exist in small patches made of small trees, it remains as a
challenge to classify young plantations themselves.

It is also important to note that the results are sensitive to each and every reference data point,
which are entirely based on the judgement and skill of the interpreter. In addition to a priori knowledge
of the area, precision and meticulousness in selecting reference data is required, especially when
classifying complex landscapes at a high resolution. In this study, reference data were selected from
where the interpreter can be certain about the class based on the images and knowledge of the area.
Therefore, by excluding the areas with possibly mixed classes where they are difficult to classify,
the reported accuracy may be higher than reality. This could be fixed by creating a test dataset from
random, rather than a selection of ‘ideal’, points. However, the difficulty here is that error would then
exist in the test dataset, confusing the interpretation of results.

5. Conclusions

Sentinel-2 (S2) data can successfully classify complex landscapes with small plantations, forests,
and shrubs with more than a 95% overall accuracy against independent test data. While different
trees crops are not visibly distinguishable in S2 images, when trained with reference data, S2 can
classify small plantations such as rubber and betel nut trees with more than a 94% and 85% accuracy,
respectively. However, quantifying the changes between 2017 and 2018 presented a challenge due to
the dominance of young rubber plantations in 2017 in these particular study areas. The interpretation
of the results is therefore limited to: the increase of bare land in Area A, due to the clearing of betel and
rubber trees; and the decrease of bare land in Area B due to the increase of shrubs, oil palm, and rubber
plantations, which are likely to have been planted a few years earlier. The results show a contrast in
the level of activities in tree clearing and the trend of rubber plantations in two areas.

The accuracy results indicate the strength of Sentinel-2’s multispectral bands in producing accurate
classifications of similar land cover classes at a high (20 m) resolution. However, it should be noted
that a large amount of reference data is required to classify complex landscapes with confidence,
which restricts the size of the area to be classified, given limitations in terms of the collection of training
points and the analysis of data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/11/1693/s1:
Figure S1: Spectral bands per class; and Google Earth Engine code for classification using Sentinel-2 (S2) data with
reference data from UAV and WV3 for February 2017 and February and March 2018 in Areas A and B.
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