‘| Python Programming for the Absolute
Beginner
by Michael Dawson ISBN:1592000738

Premier Press © 2003

With this text, you will acquire the skills that
you need for more practical Python
programming applications, and learn how
these skills can be put to use in real-world
scenarios.

@

Table of Contents

Python Programming_for the Absolute Beginner
Introduction
_Getting Started: The Game over

Chapter 1
Program
Chapter 2 _Types, Var_la_bles, and Simple I/0O: The
Useless Trivia Program
Branching, while Loops, and Program
Chapter 3 Planning: The Guess My Number Game
for Loops, Strings, and Tuples: The
Chapter 4 Word Jumble Game
Chapter 5 - Lists and Dictionaries: The Hangman

Game
Chapter 6 -Functions: The Tic-Tac-Toe Game

_Files and Exceptions: The Trivia
Challenge Game

Chapter 8 -Software Objects: The Critter

Chapter 7

Caretaker Program

Object-Oriented Programming: The
Blackjack Game

GUI Development: The Mad Lib
Program

Chapter 11 - Graphics: The Pizza Panic Game

_Sound, Animation, and Program
Chapter 12 Development: The Astrocrash Game

Appendix A - LiveWires Reference
Index

List of Figures

List of Tables

List of Sidebars

@ CD Content

Chapter 9 -

Chapter 10 -

Back Cover

If you are new to programming with Python and are
looking for a solid introduction, this is the book for
you. Developed by computer science instructors,
books in the for the absolute beginner series teach
the principles of programming through simple game
creation. You will acquire the skills that you need for
more practical Python programming applications and
you will learn how these skills can be put to use in
real-world scenarios. Best of all, by the time you
finish this book you will be able to apply the basic
principles you’ve learned to the next programming
language you tackle.

With the instructions in this book, you’ll learn to:

Build, slice, and index strings

Read from, and write to, text files

Create and manipulate sprites

Tackle object-oriented programming

Create a GUI

Work with sound and music and create
animation

About the Author

Michael Dawson is a writer who has worked as both
a programme. He has written for several television
shows, including a sitcom and an animated series.
Michael earned his bachelor's degree in Computer
Science from the University of Southern Californai.

Python Programming for the Absolute
Beginner
MICHAEL DAWSON

Premier

Pl

Press

Copyright © 2003 by Premier Press, a division of Course
Technology.

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or
retrieval system without written permission from Premier Press,
except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of
Premier Press and may not be used without written permission.

All trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support.
Please contact the appropriate software
manufacturer 's technical support line or Web site for
assistance.

Premier Press and the author have attempted through-out this book
to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier
Press from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy,

adequacy, or completeness of any information and is not responsible
for any errors or omissions or the results obtained from use of such
information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed
since this book went to press.

ISBN: 1-59200-073-8

Library of Congress Catalog Card Number: 2003104024
Printed in the United States of America
0304050607BH10987654321

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

SVP, Retail and Strategic Market Group: Andy Shafran
Publisher: Stacy L. Hiquet

Senior Marketing Manager: Sarah O 'Donnell
Marketing Manager: Heather Hurley

Manager of Editorial Services: Heather Talbot
Acquisitions Editor: Todd Jensen

Associate Marketing Manager: Kristin Eisenzopf
Technical Reviewer: Greg Perry

Retail Market Coordinator: Sarah Dubois

Copy Editor: William McManus

Interior Layout: Argosy Publishing

Cover Design: Mike Tanamachi

CD-ROM Producer: Keith Davenport

Indexer: Sharon Shock

Proofreader: Darla Bruno

To my parents, who have read everything I've ever written
Acknowledgments

Writing a book is like giving birth—and | have the stretch marks of
the brain to prove it. So, | want to thank all the people who helped
me bring my little bundle of joy into this world.

Thanks to Todd Jensen for being such a terrific editor. | appreciated
your patience, encouragement, and understanding.

Thanks to Edalin Michael for leading the team at Argosy Publishing. |
appreciated all of your efforts—especially as we got down to the
wire.

Thanks to Bill McManus for his copyediting. | always appreciated
your suggestions and your eagle eye.

Thanks to Greg Perry for his technical editing (and for your non-
technical suggestions t00).

Thanks to Andy Harris for setting such a fine example with this book
series. | hope | lived up to the standards.

| also want to thank Pete Shinners, author of Pygame, and all the
folks who contributed to LiveWires. Because of all of you, writing
multimedia programs (especially games!) is now within reach of a
new Python programmer.

Last, and certainly not least, | want to thank Matt for his audio
expertise, Chris for his musical expertise, and Dave for wearing a
chef's hat.

About the Author

Michael Dawson is a writer who has worked as both a programmer
and a computer game designer. He has written for several different
television shows, including a sitcom and an animated series. Michael
earned his bachelor's degree in Computer Science from the
University of Southern California. This is his first book.

Introduction

Staring back at me on the screen was an image | recognized: a face
—my face. Grainy and pixilated, it was still me. | watched with
detached curiosity as my expression twisted and contorted beyond
human limits until finally, an alien embryo burst from my skull. A
voice behind me said, "You wanna see it again?"

No, this wasn't some horrible dream, it was my job. | worked at a
company producing and designing computer games. | also got to
"star" in our first release, an adventure game where the player clicks
me around the screen. And if the player fails to solve the game in
time . . . well, I think you know how that turns out. I've also worked
as a programmer for a major Internet services company, traveling to
sites around the country. And while those two lines of work may
seem quite different, the basic skills necessary to succeed in each
started to take shape while | wrote simple games on my home
computer as a kid.

The goal of this book is to teach you the Python programming
language, learning to program the same way | did: by creating
simple games. There's something more exciting about learning to
program by writing software that's fun. And even though the
examples are entertaining, you'll still see some serious
programming. | cover all of the fundamental topics you'd expect from
an introductory text and then some. In addition, | point out concepts
and techniques that you can apply to more mainstream projects.

If you're new to programming, you've made the right choice. Python
is the perfect beginners' language. It has a clear and simple syntax

that will get you writing useful programs in short order. Python even

has an interpreted mode, which offers immediate feedback, allowing
you to test out new ideas almost instantly.

If you've done some programming before, you've still made the right
choice. Python has all the power and flexibility you'd expect from a

modern, object-oriented programming language. But even with all of
its power, you may be surprised how quickly you can build programs.
In fact, ideas translate so quickly to the computer, Python has been
called "programming at the speed of thought."

Like any good book, this one starts at the beginning. The first thing |
cover is installing Python under Windows. Then, | move through
concepts, one step at a time, by writing small programs to
demonstrate each step. By the end of the book, I'll have covered
such fancy-sounding topics as data structures, file handling,
exceptions, object-oriented design, and GUI and multimedia
programming. | also hope to show you how to design as well as
program. You'll learn how to organize your work, break problems
down into manageable chunks, and refine your code.

You'll be challenged at times, but never overwhelmed. Most of all,
you'll have fun while learning. And in the process, you'll create some
small, but cool computer games.

Throughout the book, I'll throw in a few other tidbits, notably the
following:

HINT These are good ideas that experienced programmers like
to pass on.

TRAP There are a few areas where it's easy to make a mistake.
I'll point them out to you as we go.

TRICK These will suggest techniques and shortcuts that will
make your life as a programmer easier.

O
IN THE REAL WORLD

As you examine the games in this book, I'll show you how the
concepts are used for purposes beyond game development.
|

Challenges

At the end of each chapter, I'll suggest some programs that you can
write with the sKkills you've learned so far. This should help you start

writing your own programs.

Chapter 1: Getting Started: The Game over
Program

® Download CD Content

Overview

Programming basically is getting your computer to do stuff. This is
not the most technical definition, but it's a pretty accurate one. By
learning Python, you'll be able to create a program, whether it's a
simple game, a small utility, or a business product with a full-featured
graphical user interface (GUI). It'll be all yours, something you made,
and it will do just what you told it to. Programming is part science,
part art, and one great adventure. This chapter starts you on your
Python programming journey. In it, you'll learn

= What Python is and what's so great about it

How to install Python on your computer

How to print text to the screen

What comments are and how to use them

How to use Python's integrated development environment
(IDLE) to write, edit, run, and save your programs

Examining the Game Over Program

The chapter project, Game Over, displays the two most infamous
words in computer gaming: "Game Over". Figure 1.1 shows the
program in action.

Figure 1.1: The all-too familiar words from a computer
game.

Figure 1.1 shows what's called a console window, a window that can
display only text. Though not as nice as windows with a Graphical
User Interface (GUI), console applications are easier to write and a
good place for the beginning programmer to start.

The Game Over program is pretty simple; in fact, it's about the
simplest Python program you can write. That is the reason it is
presented in this chapter. By completing such a modest program,
you cover all the setup work required to start programming in
Python, such as installing the language on your system. You also
work through the entire process of writing, saving, and running a
program. Once you finish all of this groundwork, you'll be ready to
tackle larger programs with some real meat to them.

O
IN THE REAL WORLD

The Game Over program is really just a variation of the traditional
Hello World program, which displays the words "Hello World" on
the screen. The Hello World program is often the first program a

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig30_01_0.jpg

beginning programmer writes in order to dip his or her toe in a
new language. It's such a common first program that Hello World

is an understood term in the programming world.
___|

Introducing Python

Python is a powerful yet easy to use programming language
developed by Guido van Rossum, first released over a decade ago
in 1991. With Python, you can quickly write a small project. But
Python also scales up nicely and can be used for mission-critical,
commercial applications.

HINT If you check out any Python documentation, you may
notice an alarming number of references to spam, eggs,
and the number 42. These references all pay homage to
Monty Python, the English comedy troupe that inspired
Python's name. Even though Guido van Rossum named
Python after the group, the official mascot of the language
has become a cute, little, green snake. (Which is really for
the best, since it would be pretty hard to fit six British
comedians' faces on a program icon anyway.)

There are a lot of programming languages out there. What's so great
about Python? Let me tell you.

Python Is Easy to Use

The major goal of any programming language is to bridge the gap
between the programmer's brain and the computer. Most of the
popular languages you've probably heard of, like C, C++, C#, and
Java, are considered high-level languages, which means that they're
closer to human language than machine language. And they are. But
Python, with its clear and simple rules, is even closer to English than
any of these. Creating Python programming is so straightforward that
it's been called "programming at the speed of thought."

Python's ease of use translates into productivity for professional
programmers. Python programs are shorter and take less time to
create than programs in many other popular languages. In fact,
Python programs are typically 3 to 5 times shorter than equivalent

Java programs, and often 5 to 10 times shorter than equivalent C++
programs. There's even some evidence to suggest that a single
Python programmer can finish in two months what takes two C++
programmers more than a year to complete.

Python Is Powerful

Python has all the power you'd expect from a modern programming
language. By the end of this book, you'll be able to write programs
that employ a GUI, process files, and incorporate multimedia
elements like graphics, sound, and animation.

Python is powerful enough to attract hundreds of thousands of
programmers from around the world as well as companies such as
Google, Hewlett-Packard, IBM, Industrial Light + Magic, Microsoft,
NASA, Red Hat, Verizon, Xerox, and Yahoo!. Python is also used as
a tool by professional game programmers. Activision, Electronic Arts,
and Infogrames all publish games that incorporate Python.

Python Is Object-Oriented

If you know anything about programming, you've probably heard the
term object-oriented programming, or OOP for short. It's certainly a
hot topic, and OOP are three letters every programmer wants on
their resume. OOP is basically a shift in the way programmers think
about solving problems with computers. It embodies an intuitive way
of representing information and actions in a program. It's not the only
way to write programs, but for most large projects, it's the way to go.

Languages like C#, Java, and Python are all object-oriented. But
Python does them one better. In C# and Java, OOP is not optional.
This makes short programs unnecessarily complex, and it requires a
bunch of explanation before a new programmer can do anything
significant. Python takes a different approach. In Python, using OOP
techniques is optional. You have all of OOP's power at your disposal,
but you can use it when you need it. Got a short program that

doesn't really require OOP? No problem. Got a large project with a
team of programmers that demands OOP? That'll work too. Python
gives you power and flexibility.

Python Is a "Glue" Language

Python can be integrated with other languages such as C, C++, and
Java. This means that a programmer can take advantage of work
already done in another language while using Python. It also means
that he or she can leverage the strengths of other languages, such
as the extra speed that C or C++ can offer, while still enjoying the
ease of development that's a hallmark of Python programming.

Python Runs Everywhere

Python runs on everything from a Palm to a Cray. And if you don't
happen to have a supercomputer in the den, you can still run Python
on Windows, DOS, Macintosh®, or Linux machines. And that's just
the top of the list. Python can run on practically every operating
system in existence.

Python programs are platform independent, which means that
regardless of the operating system you use to create your program,
it'll run on any other computer with Python. So if you write a game on
your PC, you can e-mail a copy to your friend who runs Linux or to
your aunt who has a Mac, and the program will work (as long as your
friend and Aunt have Python on their computers).

Python Has a Strong Community

A lot of people use Python, and the community is growing all the
time. In fact, the traffic at the comp.lang.python newsgroup,
where all kinds of people come together to discuss Python, doubles
almost every two years.

Now, most programming languages have a dedicated newsgroup.
But Python also has something called the Python Tutor mailing list, a
more informal way for beginning programmers to ask those first
questions. The list is at
http://mail.python.org/mailman/listinfo/tutor.
Although the list is called Tutor, anyone, whether novice or expert,
can answer questions.

There are other Python communities focused on different areas, but
the common element they share is that they tend to be friendly and
open. That only makes sense since the language itself is so
approachable for beginners.

Python Is Free and Open Source

Python is free. You can install it on your computer and never pay a
penny. But Python's license lets you do much more than that. You
can copy or modify Python. You can even resell Python if you want
(but don't quit your day job just yet). Embracing open-source ideals
like this is part of what makes Python so popular and successful.

http://mail.python.org/mailman/listinfo/tutor

Setting Up Python on Windows

Before you can jump in and write your first Python program, you
need to get the language on your computer. But don't worry, because
everything required to install Python on Windows 95/98/Me/XP/2000

is on the CD-ROM that is included with this book.

Installing Python on Windows

Okay, go grab the CD-ROM and follow these steps:
1. Insert the CD-ROM into your computer. The CD-ROM

comes with a bunch of goodies, but first and foremost, it

has Python on

2.2.3 from

it.

. Run the Python Windows Installer. You can find the Python
Windows installer, Python-2.2.3.exe, on the CD-ROM,
under the Software section. Click on the Install Python

this CD-ROM link to copy the file to your

computer. Then, go ahead and run it. It's a standard
installer and works like any other program installation
you've done before. Figure 1.2 shows it in action.

42 python 2.2.3 Installstien

Select Destination Directory

Plaate qubact & chectony bo Ba Python 7 7 3 bles

L \Pyfoni
£ "ot _tng de
= Adobe Al
= oo

Figure 1.2: Your computer is soon to be home to

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig34_01_0.jpg

Python.

3. Accept the default configuration. Once you're done, you
have Python on your computer. Specifically, you have
version 2.2.3 in the C:\Python22 folder.

HINT If you're the kind of person who always has to have the
latest and greatest, you can visit the official Python Web
site and download the most recent release. Go to
http://www.python.orqg. Under Special Topics, click
the link of the latest release that doesn't say "alpha" next
to it. That'll take you to the download section for that
release. Download the Windows installer. Then follow the
preceding installation directions.

http://www.python.org/

Setting Up Python on Other Operating
Systems
Python runs on literally dozens of other operating systems. If you're

running something other than Windows, you'll need to visit the official
Python Web site at http: //www.python.org, shown in Figure

Tty (Poyesty oy T AMMOENCERIENTS
= Putlen T Mol wia rebeaied om Do 30, 2000 fn pome e goner <)
o PorCem [2000 Qularch - 38, 300} was oSnady smomced S S

Hate st e pabominmen daie e e been snied, greg oo mal Tasaery 18
S00Y £ wabarak e rurrenarae

2 wntard

u FornFothem 200N exd b bedd o Churberon [Frigom] on Dare 1207

o We've peleaasd Poabap 2 7 1 on Ovisbes Ll Thandcs 1o 6wl Lelpad ol Sae s e

Figure 1.3: Visit Python's home page to download the latest
version of Python and read loads of information about the
language.

HINT If Linux is your operating system, you may already have
Python on your computer. To check, try running python
from the command prompt. If that doesn't work, then you'll
have to install Python like everybody else.

Under Special Topics, click the link of the latest Python release that
doesn't say "alpha" next to it. That'll take you to the download
section for that release. Follow the links for your particular operating
system.

HINT If you own a Mac, then even after visiting Python's official
home, you owe it to yourself to check out Jack's

http://www.python.org/
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig35_01_0.jpg

MacPython page at
http://www.cwi.nl/~jack/macpython.html. Jack
Jansen, the guy who runs this page, maintains Python for
the Mac and has a lot of excellent information on how to
install Python under the different versions of Mac OS.

http://www.cwi.nl/~jack/macpython.html

Introducing the Python IDLE

Python comes with a GUI-integrated development environment
called IDLE. A development environment is a set of tools that makes
writing programs easier. You can think of it as a word processor for
your programs. But it's even more than a place to write, save, and
edit your work. IDLE provides two modes in which to work: an
interactive mode and a script mode.

HINT MacPython has its own integrated development
environment called IDE. It works a little differently than
IDLE, but allows you to do the same basic things.

Programming in Interactive Mode

Finally, it's time to get your hands dirty with some actual Python
programming. The quickest way is to start Python in interactive
mode. In this mode, you can tell Python what to do and it'll do it
immediately.

Writing Your First Program

To begin your interactive session, from the Start menu, choose
Programs, Python 2.2, IDLE (Python GUI). You should see
something very similar to Figure 1.4 on your screen.

Die [[etug Eeckes el

Figure 1.4: Python in an interactive session, awaiting your
command.

TRAP If you have an trouble running IDLE, you may need to
modify your Windows System Path—a list of the
directories where your computer looks to find program
files. You'll want to add the following to the end of your
current Path: ;c:\Python22;c:\Program
Files\Tcl;c:\Program Files\Tcl\bin. The
process of modifying your Path is different for each
version of Windows, so check your Windows Help
documentation for Environment Variable (since the Path
is one of your Environment Variables).

This window, also called the Python Shell, may look a little different
from the screen shot in Figure 1.4. At the command prompt (>>>),

type: print "Game Over". The interpreter responds by displaying

Game Over

on the screen. Ta da! You've written your first Python program!
You're a real programmer (with a little more to learn, but that goes for
all of us).

Using the print Statement

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig36_01_0.jpg

Take a look again at the line you entered, print "Game Over".
Notice how straight-forward it is. Without knowing anything about
programming, you could have probably guessed what it does. That's
Python in a nutshell. It's concise and clear. You'll appreciate this
even more as you learn how to do more complex things.

The print statement displays whatever text you type between the
pair of quotes. You can also use it by itself to print a blank line.

Learning the Jargon

Okay, time to learn some jargon. Now that you're a programmer, you
have to throw around those fancy terms that only programmers
understand. The line you entered in the interpreter is considered a
statement. In English, a statement is a complete thought. In Python,
a statement is a complete instruction. It does something. So, print

"Game Over" is a statement.

The statement you entered is made up of two parts. The first part,
print, is @a command. It's like a verb. It tells the computer to take an
action. In this case, it tells the computer to display text on the screen.
Python is case-sensitive and commands are in lowercase. So,
print "Game Over" will work, but Print "Game Over" and

PRINT "Game Over" won't.

The second part of the statement, "Game Over", is an expression.
It doesn't do something. It is something. A good way to think about it
is that an expression has a value, like the letters in the phrase
"Game Over", or even the number 17. An expression can also
evalute to some value. For example, 2 + 5 is an expression that
evalutes to 7.

In this particular case, you can be even more specific by saying that
"Game Over" is a String expression. This just means that it's a
series of characters, like the ones on your keyboard. "String" may
seem like an odd name—"text" or "words" might be more clear—but

the name comes from the idea that text is a string or a series of
characters. (Not only do you know jargon, but you have some trivia
under your belt now too.)

Now that you're a programmer, you can tell someone that you wrote
some Python code. Code means programming statements. You can
use it as a verb, too; you can say that you were up all night eating
Doritos, drinking Jolt Cola, and coding like crazy.

Generating an Error

Computer's take everything literally. If you misspell a command by
even just one letter, the computer will have absolutely no idea what
you mean. For example, at the interactive prompt | typed primt
"Game Over". The interpret responded with

SyntaxError: invalid syntax

Translated to English, the interpreter is saying "Huh?!" It doesn't
understand primt. As a human being, you can ignore my typo and
know what | meant. Computers are not so forgiving. This error in my
statement, called a bug in a program, gets me an error message and
nothing else printed on the screen. Specifically, this is a syntax error,
meaning the computer doesn't recognize something. Syntax errors
are usually just caused by a typo and are an easy fix.

Understanding Color Coding

You probably noticed that words on the screen are printed in different
colors. This color coding helps you quickly understand what you've
typed by visually categorizing it. And there is a method to this
coloring madness. Special words, like print, are displayed in
orange. Strings, like "Game Over", are in green. And the output of
your statements—what the interpreter prints as a result of what you
type—is in blue. As your write larger programs, this color scheme will
come in really handy. It will help you take in your code in one glance.

Programming in Script Mode

Using the interactive mode gives you immediate feedback. This is
great because you can see the results of a statement right away. But
it's not designed to create programs you can save and run later.
Luckily, Python's IDLE also offers a script mode, in which you can
write, edit, load, and save your programs. It's like a word processor
for your code. In fact, you can perform such familiar tasks as find
and replace, and cut and paste.

Writing Your First Program (Again)

You can open a script mode window from the interactive window
you've been using. Select the File menu, then New Window. A new
window will appear that looks just like the one in Figure 1.5.

[[Wnckes ek

Figure 1.5: Your blank canvas awaits. Python is ready for you to
write a program in script mode.

Now type print "Game Over" and press Enter. Nothing happens!

That's because you're in script mode. What you're doing is writing a
list of statements for the computer to execute later. Once you save
your program, you can run it.

Saving and Running Your Program

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig39_01_0.jpg

To save your program, select File, Save As. | gave my copy the
name ® game over.py. 1o make it easy to get to later, | saved it
on my desktop.

To run my Game Over program, | simply select Edit, Run Script.
("Script," by the way, is just another name for a program.) Then, the
interactive window becomes my active window and displays the
results of my program. Take a look at my desktop in Figure 1.6.

=

b

Figure 1.6: The results of running the Game Over program
through IDLE.

You'll notice that the interactive window contains the old text from
before. It still has the statement | entered while in interactive mode,
print "Game Over", and the results, the message Game Over.
Below all of that, you'll see the results of running the program from
script mode: the message Game Over.

TRAP To run your program from IDLE like | just did, you need to

first save your program. If you don't, IDLE will give you a
Not Saved dialog box.

TRICK Interactive mode is great for trying out a small idea
quickly. Script mode is perfect for writing programs you

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig40_01_0.jpg

can run later. Using both modes together is a great way
to code.

Even though | need only script mode to write a program,
| always keep an interactive window open while | code.
As | write my programs in script mode, | jump over to the
interactive window to try out an idea or to be sure | have
the usage of a command just right.

The script window is where | craft my final product. The
interactive window is like a scratch pad where | can think
and experiment. Using them together helps me to write
better programs more quickly.

Back to the Game Over Program

So far, you've run a version of the Game Over program through
IDLE. While you're in the process of writing a program, running it
through IDLE is a fine way to go. But I'm sure you want your finished
products to work like any other program on your computer. You want
a user to simply double-click your program's icon to launch your
program.

If you were to try to run the version of the Game Over program I've
shown so far in this way, you'd see a window appear and, just as
quickly, disappear. You'd probably think that nothing happened. But
something would have happened. It just would have happened too
fast for you to notice. The program would run, Game Over would be
displayed, and the program would end, all in a split second. What the
program needs is a way to keep its console window open.

This updated version of Game Over, the final chapter project, keeps
the program window open so the user can see the message. After
displaying Game Over, the program also displays the message
Press the enter key to exit. Once a user presses the
Enter key, the program exits, and the console window disappears.

I'll walk you through the code one section at a time. But |
recommend that you load the program from the CD-ROM and take a
look at it. Better yet, type in the program yourself and run it.

Using Comments

The following are the first three lines of the program:

Game Over
Demonstrates the print command
Michael Dawson - 12/26/02

These lines aren't statements for the computer to execute. In fact,
the computer totally ignores them. These notes, called comments,

are for the humans. Comments explain programming code in English
(or any other language for that matter). Comments are invaluable to
other programmers and help them to understand your code. But
comments are also helpful to you. They remind you of how you
accomplished something that may not be clear at first glance.

You create a comment with the number sign symbol, #. Anything
after this symbol (except in a string) on the rest of the line is a
comment. Comments are ignored by the computer. Notice that
comments are colored red in IDLE to make them stand out.

It's a good idea to start all of your programs with a few comments,
like | did here. It's helpful to list the title of the program, its purpose,
the programmer, and the date the program was written.

You may be thinking: "Why have comments at all? | wrote the
program, so | know what it does." That may be true a month after
you write your code, but experienced programmers know that after a
few months away from a program, your original intentions may not
be as clear. If you want to modify an old program, a few well-placed
comments may make your life much easier.

IN THE REAL WORLD

Comments are even more helpful to another programmer who
needs to modify a program you wrote. This kind of situation
comes up a lot in the world of professional programming. In fact,
it's estimated that 80 percent of a programmer's time and effort go
toward maintaining code that already exists. It's not uncommon for
a programmer to be charged with the task of modifying a program
written by someone else—and there's a chance that the original
programmer won't be around to answer any questions. So, good

comments are critical.
]

Using Blank Lines

Technically, the next line in the program is blank. The computer
generally ignores blank lines; these, too, are just for the humans
reading the code. Blank lines can make programs easier to read.
Usually, | keep lines of related code together and separate sections
with a blank line. In this program, | separated the comments from the
print statement with a blank line.

Printing the String

The next line in the program should seem familiar to you:

print "Game Over"

It's your old friend, the print statement. This line, just as it does in
interactive mode, prints Game Over.

Waiting for the User

The last line of the program:

raw input ("\n\nPress the enter key to exit.")

displays the prompt, Press the enter key to exit. and waits
for the user to press the Enter key. Once the user presses the key,
the program ends. This is a nice trick to keep a console window
open until the user is done with an application.

Normally, this is about the time I'd explain just what is going on in
this line. But I'm going to keep you in suspense. Sorry. You'll have to
wait until the next chapter to fully appreciate this one line.

Summary

You covered a lot of ground in this chapter. You learned a bit about
Python and its strengths. You installed the language on your
computer and gave it a little test drive. You learned to use Python's
interactive mode to instantly execute a programming statement. You
saw how to use the script mode to write, edit, save, and run longer
programs. You learned how to print text to the screen and how to
wait for the user before closing a program's console window. You laid
all the ground-work necessary for your adventure in Python
programming.

Challenges

1. Create a syntax error of your very own by entering your
favorite ice cream flavor in interactive mode. Then, make
up for your misdeed and enter a statement that prints the
name of your favorite ice cream.

2. Write and save a program that prints out your name and
waits for the user to press the Enter key before the
program ends. Then, run the program by double-clicking its
icon.

3. Write a program that prints your favorite quote. It should
give credit to the person who said it, on the next line (hint:
use two different print statements).

Chapter 2: Types, Variables, and Simple I/O:
The Useless Trivia Program

® Download CD Content

Overview

Now that you've been introduced to the basics of saving and
executing a program, it's time to dig in and create some more. In this
chapter, you'll learn about different ways computers can categorize
and store data and, more importantly, how to use this data in your
programs. You'll even see how to get information from the user so
that your programs become interactive. Specifically, you'll learn how
to do the following:

= Use triple-quoted strings and escape sequences to gain
more control over text

= Make your programs do math
= Store data in the computer's memory
= Use variables to access and manipulate that data

= Get input from users to create interactive programs

Introducing the Useless Trivia Program

Combining the skills presented in this chapter, you'll create the
Useless Trivia program shown in Figure 2.1.

Figure 2.1: Whoa! Steve might think about a diet before he visits
the sun.

The program takes three pieces of personal information from the
user: name, age, and weight. From these mundane items, the
program is able to produce some amusing but trivial facts about the
person, such as how old the person is in dog years and how much
the person would weigh on the moon.

Though this may seem like a simple program (and it is), you'll find
that the program is more interesting when you run it because you've
had input. You'll care more about the results because they're
personally tailored to you. This holds true for all programs, from
games to business applications.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig46_01_0.jpg

Using Quotes with Strings

You saw an example of a string, "Game Over", in the previous
chapter. But strings can become much longer and more complex.
You may want to give a user several paragraphs of instructions. Or
you might want to format your text in a very specific manner. Using
quotes can help you to create strings to accomplish all of this.

Introducing the Game Over 2.0 Program

Game Over 2.0 improves upon its predecessor program, Game
Over, by displaying a more impressive version of the same message,
which tells a player that his or her computer game has come to an
end. Using single and double quotes, the result is more visually
appealing. Check out Figure 2.2 to see a sample run.

Figure 2.2: Now | get it, the game is over.

The code for the program shows that it's pretty simple to present text
using quotes in different ways:

Game Over - Version 2
Demonstrates the use of quotes in strings
Michael Dawson - 1/9/03

print "Program 'Game Over' 2.0"

print \

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig47_01_0.jpg

raw_input ("\n\nPress the enter key to exit.")

Using Quotes Inside Strings

You've seen how to create simple strings by surrounding text with
quotes. You can use either a pair of single (' ') or double quotes ("
") to create string values. The computer doesn't care. So, 'Game
Over' is exactly the same string as "Game Over". But take a look
at the first appearance of a string in the program:

print "Program 'Game Over' 2.0"

This statement uses both kinds of quotes. Check out the sample run
in Figure 2.2 again. Only the single quotes show up, because they
are part of the string, just like, for example, the letter G. But the
double quotes are not part of the string. The double quotes are like
bookends, telling the computer where the string begins and ends.
So, if you use a pair of double quotes to "bookend" your string, you

can use as many single quotes inside the string as you want. And, if
you surround your string with a pair of single quotes, you can use as
many double quotes inside the string as you like.

Once you've used one kind of quote as bookends for your string, you
can't use that type of quote inside your string. This make sense,
because once the computer sees the second appearance of the
quote that began the string, it thinks the string is over. For example,
"With the words, 'Houston, we have a problem.',
Jim Lovell became one of our most famous
astronauts." is a valid string. But, "With the words,
"Houston, we have a problem.", Jim Lovell became one of our most
famous astronauts." isn't valid, because once the computer sees the
second double quote, it thinks the string is over. So, the computer
sees the string "Wwith the words, " followed by the word,
Houston. And since the computer has no idea what Houston is, you
get a nasty syntax error.

Continuing a Statement on the Next Line

The next line of code, print \, looks awfully lonely. And it should.
It's not a complete statement. Generally, you write one statement per
line. But you don't have to. You can stretch a single statement across
multiple lines. All you have to do is use the line-continuation
character, \ (which is just a backslash). Put it anywhere you'd
normally use a space (but not inside a string) to continue your
statement on the next line. The computer will act as if it sees one
long line of code.

HINT The computer doesn't care how long a programming line
is, but people do. If a line of your code feels too long, or
would be more clear as several lines, use the line-
continuation character to split it up.

Creating Triple-Quoted Strings

Certainly the coolest part of the program is where it prints out "Game
Over" in a big block of text. The following string is responsible:

This is what's called a triple-quoted string. It's a string enclosed by a
pair of three quotes in a row. Like before, it doesn't matter which kind
of quotes you use, as long as you bookend with the same type.

As you can see, triple-quoted strings can span multiple lines. They
print on the screen exactly the way you type them. If you ever need
to print more than a few lines of text, triple-quoted strings are the
way to go.

S
IN THE REAL WORLD

If you like the letters made from multiple characters in Game Over
2.0, then you'll really like ASCII Art. ASCII Art is basically pictures
made from just the characters on your keyboard. ASCII, by the

way, stands for the American Standard Code for Information
Interchange. It's a code that represents 128 standard characters.

Through ASCII art, you can make simple messages (like | did) or
create elaborate pictures (which | can't), all with just the
characters on your keyboard. You'd be amazed at some of the
things true ASCII artists can do. For some great examples of this
art form, check out http://www.chris.com/ascii/.

By the way, this kind of art isn't new, and it didn't start with the
computer. The first recorded typewriter art dates back to 1898.

Using Escape Sequences with Strings

Escape sequences allow you to put special characters into your
strings. These give you greater control and flexibility over the text
you display. The escape sequences you'll work with are made up of
two characters: a backslash followed by another character. This may
all sound a little mysterious, but once you see a few sequences in
action, you'll realize just how easy they are to use.

Introducing the Fancy Credits Program

Besides telling a player that the game is over, a program often
displays credits, a list of all the people who worked so hard to make
it a reality. Fancy Credits uses escape sequences to achieve some
effects it just couldn't without them. Figure 2.3 shows the results.

Figure 2.3: Please, contain your applause.

The code looks a bit cryptic at first glance:

Fancy Credits
Demonstrates escape sequences
Michael Dawson 1/11/03

sound the system bell
print "\a"

print "\t\t\tFancy Credits"

print "NEAEAT AL AL AL AL AL AL AT

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig50_01_0.jpg

print "\t\t\t\tby"

print "\t\t\tMichael Dawson"

print "NMEAENE L1 VL NN AL AL NN N

print "\nSpecial thanks goes out to:"

print "My hair stylist, Henry \'The Great\', who
never says \"can\'t\"."

raw_input ("\n\nPress the enter key to exit.")

But you'll soon understand it all.

Sounding the System Bell

Upon running this program, you'll notice something different right
away. It makes noise! The very first statement in the program,

print "\a"

sounds the system bell of your computer. It does this through the
escape sequence, \a, which represents the system bell character.
Every time you print it, the bell rings. You can print a string with just
this sequence, as | have, or you can put it inside a longer string. You
can even use the sequence several times to ring the bell more than
once.

Moving Forward a Tab Stop

Sometimes you'll want to set some text off from the left margin where
it normally prints. In a word processor, you could use the Tab key.
With strings, you can use the escape sequence for a tab, \t. That's
exactly what | did in the following line:

print "\t\t\tFancy Credits"

| used the tab escape sequence, \t, three times in a row. So, when
the program prints the string, it prints three tabs and then Fancy
Credits. This makes Fancy Credits, look nearly centered in the

console window. Tab sequences are good for setting off text, as in
this program, but they're also perfect for arranging text into columns.

Printing a Backslash

If you've thought ahead, you may be wondering how you can print a
backslash if the computer always interprets a backslash as the
beginning of an escape sequence. Well, the solution is pretty simple:
just use two backslashes in a row. Each of the following two lines
prints three tabs, as a result of the three \t sequences:

print "NEAEAT AL AL AL AN AL AN AT

print "NEAEAT AL AL AL AN AL AN AT

Then, each prints exactly eight backslashes, separated by spaces.
Go ahead and count. You'll find exactly eight pairs of backslashes,
separated by spaces.

Inserting a Newline

The most useful sequence at your disposal is the newline sequence.
It's represented by \n. By using this sequence, you can insert a
newline character into your strings for a blank line where you need it.
Newlines are often used right at the beginning of a string to separate
it from the text last printed. That's what | did in the line:

print "\nSpecial thanks goes out to:"

The computer sees the \n sequence, prints a blank line, then prints
Special thanks goes out to:. This single statementis
equivalent to the following two statements:

print

print "Special thanks goes out to:"

Inserting a Quote

Inserting a quote into a string, even the type of quote you use to
bookend it, is simple. Just use the sequence \ ' for a single quote
and \ " for a double quote. They mean "put a quote here", and won't
be mistaken by the computer as a marker for the end of your string.
This is what | used to get both kinds of quotes in one line of text:
print "My hair stylist, Henry \'The Great\', who
never says \"can\'t\"."

The pair of double quotes at both ends are the bookends, defining
the string. To make the string easier to understand, look at it in parts:

= \'The Great\' printsas 'The Great'

Each \ ' sequence is printed as a single quote

\"can\'t\" printsas "can't"

Both \ " sequences print as double quotes

The lone \ ' sequence prints as a single quote

As you can see, escape sequences aren't so bad once you've seen
them in action. And they can come in quite handy. Table 2.1
summarizes some useful ones.

Table 2.1: SELECTED ESCAPE SEQUENCES

Sequence |Description

A\ Backslash. Prints one backslash.

\!' Single quote. Prints a single quote.

\" Double quote. Prints a double quote.

\a Bell. Sounds the system bell.

\b Backspace. Moves cursor back one space.

\n Newline. Moves cursor to beginning of next line.

Sequence

Description

\t

Horizontal tab. Moves cursor forward one tab stop.

TRAP A few escape sequences only work as advertised if you
run your program directly from the operating system and
not through IDLE. The escape sequences \a and \b are

good examples. Let's say | have a program that simply

prints the escape sequence \a. If | run it through IDLE, |
get a little square box printed on my screen—not what |

wanted. But if | run that same program directly from
Windows, by double-clicking the program file icon, my
computer's system bell rings just as | intended.

Concatenating and Repeating Strings

You've seen how you can insert special characters into a string, but
there are things you can do with entire strings themselves. You can
combine two separate strings into a larger one. And you can even
repeat a single string as many times as you want.

Introducing the Silly Strings Program

The Silly Strings program prints several strings to the screen. The
results are shown in Figure 2.4.

Figure 2.4: The strings on the screen appear differently than in
the program code.

Though you've already seen strings printed, the way these strings
were created is brand-new to you. Take a look at the code:

Silly Strings

Demonstrates string concatenation and repetition
Michael Dawson - 1/11/03

print "You can concatenate two " + "strings with
the '+' operator."

print "\nThis string " + "may not " + "seem terr"
+ "ibly impressive. " \

+ "But what " + "you don't know," + " is
that " + "it's one real" \

+ "1" + "y" + " long string, created from

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig54_01_0.jpg

the concatenation " \
+ "of " 4+ "thirty-two " + "different

strings, broken across " \
+ "nine lines." + " Now are you" + "
impressed?\n\n" + "See, " \

+ "even newlines can be embedded into a
single string, making™ \

+ 1A it look " + "as " _|_ "if " _|_ "it" + "'S w
+ "got 1A _I_ "to 1A \

+ "be" + " multiple strings." + " Okay, now
this " + "one " \

+ "long" + " string " + "is over!"

print \

If you really like a string, you can repeat it.
For example, who doesn't

like pie? That's right, nobody. But if you really
like it, you should

say it like you mean it:""",

print "Pie"™ * 10
print "\nNow that's good eating."

raw_input ("\n\nPress the enter key to exit.")

Concatenating Strings

Concatenating strings means joining them together, to create a
whole new string. A simple example is in the first print statement:

print "You can concatenate two " 4+ "strings with
the '+' operator."

The + operator joins the two strings, "You can concatenate
two "and "strings with the '+' operator.", together to
form a new, larger string. It's pretty intuitive. It's like adding the

strings together using the same symbol you've always used for
adding numbers.

TRAP When you join two strings, their exact values are fused
together, with no space or separator character inserted
between them. So, if you were to join the two strings
"cup" and "cake", you'd end up with "cupcake" and
not "cup cake". In most cases, you'll want to insert a

space between strings you join, so don't forget to put one
in.

The next print statement shows that you can concatenate 'till your
heart's content:

print "\nThis string " + "may not " + "seem terr"
+ "ibly impressive. " \

+ "But what " + "you don't know," + " 1is
that " + "it's one real" \

+ "1" 4+ "y" 4+ " long string, created from

the concatenation " \

+ "of " + "thirty-two " + "different
strings, broken across " \

+ "nine lines." + " Now are you" + "
impressed?\n\n" + "See, " \

+ "even newlines can be embedded into a
single string, making™ \

| " it look 1A} _|_ "aS 1A} _|_ "if 1A} _|_ "it" + "'S 1A}
+ "got 1A} + "tO 1A} \

+ "be" + " multiple strings." + " Okay, now
this " + "one " \

+ "long" + " string " 4+ "is over!"

The computer prints one long string that was created by the
concatenation of 32 individual strings. One thing you may notice is

that the string doesn't correctly wrap in the console window. So be
careful when you create super-long strings.

Suppressing a Newline

You've seen how you can add extra newlines with the \n escape

sequence. But you can also suppress a newline so that the text of
two consecutive print statements appears on the same line. All

you have to do is add a comma to the end of a print statement,
like so:

print \

If you really like a string, you can repeat it.
For example, who doesn't

like pie? That's right, nobody. But if you really
like it, you should

say it like you mean it:""",

By adding the comma at the end of this triple-quoted string, the next
text printed will appear on the same line as say it like you

mean it:.
Repeating Strings

The next new idea presented in the program is illustrated in the
following line:

print "Pie" * 10

This line creates a new string, "Pie Pie Pie Pie Pie Pie Pie
Pie Pie Pie", and prints it out. That's the string "Pie" repeated
10 times, by the way.

Like the concatenation operator, the repetition operator, *, is pretty
intuitive. It's the same symbol used for multiplying numbers on a
computer, so repeating a string with it makes sense. It's like you're

multiplying the string. You can repeat a string as many times as you
want. To repeat a string, just put the string and number of repetitions
together with the repetition operator, *.

Working with Numbers

So far, you've been using strings to represent text. That's just one
type of value. Computers let you represent information in other ways,
too. One of the most basic but most important ways is as numbers.
Numbers are used in almost every program. Whether you're writing
a space shooter game or home finance package, you need to
represent numbers some way. You've got high scores or checking
account balances to work with, after all. Fortunately, Python has
several different types of numbers to fit all of your game or
application programming needs.

Introducing the Word Problems Program

This next program uses those dreaded word problems. You know,
the kind that always seems to involve two trains leaving different
cities at the same time headed in opposite directions. . . bringing
back nightmares of junior high algebra as they're about to collide.
Well, fear not. You won't have to solve a single word problem, or
even do any math at all. | promise. The computer will do all the work.
All you have to do is press the Enter key. The Word Problems
program is just an amusing (hopefully) way to explore working with
numbers. Check out Figure 2.5 to see a sample run.

Figure 2.5: With Python, you can add, subtract, multiply, divide,
and keep track of a pregnant hippo's weight.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig57_01_0.jpg

The following is the source code for the program:

Word Problems
Demonstrates numbers and math
Michael Dawson 1/12/03

print \

If a pregnant hippo, weighing 2,000 pounds, gives
birth to a 100 pound calf,

but then eats 50 pounds of food, how much does she

Weigh?" mwn
raw input ("Press the enter key to find out.")
print "2000 - 100 + 50 =",

print 2000 - 100 + 50

print \

If an adventurer returns from a successful quest
and buys each of

6 companions 3 bottles of ale, how many bottles
does the adventurer buy?"""

raw input ("Press the enter key to find out.")
print "6 * 3 =",

print 6 * 3

print \

If a kid has 24 pieces of Halloween candy and eats
6 pieces a day,

how many days will the stash last?"""

raw input ("Press the enter key to find out.")
print "24 / 6 =",

print 24 / 6

print \

If a group of 4 pirates finds a chest full of 107
gold coins, and

they divide the booty evenly, how many coins will
be left over?"""

raw input ("Press the enter key to find out.")
print "107 % 4 =",

print 107 % 4

print \

If a restaurant check comes to 19 dollars with
tip, and you and

your friends split it evenly 4 ways, how much do
you each throw in?>"""

raw input ("Press the enter key to find out.")
print "19 / 4 =",

print 19 / 4

print "WRONG!"

raw _input ("Press the enter key for the right
answer.")

print 19.0 / 4

raw_input ("\n\nPress the enter key to exit.")

Understanding Numeric Types

The program Word Problems uses numbers. That's obvious. But
what may not be obvious is that it uses two different types of
numbers. Python allows programmers to use several different types
of numbers. The two types used in this program, and probably the
most common, are integers and floating-point numbers (or floats).
Integers are whole numbers—numbers with no fractional part. Or,
another way to think about them is that they can be written without a
decimal point. The numbers 1, 27, -100, and 0 are all examples of

integers. Floats are numbers with a decimal point, like 2.376, -99.1,
and 1.0.

You might be thinking, "Numbers are numbers. What's the big deal?"
But integers and floats can act a little differently under special
circumstances, as you'll see.

Using Mathematical Operators

With mathematical operators, you can turn your computer into an
expensive calculator. The operators should look pretty familiar. For
example, the following line

print 2000 - 100 + 50

subtracts 100 from 2000 and then adds 50 before printing the result
of 1950. Technically, it evaluates the expression 2000 - 100 +
50, which evaluates to 1950. An expression is just a sequence of
values, joined by operators, that can be simplified to another value.

The line
print 6 * 3

multiplies 6 by 3 and prints the result of 18.

The line
print 24 / 6

divides 24 by 6 and prints the result of 4.

Pretty standard stuff. But check out the next calculation:
print 107 % 4

Okay, using % as a mathematical operator is probably new to you.
Used here, the symbol % stands for modulus, which is just a fancy

way of saying, "give me the remainder." So 107 % 4 evaluates to
the remainder of 107 / 4, which is 3.

The next calculation might also make you scratch your head. The
following line produces a result of 4:

print 19 / 4

But if each person puts 4 dollars in, that's a total of only 16, not 19.
And that leaves the waitress short 3 bucks. What happened? Well,
when Python performs integer division (where all the numbers
involved are integers), the result is always an integer. So, any
fractional part is ignored. If you want floating-point division, or what
some people call true division, then at least one of your numbers
must be a floating-point number. The following line results in true
division:

print 19.0 / 4

This line prints the expected 4. 75. Now you've done true division
and made your waitress happy.

IN THE REAL WORLD

Python is an evolving language. There's a highly open process for
discussing potential changes and improvements. In fact, there's a
list of every proposed enhancement at
http://www.python.org/peps/. One change that is
definitely on its way is the end of integer division. Starting in
Python 3.0, all division will be true division. So, beginning in that
release, 3 / 4 willbe .75 and not 0.

Table 2.2 summarizes mathematical operators for integers, while
Table 2.3 summarizes mathematical operators for floating-point
numbers. Take a close look at the results of the division operator in
each table.

http://www.python.org/peps/

Table 2.2: MATHEMATICAL OPERATORS WITH INTEGERS

Operator Description Example Evaluates To
* ‘Multiplication 7 * 3 21
/ Division 7/ 3 2
& ‘Modulus 7 % 3 1
+ Addition 7 + 3 10
- Subtraction 7 - 3 4

Table 2.3: MATHEMATICAL OPERATORS WITH FLOATING-

POINT NUMBERS

Operator |Description |[Example Evaluates To

* |Mu|tip|ication 7.0 * 3.0(21.0

/ Division 7.0 / 3.0 (2.3333333333333335
% |Modu|us 7.0 % 3.0)1.0

+ Addition 7.0 + 3.0 1]10.0

- Subtraction |[7.0 - 3.0 4.0

TRAP Notice the division entry in Table 2.3. It says that 7.0

divided by 3.0 is 2.3333333333333335. While this is

pretty accurate, it's not exact. Computers tend to round
floating-point numbers. The results are fine for most
purposes. But you should be aware of this when using

floats.

Understanding Variables

Through variables, you can store and manipulate information, a
fundamental aspect of programming. Python lets you create
variables to organize and access this information.

Introducing the Greeter Program

Check out Figure 2.6 to see the results of the Greeter program.

Figure 2.6: A shout-out to all the Larry's of the
world.

From just a screen shot, the program looks like something you could
have already written. But within the code lurks the whole, new,
powerful concept of variables. Take a look:

Greeter

Demonstrates the use of a wvariable
Michael Dawson 1/13/03

name = "Larry"

print name

print "Hi, " 4+ name

raw input ("\n\nPress the enter key to exit.")

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig61_01_0.jpg

Creating Variables

A variable provides a way to label and access information. Instead of
having to know exactly where in the computer's memory some
information is stored, you use a variable to get at it. It's kind of like
calling your friend on his cell phone. You don't have to know where in
the city your friend is to reach him. You just press a button and you
get him. But before you use a variable, you have to create it, as in
the following line:

name = "Larry"

This line is called an assignment statement. It creates a variable
called name and assigns it the value "Larry". In general,
assignment statements assign a value to a variable. If the variable
doesn't exist, like in the case of name, it's created, then assigned the

value.
Using Variables

Once a variable has been created, it refers to some value. The
convenience and power of variables is that they can be used just like
their values. So the line

print name

prints the string "Larry" just like the statement print "Larry"
does. And the line

print "Hi, " + name

concatenates the values "Hi, " and "Larry" to create a new
string, "Hi, Larry.", and prints it out. The results are the same
as the results of print "Hi," + "Larry".

Naming Variables

Like the proud parent of your program, you pick the names of your
variables. For this program, | chose to call my variable name, but |
could just as easily have used person, guy, or alpha7345690876,
and the program would have run exactly the same. There are only a
few rules that you have to follow to create legal variable names.
Create an illegal one and Python will let you know about it with an
error. The following are the two most important rules:

1. A variable name can contain only numbers, letters, and
underscores.

2. A variable name can't start with a number.

In addition to the rules for creating legal variable names, the
following are some guidelines that more experienced programmers
follow for creating good variable names—because, once you've
programmed for a while, you know the chasm of difference that
exists between a legal variable name and a good one. (I'll give you
one guideline right now: Don't ever name a variable
alpha7345690876.)

= Choose desccriptiv names. Variable names should be
clear enough so that another programmer could look at the
name and have a good idea what it represents. So, for
example, use score instead of s. (One exception to this rule
involves variables used for a brief period. Often,
programmers give those variables short names, like x. But
that's fine, because by using x, the programmer clearly
conveys the variable represents a quick holding place.)

= Be consistent. There are different schools of thought about
how to write multiword variable names. Is it high score or
highScore? | use the underscore style. But it's not
important which method you use, as long as you're
consistent.

= Follow the traditions off the language. Some naming
conventions are just traditions. For example, in most
languages (Python included) variable names start with a
lowercase letter. Another tradition is to avoid using an
underscore as the first character of your variable names.
Names that begin with an underscore have special meaning
in Python.

= Keep the length in check. This may seem to go against the
first guideline: Choose descriptive names. Isn't
checking account balance a great variable name?
Maybe not. Long variable names can lead to problems. They
can make statements hard to read. Plus, the longer the
variable name, the greater the chance of a typo. As a
guideline, try to keep your variable names under 15
characters.

TRICK Self-documenting code is written in such a way that it's
easy to understand what is happening in the program
independent of any comments. Choosing good variable
names is an excellent step toward this kind of code.

Getting User Input

After appreciating all that program Greeter has to offer, you may still
be thinking, "So what?" Yes, you could write a program that does
exactly what Greeter does without going to the trouble of creating
any fancy variables. But to do fundamentally important things,
including getting, storing, and manipulating user input, you need
variables. Check out the next program, which uses input to give a
personalized greeting.

Introducing the Personal Greeter Program

The Personal Greeter program adds a single, but very cool, element
to the Greeter program: user input. Instead of working with a
predefined value, the computer lets the user enter his or her name
and then uses it to say Hi. Figure 2.7 shows off the program.

Figure 2.7: Now, name is assigned a string based on whatever
the user enters, including "Rupert”.

Getting user input isn't very hard. As a result, the code doesn't look
much different:

Personal Greeter
Demonstrates getting user input
Michael Dawson 1/13/03

name = raw input ("Hi. What's your name? ")

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig64_01_0.jpg

print name
print "Hi, " + name
raw_input ("\n\nPress the enter key to exit.")

Using the raw_input() Function

The only line that's changed is the assignment statement:

name = raw input ("Hi. What's your name? ")

The left side of the statement is exactly the same as in the Greeter
program. name is created and a value is assigned to it, just like

before. But this time, the value isn't a string | supply. It's the string
value of whatever the user enters.

On the right side of the assignment statement is a call to the function
raw_input (). A function is like a mini-program that goes off and
does some specific task. The task of raw input () is to get some
text from the user. Sometimes you give a function values to use. You
put these values, called arguments, between the parentheses. In this
case, the one argument passed to raw input () is the string "Hi.
What's your name? ".As you can see from Figure 2.7,
raw_input () uses the string to prompt the user. raw input ()
waits for the user to enter something. Once the user presses the
Enter key, raw_input () returns whatever the user typed, as a
string. That's the string that name gets.

If you're still not totally clear on how this works, think of it this way:
using raw_input () is like ordering a pizza. The raw_input ()
function is like a pizza parlor. You make a call to a pizza parlor to
place your order, and you make a call to the raw_input () function
to kick it into gear. When you call the pizza parlor, you provide
information, like "pepperoni". When you call the raw input ()
function, you pass it the argument, "Hi. What's your name?".

After you finish your call to the pizza parlor, the employees get a
pepperoni pizza to your door. And after you make your call to
raw_input (), the function returns whatever string the user
entered.

The rest of the Personal Greeter program works just like the Greeter
program. It makes no difference to the computer how name gets its
value. So the line

print name

prints the value of name. While the line

print "Hi, " + name

concatenates the "Hi, " and the value of name, and prints this new
string out. At this point, you know enough to understand the last line
in all of these console programs. The goal of the last line is to wait
for the user to press the Enter key:

raw_input ("\n\nPress the enter key to exit.")

It does exactly that through the raw input () function. Since | don't
care what the user enters, so long as he or she presses the Enter
key, | don't assign the return value of raw input () to a variable
like before. It may seem weird to get a value and do nothing with it,
but it's my option. If | don't assign the return value to a variable, the
computer just ignores it. So once the user presses the Enter key, the
program ends and the console window closes.

Using String Methods

Python has a rich set of tools for working with strings. One type of
these tools is string methods. String methods allow you to create
new strings from old ones. You can do everything from the simple,
such as create a string that's just an all-capital-letters version of the
original, to the complex, such as create a new string that's the result
of a series of intricate letter substitutions.

Introducing the Quotation Manipulation Program

According to Mark Twain, "The art of prophecy is very difficult,
especially with respect to the future." No one can accurately foretell
the future, but it's still amusing to read predictions that pundits have
made about technology. A good one is, "l think there is a world
market for maybe five computers." This was made by then IBM
chairman, Thomas Watson, in 1943. The Quotation Manipulation
program that | wrote prints this quote several ways using string
methods. (Fortunately, | was able to write this program because |
happen to own computer #3.) Take a look at the sample run in Figure
2.8.

Figure 2.8: This slightly low guess is printed several ways with
the help of string methods.

The following is the code for the program:

Quotation Manipulation
Demonstrates string methods
Michael Dawson 1/11/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig66_01_0.jpg

quote from IBM Chairman, Thomas Watson, in 1943
quote = "I think there is a world market for maybe
five computers."

print "Original quote:"

print quote

print "\nIn uppercase:"
print quote.upper ()

print "\nIn lowercase:"
print quote.lower ()

print "\nAs a title:"
print quote.title()

print "\nWith a minor replacement:"
print quote.replace("five", "millions of")

print "\nOriginal quote is still:"
print quote

raw_input ("\n\nPress the enter key to exit.")

Creating New Strings with String Methods

Though there's a new concept at work here, the code is still pretty
understandable. Take a look at the line:

print quote.upper()

You can probably guess what it does: print a version of quote in all
uppercase letters.

The line does this through the use of a string method, upper (). A
string method is like an ability a string has. So, quote has the ability

to create a new string, a capitalized version of itself, through its
upper () method. When it does this, it returns this new string, and

the line becomes equivalent to the following line:

print "I THINK THERE IS A WORLD MARKET FOR MAYBE
FIVE COMPUTERS."

Now, the line of code is never like this, but you can think of it in this
way to help you understand how the method works.

You've probably noticed the parentheses in this method call. It
should remind you of functions, which you just learned about in this
chapter. Methods are similar to functions. The main difference is that
a built-in function, like raw input (), can be called on its own. But
a string method has to be called through a particular string. It makes
no sense to just type the following:

print upper()

You kick off a method, or invokeit, by adding a dot, followed by the
name of the method, followed by a pair of parentheses, after a string
value. The parentheses aren't just for show. Just as with functions,
you can pass arguments inside them. upper () doesn't take any

arguments, but you'll see an example of a string method that does
with replace ().

The line

print quote.lower ()

invokes the lower () method of quote to create an all-lowercase-
letters version, which it returns. Then, that new, lowercase string is
printed.

The line

print quote.title()

prints a version of quote that's like a title. The title () method
returns a string where the first letter of each word is capitalized and
the rest of the string is in lowercase.

The line

print quote.replace("five", "millions of")

prints a new string, where every occurrence of "five" in quote are
replaced with "millions of".

The method replace () needs at least two pieces of information:

the old text to be replaced, and the new text that replaces it. You
separate the two arguments with a comma. You can add an optional
third argument, an integer, that tells the method the maximum
number of times to make the replacement.

Finally, the program prints quote again, with
print "\nOriginal quote is still:"

print quote

You can see from Figure 2.8 that quote hasn't changed. Remember,

string methods create a new string. They don't affect the original
one. Table 2.4 summarizes the string methods you've just seen,
along with a few others.

Table 2.4: USEFUL STRING METHODS

Method Description
upper () Returns the uppercase version of the string.
lower () Returns the lowercase version of the string.

Returns a new string where the case of each
swapcase () |letter is switched. Uppercase becomes
lowercase and lowercase becomes uppercase.

Method Description
: : Returns a new string where the first letter is
capitalize () 1
capitalized and the rest are lowercase.
Returns a new string where the first letter of
title () each word is capitalized and all others are
lowercase.
Returns a string where all the white space (tabs,
strip() spaces, and newlines) at the beginning and end

is removed.

replace (old,
new [,max])

Returns a new string where occurrences of the
string o1d are replaced with the string new. The

optional max limits the number of replacements.

Using the Right Types

You've used three different types so far: strings, integers, and

floating-point numbers. It's important to know not only which data
types are available to you, but how to work with them. If you don't,
you might end up with programs that produce unintended results.

Introducing the Trust Fund Buddy-Bad Program

The idea for the next program was to create a tool for those souls
who play all day, living off a generous trust fund. The program is
supposed to calculate a grand total for monthly expenditures based
on user input. This grand total is meant to help those living beyond
any reasonable means stay within budget so they don't ever have to
think about getting a real job. But, as you may have guessed from
the program's title, Trust Fund Buddy-Bad doesn't work as the
programmer intended. Figure 2.9 shows a sample run.

[ttt

Figure 2.9: The monthly total should be high, but not that high.
Something is wrong.

Alright, the program obviously isn't working correctly. It has a bug.
But not a bug that causes it to crash, like the syntax error you saw
last chapter. When a program produces unintended results but
doesn't crash, it has a logical error. Based on what you already
know, you might be able to figure out what's happening by looking at
the code. Here's the listing:

Trust Fund Buddy - Bad
Demonstrates a logical error

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig70_01_0.jpg

Michael Dawson - 1/14/03

print \

Trust Fund Buddy

Totals your monthly spending so that your trust
fund doesn't run out
(and you're forced to get a real job).

Please enter the requested, monthly costs. Since
you're rich, ignore pennies
and use only dollar amounts.

car = raw_input ("Lamborghini Tune-Ups: ")
rent = raw input ("Manhattan Apartment: ")
jet = raw_ input ("Private Jet Rental: ")
gifts = raw input ("Gifts: ")

food = raw input ("Dining Out: ")

staff = raw input ("Staff (butlers, chef, driver,
assistant): ")

guru = raw_input ("Personal Guru and Coach: ")
games = raw_input ("Computer Games: ")

total = car + rent + jet + gifts + food + staff +
guru + games

print "\nGrand Total: " + total

raw_input ("\n\nPress the enter key to exit.")

It's okay if you don't see the problem right now. I'll give you one more
hint, though. Take a look at the output in Figure 2.9 again. Examine
the huge number that the program prints as the grand total. Then

look at all the numbers the user entered. Notice any connection?
Okay, whether you do or don't, read on.

Tracking Down Logical Errors

Logical errors can be the toughest bugs to fix. Since the program
doesn't crash, you don't get the benefit of an error message to offer
a clue. You have to observe the behavior of the program and
investigate the code.

In this case, the program's output tells the story. The huge number is
clearly not the sum of all the numbers the user entered. But, by
looking at the numbers, you can see that the grand total printed is a
concatenation of all the numbers. How did that happen? Well, if you
remember, the raw _input () function returns a string. So each
"number"” the user enters is treated like a string. Which means that
each variable in the program has a string value associated with it.
So, the line

total = car + rent + jet + gifts + food + staff +
guru + games

is not adding numbers. It's concatenating strings!

IN THE REAL WORLD

The + symbol works with pairs of strings as well as pairs of
integers. Using the same operator for values of different types is
called operator overloading. Now, "overloading" may sound like a
bad thing, but actually it's a good thing. Doesn't it make sense that
strings are joined using the plus sign? You immediately
understand what it means. Implemented well, operator

overloading can make for clearer and more elegant code.
-— >

Now that you know the problem, how do you fix it? Somehow those
string values need to be converted to numbers. Then the program
will work as intended. If only there was some way to do this. Well, as

you may have guessed, there is.

Converting Values

The solution to the Trust Fund Buddy-Bad program is to convert the

string values returned by raw_input () to numeric ones. Since the

program works with whole dollar amounts, it makes sense to convert
each string to an integer before working with it.

Introducing the Trust Fund Buddy-Good Program
The Trust Fund Buddy-Good program fixes the logical bug in Trust

Fund Buddy-Bad. Take a look at the output of the new program in
Figure 2.10.

Figure 2.10: Ah, 61,300 dollars a month is much more
reasonable.

Now the program arrives at the correct total. Here's the code:

Trust Fund Buddy - Good
Demonstrates type conversion
Michael Dawson - 1/14/03

print \

mwwmmn

Trust Fund Buddy

Totals your monthly spending so that your trust
fund doesn't run out

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig72_01_0.jpg

(and you're forced to get a real job).

Please enter the requested, monthly costs. Since
you're rich, ignore pennies
and use only dollar amounts.

car = raw_input ("Lamborghini Tune-Ups: ")

car = int (car)

rent = int(raw input ("Manhattan Apartment: "))
jet = int(raw input ("Private Jet Rental: "))
gifts = int(raw input ("Gifts: "))

food = int(raw input ("Dining Out: "))

staff = int(raw input ("Staff (butlers, chef,
driver, assistant): "))

guru = 1int(raw_input ("Personal Guru and Coach: "))
games = 1int (raw_ input ("Computer Games: "))

total = car + rent + jet + gifts + food + staff +
guru + games

print "\nGrand Total: ", total

raw_input ("\n\nPress the enter key to exit.")

Converting Strings to Integers

There are several functions that convert between types. The function
to convert a value to an integer is demonstrated in the following
lines:

car = raw_input ("Lamborghini Tune-Ups: ")
car = int (car)

The first line is just like before. It gets input from the user as a string
and assigns that value to car. The second line does the conversion.

The function int () takes the string referenced by car and converts
it to an integer. Then, car gets this new integer value.

The next seven lines get and convert the remaining expenditure
categories:

rent = int(raw input ("Manhattan Apartment: "))
jet = int(raw input ("Private Jet Rental: "))
gifts = int(raw input ("Gifts: "))

food = int(raw input ("Dining Out: "))

staff = int(raw input ("Staff (butlers, chef,
driver, assistant): "))

guru = 1nt(raw_input ("Personal Guru and Coach: "))
games = 1int (raw_ input ("Computer Games: "))

Notice that the assignments are done in just one line now. That's
because the two function calls, raw input () and int (), are
nested. Nesting function calls means putting one inside the other.
This is perfectly fine as long as the return values of the inner function
can be used by the outer function. Here, the return value of
raw_input () is a string, and a string is a perfectly acceptable type
for int () to convert.

In the assignment statement for rent, raw _input () goes out and
asks the user how much the rent was. The user enters some text,
and that is returned as a string. Then, the program calls the function
int () with that string. int () returns the integer the string
represented. Then, that integer is assigned to rent. The other six
assignment statements work the same way.

There are other functions that convert values to a specific type. Table
2.5 lists several.

Table 2.5: SELECTED TYPE CONVERSION FUNCTIONS
|

Function |Description Example Returns

Returns a floating-point

. float ("10.0™)|10.0
value by converting x cat!)

float (x)

Returns an integer value

by converting x int ("107) 10

int (x)

Returns a string value by

: tr (10 '10"
converting x str{l0)

str (x)

Using Augmented Assignment Operators

Augmented assignment operatorsis a mouthful. But the concept is
simple. Let's say you want to know the yearly amount the user
spends on food. To calculate and assign the yearly amount, you
could use the line

food = food * 52

This line multiplies the value of food by 52 and then assigns the
result back to food. You could accomplish the same thing with this
following line:

food *= 52

*= |s an augmented assignment operator. It also multiplies the value
of food by 52 and then assigns the result back to food, but it's
shorter than the first version. Since assigning a new value to a
variable based on its original value is something that happens a lot in
programming, these operators provide a nice shortcut to a common
task. There are other augmented assignment operators. Table 2.6
summarizes some useful ones.

Table 2.6: USEFUL AUGMENT ASSIGNMENT OPERATORS

Operator To Example Is Equivalent

Operator To Example Is Equivalent
*= X *= 5 X X * 5
/= x /=5 x =x / 2
T= X %= 5 X X % 5
+= x += 5 X x + 5
—= X —-= 5 X X — 5

Printing Strings and Numbers Together

The next line of code
print "\nGrand Total: ", total

is only slightly different than the corresponding line in the Trust Fund
Buddy-Bad program:

print "\nGrand Total: " + total

But the difference is an important one. In the Trust Fund Buddy-Bad
program, the string "\nGrand Total: " and the value of total
are joined together by string concatenation through the + operator.
That's great because both are strings. However, in the Trust Fund
Buddy-Good program, the value of total is an integer. So string
concatenation won't work. Instead, the values are listed, separated
by a comma. In general, you can list values separated by commas in
a print statement to have them all print out together.

Back to the Useless Trivia Program

You now know everything you need to know to program the project
Useless Trivia from the beginning of the chapter. I'll present the
program a little differently than the others. Instead of listing the code
out in its entirety, I'll go over the program one section at a time.

Creating the Initial Comments

Although comments don't have any effect while the program runs,
they are an important part of every project. As always, | list the
program's purpose, my name, and the date | wrote the code:

Useless Trivia

i
i
Gets personal information from the user and then
prints true, but useless facts about him or her
i

Michael Dawson - 12/4/02

TRICK Experienced programmers also use the initial comments
area to describe any modifications they make to code
over time. This provides a great history of the program
right up front. This practice is especially helpful when
several programmers have their hands on the same
code.

Getting the User Input

Using the raw input () function, the program gets the user's
name, age, and weight:

name = raw input ("Hi. What's your name? ")

age = raw input ("And how old are you? ")
age = 1int (age)

welght = raw input ("Okay, last question. How many
pounds do you weigh? ")
weight = int (weight)

Remember, raw input () always returns a string. Since age and
weight will be treated as numbers, they must be converted. | broke

up this process into two lines for each variable. First, | assigned the
string from raw input () to a variable. Then, | converted that string

to an integer and assigned it to the variable again. | could have done
both the assignments in one line, but | felt it's clearer this way.

Printing Lowercase and Uppercase Versions of name

The following lines print a version of name in uppercase and a
version in lowercase with the help of string methods:

print "\nIf poet ee cummings were to email you,
he'd address you as", name.lower ()

ee mad = name.upper ()
print "But if ee were mad, he'd call you", ee mad

In the uppercase version, | assigned the value to the variable

ee mad before printing. As you can see from the lowercase version
before it, it's not necessary to use a variable. But | think it makes it
clearer.

ee cummings, by the way, was an experimental American poet who
didn't use uppercase letters. So, if he were alive and e-mailing you,
he'd probably use all lowercase letters in your name. But if he were
mad, he'd probably make an exception and "shout" via e-mail by
addressing you in uppercase.

Calculating dog_years

The user's age in dog years is calculated and printed out:
dog years = age / 7

print \nDid you know that you're just",
dog years, "in dog years?"

It's a common belief that seven human years is equal to one dog
year. So, in the first line, | divide age by 7 and assign that value to
dog_ years. Since 7 and age are both integers, diving them results

in an integer. That works out great since dog years are always
expressed as integers.

The next line combines two strings and dog years into larger string
and displays it.

Calculating seconds

The user's age, in seconds, is calculated and printed in the two
following lines:

seconds = age * 365 * 24 * 60 * 60

print "But you're also over", seconds, "seconds
old."

Since there are 365 days in a year, 24 hours in a day, 60 minutes in
an hour, and 60 seconds in a minute, age is multiplied by the
product of 365 * 24 * 60 * 60. This value is assigned to
seconds. The next line combines two strings and seconds into a
larger string and displays it.

Printing name Five Times

The program displays the user's name five times in a row using
string repetition:

called = name * 5
print "\nIf a small child were trying to get your

attention, " \
"your name would become:"
print called

The variable called is assigned the value of name, repeated five
times. Then, a message is printed followed by called.

Calculating moon_weight and sun_weight

The next four lines calculate and display the user's weight on the
moon and sun:

moon weight = weight / 6.0

print "\nDid you know that on the moon you would
welgh only", moon weight, "pounds?"

sun _welght = weight * 27.1

print "But on the sun, you'd weigh", sun weight,
(but, ah... not for long)."

Since the moon has one-sixth the gravitational pull of the earth,
moon_ weight is assigned the value of weight divided by 6. 0. |

use a floating-point number so that the result is a more accurate
floating-point number instead of an integer.

Since the gravitational force on the sun is about 27 .1 times stronger
than it is here on earth, | multiply weight by 27.1 and assign the
result to sun _weight. Again, since 27. 1 is a floating-point number,
sun_weight will be a float too.

The next two lines print out messages telling the user about his or
her new weights.

Waiting for the User

The last statement waits for the user to press the Enter key:

raw_input ("\n\nPress the enter key to exit.")

Summary

In this chapter, you saw how to create strings with single, double,
and triple quotes. You learned how to include special characters in
them with escape sequences. You saw how to join and repeat
strings. You learned about two different numeric types, integers and
floating-point numbers, and how to work with them. You also now
know how to convert values between strings and numbers. You
learned about variables and saw how to use them to store and
retrieve information. Finally, you learned how to get user input to
make your programs interactive.

Challenges

1. Create a list of legal and illegal variable names. Describe
why each is either legal or illegal. Next, create a list of
"good" and "bad" legal variable names. Describe why each
is either a good or bad choice for a variable name.

2. Write a program that allows a user to enter his or her two
favorite foods. The program should then print out the name
of a new food by joining the original food names together.

3. Write a Tipper program where the user enters a restaurant
bill total. The program should then display two amounts: a
15 percent tip and a 20 percent tip.

4. Write a Car Salesman program where the user enters the
base price of a car. The program should add on a bunch of
extra fees such as tax, license, dealer prep, and destination
charge. Make tax and license a percent of the base price.
The other fees should be set values. Display the actual
price of the car once all the extras are applied.

Chapter 3: Branching, while Loops, and

Program Planning: The Guess My Number
Game

® Download CD Content

Overview

So far, the programs you've written have had a simple, sequential
flow: each statement is executed once, in order, every time. If you
were limited to just this type of programming, it would be very
difficult, if not impossible, to write complex applications. But in this
chapter, you learn how to selectively execute certain portions of your
code and repeat parts of your program. Specifically, you learn to do
the following:

Generate random numbers using randrange ()
Use i £ structures to execute code based on a condition

Use if-else structures to make a choice based on a
condition

Use if-else-elif structures to make a choice based on
several conditions

Use while loops to repeat parts of your program

Plan your programs using pseudocode

Introducing the Guess My Number Game

The program you'll create in this chapter is the classic number
guessing game. For those who missed out on this game in their
childhood, the game goes like this: the computer chooses a random
number between 1 and 100 and the player tries to guess it in as few
attempts as possible. Each time the player enters a guess, the
computer tells the player whether the guess is too high, too low, or
right on the money. Once the player guesses the number, the game
is over. Figure 3.1 shows Guess My Number in action.

Figure 3.1: Got it in only three guesses! Try to beat
that.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig82_01_0.jpg

Generating Random Numbers

As much as users want consistent, predictable results from
programs, sometimes what makes the programs exciting is their
unpredictability: the sudden change in a computer opponent's
strategy, or an alien creature bursting out from an arbitrary door.
Random numbers can supply this element of chance or surprise, and
Python provides an easy way to generate those random numbers.

TRAP Python generates random numbers based on a formula,
so they are not truly random. This kind of random
generation is called pseudorandom and is good enough
for most applications (just don't try to start an online
casino with it). If you really need truly random numbers,
visithttp: //www. fourmilab.ch/hotbits/. The site
generates random numbers based on the natural and
unpredictable process of radioactive decay.

Introducing the Craps Roller Program

Craps Roller replicates the dice roll of the fast-paced, casino game
of craps. But you don't have to know anything about craps to
appreciate the program. Craps Roller just simulates the roll of two,
six-sided dice. It displays the value of each and their total. To
determine the dice values, the program uses a function that
generates random numbers. Figure 3.2 shows the program in action.

[t

Figure 3.2: Ack! | got a total of 7 on my first roll, which means |
lose.

http://www.fourmilab.ch/hotbits/
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig83_01_0.jpg

Here's the code:

Craps Roller
Demonstrates random number generation
Michael Dawson - 12/29/02

import random

generate random numbers 1 - 6
diel = random.randrange(6) + 1
dieZ2 = random.randrange(6) + 1

total = diel + die?

print "You rolled a", diel, "and a", die2, "for a
total of", total

raw_input ("\n\nPress the enter key to exit.")

Using the import Statement

The first line of code in the program introduces the import
statement. The statement allows you to import, or load, modules, in
this case the random module in:

import random

Modules are files that contain code meant to be used in other
programs. These modules usually group together a collection of
programming related to one area. The random module contains
functions related to generating random numbers and producing
random results.

If you think of your program as a construction project, then modules
are like special toolkits that you can pull out from the garage when

you need them. But instead of going to the shelf and grabbing a
powered, circular saw, here, | imported the random module.

Once you import a module, you can use its code. Then, it just
becomes a matter of accessing it.

Accessing randrange ()

The random module contains a function, randrange (), which

produces a random integer. The Craps Roller program accesses
randrange () through the following function call:

random.randrange (6)

You'll notice the program doesn't directly call randrange ().
Instead, it's called with random. randrange (), because the
program accesses randrange () through its module, random. In
general, you can call a function from an imported module by giving
the module name, followed by a period, followed by the function call
itself. This method of access is called dot notation. Dot notation is
like the possessive in English. In English, "Mike's Ferrari" means that
it's the Ferrari that belongs to Mike. Using dot notation,
random.randrange () means the function randrange () that

belongs to the module random. Dot notation can be used to access
different elements of imported modules.

Now that you know how to access randrange (), you need to know
how to use it.

Using randrange ()

There are several ways to call randrange (), but the simplest is to
use a single, positive, integer argument. Called this way, the function
returns a random integer from, and including, 0, up to, but not
including, that number. So the call random. randrange (6)
produces either a 0, 1, 2, 3, 4, or 5. Alright, where's the 6?7 Well,

randrange () is picking a random number from a group of six
numbers—and the list of numbers starts with 0. You may think this is
odd, but you'll find that most computer languages start counting at 0
instead of 1. So, | just added 1 to the result to get the right values for
a die:

diel = random.randrange (6) + 1
Now, diel gets eithera 1, 2, 3, 4, 5, or 6.

TRAP It's a common mistake to think that the single argument
you provide randrange () could be returned as a result.
It can't. Remember, randrange () starts counting at 0,
so you'll get back a random number between (and
including) 0 and up to one less than the number you
provide.

Using the if Structure

Branching is a fundamental part of computer programming. It
basically means making a decision to take one path or another.
Through the if structure, your programs can branch to a section of

code or just skip it, all based on how you've set things up.

Introducing the Password Program

The Password program uses the if structure to simulate the login
procedure of a highly secure computer server. The program grants
the user access if he or she enters the right password. Figures 3.3
and 3.4 show a few sample runs.

Figure 3.3: Ha, you'll never crack the code.

Figure 3.4: Guess | should have picked a better password than
"secret".

Here is the program code for Password:

Password
Demonstrates the if structure

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig85_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig85_02_0.jpg

Michael Dawson - 12/29/02

print "Welcome to System Security Inc."

print "— where security is our middle name\n"
password = raw input ("Enter your password: ")
if password == "secret":

print "Access Granted"

raw_input ("\n\nPress the enter key to exit.")

IN THE REAL WORLD

While the program Password does a good job of demonstrating
the if structure, it's not a good example of how to implement
computer security. In fact, anyone could simply examine the
source code and discover the "secret" password.

To create a password validation system, a programmer would
most likely use some form of cryptography. Cryptography, an
ancient idea that dates back thousands of years, is used to
encode information so that only the intended recipients can
understand it. Cryptography is an entire field unto itself and some

computer scientists devote their careers to it.
|

Examining the if Structure

The key to program Password is the i £ structure:

if password == "secret":
print "Access Granted"

The if structure is pretty straightforward. You can probably figure
out what's happening just by reading the code. If password is equal
to "secret", then "Access Granted" is printed and the program
continues to the next statement. But, if it isn't equal to "secret™,

the program does not print the message and continues directly to the
next statement following the i f structure.

Creating Conditions

All i £ structures have a condition. A condition is just an expression
that is either true or false. You're already familiar with conditions.
They're pretty common in daily life. In fact, almost any statement you
make could be viewed as a condition. For example, the statement
"It's 100 degrees outside." could be treated as a condition. It's either
true or false.

In the Password program, the condition used in the i f structure is
password == "secret". It means that password is equal to
"secret". This condition evaluates to either true or false,
depending on the value of password. If the value of password is
equal to "secret", then the condition is true. Otherwise, the
condition is false.

Understanding Comparison Operators

Conditions are often created by comparing values. You can compare
values using comparison operators. You've already seen one
comparison operator by way of the Password program. It's the
equal-to comparison operator, written as ==.

TRAP The equal-to comparison operator is two equal signs in a
row. Using just one equal sign in a condition will result in
a syntax error, because one equal sign represents the
assignment operator. So, password = "secret" is an
assignment statement. It assigns a value. And password

== "secret" is a condition. It evaluates to either true or
false. Even though the assignment operator and the
equal-to operator look similar, they are two different
things.

In addition to equal-to, there are other comparison operators. Table
3.1 summarizes some useful ones.

Table 3.1: COMPARISON OPERATORS

. Sample Evaluates

Operator||[Meaning Condition To

== equal to 5 == True

I= not equal to 8!1=5 True

> greater than 3> 10 False

< less than 5<8 True

- qureater than or equal 5 >= 10 False

<= less than or equal to |5 <=5 True

Using comparison operators, you can compare any values. If you
compare strings, you get results based on alphabetical order. For
example, "apple" < "orange" is true because "apple" is
alphabetically less than "orange™ (it comes before it in the

dictionary).

Python allows you to compare any values you like, regardless of
their type. But just because you can doesn't mean you should. When
using comparison operators, it's best to "compare apples to apples
and oranges to oranges" and only compare values of the same type,
because even though you can create the condition "orange" < 2,
it doesn't really make much sense. (If you're curious, "orange" <

2 is false.)

Using Indentation to Create Blocks

You may have noticed that the second line of the if structure,
print "AccessGranted", isindented. By indenting the line, it
becomes a block. A block is one or more consecutive lines indented
by the same amount. Indenting sets lines off not only visually, but
logically too. Together, they form a single unit.

Blocks can be used, among other ways, as the last part of an i f
structure. They're the statement or group of statements that gets
executed if the condition is true. In the Password program, the block
is the single statement print "Access Granted".

Since blocks can be as many statements as you like, you could add
a special welcome for users who enter the proper password by
changing the block in the if structure like so:

if password == "secret":

print "Access Granted"

print "Welcome! You must be someone very
important."

Now, users who correctly enter the secret password will see the
Access Granted followed by Welcome! You must be
someone very important. And if a user enters something
besides secret, the user won't see either of the messages.

Indenting to create blocks is not optional. It's the only way to define a
block. This is one of Python's more unique features. And believe it or
not, it's one of it's most controversial.

If you've programmed in another language before, odds are,
indenting was optional. You could have written every line of code
flush left, if you wanted. But required indentation has its benefits. It
makes for more consistent and readable code. After a short time, it'll
become second nature.

If you haven't programmed before, don't worry about it. By indenting
your code, you'll pick up a good programming habit without even
realizing it.

HINT There's passionate debate within the Python community
about whether to use tabs or spaces (and if spaces, the
number to use) for indentation. This is really a question of
personal style. But there are two guidelines worth
following. First, be consistent. If you indent blocks with two
spaces, then always use two spaces. Second, don't mix
spaces and tabs. Even though you can line up blocks
using a combination of both, this can lead to big
headaches later. Common indentation styles include one
tab, or two spaces, or (the style the creator of Python
uses) four spaces. The choice is yours.

Building Your Own if Structure

You've seen a full example of an i f structure, but | want to leave the
topic by summarizing how to build your own. You can construct an
if structure by using if, followed by a condition, followed by a
colon, followed by a block of one or more statements. If the condition
evaluates to true, then the statements that make up the block are
executed. If the condition evaluates to false, then the program
moves on to the next statement after the i f structure.

Using the if-else Structure

Sometimes you'll want your program to "make a choice" based on a
condition: do one thing if the condition is true, do something else if
it's false. The if-else structure gives you that power.

Introducing the Granted or Denied Program

The program Password did a good job welcoming a user who
entered the correct password, but it didn't do anything if the wrong
password was entered. Program Granted or Denied solves this
problem by using the if-else structure. Figures 3.5 and 3.6 show

off the new and improved version.

Figure 3.5: The correct password grants the user access, just like
before.

Figure 3.6: Now, an incorrect password generates the stinging
"Denied" message.

Here is the code for Granted or Denied:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig89_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig90_01_0.jpg

Granted or Denied
Demonstrates the if-else structure
Michael Dawson - 12/29/02

print "Welcome to System Security Inc."

print "— where security is our middle name\n"
password = raw input ("Enter your password: ")
if password == "secret":

print "Access Granted"
else:

print "Access Denied"

raw_input ("\n\nPress the enter key to exit.")

Examining the else Statement

| only made one change from the Password program. | added an
else clause to create an if-else structure:

if password == "secret":
print "Access Granted"
else:
print "Access Denied"

If the value of password is equal to "secret", the program prints
Access Granted, just like before. But now, thanks to the else
statement, the program prints Access Denied otherwise.

In an if-else structure, you're guaranteed that exactly one of the
code blocks will execute. If the condition is true, then the block
immediately following the condition is executed. If the condition is
false, then the block immediately after the e1se is executed.

You can create an else clause immediately following the i £ block
with e1se, followed by a colon, followed by a block of statements.
The else statement must be in the same block as its corresponding
if. Thatis, the else and if must be indented the same amount;
otherwise, your program will generate a nasty error.

Using the if-elif-else Structure

Choosing from among several possibilities is the job of the i f-
elif-else structure. It's the most powerful and flexible of all the
conditional structures. It can be used in multiple ways, but comes in
quite handy when you have one variable that you want to compare to
a bunch of different values.

Introducing the Mood Computer Program

In the mid-1970s (yes, last century), there was a wildly successful,
fad product called the Mood Ring. The ring revealed the wearer's
mood through a color-changing gem. Well, the Mood Computer
program takes the technology to the next level by looking into the
psyche of the user and displaying his or her mood. Figure 3.7
reveals my mood while writing this very chapter.

Figure 3.7: Looks like | was in a great mood while writing the
Mood Computer program.

Okay, the program doesn't really plum the emotional depths of the
user through electrodermal impulses transmitted via the keyboard.
Instead, Mood Computer generates a random number to choose one
of three faces to print through an i f-elif-else structure. By the
way, the Mood Ring didn't really reveal the wearer's emotions either.
It was just an LCD that changed colors based on body temperature.

The program code for Mood Computer:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig91_01_0.jpg

Mood Computer
Demonstrates the if-elif-else structure
Michael Dawson - 12/29/02

import random
print "I sense your energy. Your true emotions are

coming across my screen."
print "You are..."

mood = random.randrange (3)
if mood ==
happy
print \
l
O O |
< l
l

elif mood ==
neutral
print \

elif mood ==
sad
print \

else:
print "Illegal mood value! (You must be in
a really bad mood) ."

print "...today."

raw_input ("\n\nPress the enter key to exit.")
Examining the if-elif-else Structure

An if-elif-else structure can contain a whole list of conditions

for a program to evaluate. In Mood Computer, the lines containing
the different conditions are

m i f mood ==
m clif mood ==

m clif mood ==

Notice that you write the first condition using an i f clause, but then
list the remaining conditions using e1if (short for "else if") clauses.
elif clauses are constructed just like i f clauses. And you can
have as many e11f clauses as you like.

HINT Although the if-elif-else structure is flexible enough
to test a list of unrelated conditions, it's almost always
used to test related ones.

By isolating the conditions, you can see the purpose of the structure:
to test mood against three different values. The program first checks
to see if mood is equal to 0. If it is, then the happy face is printed. If
not, the program moves to the next condition and checks if mood is
equal to 1. If it is, the neutral face is printed. If not, the program
checks if mood is equal to 2. If so, the sad face is printed.

TRAP An important feature of the if-elif-else structure is
that once a condition evaluates to true, the computer
executes its corresponding block and exits the structure.
This means that at most, only one block executes, even if
several conditions are true. In Mood Computer, that's no
big deal. mood can only be equal to a single number, so
only one of the conditions can be true. But it's important
to be aware of this behavior because it's possible to
create structures where more than one condition can be
true at the same time. In that case, only the block
associated with the first true condition executes.

If none of the preceding conditions for mood turn out to be true, then
the final else clause's block runs and T1legal mood value!
(You must be in a really bad mood) . appears on the
screen. This should never happen, since mood will always be either
0, 1, or 2. But | put the clause in there just in case. | didn't have to,
though, since the final e1se clause is optional.

HINT Even though it's not necessary to use the final else
clause, it's a good idea. It works as a catchall for when
none of the conditions are true. Even if you think one of
your conditions will always be true, you can still use it to
catch the "impossible" case, like | did.

You've seen three similar, but progressively more powerful branching
structures. For a concise review, check out Table 3.2.

Table 3.2: B RANCHING STRUCTURES SUMMARY

Structure |Description

if
<condition>:Il1 £ structure. If <condition> is true, <block> is
<block> |executed; otherwise it's skipped.

if
<condition>;

<block 1> |1 f-else structure. If <condition> is true, <block1>
else: is executed; otherwise <block2> is executed.

<block 2>

Structure

Description

if <condition
1>:

<block 1>
elif
<condition
2>
<block 2>

.elif
<condition
N>:
<block N>
else:
<block
N+1>

executed.

if-elif-else structure. The block of the first true

condition is executed. If no condition is true, the
optional else clause's block, <block N+1> is

Creating while Loops

Loops are all around us. Even your shampoo bottle has looping
instructions on it: "While your hair is not clean: Rinse. Lather.
Repeat." This may seem like a simple idea—while some condition is
true, repeat something—nbut it's a powerful tool in programming. It
would come in quite handy, for example, in making a quiz show
game. You might want to tell your program: while there are questions
left, keep playing the game. Or, in a banking application, you might
want to tell your program: while the user hasn't entered a valid
account number, keep asking the user for an account number. The
while loop lets you do exactly this.

Introducing the Three-Year-Old Simulator Program

In today's fast-paced world, many people don't get to spend the time
they'd like with the children in their lives. A busy lawyer might be
stuck at the office and not see her small son. A salesman might be
on the road and not see his little niece. Well, the Three-Year-Old
Simulator solves that problem by reproducing a conversation with a
three-year-old child. The key to mimicking a three-year-old, it turns
out, is the while loop. Figure 3.8 shows a sample run.

Figure 3.8: If you've ever been in charge of a three-year-old, this
should bring back warm memories.

As you can see, the program keeps asking why? until the answer,
Because., is entered. The code for the program is short:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig95_01_0.jpg

Three-Year-0ld Simulator
Demonstrates the while loop
Michael Dawson - 1/3/03

print "\tWelcome to the 'Three-Year-01d
Simulator'\n"

print "This program simulates a conversation with
a three-year-old child."

print "Try to stop the madness.\n"

response =
while response != "Because.":
response = raw input ("Why?\n")

print "Oh. Okay."

raw_input ("\n\nPress the enter key to exit.")

Examining the while Structure

The loop from the Three-Year-Old Simulator program is just two
lines:

while response != "Because.":
response = raw input ("Why? ")

If the format of the while loop looks familiar, there's a good reason.
It bears a striking resemblance to its cousin, the if structure. The
only difference is that i f is replaced by while. And the similarities
aren't just skin-deep. In both structures, if the condition is true, the
block (sometimes call the loop body in a loop) is executed. But in the
while structure, the computer tests the condition and executes the
block over and over, until the condition is false. That's why it's called
a loop.

So, the block

response = raw_ input ("Why? ")

will continue to execute until the user enters Because.. At that
point, response !="Because." is false and the loop mercifully
ends. Then, the program executes the next statement, print "Oh.
Okay.".

Initializing the Sentry Variable

Often, while loops are controlled by a sentry variable, a variable

used in the condition and compared to some other value or values.
Like a human sentry, you can think of your sentry variable as a
guard, helping form a barrier around the while loop's block. In the

Three-Year-Old Simulator program, the sentry variable is response.
It's used in the condition and is compared to the string "Because."
before the block is executed each time.

It's important to initialize your sentry variable. Most of the time,
sentry variables are initialized right before the loop itself. That's what
| did:

response = ""
while response != "Because.":
response = raw input ("Why? ")

TRAP If the sentry variable doesn't have a value when the
condition is evaluated, your program will generate an
error.

It's usually a good idea to initialize your sentry variables to some
type of empty value. | assign "", the empty string, to response.
While | could assign the string "aardvark", and the program would
work just the same, it would make the code needlessly confusing.

Checking the Sentry Variable

Make sure that it's possible for the while condition to evaluate to

true at some point; otherwise, the block will never run. Take, for
example, one minor change to the loop you've been working with:

response = "Because."
while response != "Because.":
response = raw input ("Why? ")

Since response is equal to "Because." right before the loop, the
block will never run. The program will act like the loop isn't even
there.

Updating the Sentry Variable

Once you've established your condition, initialized your sentry
variable, and are sure that under some conditions the loop block will
execute, you have yourself a working loop. Next, make sure the loop
will end.

If you write a loop that never stops, you've created an infinite loop.
Welcome to the club. At one time or another, all programmers have
accidentally created an infinite loop and watched their program get
stuck doing something over and over. Or they see their programs
just plain freeze up.

Here's a simple example of an infinite loop:

counter = 0
while counter <= 10
print counter

What the programmer probably meant was for the loop to print the
numbers from 0 to 10. Unfortunately, what this program does is print
0, forever. The programmer forgot to change counter, the sentry
variable inside the block. So remember, the values in the condition
must change inside the loop block. If they never change, the loop
won't end, and you have yourself an infinite loop.

Avoiding Infinite Loops

One type of infinite loop is where the sentry variable is never
updated, like you just saw. But there are more insidious forms of the
never-ending loop. Check out the next program. It does change the
value of the sentry variable in the loop body. But something is wrong,
because the loop never ends. See if you can spot the trouble before
| explain what's going on.

Introducing the Losing Battle Program

The Losing Battle program describes the last, valiant fight of a hero
overwhelmed by an army of trolls, a scenario you might find in a role-
playing game. The program narrates the battle action. It describes
the struggle, blow-by-blow, as the hero defeats a troll, but then takes
more damage. In the end, the program always ends with the death of
the hero. Or does it? Here's the code:

Losing Battle
Demonstrates the dreaded infinite loop
Michael Dawson - 1/2/03

print "Your lone hero is surrounded by a massive
army of trolls."

print "Their decaying green bodies stretch out,
melting into the horizon."

print "Your hero unsheathes his sword and begins
the last fight of his life.\n"

health = 10
trolls =
damage = 3

O

while health ! O:

trolls += 1

health = health - damage

print "Your hero swings and defeats an evil
troll, " \

"but takes", damage, "damage points.\n"
print "Your hero fought valiantly and defeated",
trolls, "trolls."
print "But alas, your hero is no more."

raw_input ("\n\nPress the enter key to exit.")

Figure 3.9 shows a run of the program. This resulted in an infinite
loop and | had to stop the process by pressing Ctrl+C, or it would
have continued.

Figure 3.9: It seems you have an immortal hero. The only way to
end the program was to stop the process.

So, what's going on?
Tracing the Program

Well, it looks like the program has a logical error. A good way to
track down this kind of error is to trace your program's execution.
Tracing means you simulate the running of your program and do
exactly what it would do, following every command and keeping
track of the values assigned to variables. This way, you can step
through the program, understand exactly what is happening at each

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig99_01_0.jpg

point, and discover the circumstances that conspire to produce the
bug in your code.

The most basic way to trace a program is with old-fashioned pencil
and paper. | created columns, one for each variable and condition.
So to start, my page looks like this:

healthtrolls damage health != 0

Right after the condition of the whi 1e structure is evaluated, my
page looks like this:

health trolls damage health =0
10 0 3 true

Since the condition is true, the loop executes for the first time. After
one full time through and back up to evaluate the condition again, my
trace looks like this:

health trolls damage health =0
10 0 3 true
7 1 3 true

After a few more times through the loop, my trace looks like:

health trolls damage health =0

10 0 3 true
7 1 3 true
4 2 3 true
1 3 3 true
-2 4 3 true
-5 5 3 true

health trolls damage health =0
-7 6 3 true

| stopped the trace because it seemed like | was in an infinite loop.
Since the value of health is negative (and not equal to 0) in the last

three lines of the trace, the condition is still true. The problem is,
health will never become 0. It will just grow in the negative
direction each time the loop executes. As a result, the condition will
never become false, and the loop will never end.

Creating Conditions That Can Become False

In addition to making sure values in a while loop's condition
change, you should be sure that the condition can eventually
evaluate to false; otherwise, you still have an infinite loop on your
hands. In the case of the Losing Battle program, the fix is easy. The
line with the condition just needs to become

while health > O:

Now, if health becomes 0 or negative, the condition evaluates to
false and the loop ends. To be sure, you can trace the program using
this new condition:

health trolls damage health > 0

10 0 3 true
7 1 3 true
4 2 3 true
1 3 3 true
-2 4 3 false

And the program ends as it should. Figure 3.10 shows how the
debugged program runs.

Figure 3.10: Now, the program runs correctly, avoiding an infinite
loop. Your hero's fate, however, is not as bright.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig101_01_0.jpg

Treating Values as Conditions

If | asked you to evaluate 35 + 2 you'd come back quickly with 37.
But if | asked you to evaluate 37 as either true or false, you'd
probably come back with, "Huh?" But the idea of looking at any value
as either true or false is valid in Python. Any value, of any type, can
be treated this way. So, 2749, 8.6, "banana", 0, and "" can each
be interpreted as true or false. This may seem bizarre, but it's easy.
The rules that establish true and false are simple. More importantly,
interpreting values this way can make for more elegant conditions.

Introducing the Maitre D' Program

If you haven't been snubbed at a fancy, French restaurant lately,
then | have just the program for you. Maitre D' welcomes you to the
fine eatery and then asks you how much money you slip your host. If
you give zero dollars, then you are rightly ignored. If you give some
other amount, then your table is waiting. Figures 3.11 and 3.12 show
off the program.

Figure 3.11: When you don't tip the maitre d', there are no tables
to be found.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig101_02_0.jpg

Figure 3.12: This time, my money has helped cure the maitre d'
of his amnesia.

From watching the program run, you might not be impressed. This
seems like something you could have already done. The difference
is, there is no comparison operator used in this program. Instead, a
value (the amount of money) is treated as a condition. Take a look at
the code to see how it works:

Maitre D'
Demonstrates treating a value as a condition
Michael Dawson - 1/3/03

print "Welcome to the Chateau D' Food"
print "It seems we are quite full this evening.\n"

money = 1nt (raw input ("How many dollars do you
slip the Maitre D'? "))

1f money:

print "Ah, I am reminded of a table. Right
this way."
else:

print "Please, sit. It may be a while."

raw input ("\n\nPress the enter key to exit.")

Interpreting Any Value as True or False

The new concept is demonstrated in the line:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig102_01_0.jpg

if money:

Notice that money is not compared to any other value. money is the
condition. When it comes to evaluating numbers, 0 is false and
everything else is true. So, the above line is equivalent to

if money != 0:

The first version is simpler, more elegant, and more intuitive. It reads
more naturally and could be translated to "if there is money".

The rules for what makes a value true or false are simple. The basic
principal is this: any empty or zero value is false, everything else is
true. So, 0 evaluates to false, but any other number evaluates to
true. The empty string, " ", is false, while any other string is true. As
you can see, most every value is true. It's only the empty or zero
value that's false. You'll find that testing for an empty value is a
common thing to do, so this way of treating values can come up a lot
in programs.

One last thing to note here is that if you enter a negative dollar
amount, the maitre d' will still seat you. Remember, for numbers,
only 0 is false. So, all negative numbers are true, just like positive

ones.

Creating Intentional Infinite Loops

Coming soon after a section called "Avoiding_Infinite Loops," you
might be more than a bit surprised to see a section about creating
infinite loops. Aren't infinite loops always a mistake? Well, if a loop
were truly infinite, that is, it could never end, then yes, it would be a
logical error. But what | call intentional infinite loops are infinite loops
with an exit condition built into the loop body. The best way to
understand an intentional infinite loop is to see an example.

Introducing the Finicky Counter Program

The Finicky Counter program counts from 1 to 10 using an
intentional infinite loop. It's finicky because it doesn't like the number
5 and skips it. Figure 3.13 shows a run of the program.

Figure 3.13: The number 5 is skipped with a continue
statement and the loop ends through a break
statement.

Here's the code to the program:

Finicky Counter
Demonstrates the break and continue statements
Michael Dawson - 1/3/03

count = 0
while True:
count += 1

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig103_01_0.jpg

end loop if count is greater than 10
if count > 10:

break

skip 5
if count ==
continue

print count

raw_input ("\n\nPress the enter key to exit.")

Understanding True and False

You know that any value can be interpreted as true or false, but
Python also has a direct way to represent these values. True
represents true. False (drumroll) represents false. You can use
True and False like any other value. You can use them in a
condition or even assign them to a variable. I'll show you what |
mean through an interactive session.

>>> 1f True:
print "I'm true!"

I'm true!

Because True is true, the if block executes and prints the string
"I'm true!"

>>> game over = True
>>> 1f game over:

print "Sorry, your game 1is
over."

Sorry, your game 1s over.

Because game over is equal to True, the if block executes and
prints the string "Sorry, your game is over."

>>> if False:

print "I'm true!"
else:

print "I'm false!"

I'm false!

Because False is not true, the if block is skipped and the else block
runs, printing the string "I'm false!"

TRAP True and False didn't exist in Python before version
2.2. In earlier versions of Python, it was common to use 1
to represent true and 0 to represent false.

Using the break Statement to Exit a Loop

| set up the loop with:

while True:

This technically means that the loop will continue forever, unless
there is an exit condition in the loop body. Luckily, | put one in:

end loop if count greater than 10
if count > 10:
break

Since count is increased by 1 each time the loop body begins, it will
eventually reach 11. When it does, the break statement, which
means "break out of the loop", is executed and the loop ends.

Using the continue Statement to Jump Back to the Top
of a Loop

Just before count is printed, | included the lines:

skip 5
if count ==

continue

The continue statement means "jump back to the top of the loop."
At the top of the loop, the while condition is tested and the loop is

entered again if it's true. So when count is equal to 5, the program
does not getto the print count statement.

Instead it goes right back to the top of the loop and 5 is skipped and
never printed.

Understanding When to Use break and continue

You can use break and continue in any loop you create. They
aren't just restricted for use in intentional infinite loops. But they
should be used sparingly. Both break and continue make it
harder for someone (including you!) to see the flow of a loop and
understand under what conditions it ends. Plus, you don't actually
need break and continue. Any loop you can write using them can
be written without them.

In Python, there are times when an intentional infinite loop can be
clearer than a traditional loop. In those few cases, where it's really
clunky to write the loop with a regular condition, some programmers
use intentional infinite loops. But again, | say avoid them when
possible.

Using Compound Conditions

So far, you've only seen comparisons where exactly two values are
involved. These are called simple conditions. This is probably the
most common way to create a condition. But you may find yourself
wishing for more power. Luckily, you can combine simple conditions
together with logical operators. Combined, these simple conditions
become compound conditions. Using compound conditions, your
programs can make decisions based on how multiple groups of
values compare.

Introducing the Exclusive Network Program

Exclusive clubs are no fun, unless you're a member. So, | created
the Exclusive Network program. It simulates an elite computer
network where only a select few are members. The membership
consists of me and several top game designers in the world today
(not bad company).

Like real-world computer systems, each person has to enter a
username and a password. A member has to enter both his or her
username and password, or the member won't be able to log in. With
a successful login, the member is personally greeted. Also like real-
world systems, everyone has a security level.

Because I'm not a total elitist, guests are allowed to log in. Guests
have the lowest security level, though.

Figures 3.14 through 3.16 show off the program.

Figure 3.15: A guest can log in, but their security level is set quite
low.

Figure 3.16: Looks like one of the guys logged in
today.

Here's the code:

Exclusive Network
Demonstrates logical operators conditions
Michael Dawson - 1/3/03

print "\tExclusive Computer Network"
print "\t\tMembers only!\n"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig107_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig107_02_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig107_03_0.jpg

security = 0

username =
while not username:

username = raw_input ("Username: ")
password = ""
while not password:

password = raw input ("Password: ")
if username == "M.Dawson" and password ==
"secret":

print "Hi, Mike."

security = 5
elif username == "S.Meier" and password ==
"civilization":

print "Hey, Sid."

security = 3
elif username == "S.Miyamoto" and password ==
"mariobros":

print "What's up, Shigeru?"

security = 3
elif username == "W.Wright" and password ==
"thesims":

print "How goes it, Will?"

security = 3
elif username == "guest" or password == "guest":

print "Welcome, guest."

security = 1
else:

print "Login failed. You're not so
exclusive.\n"

raw_input ("\n\nPress the enter key to exit.")

IN THE REAL WORLD

If you really want to implement a private network, you wouldn't
write usernames and passwords directly into your code. You'd
probably use some type of database management system
(DBMS). Database management systems allow you to organize,
access, and update related information. These systems are
powerful and could handle thousands or even millions of pairs of
usernames and passwords, quickly and securely.

Understanding the not Logical Operator

| wanted to make sure that the user enters something for the
username and password. Just pressing the Enter key, which results
in the empty string, won't do. | wanted a loop that continues to ask
for a username until the user enters something. This is the loop |
came up with for getting the username:

username = ""
while not username:
username = raw input ("Username: ")

In the while condition, | used the logical not operator. It works a lot
like the word "not." In English, putting the word "not" in front of
something creates a new phrase that means the opposite of the old
one. In Python, putting not in front of a condition creates a new

condition that evaluates to the opposite of the old one.

That means not username is true when username is false. And
not username is false when username is true. Here's another way
to understand how not works:

username not username

true false

username not username

false true

Since username is initialized to the empty string in the program, it
starts out as false. That makes not username true and the loop
runs the first time. Then, the program gets a value for username
from the user. If the user just presses Enter, username is the empty
string, just as before. And just as before, not username is true and
the loop keeps running. So, as long as the user just hits Enter, the
loop keeps running, and the user keeps getting prompted for a
username.

But when the user finally enters something, username becomes a

new string, something other than the empty string. That makes
username evaluate to true and not username evaluate to false.

As a result, the loop ends, just like | wanted.

The program does the same thing for the variable password.

Understanding the and Logical Operator

If a member wants to log in to this exclusive network, the member
has to enter a username and password that are recognized together.
If, for example, Sid Meier wants to log in, he has to enter S.Meier

for his username and civilization for his password. If Sid
doesn't enter both, just that way, he can'tlog in. S.Meier and
mariobros won't work. Neither will M. Dawson and
civilization. The combination civilizationand S.Meier
fails too. The program checks that Sid enters s.Meier for his
username and civilization for his password with the following
code:

elif username == "S.Meier" and password ==
"civilization":

The line contains a single compound condition made up of two
simple conditions. The simple conditions are username ==
"S.Meier" along with password == "civilization". These
are just like conditions you've already seen, but they've been joined
together by the and logical operator to form a larger, compound
condition, username == "S.Meier" and password ==
"civilization™. This compound condition, though longer than
you're used to, is still just a condition, which means that it can be
either true or false.

So, whenis username == "S.Meier" and password ==
"civilization" true, and when is it false? Well, just like in
English, "and" means both. So, the condition is true only if both
username == "S.Meier" and password == "civilization"

are true; otherwise it's false. Here's another way to see how this
works:

username username == "S.Meier"
password ==

— "civilizationn 21G Password ==

"S.Meier" "civilization"

true true true

true false false

false true false

false false false

HINT Put and between two conditions when you want to create
a new condition that is true only if both original conditions
are true.

So, when Sid enters s.Meier for his username and
civilization for his password, the compound condition is true.
Sid is then greeted and assigned a security level.

The program, of course, works for others besides Sid Meier. Through
an if-elif-else structure, the program checks four different
username and password pairs. If a user enters a recognized pair,
the member is personally greeted and assigned a security value.

If a member or guest doesn't properly log in, the computer prints a
"failed login" message and tells the person that he or she is not so
exclusive.

Understanding the or Logical Operator

Guests are allowed in the network, too, but with a limited security
level. To make it easy for a guest to try the network, all he or she has
to do is enter guest for either the username or password. The

following lines of code log in a guest:

elif username == "guest" or password == "guest":
print "Welcome, guest."
security = 1

The elif condition, username == "guest" or password ==

"guest", looks a lot like the other conditions, the ones used for the
members. But there's a major difference. The guest condition is
created by using the logical or operator.

A compound condition created with an or is true as long as at least
one of the simpler conditions is true. Again, the operator works just
like in English. "Or" means either, so if either condition is true, the
compound condition is true. In this particular case, if username ==
"guest" is true or if password == "guest" is true, or even if
both are true, then username == "guest" or password ==
"guest" is true; otherwise, it's false. Here's another way to look at
how or works:

username == password == username == "guest" or
"guest" "guest" password == "guest"

usernam
llguestll

true
true
false

false

passwor
llguestll

true
false
true

false

username == "guest" or
password == "guest"

true
true
true

false

Planning Your Programs

So far, all the programs you've seen have been pretty simple. The
idea of planning any of them formally on paper probably seems like
overkill. It's not. Planning your programs, even the small ones, will
almost always result in time (and often frustration) saved.

Programming is a lot like construction. So, imagine a contractor
building a house for you without a blueprint. Yikes! You're liable to
end up with a house that has 12 bathrooms, no windows, and a front
door on the second floor. Plus, it will cost you 10 times the estimated
price.

Programming is the same way. Without a plan, you'll likely struggle
through the process, wasting time. You might even end up with a
program that doesn't quite work.

Program planning is so important that there's an entire field of
software engineering dedicated to it. But even a beginning
programmer can benefit from a few simple planning tools and
techniques.

Creating Algorithms with Pseudocode

An algorithm is a set of clear, easy-to-follow instructions for
accomplishing some task. An algorithm is like a blueprint for your
program. It's something you planned out, before programming, to
guide you along as you code.

An algorithm isn't just a goal—it's a concrete list of steps to be
followed in order. So, for example, "Be a millionaire" is not really an
algorithm. It's more like a goal. But a worthy one. So | wrote the
Make a Million Dollars algorithm. Here it is:

if you can think of a new and useful product
then that's your product
otherwise

repackage an existing product as your product
make an infomercial about your product
show the infomercial on TV
charge $100 per unit of your product
sell 10,000 units of your product

There you go. It's a clear series of finite steps that can be followed to
achieve the goal.

Algorithms are generally written in something called pseudocode,
and mine is no exception. Pseudocode falls somewhere between
English and a programming language. Anyone who understands
English can understand my algorithm. But at the same time, my
algorithm should feel vaguely like a program. The first four lines
resemble an i f-else structure, and that's intentional.

Applying Stepwise Refinement to Your Algorithms

Like any outline or plan, your algorithm might not be finished after
one draft. Often, algorithms need multiple passes before they can be
implemented in code. Stepwise refinement is one process used to
rewrite algorithms so that they're ready for implementation. Stepwise
refinement is pretty simple. Basically, it means "make it more
detailed." By taking each step in an algorithm and breaking it down
into a series of simpler steps, the algorithm becomes closer to
programming code. In stepwise refinement, you keep breaking down
each step until you feel that the entire algorithm could be fairly easily
translated into a program. As an example, take a step from the Make
a Million Dollars algorithm:

create an infomercial about your product

This might seem like too vague a task. How do you create an
infomercial? Using stepwise refinement, the single step can be
broken down into several others. So, it becomes the following:

write a script for an infomercial about your product
rent a TV studio for a day

hire a production crew
hire an enthusiastic audience
film the infomercial

If you feel that these five steps are clear and achievable, then that
part of the algorithm has been thoroughly refined. If you're still
unclear about a step, refine it some more. Continue with this process
and you will have a complete algorithm and a million dollars.

Returning to the Guess My Number Game

The Guess My Number game combines many of the concepts you
learned in this chapter. But, more importantly, it represents the first
full game that you can use to show off to your friends, family, and
members of the opposite sex.

Planning the Program

To plan the game, | wrote some pseudocode first:

pick a random number

while the player hasn't guessed the number
let the player guess

congratulate the player

This isn't a bad first pass, but it's missing some important elements.
First, the program needs to tell the player if the guess is too high, or
too low. Second, the program should keep track of how many
guesses the player has made and then tell the player this number at
the end of the game.

HINT It's okay if your first program plan isn't complete. Start
planning with the major ideas first, then fill in the gaps until
it feels done.

Okay, here's a refinement of my algorithm:

welcome the player to the game and explain it
pick a random number between 1 and 100
ask the player for a guess
set the number of guesses to 1
while the player's guess does not equal the number
if the guess is greater than the number
tell the player to guess lower
otherwise

tell the player to guess higher
get a new guess from the player
increase the number of guesses by 1
congratulate the player on guessing the number
let the player know how many guesses it took

Now | feel ready to write the program. Take a look over the next few
sections and see how directly pseudocode can be translated into
Python.

Creating the Initial Comment Block

Like all good programs, this one begins with a block of comments,
describing the program's purpose and identifying the author:

Guess My Number

#

The computer picks a random number between 1 and
100

The player tries to guess it and the computer
lets

the player know if the guess is too high, too
low

or right on the money

#

Michael Dawson - 1/8/03

Importing the random Module

To be fun, the program needs to generate a random number. So, |
imported the random module:

import random

Explaining the Game

The game is simple, but a little explanation wouldn't hurt:

print "\tWelcome to 'Guess My Number'!"

print "\nI'm thinking of a number between 1 and
100."

print "Try to guess it in as few attempts as
possible.\n"

Setting the Initial Values

Next, | set all the variables to their initial values:

set the initial wvalues

the number = random.randrange (100) + 1
guess = 1int(raw_ input ("Take a guess: "))
tries =1

the number represents the number the player has to guess. |
assign it a random integer from 1 to 100 with a call to
random.randrange (). Next, raw input () gets the player's first
guess. int () converts the guess to an integer. | assign this number
to guess. | assign tries, which represents the number of guesses
so far, the value 1.

Creating a Guessing Loop

This is the core of the program. The loop executes as long as the
player hasn't correctly guessed the computer's number. During the
loop, the player's guess is compared to the computer's number. If the
guess is higher than the number, Lower. . . is printed; otherwise,
Higher. . . is printed. The player enters the next guess, and the
number of guesses counter is incremented.

guessing loop
while (guess != the number):
if (guess > the number) :
print "Lower..."
else:

print "Higher...

guess = 1int(raw_ input ("Take a guess: "))
tries += 1

Congratulating the Player

When the player guesses the number, guess is equal to

the number, which means that the loop condition, guess !=
the number, is false and the loop ends. At that point, the player
needs to be congratulated:

print "You guessed 1t! The number was", the number
print "And it only took you", tries, "tries!\n"

The computer tells the player what the secret number was and how
many tries it took the player to guess it.

Waiting for the Player to Quit

As always, the last line waits patiently for the player to press the
Enter key:

raw_input ("\n\nPress the enter key to exit.")

Summary

In this chapter, you saw how to change the flow of your program.
You learned that the key to changing the flow is the computer's
ability to evaluate conditions. You saw how to create simple and
compound conditions. You learned about the i f, if-else,and if-
elif-else structures, which allow programs to make a decision.
You met the while structure, useful for repeating code sections. You
learned about the importance of program planning. You saw how to
plan a program by creating an algorithm in pseudocode. You also
learned how to generate random numbers to add some excitement
to your programs.

Challenges

1. Write a program that simulates a fortune cookie. The
program should display one of five unique fortunes, at
random, each time it's run.

2. Write a program that flips a coin 100 times and then tells
you the number of heads and tails.

3. Modify the Guess My Number game so that the player has
a limited number of guesses. If the player fails to guess in
time, the program should display an appropriately
chastising message.

4. Here's a bigger challenge. Write the pseudocode for a
program where the player and the computer trade places in
the number guessing game. That is, the player picks a
random number between 1 and 100 that the computer has
to guess. Before you start, think about how you guess. If all
goes well, try coding the game.

Chapter 4: for Loops, Strings, and Tuples:
The Word Jumble Game

® Download CD Content

Overview

You've seen how variables are a great way to access information,
but as your programs grow in size and complexity, so can the
number of your variables. Keeping track of all of them can become a
lot of work. Therefore, in this chapter, you'll learn about the idea of
sequences and meet a new type, called the tuple, which let's you
organize and manipulate information in ordered groups. You'll also
see how a type you've already encountered, the string, is really a
sequence too. You'll also learn about a new kind of loop that's built
just for working with sequences. Specifically, you'll learn how to do
the following:

Construct for loops to move through a sequence

Use the range () function to create a sequence of numbers

Treat strings as sequences

Use tuples to harness the power of sequences

Use sequence functions and operators

Index and slice sequences

Introducing the Word Jumble Game

The Word Jumble game, featured in Figure 4.1, utilizes many of the
new ideas you'll learn in this chapter.

Figure 4.1: The Word Jumble game. This jumble looks
"difficult."

This game re-creates the typical word jumble you might find in the
Sunday paper (you know, that thing people used to get their news
from before the Internet). The computer picks a random word from a
group and then creates a jumbled version of it, where the letters are
in random order. The player has to guess the original word to win the
game.

Using for Loops

In the last chapter, you saw one kind of loop, the while loop, which
repeats part of your code based on a condition. As long as the
condition is true, some code repeats. The for loop also repeats

code, but not based on a condition. Instead, the for loop repeats

part of a program based on a sequence, an ordered list of things. If
you've ever written a list of, say, your top 10 favorite movies, then
you've created a sequence.

A for loop repeats its loop body for each element of the sequence,
in order. When it reaches the end of the sequence, the loop ends. As

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig120_01_0.jpg

an example, consider your movie list sequence again. A for loop

could go through this sequence of movie titles, one at a time, and
print each one. But the best way to understand a for loop is to see
one in action.

Introducing the Loopy String Program

This program takes a word from the user and prints its letters, in
order, on separate lines. Take a look at a sample run in Figure 4.2.

Figure 4.2: A for loop goes through a word the user enters, one
character at a time.

This simple program provides a good example of a for loop. Here's
the code:

Loopy String
Demonstrates the for loop with a string
Michael Dawson - 1/26/03

word = raw input ("Enter a word: ")
print "\nHere's each letter in your word:"
for letter in word:

print letter

raw input ("\n\nPress the enter key to exit.")

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig121_01_0.jpg

Understanding for Loops

The new idea in this program is the for loop, which is just the
following two short lines:

for letter in word:
print letter

Even before you know anything about for loops, the code is pretty

clear. But I'll explain exactly how it works. Any string, like the one |
entered, "Loop", is really a sequence. All sequences are made up

of elements. For strings, each element is one character. In this case,
the first element is the character "L", the second is "o", and so on.

Since a for loop goes through a sequence one element at a time,
this loop goes through the letters in "Loop" one at a time. To begin,
letter gets the first character in word, which is "L". Next, the loop
body, which is just the print statement, displays L. Then, letter
gets the next character in word, which is "o". The computer
displays o, and the loop continues until each character in the string
"Loop" is displayed.

e
IN THE REAL WORLD

Most modern languages offer a form of the f£or loop. However,
these loops tend to be more restrictive. The loops generally only
allow a counter variable, which must be assigned a number. Then,
the counter changes by the same amount, each time the loop
executes. The ability to loop directly through a sequence makes
the Python £or loop more flexible than this other, more traditional

type of loop.
|

Creating a for Loop

To create a for loop, you can follow the example in the program.
Start with for, followed by a variable for each element, followed by
in, followed by the sequence you want to loop through, followed by
a colon, and finally, the loop body. That's all there is to it.

Counting with a for Loop

When you write a program, you'll often find that you need to count.
And for loops are usually the best way to go. In combination with

the for loop, you can use Python's range () function to count in all
kinds of ways.

Introducing the Counter Program

The Counter program is nothing fancy, but it shows you how to use
the range () function to generate lists of numbers. Paired with a

for loop, you can use the list to count forwards or backwards, or
even to skip numbers if you like. Take a look at Figure 4.3 to see the
results of the program.

Figure 4.3: The range () function and for loop allow you to
count forwards, by fives, and backwards.

Here's the code for the program:

Counter
Demonstrates the range () function
Michael Dawson - 1/26/03

print "Counting:"
for i in range (10) :
print 1,

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig123_01_0.jpg

print "\n\nCounting by fives:"
for i in range (0, 50, 5):
print 1,

print "\n\nCounting backwards:"
for i in range (10, 0, -1):
print 1,

raw_input ("\n\nPress the enter key to exit.\n")

IN THE REAL WORLD

It's traditional to name generic counter and loop variables i, j, or
k. Normally, you want to create descriptive, clear variable names.
Believe it or not, i, j, and k are clear to experienced

programmers, who know when reading your code that you just

need a quick, counter variable.
|

Counting Forwards

The first loop in the program counts forwards:

for 1 in range (10) :
print i,

This for loop works just like the for loop you saw in the Loopy
String program—it loops through a sequence. It just may be hard to
tell what the sequence is. The sequence the loop moves through is
created by the range () function. It creates a sequence of numbers.
Give range () a positive integer and it will create a sequence
starting with 0, up to, but not including, the number you gave it. Take
a look at part of an interactive session | ran with IDLE:

>>> range (9)

(0, 1, 2, 3, 4]

>>> range (10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

TRICK Even experienced programmers sometimes forget the
way a function or a command works. But instead of
guessing, they open an interactive window and
experiment. When they get the results they want, they
jump back to script mode and use what they learned to
continue coding.

Another way to look at this loop is to substitute the results of the
range () function into the code when you read it. So, when you look
at the code, you can imagine that it reads:
for i in [O, 1, 2, 3, 4, 5, o6, 7, 8, 9]:

print 1,

and that the range () function call is replaced with the sequence of
numbers it creates. In fact, this loop is a valid one. You can create a
list of values by enclosing them in brackets, separated by commas.
But don't go off creating a bunch of lists just yet. You'll learn all about
lists in the Chapter 5, "Lists and Dictionaries: The Hangman Game,"
| promise.

Counting by Fives

The next loop counts by fives:

for 1 in range (0, 50, 5):
print 1,

It does this with a call to range () that creates a list of numbers that
are multiples of 5. To create a sequence of numbers with range (),
you can give it the start point, the end point, and the number by

which to count. Here, the sequence starts at 0, and goes up by 5
each time, to, but not including, 50. | used interactive mode again so
that you can see the exact sequence range (0, 50, 5) produces:

>>> range (0, 50, 5)
(0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

Notice though that the sequence ends at 45. Remember, 50 is the
end point, so it's not included. If you wanted to include 50, your end
point would have to be greater than 50. So, range (0, 51, 5)
would do the ftrick.

Counting Backwards

The last loop in the program counts backwards:

for i in range (10, 0, -1):
print 1,

It does this because the last number in the range () callis -1. This

tells the function to go from the start point to the end point by adding
-1 each time. This is the same as saying "subtract 1." Again, the end
point isn't included, so the loop counts from 10 down to 1 and does
not include 0.

TRICK There's no law that says you have to use the loop
variable inside a £or loop. You might find that you want
to repeat some action a specific number of times. To do
this, create a for loop and just ignore the loop variable.
For example, let's say | just wanted to print "Hi!"™ 10
times. The following two lines are all | would need:

for i in range(10):
print "Hi!"

Using Sequence Operators and Functions
with Strings

As you just learned, strings are one type of sequence, made up of
individual characters. Python offers some useful functions and
operators that work with any kind of sequence, including strings.
These operators and functions can tell you basic but important things
about a sequence, such as how long it is or whether a certain
elementis in it.

Introducing the Message Analyzer Program

This next program analyzes any message that you enter. It tells you
how long the message is and whether or not it contains the most
common letter in the English language (the letter "e"). The program
accomplishes this with a new sequence function and sequence
operator. Figure 4.4 shows off the program.

Figure 4.4: This program uses the 1en () function and the in
operator to produce some information about your
message.

Here's the code for the program:

Message Analyzer

Demonstrates the len () function and the in
operator

Michael Dawson - 1/26/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig126_01_0.jpg

message = raw input ("Enter a message: ")

print "\nThe length of your message is:",
len (message)

print "\nThe most common letter in the English
language, 'e',",
if "e" in message:
print "is in your message."
else:
print "is not in your message."

raw_input ("\n\nPress the enter key to exit.")
Using the 1len () Function

After the program imports the random module and gets the user's
message, it prints the message length with

print "\nThe length of your message is:",
len (message)

You can give any sequence you want to 1en () and it will tell you
that sequence's length. A sequence's length is the number of
elements it has. Since message has 10 characters in it (you count

every character, including the space and exclamation point), it has a
length of 10, just like the computer told you.

Using the in Operator
The letter "e" is the most common letter in English. The program

uses the following lines to test whether "e" is in the message the
user entered:

print "\nThe most common letter in the English
language, 'e',",
if "e" in message:
print "is in your message."
else:
print "is not in your message."

The condition in the if statementis "e" in message. If message
contains the character "e", it's true. If message doesn't contain
"e", it's false. In the sample run, the value of message is "Game
Over!", which does contain the character "e". So, the condition
"e" in message evaluated to true and the computer printed "is
in your message." If the condition had been false (for example,
if message had been equal to "Python Programming"), then the
computer would have displayed is not in your message. Ifan
element is in a sequence, it's said to be a member of the sequence.

You can use in anywhere in your own programs to check if an
element is a member of sequence. Just put the element you want to
check for, followed by in, followed by the sequence. This creates a
condition. If the element is a member, the condition is true; otherwise
it's false.

TRAP The in operator can only check for a single element in a
sequence. In the case of strings, that means it can only
check for a single character. So, if "e" inmessageis
a valid use of in, but if "Over" in message is not.
Using in to test if more than one letter is in a string will
get you an nice, juicy error.

Indexing Strings

By using a for loop, you're able to go through a string, one
character at a time, in order. This is known as sequential access,
which means you have to go through a sequence one element at a
time, starting from the beginning. Sequential access is like going
through a stack of heavy boxes that you can only lift one at a time.
To get to the bottom box in a stack of five, you'd have to lift the top
box, then the next box, followed by the next box, then one more to
finally get to the last box. Wouldn't it be nice to just grab the last box
without messing with any of the others? This kind of direct access is
called random access. Random access allows you to get to any
element in a sequence directly. Fortunately, there's a way to
randomly access elements of a sequence. It's called indexing.
Through indexing, you specify a position (or index) number in a
sequence and get the element at that position. In the box example,
you could get the bottom box directly, by asking for box number five.

Introducing the Random Access Program

The Random Access program uses sequence indexing to directly
access random characters in a string. The program picks a random
position from the string "index", and prints the letter and the
position number. The program does this 10 times to give a good
sampling of random positions. Figure 4.5 shows the program in
action.

Figure 4.5: You can directly access any character in a string

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig128_01_0.jpg

through indexing.

The following is the code for the program:
Random Access

Demonstrates string indexing
Michael Dawson - 1/27/03

import random

word = "index"
print "The word is: ", word, "\n"

high = len (word)

low = -len (word)
for 1 in range (10) :
position = random.randrange (low, high)
print "word[", position, "]\t", word[position]

raw_input ("\n\nPress the enter key to exit.")

Working with Positive Position Numbers

In this program, one of the first things | do is assign a string value to
a variable:

word = "index"

Nothing new here. But by doing this, | create a sequence (like every
time | create a string) where each character has a numbered
position. The first letter, "i," is at position 0. (Remember, computers
usually start counting from 0.) The second letter, "n," is at position 1.
The third letter, "d," is at position 2, and so on.

Accessing an individual character of a string is easy. To access the
letter in position O from the variable word, you'd just type word[0].

For any other position, you'd just substitute that number. To help
cement the idea, take a look at part of an interactive session | had:

>>>
>>>
i
>>>
n
>>>
d
>>>
e
>>>
X

word = "index"
print word[0]

print word[1]
print word[2]
print word[3]

print word[4]

TRAP Since there are five letters in the string "index", you

might think that the last letter, "x," would be at position 5.
But you'd be wrong. There is no position 5 in this string,
because the computer begins counting at 0. Valid positive
positions are 0, 1, 2, 3, and 4. Any attempt to access a
position 5 will cause an error. Take a look at an interactive
session for proof:

>>> word = "index"
>>> print word[5]
Traceback (most recent call last):
File "<pyshell#l>", line 1, in ?
print word[5]
IndexError: string index out of range

Somewhat rudely, the computer is saying there is no
position 5. So remember, the last element in a sequence
is at the position number of its length minus one.

Working with Negative Position Numbers

Except for the idea that the first letter of a string is at position 0 and
not 1, working with positive position numbers seems pretty natural.
But there's also a way to access elements of a sequence through
negative position numbers. With positive position numbers, your
point of reference is the beginning of the sequence. For strings, this
means that the first letter is where you start counting. But with
negative position numbers, you start counting from the end. For
strings, that means you start counting from the last letter and work
backwards.

The best way to understand how negative position numbers work is
to see an example. Take a look at another interactive session | had,
again, using the string "index":

>>> word = "index"
>>> print word[-1]
!X!
>>> print word[-2]
!e!
>>> print word[-3]
!d!
>>> print word[-4]
!n!

>>> print word[-5]

You can see from this session that word [-1] accesses the last
letter of "index", the "x." When using negative position numbers, -1
means the last element, the index -2 means the second to the last
element, the index -3 means the third to the last element, and so on.
Sometimes it makes more sense for your reference point to be the
end of a sequence. For those times, you can use negative position
numbers.

Figure 4.6 provides a nice way to see the string "index" broken up
by position numbers, both positive and negative.

Figure 4.6: You can access any letter of "index" with a positive
or negative position number.

Accessing a Random String Element

It's time to get back to the Random Access program. To access a
random letter from the "index", | need to generate random

numbers. So, the first thing | did in the program was import the
random module:

import random

Next, | wanted a way to pick any valid position number in word,
negative or positive. | wanted my program to be able to generate a
random number between -5 and 4, inclusive, because those are all
the possible position values of word. Luckily, the
random.randrange () function can take two end points and
produce a random number from between them. So, | created two
end points:

high = len (word)

low = —-len (word)

high gets the value 5, because "index" has five characters in it.
The variable 1ow gets the negative value of the length of the word
(that's what putting a minus sign in front of a number does). So low
gets the value of -5. This represents the range from which | want to
grab a random number.

Actually, | want to generate a random number between, and
including, -5 up to, but not including, 5. And that's exactly the way
the random. randrange () function works. If you pass it two

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig131_01_0.jpg

arguments, it will produce a random number from and including the
low end point, up to, but not including, the high end point. So in my
sample run, the line:

position = random.randrange (low, high)

produces either -5, -4, -3, -2, -1, 0, 1, 2, 3, or 4. This is exactly what |
want, since these are all the possible valid position numbers for the
string "index".

Finally, | created a for loop that executes 10 times. In the loop body,
the program picks a random position value and prints that position
value and corresponding letter:
for i in range (10) :

position = random.randrange (low, high)

print "word[", position, "]\t", word[position]

Understanding String Immutability

Sequences fall into one of two categories: mutable or immutable.
(Again, more fancy computer jargon.) Mutable means changeable.
So, a sequence that's a mutable sequence is one that can change.
Immutable means unchangeable. So, a sequence that's immutable
is one that can't change. Strings are immutable sequences, which
means that they can't change. So, for example, the string "Game
Over ! " will always be the string "Game Over!". You can't change
it. In fact, you can't change any string you create. Now, you might
think, from your experience with strings, that I'm totally wrong on
this. You might even run an interactive session to prove that you can
change a string, maybe something resembling this:

>>> name = "Chris"
>>> print name

Chris

>>> name = "Jackson"
>>> print name
Jackson

You might offer this as proof that you can change a string. After all,
you changed the string "Chris" to "Jackson". But, you didn't
change any strings in this session. You just created two different
strings. First, you created a string "Chris" and assigned it to the
variable name. Then, you created another string, "Jackson", and
assigned it to name. Now, both "Chris" and "Jackson" are great
names, but they're different names and always will be, just as they
are different strings and always will be. Take a look at Figure 4.7 for
a visual representation of what happened in the interactive session.

name %é) *Chris"

L) "Jackson”

Figure 4.7: First, name gets the string "Chris", then it gets a
different string, "Jackson". But no string values ever
change.

Another way to think about this is to imagine that strings are written
in ink on pieces of paper. You can throw out a piece of paper with a
string on it and replace it with another piece of paper with a new
string on it, but you can't change the words once they've been
written.

You might think this is much ado about nothing. So what if a string is
immutable? But string immutability does have consequences. Since
you can't change a string, you can't assign a new character to a
string through indexing. Here's an interactive session to show you
what | mean:

>>> word = "game"
>>> word[0] = "1"
Traceback (most recent call last):
File "<pyshell#1>", line 1, in ?
word[Q0] = "1"
TypeError: object doesn't support item assignment

In this session, | wanted to change the string "game™" to the string
"lame" (obviously, | didn't much like the game | was referring to). All
| needed to do was change the letter "g" to an "I." So | just assigned
"1" to the first position in the string, word[0]. But as you can see,
this resulted in a big, fat error. The interpreter even tells me that
strings don't support item assignment (you can't assign a new value

to a character in a string).

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig133_01_0.jpg

But, just because you can't alter a string doesn't mean you can't
create new strings from existing ones.

Building a New String

You've already seen how you can concatenate two strings with the +
operator. Sometimes, you may want to build a new string, one
character at a time. Since strings are immutable, what you'll really be

doing is creating a new string every time you use the concatenation
operator.

Introducing the No Vowels Program

This next program, No Vowels, takes a message from the user and
prints it, minus any vowels. Figure 4.8 shows the program in action.

Figure 4.8: Using a for loop, new strings are created. The

program skips the concatenation operation for any
vowels.

The program creates a new string of the original message, without
the vowels. Really what it does is create a series of new strings.
Here's the code:

No Vowels

Demonstrates creating new strings with a for
loop
Michael Dawson - 1/27/03

message = raw input ("Enter a message: ")
new message = ""

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig134_01_0.jpg

VOWELS = "aeiou"

print
for letter in message:
if letter.lower () not in VOWELS:
new message += letter
print "A new string has been created:",
new message

print "\nYour message without wvowels is:",
new message

raw_input ("\n\nPress the enter key to exit.")

Creating Constants

After the program gets the message from the user and creates an
empty new message, it creates a string:

VOWELS = "aeiou"

This variable, VOWELS, is assigned a string of all the vowels. You
probably notice that the variable name is in all caps, contrary to what
you have learned: that, traditionally, variable names are in
lowercase. Well, | haven't veered from tradition here. In fact, there's
a special meaning associated with variable names in all caps.
They're called constants and refer to a value that is not meant to
change (their value is constant).

Constants are valuable to programmers in two ways. First, they
make programs clearer. In this program, | can use the variable name
VOWELS anywhere | need the sequence of vowels, instead of the
string "aeiou". Using the variable name instead of the string is
clearer. When you see the variable name, you understand what it
means, but you might be confused by seeing the odd-looking string

itself. Second, constants save retyping (and possibly errors from
mistyping). Constants are especially useful if you have a long value,
like a very long number or string. Use a constant in programs where
you have the same, unchanging value used in multiple places.

TRAP You have to be careful when you create constants by
making an all-caps variable name. Even though you're
saying to yourself and other programmers that this
variable will always refer to the same value, there's
nothing in Python that will stop you from changing it in
your program. This naming practice is simply a
convention. So, once you create a variable with a name
in all caps, make sure to treat it as unchangeable.

IN THE REAL WORLD

In some programming languages, constants are exactly that. They
can't be changed once they're defined. That's the safest way to
create and use constants. In Python, though, there isn't a simple
way to create true constants of your own.

Creating New Strings from Existing Ones

The real work of the program happens in the loop. The program
creates a new message, without any vowels, as the loop runs. Each
time through, the computer checks the next letter in the original
message. If it's not a vowel, it adds this letter to the new message it's
creating. If it is a vowel, the program moves on to the next letter. You
know that a program can't literally add a character to a string, so,
more precisely, when the program comes across a character that's
not a vowel, it concatenates the new message it has so far with this
character. The code that accomplishes this is:

for letter in message:
if letter.lower () not in VOWELS:

new message += letter
print "A new string has been created:",
new message

There are two new ideas in the loop, so let me go over both of them.
First, Python is picky when dealing with strings and characters. "a"
is not the same as "a". Since VOWELS is assigned a string that
contains only lowercase letters, | needed to make sure that |
checked only lowercase letters when using the in operator. That's
why lused letter.lower ().

TRICK Often, when you compare two strings, you don't care
about the case matching, only the letters. If you ask a
player if he or she wants to continue a game, the string
"Yes" is as good as the string "yes". Well, in these
instances, just make sure to convert both strings to the
same case (upper- or lowercase, it doesn't matter)
before you compare them.

Here's an example. Let's say | want to compare two
strings, name and winner, to see if they are equal, and |
don't care about matching the case. | could create the
condition:

name.lower () == winner.lower()

This condition is true whenever name and winner each
have the same sequence of characters, regardless of
case. So, "Larry" and "larry" is a match. "LARRY"
and "larry" is too. Even "LaRrY" and "1ArRy"
works.

Second, you also might notice that | used the augmented
assignment operator, +=, in the program for string concatenation.
You saw the augmented assignment operators with numbers, but
they also work with strings. So, this line:

new message += letter

is exactly the same as

new message = new message + letter

Slicing Strings

Indexing is a useful technique, but you aren't restricted to copying
just one element at a time from a sequence. You can make copies of
continuous sections of elements (called slices). You can copy (or
slice) one element (just like indexing) or part of a sequence (like,
say, the middle three elements). You can even create a slice that is a
copy of the entire sequence. So, for strings, that means you can
grab anything ranging from a single character, to a group of
consecutive characters, to the entire string.

Introducing the Pizza Slicer Program

The Pizza Slicer program lets you slice the string "pizza" any way
you want. It's a great, interactive way to help you understand slicing.
All you do is enter the starting and ending positions of the slice, and
the program displays the results. Figure 4.9 shows off the program.

Figure 4.9: Fresh, hot slices of "pizza", made just the way you
asked. The program also offers a "cheat sheet" so you can
visualize how a slice will be created.

Here's the code:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig137_01_0.jpg

Pizza Slicer
Demonstrates string slicing
Michael Dawson - 1/27/03

word = "pizza"
print \

Slicing 'Cheat Sheet'

0 1 2 3 4 5
= —— = ——+

| I | z | z | a |
f——t——t——F—+——+

-5 -4 -3 -2 -1

print "Enter the beginning and ending index for
your slice of 'pizza'."
print "Press the enter key at 'Begin' to exit."

begin = None
while begin != "":
begin = (raw_input ("\nBegin: "))
if begin:
begin = int (begin)
end = int(raw_input ("End: "))
print "word[", begin, ":", end, "]\t\t",

print word[begin:end]

raw_input ("\n\nPress the enter key to exit.")

Introducing None

Before you get to the code about slicing, take a look at this line
which introduces a new idea:

begin = None

The line assigns a special value, called None, to begin. None is
Python's way of representing nothing. None makes a good
placeholder for a value. It also evaluates to false when treated as a
condition. | used it here because | wanted to initialize begin for use
in the while loop condition.

Understanding Slicing

Creating a slice is similar to indexing. But instead of using a single
position number, you supply a starting position and ending position.
Every element between the two points becomes part of the slice.
Figure 4.10 shows a way to look at slicing end point numbers for the
string "pizza". Notice that it's a slightly different numbering system

than the index numbering in Figure 4.6.

Figure 4.10: An example of slicing end point numbers for the
string "pizza". You can use any combination of positive and

negative end points for your slice.

To specify the end points of a slice, include both in brackets,
separated by a colon. Here's a quick interactive session to show you
what | mean:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig139_01_0.jpg

>>> word = "pizza"
>>> print word[0:5]
pizza

>>> print word[1l:3]
iz

>>> print word[-4:-2]
iz

>>> print word[-4:3]
iz

word[0:5] returns the entire string because all its characters are
between those two end points. word[1:3] returns the string "iz"
because those two characters are between the end points. Just like
with indexing, you can use negative numbers. word[-4:-2] also
produces the string "iz" because those characters are between the
two negative positions. You can also mix and match positive and
negative end points. This works just like creating any other slice; the
elements between the two position numbers will be in the slice. So,
word[-4:3] also produces the string "iz", because they are the
two characters between those two end points.

TRAP If you create an "impossible" slice, where the starting
point is bigger than the ending point, like word[2:1],
you won't cause an error. Instead, Python will quietly
return an empty sequence. For strings, that means you'll
get the empty string. So be careful, because this is
probably not the kind of result you're after.

Creating Slices

Inside the loop of program Pizza Slicer, the program prints the
syntax for creating a slice based on the beginning and ending
positions the user entered, through the following line:

print "word[", begin, ":", end, "]\t\t",

Then, the program prints the actual slice using the variables begin
and end:

print word[begin:end]

Using Slicing Shorthand

Although you can get every possible slice by specifying two
numbers, there are a few slicing shortcuts you can use. You can omit
the beginning point for the slice to start the slice at the beginning of
the sequence. So, given that word has been assigned "pizza", the
slice word[:4] is exactly the same as word[0:4]. You can omit
the ending point so that the slice ends with the very last element. So,
word[2:] is just shorthand for word[2:5]. You can even omit both
numbers to get a slice that is the entire sequence. So, word[:] is
shorthand for word [0:5].

Here's an interactive session to back up this proposition:

>>> word = "pizza"
>>> word[0:4]
'pizz'

>>> word[:4]
'pizz'

>>> word[2:5]
'zza'

>>> word[2:]
'zza'

>>> word[0:5]
'pizza'

>>> word][:]
'pizza'

TRICK If there's one bit of slicing shorthand you should
remember, it's that [:] returns a complete copy of a

sequence. As you program, you'll find you may need to
make a copy of a sequence, and this is a quick and
efficient way to do just that.

Creating Tuples

Tuples are a type of sequence, like strings. But unlike strings, which
can only contain characters, tuples can contain elements of any
type. That means you can have a tuple that stores a bunch of high
scores for a game, or one that stores a group of employee names.
But tuple elements don't have to all be of the same type. You could
create a tuple with both strings and numbers, if you wanted. And you
don't have to stop at strings and numbers. You can create a tuple
that contains a sequence of graphic images, sound files, or even a
group of aliens (once you learn how to create these things, which
you will in later chapters). Whatever you can assign to a variable,
you can group together and store as a sequence in a tuple.

Introducing the Hero's Inventory Program

Hero's Inventory maintains the inventory of a hero from a typical
role-playing game. Like most role-playing games ever created, the
hero is from a small, insignificant village. His father was, of course,
killed by an evil warlord (What's a quest without a dead father?). And
now that the hero has come of age, it's time for him to seek his
revenge.

In this program, the hero's inventory is represented by a tuple. The
tuple contains strings, one for each item in the hero's possession.
The hero starts out with nothing, but then | give him a few items.
Figure 4.11 shows the humble beginnings of our hero's journey.

Figure 4.11: At first, the hero has no items in his inventory. Then,
the program creates a new tuple with string elements and our
hero is stocked.

Here's the code for the program:

Hero's Inventory
Demonstrates tuple creation
Michael Dawson - 1/29/03

create an empty tuple
inventory = ()

treat the tuple as a condition
if not inventory:
print "You are empty-handed."

raw_input ("\nPress the enter key to continue.")

create a tuple with some items
inventory = ("sword",

"armor",

"shield",

"healing potion")

print the tuple
print "\nThe tuple inventory is:\n", inventory

print each element in the tuple

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig141_01_0.jpg

print "\nYour items:"
for item in inventory:
print item

raw_input ("\n\nPress the enter key to exit.")

Creating an Empty Tuple

To create a tuple, you just surround a list of values, separated by
commas, with parentheses. Even a pair of lone parentheses is a
valid (but empty) tuple. | created an empty tuple in the first part of the
program to represent that the hero has nothing:

inventory = ()

It's as simple as that. So in this line, the variable inventory gets an
empty tuple.

Treating a Tuple as a Condition

When you learned about conditions, you saw that you could treat
any value in Python as a condition. That means you can treat a tuple
as a condition, too. And that's what | did in the next lines:

if not inventory:
print "You are empty-handed."

As a condition, an empty tuple is false. A tuple with at least one
element is true. Since the tuple assigned to inventory is empty, it's
false. That means not inventory is true. So the computer prints
the string, "You are empty-handed."™, just as it should.

Creating a Tuple with Elements

An unarmed hero is a boring hero. So next, | created a new tuple
with string elements that represent useful items for our hero. |
assigned this new tuple to inventory with the following:

inventory = ("sword",
"armor",
"shield",
"healing potion")

Each element in the tuple is separated by a comma. That makes the
first element the string "sword", the next "armor", the next

"shield", and the last element "healing potion". So each
string is a single element in this tuple.

Also, notice that the tuple spans multiple lines. You can write a tuple
in one line, or span it across multiple lines like | did, as long as you
end each line after a comma. This is one of the few cases where
Python lets you break up a statement across multiple lines.

TRICK Make your programs easier to read by creating tuples
across multiple lines. You don't have to write exactly one
element per line, though. It might make sense to write
several on a line. Just end each line at one of the
commas separating elements and you'll be fine.

Printing a Tuple
Though a tuple can contain many elements, you can print the entire

tuple just like you would any single value. That's what | did in the
next line:

print "\nThe tuple inventory is:\n", inventory

The computer displays all of the elements, surrounded by
parentheses.

Looping Through a Tuple's Elements

Finally, | wrote a for loop to march through the elements in
inventory and print each one individually:

print "\nYour items:"
for item in inventory:
print item

This loop prints each element (each string) in inventory on a

separate line. This loop looks just like the ones you've seen with
strings. In fact, you can use this kind of loop to go through the
elements of any sequence.

Even though | created a tuple where all the elements are of the
same type (strings in this case), tuples don't have to be filled with
values of the same type. A single tuple can just as easily contain
strings, integers, and floating-point numbers, for example.

TRAP Other programming languages offer structures similar to
tuples. Some go by the name "arrays" or "vectors."
However, those other languages usually restrict the
elements of these sequences to just one type. So, for
example, you couldn't mix strings and numbers together.
Just be aware that these other structures don't usually
offer all the flexibility that Python sequences do.

Using Tuples

Since tuples are simply another kind of sequence, everything you
learned about sequences from strings works with tuples. You can get
the length of a tuple, print each element with a for loop, and use the
in operator to test if an element is in a tuple. You can index, slice,
and concatenate tuples, too.

Introducing the Hero's Inventory 2.0

Our hero's journey continues. In this program, his inventory is
counted, tested, indexed, and sliced. Our hero will also happen upon
a chest with items in it (represented by another tuple). Through tuple
concatenation, our hero's inventory will be replaced with all of his
current items plus the treasure he finds in the chest. Figure 4.12
shows a sample run of the program.

Figure 4.12: The hero's inventory is a tuple, which means it can
be counted, indexed, sliced, and even concatenated with another
tuple.

Since this program is a little long, I'll go through the code one section
at a time rather than show you the whole thing at once. But check
out the CD to see the program in its entirety.

Setting Up the Program

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig145_01_0.jpg

The first part of the program works just like it did in the previous
program, Hero's Inventory. These lines create a tuple and print out
each element:

Hero's Inventory 2.0
Demonstrates tuples
Michael Dawson - 1/29/03

create a tuple with some items and display with
a for loop
inventory = ("sword",
"armor",
"shield",
"healing potion")
print "Your items:"
for item in inventory:
print item

raw_input ("\nPress the enter key to continue.")

Using the 1len () Function with Tuples

The 1en () function works with tuples just the way it does with

strings. If you want to know the length of a tuple, place it inside the
parentheses. The function returns the number of elements in the
tuple. Empty tuples, or any empty sequences for that matter, have a
length of 0. The following lines use the 1en () function with the
tuple:

get the length of a tuple
print "You have", len(inventory), "items in your
possession."

raw_input ("\nPress the enter key to continue.")

Since this tuple has four elements (the four strings: "sword",
"armor", "shield",and "healing potion"), the message You
have 4 items in your possession. is displayed.

TRAP Notice that in the tuple inventory, the string "healing
potion" is counted as a single element, even though it's
two words. A single string is always considered one
element in a tuple, no matter how many individual words
are in it.

Using the in Operator with Tuples

Just like with strings, you can use the in operator with tuples to test
for element membership. And, just like before, the in operator is
usually used to create a condition. That's how | used it here:
test for membership with in
1f "healing potion" in inventory:

print "You will live to fight another day."

The condition "healing potion" in inventory tests if the
entire string "healing potion" is an elementin inventory.

Since it is, the message You will live to fight another
day. is displayed.

Indexing Tuples

Indexing tuples works like indexing strings. You specify a position
number, in brackets, to access a particular element. In the following
lines, | let the user choose the index number and then the computer
displays the corresponding element:

display one item through an index
index = int(raw_input ("\nEnter the index number
for an item in inventory: "))

print "At index", index, "is", inventory[index]

Figure 4.13 shows this tuple with index numbers.

0 1 2 3
*sword" | "armor" | “shield” "healing potion"
-4 3 -2 1
b .

Figure 4.13: Each string is a single element in the
tuple.

Slicing Tuples

Slicing works just like you saw with strings. You give a beginning and
ending position. The result is a tuple containing every element
between those two positions.

Just as in the Pizza Slicer program from earlier in this chapter, | let
the user pick the beginning and ending position numbers. Then, like
before, the program displays the slice:

display a slice

begin = int (raw input ("\nEnter the index number to
begin a slice: "))

end = int(raw_ input ("Enter the index number to end
the slice: "))

print "inventory[", begin, ":", end, "]1\t\t",

print inventory[begin:end]

raw input ("\nPress the enter key to continue.")

Using this tuple as an example, Figure 4.14 provides a visual way to
understand tuple slicing.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig147_01_0.jpg

"sword" | "armor” | "shield" | “healing potion"

o ——
a—»
—_—

Figure 4.14: Slicing positions for tuples are defined between
elements, just as they are for strings.

Understanding Tuple Immutability

Like strings, tuples are immutable. That means you can't change a
tuple. Here's an interactive session to prove my point:

>>> inventory = ("sword", "armor", "shield",
"healing potion")
>>> print inventory
('"sword', 'armor', 'shield', 'healing potion')
>>> inventory[0] = "battleax"
Traceback (most recent call last):

File "<pyshell#3>", line 1, in ?

inventory[0] = "battleax"

TypeError: object doesn't support item assignment

Although you can't change tuples, like strings, you can create new
tuples from existing ones.

Concatenating Tuples

You can concatenate tuples the same way you concatenate strings.
You simply join them together with +, the concatenation operator:

concatenate two tuples

chest = ("gold", "gems")

print "You find a chest. It contains:"
print chest

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig147_02_0.jpg

print "You add the contents of the chest to your
inventory."

inventory += chest

print "Your inventory is now:"

print inventory

raw_input ("\n\nPress the enter key to exit.")

The first thing | did was create a new tuple, chest, with the two
string elements "gold" and "gems". Next, | printed chest to show
its elements. After that, | used an augmented assignment operator to
concatenate inventory with chest and assign the result back to

inventory. | did not modify the original tuple assigned to
inventory (since that's impossible, because tuples are immutable).

Instead, the augmented assignment operator created a brand-new
tuple with the elements from inventory and chest and assigned

thatto inventory.

Back to the Word Jumble Game

The Word Jumble game combines several new ideas you learned
about in this chapter. You can easily modify the program to contain
your own list of words to guess.

Setting Up the Program

After my initial comments, | import the random module:

Word Jumble

#

The computer picks a random word and then
"Jumbles" it

The player has to guess the original word

T
Michael Dawson - 1/28/03

import random

Next, | used a tuple to create a sequence of words. Notice that the
variable name WORD is in all caps, implying that I'll treat it as a

constant.
create a sequence of words to choose from

WORDS = ("python", "jumble", "easy", "difficult",
"answer", "xylophone")

Next, | use a new function, random.choice (), to grab a random
word from WORDS:

pick one word randomly from the sequence

word = random.choice (WORDS)

This function is new to you, but it's pretty simple. The computer looks
at whatever sequence you give and picks a random element.

Once the computer has chosen a random word, it assigns it to word.
This is the word the player will have to guess. Lastly, | assign word
to correct, which I'll use later to see if the player makes a correct
guess:

create a variable to use later to see if the

guess 1s correct
correct = word

Planning the Jumble Creation Section

The next section of code uses the new concepts in the chapter and
is the most interesting part of the program. It's the section that
actually creates the jumbled word from the original, randomly chosen
word.

But, before | wrote any code, | planned out this part of the program in
pseudocode (yes, | actually use all that stuff | write about). Here's my
first pass at the algorithm to create a jumbled word from the chosen
word:

create an empty jumble word

while the chosen word has leftters in it
extract a random letter from the chosen word
add the random letter to the jumble word

Conceptually, this is pretty good, but | have to watch my semantics.
Because strings are immutable, | can't actually "extract a random
letter" from the string the user entered. But, | can create a new string
that doesn't contain the randomly chosen letter. And while | can't
"add the random letter" to the jumble word string either, | can create
a new string by concatenating the current jumble word with the
"extracted" letter.

Creating an Empty Jumble String

The very first part of the algorithm is easy:

create a jumbled version of the word
Jumble =""

The program creates the empty string and assigns it to jumble,
which will refer to the final, jumbled word.

Setting Up the Loop

The jumble creation process is controlled by a while loop. The loop
condition is pretty simple, as you can see:

while word:

| set the loop up this way so that it will continue until word is equal to
the empty string. This is perfect, because each time the loop
executes, the computer creates a new version of word with one

letter "extracted" and assigns it back to word. Eventually, word will
become the empty string and the jumbling will be done.

Generating a Random Position in word

The first line in the loop body generates a random position in word,
based on its length:

position = random.randrange (len (word))

So, the letter word [position] is the letter that is going to be
"extracted" from word and "added to" jumble.

Creating a New Version of jumble

The next line in the loop creates a new version of the string jumble.
It becomes equal to its old self, plus the letter word [position].

Jumble += word[position]

Creating a New Version of word

The next line in the loop,

word = word[:position] + word[(position + 1) :]

creates a new version of word minus the one letter at position
position. Using slicing, the computer creates two new strings from
word. The first slice, word [:position], is every letter up to, but
not including, word [position]. The next slice, word[(position
+ 1) :1,Iis every letter after word [position]. These two string
are joined together and assigned to word, which is now equal to its
old self, minus the one letter word [position].

Welcoming the Player

After the jumbled word has been created, the next section of the
program welcomes the player to the game and displays the jumbled
word to be rearranged:

start the game
print \

Welcome to Word Jumble!

Unscramble the letters to make a word.
(Press the enter key at the prompt to quit.)

print "The jumble is:", jumble

Getting the Player's Guess

Next, the computer gets the player's guess. The computer keeps
asking the player for a guess as long as the player doesn't enter the
correct word or presses the Enter key at the prompt:

guess = raw_input ("\nYour guess: ")
guess = guess.lower ()

while (guess != correct) and (guess != ""):
print "Sorry, that's not it."
guess = raw_input ("Your guess: ")
guess = guess.lower ()

| made sure to convert guess to lowercase since the word the player
is trying to guess is in lowercase.

Congratulating the Player

At this point in the program, the player has either correctly guessed
the word or quit the game. If the player has guessed the word, then
the computer offers its hearty congratulations:

if guess == correct:
print "That's it! You guessed it!\n"

Ending the Game

Finally, the program thanks the player for playing the game and
ends:

print "Thanks for playing."

raw_input ("\n\nPress the enter key to exit.")

Summary

In this chapter, you learned about the concept of sequences. You
saw how to create a sequence of numbers with the range ()
function. You saw how strings are really just sequences of
characters. You learned about tuples, which let you organize a
sequence of any type. You saw how to go through the elements of a
sequence with a for loop. You learned how to get the length of a
sequence and how to check if an element is a member of a
sequence. You saw how to copy pieces of a sequence through
indexing and slicing. You learned about immutability and some of the
limitations it places on you. But you also saw how to create new
sequences from existing ones through concatenation, in spite of this
immutability. Finally, you put everything together to create a
challenging word jumble game.

Challenges

1. Write a program that counts for the user. Let the user enter
the starting number, the ending number, and the amount by
which to count.

2. Create a program that gets a message from the user and
then prints it out backwards.

3. Improve "Word Jumble" so that each word is paired with a
hint. The player should be able to see the hint if he or she
is stuck. Add a scoring system that rewards players who
solve a jumble without asking for the hint.

4. Create a game where the computer picks a random word
and the player has to guess that word. The computer tells
the player how many letters are in the word. Then the
player gets five chances to ask if a letter is in the word. The
computer can only respond with "yes" or "no". Then, the
player must guess the word.

Chapter 5: Lists and Dictionaries: The
Hangman Game

® Download CD Content

Overview

Tuples are a great way to work with sequences of any type, but their
immutability can be limiting. Fortunately, another sequence type,
called lists, do everything that tuples can, plus more. That's because
lists are mutable. Elements can be added or removed from a list. You
can even sort or reverse an entire list. You'll also be introduced to
another type, dictionaries. Whereas lists work with sequences of
information, dictionaries work with pairs of data. Dictionaries, like
their real-life counterparts, let you look up one value with another.
Specifically in this chapter, you'll learn to do the following:

= Create, index, and slice a list
» Add and delete elements from a list
= Use list methods to append, sort, and reverse a list

= Use nested sequences to represent even more complex
information

= Use dictionaries to work with pairs of data

= Add and delete dictionary items

Introducing the Hangman Game

The project for this chapter is the game of hangman. The computer
picks a secret word and the player has to try to guess it, one letter at
a time. Each time the player makes an incorrect guess, the computer
shows a new image of a figure being hanged. If the player doesn't
guess the word in time, the stick figure is a goner. Figures 5.1
through 5.3 show off the game in all its glory.

Figure 5.1: The "Hangman" game in action. Hmm . . . | wonder
what the word could be.

(R

Figure 5.2: | won this game!

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig156_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig156_02_0.jpg

Figure 5.3: This game ended badly, especially for the little guy
made of text.

Not only is this game fun, but by the end of the chapter, you'll know
how to create your own version. You can have a personalized group
of secret words, and even update my marginally adequate artwork.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig157_01_0.jpg

Using Lists

Lists are sequences, just like tuples, but lists are mutable. They can
be modified. So, lists can do everything tuples can, plus more. Lists
work just like tuples, so everything you learned about tuples is
applicable to lists, which makes learning to use them a snap.

Introducing the Hero's Inventory 3.0 Program

This program is based on the Hero's Inventory 2.0 program,
introduced in Chapter 4, section "Creating Tuples." But instead of
using tuples to store the hero's inventory, this program uses lists.
The first part of Hero's Inventory 3.0 creates the same results as
version 2.0. In fact, the code is almost exactly the same. The only
difference is that it uses lists instead of tuples. Figure 5.4 shows off
the results of the first part of the program. The second part of the
program takes advantage of the mutability of lists and does some
brand-new things with sequences. Figure 5.5 shows that part in
action.

Figure 5.4: The hero's inventory is now represented by a list. The
results look almost exactly the same as when the inventory was
represented by a tuple in Hero's Inventory 2.0.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig158_01_0.jpg

Figure 5.5: Since the hero's inventory is represented by a list,
items can be added, modified, and deleted.

Creating a List

The first line of the program creates a new list, assigns it to
inventory, and prints each element. The last line waits for the user
before continuing. This works almost exactly like it did in Hero's
Inventory 2.0. The only difference is that | surrounded the elements
with square brackets instead of parentheses, to create a list instead
of a tuple.

Hero's Inventory
Demonstrates lists
Michael Dawson - 1/29/03

create a list with some items and display with a
for loop
inventory = ["sword", "armor", "shield", "healing
potion"]
print "Your items:"
for item in inventory:

print item

raw_input ("\nPress the enter key to continue.")

Using the 1len () Function with Lists

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig158_02_0.jpg

The following code is exactly the same as the corresponding code in
Hero's Inventory 2.0:

get the length of a list
print "You have", len(inventory), "items in your
possession."

raw_input ("\nPress the enter key to continue.")

Using the in Operator with Lists

Again, the code for this section is exactly the same as in the older
version. The in operator works the same with lists as it does with

tuples.

test for membership with in
if "healing potion" in inventory:
print "You will live to fight another day."

Indexing Lists

Once again, the code is exactly the same as it was with tuples.
Indexing a list is the same as indexing a tuple: just supply the
position number of the element you're after in brackets.

display one item through an index

index = int (raw_input ("\nEnter the index number
for an item in inventory: "))

print "At index", index, "is", inventory[index]

Slicing Lists

Would you believe that slicing a list is exactly the same as slicing a
tuple? Again, you just supply the two end points, separated by a
colon, in brackets:

display a slice
begin = int (raw input ("\nEnter the index number to

begin a slice: "))

end = int(raw_input ("Enter the index number to end
the slice: "))
print "inventory[", begin, ":", end, "]\t\t",

print inventory[begin:end]

raw_input ("\nPress the enter key to continue.")

Concatenating Lists

Concatenating lists works the same way concatenating tuples does.
The only real difference here is that | created a list (rather than a
tuple) and assigned it to chest. This is a small but important
difference, because you can only concatenate sequences of the
same type.

concatenate two lists

chest = ["gold", "gems"]

print "You find a chest which contains:"

print chest

print "You add the contents of the chest to your
inventory."

inventory += chest

print "Your inventory 1s now:"

print inventory

raw input ("\nPress the enter key to continue.")

Understanding List Mutability

At this point, you may be getting a bit tired of reading the phrase
"works exactly the same as it did with tuples." So far, with the
exception of using brackets instead of parentheses, lists seem no
different than tuples. But there is one huge difference between them.
Lists are mutable. They can change. This makes lists the most

powerful and flexible sequence type at your disposal. Since lists are
mutable, there are many things you can do with them that you can't
do with tuples.

Assigning a New List Element by Index

Because lists are mutable, you can assign an existing element a new
value:

assign by index

print "You trade your sword for a crossbow."
inventory[0] = "crossbow"

print "Your inventory is now:"

print inventory

raw_input ("\nPress the enter key to continue.")

The following line assigns the string "crossbow" to the element in
inventory at position O:

inventory[0] = "crossbow"

The new string replaces the previous value (which was "sword").
You can see the results when the print statement displays the new
version of inventory.

TRAP You can assign an existing list element a new value with
indexing, but you can't create a new element in this way.
An attempt to assign a value to a nonexistent element will
result in an error.

Assigning a New List Slice

In addition to assigning a new value to a single element, you can
assign a new value to a slice. | assigned the list ["orb of future

telling"] to the slice inventory[4:6]:

assign by slice

print "You use your gold and gems to buy an orb of
future telling."

inventory[4:6] = ["orb of future telling"]

print "Your inventory is now:"

print inventory

raw_input ("\nPress the enter key to continue.")

This assignment statement replaces the two items inventory[4]
and inventory[5] with the string "orb of future telling".

Because | assigned a list with one element to a slice with two
elements, the length of the list shrunk by one.

Deleting a List Element

You can delete an element from a list with the de1 command. Just
designate the element after the de1 command:

delete an element

print "In a great battle, your shield 1is
destroyed."

del inventory|[2]

print "Your inventory 1is now:"

print inventory

raw input ("\nPress the enter key to continue.")

After this code executes, the element that was at position number 2,
the string "shield", is removed from inventory. Deleting an
element doesn't create a gap in a sequence. All the elements after
the deleted one "slide down" one position. So, in this case, there is
still an element in position 2, it's just the element that was at position
3.

Deleting a List Slice

You can also delete a slice from a list:

delete a slice

print "Your crossbow and armor are stolen by
thieves."

del inventory[:2]

print "Your inventory 1is now:"

print inventory

raw input ("\n\nPress the enter key to exit.")

The following line removes the slice inventory[:2], which is
["crossbow", "armor"], from inventory:

del inventory/[:2]

Just as with deleting an element, the remaining elements form a
new, continuous list, starting from position 0.

Using List Methods

Lists have methods that allow you to manipulate them. Through list
methods, you can add an element, remove an element based on its
value, sort a list, and even reverse the order of a list.

Introducing the High Scores Program

The High Scores program uses list methods to create and maintain a
list of the user's best scores for a computer game. The program uses
a simple, menu-driven interface. The user has a few choices. He or
she can add a new score, delete a score, sort the scores, or quit the
program. Figure 5.6 shows the program in action.

(e

Figure 5.6: The user chooses from a menu to maintain the high
scores list. Behind the scenes, list methods do the bulk of the
work.

Setting Up the Program

The setup code for the program is pretty simple. After the initial
comments, | create two variables. scores is a list that will contain
the scores. | set it to an empty list to start out. choice represents
the user's choice from the menu. | initialized it to None.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig163_01_0.jpg

High Scores
Demonstrates list methods
Michael Dawson - 1/30/03

scores = []
choice = None

Displaying the Menu

The while loop is the bulk of the program. It continues until the user
enters 0. The rest of this code prints the menu and gets the user's
choice:

while choice != "0":

print \

mwww

High Scores Keeper

0 - Exit

1 - Show Scores

2 - Add a Score

3 - Delete a Score

4 - Sort Scores

choice = raw input ("Choice: ")
print

Exiting the Program

| first check if the user wants to quit. If the user enters 0, the
computer says "Good-bye.":
exit
if choice == "0":
print "Good-bye."

If the user enters 0, then the while loop's condition will be false the
next time it's tested. The loop will end and so will the program.

Displaying the Scores

If the user enters 1, then this e11if block executes and the computer
displays the scores:
list high-score table
elif choice == "1":
print "High Scores"
for score in scores:
print score

Adding a Score with the append () Function

If the user enters 2, the computer asks the user for a new score and
assigns it to score. The last line appends this new number to
scores, which means it tacks it on to the end of the list. The list
becomes one element longer.
add a score
elif choice == "2":
score = int (raw input ("What score did you
get?: ")) a
scores.append (score)

Removing a Score with the remove () Function

When the user enters 3, the computer gets a score from the user to

remove. If the score is in the list, the computer removes the first
occurrence of it. If the score isn't in the list, the user is informed.

delete a score
elif choice == "3":
score = int (raw input ("Delete which

score?: "))
if score in scores:
scores.remove (score)
else:
print score, "isn't in the high scores
list."

The computer first checks to see if the score is in the list. If so, the
computer goes through the list, starting at position 0, and searches

for the score. When it finds the score, that element is deleted. If the
score is in the list more than once, only the first occurrence is
removed. You can see how this is different from the del command.
The remove () function doesn't delete an element based on a
position, but rather on a value. If the score wasn't found in the list,
the user is informed.

TRAP Watch out when you use the remove () method. If you
try to remove a value that isn't in a list, you'll generate an
error.

Sorting the Scores with the sort () Function

The scores in the list are in the exact order the user entered them.
Normally, you want a high score list to be sorted with the highest
scores at the top. To sort the scores, all the user has to do is enter 4:

sort scores
elif choice == "4":
scores.sort ()

The sort () method sorts the elements in the list. This is great,
except that with sort (), you end up with the list in ascending order,

where the smallest values are first. But what | want is the largest
numbers first. | need the reverse of this.

Reversing the Scores with the reverse () Function

Luckily, there's a reverse () method for lists. It just reverses the list

order. This is exactly what | need so that the highest scores will be at
the beginning of the list. Before the e11 f block ends, | use the

reverse () method, like so:

scores.reverse () # want the highest
number first

Now, all the scores are in order, from largest to smallest. Perfect.

Dealing with an Invalid Choice

If the user enters a number that isn't a valid choice, the el se clause
catches it. The program lets the user know that the choice isn't
understood.

some unknown choice
else:
print "Sorry, but", choice, "isn't a valid
choice."

Waiting for the User

After the user enters 0 to exit, the loop ends. As always, the program
waits for the user:

raw_input ("\n\nPress the enter key to exit.")

You've seen a bunch of useful list methods in action. To get a
summary of these methods (plus a few more), take a look at Table
2.1.

Table 5.1: SELECTED LIST METHODS

Method Description

append (value) ||Adds value to end of a list.

sort () Sorts the elements, smallest value first.

Method Description

reverse () Reverses the order of a list.

count (value) |Returns the number of occurrences of value.

Returns the first position number of where

index (value)
value OCCUrs.

insert (1, . ,
Inserts value at position 1.
value)

Returns value at position i and removes
value from the list. Providing the position
number i is optional. Without it, the last
element in the list is removed and returned.

pop ([1])

Removes the first occurrence of value from
the list.

remove (value)

Understanding When to Use Tuples Instead
of Lists

At this point, you may be thinking, "Why use tuples at all?" It's true
that lists can do everything tuples can, plus more. But don't be so
quick to dismiss tuples. There is a place for them in your Python
programming world. There are a few occasions where tuples make
more sense than lists.

= Tuples are faster than lists. Because the computer knows
they won't change, tuples can be stored in a way that makes
using them faster than using lists. For simple programs, this
speed difference won't matter, but in more complex
applications, with very large sequences of information, it
could.

= Tuples' immutability makes them perfect for creating
constants since they can't change. Using tuples can add a
level of safety and clarity to your code.

= Sometimes tuples are required. In some cases, Python
requires immutable values. Okay, you haven't actually seen
any of those cases yet, but there is a common situation you'll
see when you learn about dictionaries, later in this chapter.
Dictionaries require immutable types, so tuples will be
essential when creating some kinds of dictionaries.

But, because lists are so flexible, you're probably best off using them
over tuples in most cases.

Using Nested Sequences

Before, | said that lists or tuples can be sequences of anything. If
that's true, then lists can contain other lists or tuples, and tuples can
contain other tuples or lists. Well, they can, and when they do,
they're called nested sequences. Nested sequences are sequences
inside other sequences. Nested sequences are a great way to
organize more complex collections of information.

Although the term sounds like another cryptic piece of computer
jargon, | bet you create and use nested sequences all the time. Let
me give you an example. Say you're making a holiday shopping list.
You start by making a list of names. Under each name, you list a few
possible gifts. Well, you've just created a nested sequence: you have
a list of names and each name represents a list of gifts. That's all
there is to it.

Introducing the High Scores 2.0 Program

The last program, High Scores, uses only scores. But most high
score lists store a name along with a score. That's what this new
version does. It also has a few other improvements. It automatically
sorts the scores and even limits the list to just the top five. Figure 5.7
shows a sample run.

Figure 5.7: The new and improved version of High Scores stores
a name with a score through nested sequences.

Creating Nested Sequences

You create a nested list or tuple like always: type each element,
followed by a comma. The difference with nested sequences is that
you include entire lists or tuples as elements. Here's an example:

>>> nested = ["first", ("second", "third"),
["fourth", "fifth", "sixth"]]

>>> print nested

['first', ('second', 'third'), ['fourth', 'fifth',
'sixth']]

So, although you see six strings here, nested has only three
elements. The first element is the string "first", the second
element is the tuple ("second", "third"), and the third element
is the list ["fourth", "fifth", "sixth"].

While you can create a list or tuple with any number of lists and
tuples, useful nested sequences often have a consistent pattern.
Take a look at the next example:

>>> scores = [("Moe", 1000), ("Larry", 1500),
("Curly", 3000)]

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig168_01_0.jpg

>>> print scores
[("Moe', 1000), ('Larry', 1500), ('Curly', 3000)]

scores is a list with three elements. Each element is a tuple. Each

tuple has exactly two elements, a string and a number. This kind of
uniform structure makes for the most useful nested sequences.

This sequence, by the way, represents a high score table with
names and scores (like a real high score table should!). In this
particular instance, Moe got a score of 1,000; Larry got 1,500; and
Curly got a high score of 3,000.

TRAP Although you can create nested sequences inside nested
sequences many times over, as in the following example,
this usually isn't a good idea.

nested = ("deep", ("deeper", ("deepest",
"still deepest")))

Things can get confusing fast. Even experienced
programmers rarely use sequences more than a level or
two deep. For most programs you'll write, one level of
nesting (like the scores list you just saw) is really all
you'll need.

Accessing Nested Elements

You access elements of a nested sequence just like any other
sequence, through indexing:

>>> scores = [("Moe", 1000), ("Larry", 1500),
("Curly", 3000)]

>>> print scores|[0]

('"Moe', 1000)

>>> print scores([1]

('"Larry', 1500)

>>> print scores|[2]

('"Curly', 3000)

Each element is a tuple, so that's exactly what you get when you
access one. But what if you want to access one of the elements of
one of the tuples? One way is to assign the tuple to a variable and
index it, as in:

>>> a score = scores|[Z]

>>> print a score

('"Curly', 3000)

>>> print a score[0]

Curly

But there's a direct way to access "Curly" right from scores:

>>> print scores[2][0]
Curly

By supplying two indices with scores[2] [0], you're telling the
computer to go get the element from scores at position 2 (which is
("Curly", 3000))and then, from that, to get the element at
position 0 (which is "Curly"). You can use this kind of multiple
indexing with nested sequences to get directly to a nested element.

Unpacking a Sequence

If you know how many elements are in a sequence, you can assign
each to its own variable in a single line of code:

>>> name, score = ("Shemp", 175)
>>> print name

Shemp

>>> print score

175

This is called unpacking and works with any sequence type. Just
remember to use the same number of variables as elements in the
sequence, because otherwise you'll generate an error.

Setting Up the Program

Just as in the original High Scores program, | set up the variables
and while loop. As before, if the user enters 0, the computer prints
"Good-bye.":

High Scores 2.0
Demonstrates nested sequences
Michael Dawson - 1/31/03

scores = []

choice = None
while choice != "Q":

print \

High Scores Keeper
0 - Quit

1 - List Scores

2 — Add a Score

choice = raw_ input ("Choice: ")
print

exit

if choice == "0":

print "Good-bye."
Displaying the Scores by Accessing Nested Tuples

If the user enters 1, the computer goes through each element in
scores and unpacks the score and name into the variables score
and name. Then the computer prints them out.

display high-score table
elif choice == "1":
print "NAME\tSCORE"
for entry in scores:
score, name = entry
print name, "\t", score

Adding a Score by Appending a Nested Tuple

If the user enters 2, the computer lets the user enter a new score
and name. With these two values, the computer creates a tuple,
entry. | chose to store the score first in this tuple because | wanted
the entries to be sorted by score, then name. Next, the computer
appends this new high score entry to the list. The computer sorts the
list and reverses it so that the highest scores are first. The final
statement slices and assigns the list so that only the top five scores
are kept.

add a score

elif choice == "2":
name = raw input ("What is the player's
name?: ")
score = Int(raw input ("What score did the
player get?: "))
entry = (score, name)

scores.append (entry)
scores.sort ()

scores.reverse () # want the highest
number first
scores = scores|[:5] # keep only top 5

SCores

Dealing with an Invalid Choice

If the user enters something other than 0, 1, or 2, the else clause
catches it. The program lets the user know that the choice wasn't

understood.

some unknown choice

else:
print "Sorry, but", choice, "isn't a valid

choice."

Waiting for the User

After the user enters 0 to exit, the loop ends and the program waits
for the user:

raw input ("\n\nPress the enter key to exit.")

Understanding Shared References

In Chapter 2, you learned that a variable refers to a value. This
means that, technically, a variable doesn't store a copy of a value,
but just refers to the place in your computer's memory where the
value is stored. For example, language = "Python" stores the
string "Python" in your computer's memory somewhere and then
creates the variable 1anguage, which refers to that place in
memory. Take a look at Figure 5.8 for a visual representation.

language —» "Python"

Figure 5.8: The variable 1anguage refers to a place in memory
where the string value "Python" is stored.

To say the variable 1anguage stores the string "Python", like a
piece of Tupperware stores a chicken leg, is not accurate. In some
programming languages, this might be a good analogy, but not in
Python. A better way to think about it is like this: A variable refers to
a value the same way a person's hame refers to a person. It would
be wrong (and silly) to say that a person's name "stores" the person.
Using a person's name, you can get to a person. Using a variable
name, you can get to a value.

So what does all this mean? Well, for immutable values that you've
been using, like numbers, strings, and tuples, it doesn't mean much.
But it does mean something for mutable values, like lists. When
several variables refer to the same mutable value, they share the
same reference. They all refer to the one, single copy of that value.
And a change to the value through one of the variables results in a
change for all the variables, since there is only one, shared copy to
begin with.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig172_01_0.jpg

Here's an example to show how this works. Suppose that I'm
throwing a hip, happening party with my friends and dignitaries from
around the world. (Hey, this is my book. | can make up any example
| want.) Different people at the party call me by different names, even
though I'm only one person. Let's say that a friend calls me "Mike," a
dignitary calls me "Mr. Dawson," and my Pulitzer Prize winning,
supermodel girlfriend, just back from her literacy, fundraising world-
tour (again, my book, my fictional girlfriend) calls me "Honey." So, all
three people refer to me with different names. This is the same way
that three variables could all refer to the same list. Here's the
beginning of an interactive session to show you what | mean:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> mr dawson = mike

>>> honey = mike

>>> print mike

['khakis', 'dress shirt', 'jacket']

>>> print mr dawson

['khakis', 'dress shirt', 'jacket']

>>> print honey

['khakis', 'dress shirt', 'jacket']

So, all three variables, mike, mr dawson, and honey, refer to the
same, single list, representing me (or at least what I'm wearing at
this party). Figure 5.9 helps drive this idea home.

r =
mike

TR,

mr_dawson—=| "khakis" | “dress shirt" | "jacket”
hﬂney/
e »
Figure 5.9: The variables mike, mr dawson, and honey all refer
to the same list.

This means that a change to the list using any of these three
variables will change the list they all refer to. Back at the party, let's

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig174_01_0.jpg

say that my girlfriend gets my attention by calling "Honey." She asks
me to change my jacket for a red sweater she knitted (yes, she knits
too). I, of course, do what she asks. In my interactive session, this
could be expressed as follows:

>>> honey[2] = "red sweater"
>>> print honey
['khakis', 'dress shirt', 'red sweater']

The results are what you would expect. The element in position
number 2 of the list referred to by honey is no longer "jacket", but

IS NOW "red sweater".

Now, at the party, if a friend were to get my attention by calling
"Mike" or a dignitary were to call me over with "Mr. Dawson," both
would see me in my red sweater, even though neither had anything
to do with me changing my clothes. The same is true in Python.
Even though | changed the value of the element in position number 2
by using the variable honey, that change is reflected by any variable
that refers to this list. So, to continue my interactive session:

>>> print mike

['khakis', 'dress shirt', 'red sweater']
>>> print mr dawson

['khakis', 'dress shirt', 'red sweater']

The element in position number 2 of the list referred to by mike and
mr dawson is "red sweater". It has to be since there's only one
list.

So, the moral of this story is: be aware of shared references when
using mutable values. If you change the value through one variable,
it will be changed for all.

However, you can avoid this effect if you make a copy of a list,
through slicing. For example:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> honey = mikel[:]

>>> honey[2] = "red sweater"

>>> print honey

['khakis', 'dress shirt', 'red sweater']

>>> print mike

['khakis', 'dress shirt', 'jacket']

Here, honey is assigned a copy of mi ke. honey does not refer to
the same list. Instead, it refers to a copy. So, a change to honey has
no effect on mike. It's like I've been cloned. Now, my girlfriend is
dressing my clone in a red sweater, while the original me is still in a
jacket. Okay, this party is getting pretty weird with my clone walking
around in a red sweater that my fictional girlfriend knitted for me, so |
think it's time to end this bizarre yet useful analogy.

One last thing to remember is that sometimes you'll want this
shared-reference effect, while other times you won't. Now that you
understand how it works, you can control it.

Using Dictionaries

By now you probably realize that programmers love to organize
information. You saw that lists and tuples let you organize things into
sequences. Well, dictionaries let you organize information too, but in
a different way. With a dictionary, you don't store information in a
sequence; instead, you store it in pairs. It's a lot like an actual
dictionary where each entry is a pair: a word and its definition. When
you look up a word, you get its definition. Python dictionaries work
the same way: you look up a key and get its value.

Introducing the Geek Translator Program

The high-tech world has created many things that impact our lives,
including a culture of its own. As the result of technology, new words
and concepts have been born. There's a brand-new kind of slang out
there, and the Geek Translator is here to help you understand the
technophile in your life. The program creates a dictionary with geek
terms and definitions. The program not only lets the user look up a
term, but also add a term, replace a definition, and delete a term.
Figure 5.10 illustrates the program.

Figure 5.10: So "uninstalled" means fired. | was totally 404 on
that.

Creating Dictionaries

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig176_01_0.jpg

The first thing | did in the program was create a dictionary of terms
and definitions. The geek terms are on the left, and their definitions
are on the right.

Geek Translator
Demonstrates using dictionaries
Michael Dawson - 2/16/03

geek = {"404" : "Clueless. From the web error
message 404, meaning page not found.",

"Googling" : "Searching the Internet for
background information on a person.",

"Keyboard Plaque" : "The collection of
debris found in computer keyboards.",

"Link Rot" : "The process by which web
page links become obsolete.",

"Percussive Maintenance" : "The act of
striking an electronic device to make it work.",

"Uninstalled" : "Being fired. Especially
popular during the dot-bomb era."}

This code creates a dictionary named geek. It consists of six pairs,
called items. As an example, one of the items is "Keyboard
Plaque" : "The collection of debris found in
computer keyboards." Each item is made up of a key and a
value. The keys are on the left side of the colons. The values are on
the right. So, "Keyboard Plaque" is a key, and its value is "The
collection of debris found in computer keyboards."
The key is literally the "key" to getting the value. That means you
could use the key "Keyboard Plaque" to getits value "The
collection of debris found in computer keyboards."

To create your own dictionary, follow the pattern | used. Type a key,
followed by a colon, followed by the key's value. Use commas to
separate all of the key-value pairs, and surround the whole thing with

curly brackets. Like tuples and lists, you can either type the whole
thing on one line or use separate lines after any of the commas.

Accessing Dictionary Values

The most common thing you'll do with a dictionary is use a key to get
its value. There are a few different ways you can do this. I'll show
you an example of each in this section, using the interactive
interpreter.

Using a Key to Retrieve a Value

The simplest way to retrieve a value from a dictionary is by directly
accessing it with a key. To get a key's value, just put the key in
brackets, following the name of the dictionary. Here's an interactive
session to show you what | mean (assume that I've already defined
the dictionary geek):

>>> geek ["404"]

'clueless. From the web error message 404, meaning
page not found.'

>>> geek["Link Rot"]

'the process by which web page links become
obsolete.'

This looks similar to indexing a sequence, but there's an important
difference. When you index a sequence, you use a position number.
When you look up a value in a dictionary, you use a key. This is the
only direct way to retrieve a value from a dictionary. In fact,
dictionaries don't have position numbers at all.

One thing that sometimes trips up beginning programmers is that a
value can't be used to get a key in a dictionary. That would be like
trying to use a definition to find a word in a real-life dictionary. Real-
life dictionaries just aren't set up for that kind of thing, and neither
are Python dictionaries. So remember, it's give a key and get a
value, only.

TRAP If you try to get a value from a dictionary by directly
accessing it with a key that doesn't exist, you'll generate
an error:

>>> geek|['"Dancing Baloney"]
Traceback (most recent call last):
File "<pyshell#3>", line 1, in ?
geek["Dancing Baloney"]
KeyError: Dancing Baloney

Since "Dancing Baloney" isn't a key in the dictionary,
this results in an error. ("Dancing Baloney," by the way,
means animated graphics and other visual effects that
have no substantive value, often used by web designers
to impress clients.)

Testing for a Key with the in Operator Before Retrieving
a Value

Since using a nonexistent key can lead to an error, it's usually best
not to directly access a dictionary without taking some precautions.
One thing you can do is check to see if a key exists before
attempting to retrieve its value. You can check for the existence of a
key with the in operator:

>>> 1f "Dancing Baloney" in geek:
print "I know what Dancing Baloney is."
else:
print "I have no idea what Dancing
Baloney is."

I have no idea what Dancing Baloney is.

Because the dictionary doesn't contain "Dancing Baloney" as a
key, the condition "Dancing Baloney" in geek is false. So, the
computer says it doesn't know what it is.

You use the in operator with dictionaries much the same way you've
used it with lists and tuples. You type the value your checking for,
followed by in, followed by the dictionary. This creates a condition.
The condition is true if the key is in the dictionary, otherwise it's false.
This is a handy thing to do before trying to get a value. But
remember, in only checks for keys; it can't check for values used
this way.

TRAP The in operator didn't work with dictionaries before
Python 2.2. If you're using a version of Python before
that, you can use the dictionary method has_key () to
test for a key in a dictionary. Check out Table 5.2, later in
the chapter, for a description of this dictionary method
and a few others.

Table 5.2: SELECTED DICTIONARY METHODS

Method Description

Returns true if key is in the dictionary

h k k
as_key (key) as a key. Otherwise it returns false.

Returns the value of key. If key
doesn't exist, then the optional

get (key, default is returned. If key doesn't
[default]) _ L .
exist and derfault isn't specified,
then None is returned.
K Returns a list of all the keys in a
eys () .
dictionary.
Returns a list of all the values in a
values ()

dictionary.

Method Description

Returns a list of all the items in a
dictionary. Each item is a two-

items () element tuple, where the first element
is a key and the second element is
the key's value.

Using the get () Method to Retrieve a Value

There's another way to retrieve a value from a dictionary. You can
use the dictionary method get (). The method has a built-in safety
net for handling situations where you ask for a value of a key that
doesn't exist. If the key doesn't exist, the method returns a default
value, which you can define. Take a look at another attempt:

>>> print geek.get ("Dancing Baloney", "I have no
idea.")
I have no idea.

By using the get () method here, | was guaranteed to get a value
back. If this term was in the dictionary as a key, then I'd get its
definition. Since it wasn't, | got back the default value that | defined,
the string "I have no idea."

To use the get () method, all you have to do is supply the key
you're looking for followed by an optional default value. If the key is
in the dictionary, you get its value. If the key isn't in the dictionary,
you get the default value. But here's the twist: if you don't supply a
default value (it's your option), then you get back None. Here's an
example | created without providing a default value:

>>> print geek.get ("Dancing Baloney")
None

Setting Up the Program

Time to get back to the code for the Geek Translator program. After |
created the geek dictionary, | implemented the menu system you've
seen before, this time with five choices. Like before, if the user
chooses 0, the computer says good-bye.

choice = None
while choice != "0":

print \

mwww

Geek Translator

0 - Quit

1 - Look Up a Geek Term

2 — Add a Geek Term

3 - Redefine a Geek Term

4 - Delete a Geek Term

choice = raw input ("Choice: ")
print

exit

if choice == "0":

print "Good-bye."
Getting a Value

If the user enters 1, the next section asks for a term to look up. The
computer checks to see if the term is in the dictionary. If it is, the
program accesses the dictionary, using the term as the key, gets its
definition, and prints it out. If the term is not in the dictionary, the
computer informs the user.

get a definition
elif choice == "1":
term = raw input ("What term do you want me

to translate?: ")
if term in geek:
definition = geek[term]
print "\n", term, "means", definition
else:
print "\nSorry, I don't know", term

Adding a Key-Value Pair

Dictionaries are mutable, so you can modify them. If the user enters
2, the next section adds a new term to the dictionary:

add a term-definition pair

elif choice == "2":
term = raw input ("What term do you want me
to add?: ")
if term not in geek:
definition = raw input ("What's the
definition?: ")
geek|[term] = definition
print "\n", term, "has been added."
else:

print "\nThat term already exists! Try
redefining 1it."

The computer asks the user for the new term to add. If the term is
not already in the dictionary, the computer gets the definition and
adds the pair through the line:

geek[term] = definition

This creates a new item in geek. The term is the key and the
definition is its value. This is exactly how you assign a new item to a
dictionary. You use the dictionary, followed by the key, in square
brackets, followed by the assignment operator, followed by the key's
value.

| wrote the program so that the computer refuses to add a term if it's
already in the dictionary. This is a safety measure | created to insure
that the user doesn't accidentally overwrite an existing term. If the
user really wants to redefine an existing term, he or she should
choose menu option 3.

TRICK A dash of pessimism is a good thing, at least when
you're programming. As you saw here, | assumed that
the user might try to add a new term without realizing it's
already in the dictionary. If | hadn't checked for this, a
user could overwrite a term without realizing it. WWhen
you're writing your own programs, try to think of things
that could go wrong, then try to make sure your program
can deal with them. So be a pessimist, just a little bit.

Replacing a Key-Value Pair

If the user enters 3, then the next section replaces an existing key-
value pair:

redefine an existing term
elif choice == "3":
term = raw input ("What term do you want me
to redefine?: ")
if term in geek:

definition = raw input ("What's the new
definition?: ")

geek|[term] = definition

print "\n", term, "has been
redefined."

else:

print "\nThat term doesn't exist! Try

adding it."

To replace a key-value pair, | used the exact same line of code that |
used for adding a new pair:

geek[term] = definition
Python replaces the current value (the definition) with the new one.

TRAP If you assign a value to a dictionary using a key that
already exists, Python replaces the current value without
complaint. So you have to watch out, because you might
overwrite the value of an existing key without realizing it.

Deleting a Key-Value Pair

If the user enters 4, then this e1if block runs:

delete a term-definition pair
elif choice == "4":
term = raw input ("What term do you want me
to delete?: ")
if term in geek:
del geek[term]
print "\nOkay, I deleted", term
else:
print "\nI can't do that!", term,
"doesn't exist in the dictionary."

The program asks the user for the geek term to delete. Next, the
program checks to see if the term is actually in the dictionary, with
the in operator. If it is, the item is deleted with

del geek[term]

This deletes the item with the key term from the dictionary geek.
You can delete any item in a dictionary this way. Just put de1l in front
of the dictionary followed by the key of the item you wish to delete in
square brackets.

If the geek term doesn't exist in the first place, the else clause
executes and the computer lets the user know.

TRAP Trying to delete a dictionary item through a key that
doesn't exist will give you an error. It's a smart move to be
sure the key you're using exists.

Wrapping Up the Program

The final el se clause lets the user know that he or she entered an
invalid choice:

some unknown choice
else:
print "\nSorry, but", choice, "isn't a
valid choice."

raw_input ("\n\nPress the enter key to exit.")

Understanding Dictionary Requirements

There are a few things you should keep in mind when creating
dictionaries:

= A dictionary can't contain multiple items with the same key.
Think again about a real dictionary. It becomes pretty
meaningless if you can keep adding the same word with
totally new definitions whenever you want.

= A key has to be immutable. It can be a string, a number, or a
tuple, which gives you lots of possibilities. A key has to be
immutable because, if it weren't, you could sneak into a
dictionary later and change its keys, possibly ending up with
two identical keys. And you just learned you can't have that!

= Values don't have to be unique. Also, values can be
immutable. They can be anything you want.

There's even more you can do with dictionaries. Table 5.2
summarizes some useful methods that can help you get more out of

this new type.

Back to the Hangman Game

By putting together all you've learned so far, you can create the
Hangman game presented at the beginning of the chapter. This
program is much longer than anything you've seen, but don't be
intimidated by its size. The code isn't much more complex than that
of the other projects you've worked through. The biggest part of the
program is just my modest ASCII art, the eight versions of the stick
figured being hanged. The real meat of the program is not much
more than a screenful of code.

Setting Up the Program

First things first. As always, | started with opening comments,
explaining the program. Next, | imported the random module. I'll
need the module to pick a random word from a sequence.

Hangman Game

#

#

The classic game of Hangman. The computer picks
a random word

and the player tries to guess it, one letter at
a time. If the player

can't guess the word in time, the little stick
figure gets hanged.

#
#

Michael Dawson

imports
import random

Creating Constants

Though there are several screenfuls of code in this next section, |
only create three constants in all that programming. First, | created
the biggest tuple you've seen. It's really just a sequence of eight

elements, but each element is a triple-quoted string that spans 12
lines.

Each string is a representation of the gallows where the stick figure
is being hanged. Each subsequent string shows a more complete
figure. Each time the player guesses incorrectly, the next string is
displayed. By the eighth entry, the image is complete and the figure
is a goner. If this final string is displayed, the player has lost and the
game is over. | assigned this tuple to HANGMAN, a variable name in

all caps, because I'll be using it as a constant.

constants
HANGMAN = (

mwww

4
| |
| O
| —t-
|
|
|
|
|
4
| |
| O
| /—+-
|
|
|
|
|
4

/
/

mwwn ")

Next, | created a constant to represent the maximum number of
wrong guesses a player can make before the game is over:

MAX WRONG = len (HANGMAN) - 1

The maximum number of wrong guesses is one less than the length
of HANGMAN. This is because the first image, of the empty gallows, is
displayed even before the player makes a first guess. So although
there are eight images in HANGMAN, the player only gets seven
wrong guesses before the game is over.

Finally, | created a tuple containing all of the possible words that the
computer can pick from for the player to guess. Feel free to modify
the program and make up your own list.

WORDS = ("OVERUSED", "CLAM", "GUAM", "PUCK",
"TAFFETA")

Initializing the Variables

Next, | initialized the variables. | used the random. choice ()
function to pick a random word from the list of possible words. |
assigned this secret word to the variable word.

initialize wvariables
word = random.choice (WORDS) # the word to be
guessed

| created another string, so far, to represent what the player has
guessed so far in the game. The string starts out as just a series of
dashes, one for each letter in the word. When the player correctly
guesses a letter, the dashes in the positions of that letter are
replaced with the letter itself.

so far = "-" * len(word) # one dash for each
letter in word to be guessed

| created wrong and assigned it the number 0. wrong keeps track of
the number of wrong guesses the player makes.

wrong = 0 # number of wrong
guesses player has made

| created an empty list, used, to contain all the letters the player has
guessed:

used = [] # letters already
guessed

Creating the Main Loop
| created a loop that continues until either the player has guessed

too many wrong letters or the player has guessed all the letters in
the word:

print "Welcome to Hangman. Good luck!"

while (wrong < MAX WRONG) and (so far != word):
print HANGMAN [wrong]
print "\nYou've used the following
letters:\n", used
print "\nSo far, the word is:\n", so far

Notice that | put both conditions in parentheses. When using just one
logical operator (like | did here), using parentheses has no real
effect. The computer doesn't care. But | think that the parentheses
help separate the conditions and make the program easier for
humans to read, so | used them.

Next, | print the current stick figure, based on the number of wrong
guesses the player has made. The more wrong guesses the player
has made, the closer the stick figure is to being done in. After that, |
display the list of letters that the player has used in this game. And
then | show what the partially guessed word looks like so far.

Getting the Player's Guess

| get the player's guess and convert it to uppercase so that it can be
found in the secret word (which is in all caps). After that, | make sure
that the player hasn't already used this letter. If the player has
already guessed this letter, then | make the player enter a new
character until the player enters one he or she hasn't used yet. Once
the player enters a valid guess, | convert the guess to uppercase
and add it to the list of used letters.

guess = raw_input ("\n\nEnter your guess: ")
guess = guess.upper ()

while (guess in used) :
print "You've already guessed the
letter:", guess
guess = raw_input ("Enter your guess: ")

guess = guess.upper ()

used.append (guess)

Checking the Guess

Next, | check to see if the guess is in the secret word. If it is, | let the
player know. Then | go about creating a new version of so far to

include this new letter in all the places where the letter is in the
secret word.

1f (guess in word) :

print "\nYes!", guess, "is in the word!"

create a new so far to include guess
new = ""

for 1 in range(len(word)) :
if guess == word[i]:
new += guess
else:
new += so far([i]
so far = new

If the player's guess isn't in the word, then | let the player know and
increase the number of wrong guesses by one.
else:

print "\nSorry,", guess, "isn't in the
word."

wrong += 1

Ending the Game

At this point, the game is over. If the number of wrong guesses has
reached the maximum, the player has lost. In that case, | print the
final image of the stick figure. Otherwise, | congratulate the player. In
either case, | let the player know what the secret word was.
if (wrong == MAX WRONG) :

print HANGMAN [wrong]

print "\nYou've been hanged!"
else:

print "\nYou guessed it!"

print "\nThe word was", word

raw_input ("\n\nPress the enter key to exit.")

Summary

In this chapter, you learned all about lists and dictionaries, two new
types. You learned that lists are mutable sequences. You saw how to
add, delete, sort, and even reverse those elements. But even with all
that lists offer, you learned that there are some cases where the less
flexible tuple is actually the better (or required) choice. You also
learned about shared references that can occur with mutable types
and saw how to avoid them when necessary. You saw how to create
and use nested sequences to work with even more interesting
information, like a high score list. You learned how to create and
modify dictionaries that let you work with pairs of data, too.

Challenges

1. Create a program that prints a list of words in random
order. The program should print all the words and not
repeat any.

2. Write a Character Creator program for a role-playing game.
The player should be given a pool of 30 points to spend on
four attributes: Strength, Health, Wisdom, and Dexterity.
The player should be able to spend points from the pool on
any attribute and should also be able to take points from an
attribute and put them back into the pool.

3. Write a Who's Your Daddy? program that lets the user
enter the name of a male and produces the name of his
father. (You can use celebrities, fictional characters, or
even historical figures for fun.) Allow the user to add,
replace, and delete son-father pairs. The program should
also allow the user to get a list of all sons, or fathers, or
son-father pairs.

4. Improve the Who's Your Daddy program by adding a
choice that lets the user enter a name and get back a
grandfather. Your program should still only use one
dictionary of son-father pairs. Make sure to include several
generations in your dictionary so that a match can be
found.

Chapter 6: Functions: The Tic-Tac-Toe Game

@ Download CD Content

Overview

Every program you've written so far has been one large, continuous
series of instructions. Once your programs reach a certain size or
level of complexity, it becomes hard to work with them this way.
Fortunately, there are ways to break up big programs into smaller,
manageable chunks of code. In this chapter, you learn one way of
doing this by creating your own functions. Specifically in this chapter,
you'll learn to do the following:

= Write your own functions

Accept values into your functions through parameters

Return information from your functions through return values

Work with global variables and constants

Create a computer opponent that plays a strategy game

Introducing the Tic-Tac-Toe Game

In this chapter project, you'll learn how to create a computer
opponent using a dash of artificial intelligence (Al). In the game, the
player and computer square off in a high-stakes, human-machine
showdown of Tic-Tac-Toe. The computer plays a formidable, though
not perfect, game, and comes with enough attitude to make any
match fun. Figures 6.1 through 6.3 illustrate the gameplay.

(BT
We losme ta L
Thin will ks

T

Figure 6.1: The computer is full of ...
confidence.

—_
[COyheazigythonem
I!I;-I-:- will pou sews? (8 LR |

Figure 6.2: | did not see that coming. Even with simple
programming techniques, the computer makes some pretty good
moves.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig192_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig192_02_0.jpg

Figure 6.3: | found the computer's weakness and won this
time.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig193_01_0.jpg

Creating Functions

You've already seen several built-in functions in action, including
len () and range (). Well, if these aren't enough for you, Python
lets you create functions of your very own. Your functions work just
like the ones that come standard with the language. They go off and
perform a task and then return control to your program. Creating
your own functions offers you many advantages. One of the biggest
is that it allows you to break up your code into manageable, bite-
sized chunks. Programs that are one, long series of instructions with
no logical breaks are hard to write, understand, and maintain.
Programs that are made up of functions can be much easier to
create and work with. Just like the functions you've already met, your
new functions should do one job well.

Introducing the Instructions Program

From the screen shots of the Tic-Tac-Toe game, you can probably
tell that the computer opponent has a little attitude. It comes across
quite clearly in the instructions the computer gives before the game.
You'll get a look at the code that produces those instructions in this
next program, Instructions. The code is a little different than you
might expect. That's because | created a function to display the
instructions. | used that same function here in Instructions. Take a
look at Figure 6.4 to see a sample run of the program.

Figure 6.4: The instructions are displayed each time with just a
single line of code— a call to a function |
created.

Here's the code:

Instructions
Demonstrates programmer-created functions
Michael Dawson - 2/21/03

def instructions() :

""" Display game instructions."""

print \

Welcome to the greatest intellectual challenge
of all time: Tic-Tac-Toe.

This will be a showdown between your human
brain and my silicon processor.

You will make your move known by entering a
number, 0 - 8. The number

will correspond to the board position as
illustrated:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig194_01_0.jpg

Prepare yourself, human. The ultimate battle
is about to begin. \n

main

print "Here are the instructions to the Tic-Tac-
Toe game:"

instructions ()

print "Here they are again:"

instructions ()

print "You probably understand the game by now."

raw_input ("\n\nPress the enter key to exit.")

Defining a Function

| began the definition of my new function with a single line:

def instructions|() :

This line tells the computer that the block of code that follows is to be
used together as the function instructions (). I'm basically
naming this block of statements. This means that whenever | call the
function instructions () in this program, the block of code runs.

This line and its block are a function definition. They define what the
function does, but don't run the function. When the computer sees
the function definition, it makes a note that this function exists so it
can use it later. It won't actually run the function until it sees a
function call for it, later in the program.

To define a function of your own, follow my example. Start with def,
followed by your function name, followed by a pair of parentheses,

followed by a colon, and then your indented block of statements. To
name a function, follow the basic rules for naming variables. Also, try
to use a name that conveys what the function produces or does.

Documenting a Function

Functions have a special mechanism that allows you to document
them with what's called a docstring (or documentation string). |
created the following docstring for instructions ():

""" Display game instructions."""

A docstring is typically a triple-quoted string and, if you use one,
must be the first line in your function. For simple functions, you can
do what | did here: write a single sentence that describes what the
function does. Functions work just fine without docstrings, but using
them is a good idea. It gets you in the habit of commenting your
code and makes you describe the function's one, well-defined job.
Also, a function's docstring can pop up as interactive documentation
while you type your call to it in IDLE.

Calling a Programmer-Created Function

Calling a programmer-created function works just like calling a built-
in function. Use the name of the function followed by a set of
parentheses. | called my new function several times, each time with
the line:

instructions ()

This tells the computer to go off and execute the function | defined
earlier. So each time | call it, the computer prints the instructions to
the game.

Understanding Abstraction

By writing and calling functions, you practice what's known as
abstraction. Abstraction lets you think about the big picture without
worrying about the details. So, in this program, | can just use the
function instructions () without worrying about the details of
displaying the text. All | have to do is call the function with one line of
code, and it gets the job done.

You might be surprised where you find abstraction, but people use it
all the time. For example, consider two employees at a fast food
place. If one tells the other that he just filled a #3, and "sized it," the
other employee knows that the first employee took a customer's
order, went to the heat lamps, grabbed a burger, went over to the
deep fryer, filled their biggest cardboard container with French fries,
went to the soda fountain, grabbed their biggest cup, filled it with
soda, gave it all to the customer, took the customer's money, and
gave the customer change. Not only would this version be a boring
conversation, but it's unnecessary. Both employees understand what
it means to fill a #3 and "size it." They don't have to concern
themselves with all the details because they're using abstraction.

Using Parameters and Return Values

As you've seen with built-in functions, you can provide a function
values and get values back from them. With the 1en () function, for
example, you provide a sequence, and the function returns its
length. Your own functions can also receive and return values. This
allows your functions to communicate with the rest of your program.

Introducing the Receive and Return Program

| created three functions in the program Receive and Return to show
the various combinations of receiving and returning values. One
function receives a value. The next function returns a value. And the
last function both receives and returns a value. Take a look at Figure
6.5 to see exactly what happens as a result of the program.

Figure 6.5: Each function uses a parameter, a return value, or
both to communicate with the main part of the
program.

Here's the code:

Receive and Return
Demonstrates parameters and return values
Michael Dawson - 2/21/03

def display (message) :
print message

def give me five():
five = 5
return five

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig197_01_0.jpg

def ask yes no(question):
""" Ask a yes or no question."™"

response = None
while response not in ("y", "n"):
response = raw_ input (question) .lower ()
return response
main

display ("Here's a message for you.\n")

number = give me five ()

print "Here's what I got from give me five():",
number

answer = ask yes no("\nPlease enter 'y' or 'n': ")

print "Thanks for entering:", answer

raw_input ("\n\nPress the enter key to exit.")

Receiving Information through Parameters

The first function | defined, display (), receives a value and prints
it. It receives a value through its parameter. Parameters are
essentially variable names inside the parentheses of a function
header:

def display (message) :

Parameters catch the values sent to the function from a function call
through its arguments. So here, when display () is called,
message is assigned the value provided through the argument
"Here's a message for you.\n" In the main part of the program, | call
display () with

display ("Here's a message for you.\n")

As a result, message gets the string "Here's a message for
you.\n". Then, the function runs. message, like any parameter,
exists inside the function as a variable. So, the line

print message
prints the string "Here's a message for you.\n".

Although display () has only one parameter, functions can have
many. To define a function with multiple parameters, list them out,
separated by commas.

TRAP When you define a function with parameters, any call to
that function must include a number of argument values
that can be received by all of the parameters. Otherwise,
Python will complain by generating an error.

Returning Information through Return Values

The next function | wrote, give me five (), returns a value. It
returns a value through (believe it or not) the return statement:

return five

When this line runs, the function passes the value of £ive back to
the part of the program that called it, and then ends. A function
always ends after it hits a return statement.

It's up to the part of the program that called a function to catch the
values it returns and do something with them. Here's the main part of
the program, where | called the function:

number = give me five ()
print "Here's what I got from give me five():",
number

| set up a way to catch the return value of the function by assigning
the result of the function call to number. So, when the function

finishes, number gets the value of 5, which is equal to 5. The next
line prints number to show that it got the return value okay.

You can pass more than one value back from a function. Just list all
the values you want to return, separated by commas.

TRAP Make sure to have enough variables to catch all the
return values of a function. If you don't have the right
number when you try to assign them, you'll generate an
error.

Understanding Encapsulation

You might not see the need for return values when using your own
functions. Why not just use the variable five back in the main part
of the program? Because you can't. five doesn't exist outside of its
function give me five (). In fact, no variable you create in a
function, including its parameters, can be directly accessed outside
its function. This is a good thing and is called encapsulation.
Encapsulation helps keep independent code truly separate by hiding
or encapsulating the details. That's why you use parameters and
return values: to communicate just the information that needs to be
exchanged. Plus, you don't have to keep track of variables you
create within a function in the rest of your program. As your
programs get large, this is a great benefit.

Encapsulation might sound a lot like abstraction. That's because
they're closely related. Encapsulation is a principal of abstraction.
Abstraction saves you from worrying about the details.

Encapsulation hides details from you. As an example, consider a
remote control for a TV with volume up and down buttons. When you
use a TV remote to change the volume, you're employing
abstraction, because you don't need to know what happens inside
the TV for it to work. Now suppose the TV remote has 10 volume
levels. You can get to them all through the remote, but you can't
directly access them. That is, you can't get a specific volume number

directly. You can only press the up volume and down volume buttons
to eventually get to the level you want. The actual volume number is
encapsulated and not directly available to you.

HINT Don't worry if you don't totally get the subtle difference
between abstraction and encapsulation right now. They're
intertwined concepts, so it can be a little tricky. Plus, you'll
get to see them in action again when you learn about
software objects and object-oriented programming in later
Chapters 8 and 9.

Receiving and Returning Values in the Same Function

The final function | wrote, ask yes no (), receives one value and

returns another. It receives a question and returns a response from
the user, either the character "y" or "n". The function receives the

question through its parameter:

def ask yes no(question) :

question gets the value of the argument passed to the function. In
this case, it's the string, "\nPlease enter 'y' or 'n': ".The

next part of the function uses this string to prompt the user for a
response:

response = None
while response not in ("y", "n"):
response = raw_ input (question) .lower ()

The while loop keeps asking the question until the user enters
either y, Y, n, or N. The function always converts the user's entry to
lowercase.

Finally, when the user has entered a valid response, the function
sends a string back to the part of the program that called it with

return response

and the function ends.

In the main part of the program, the return value is assigned to
answer and printed:

answer = ask yes no("\nPlease enter 'y' or 'n': ")
print "Thanks for entering:", answer

Understanding Software Reuse

Another great thing about functions is that they can easily be reused
in other programs. For example, since asking the user a yes or no
question is such a common thing to do, you could grab the

ask _yes no () function and use it in another program without doing
any extra coding. This type of thing is called software reuse. So
writing good functions not only saves you time and energy in your
current project, but can also save you effort in future ones!

IN THE REAL WORLD

It's always a waste of time to "reinvent the wheel," so software
reuse, using existing software and other project elements in new
projects, is a technique that business has taken to heart. Software
reuse can do the following:

= |Increase company productivity. By reusing code and other
elements that already exist, companies can get their
projects done with less effort.

= Improve software quality. If a company already has a
tested piece of code, then it can use the code with the
knowledge that it's bug-free.

= Provide consistency across software products. By using
the same user interface, for example, companies can
create new software that users feel comfortable with right
out of the box.

= |Improve software performance. Once a company has a
good way of doing something through software, using it
again not only saves the company the trouble of
reinventing the wheel, but also saves it from the possibility

of reinventing a less efficient wheel.
|

One way to reuse functions you've written is to copy them into your
new program. But there is a better way. You can create your own
modules and import your functions into a new program, just like
you import standard Python modules (such as random) and use
their functions (such as randrange ()). You'll learn how to create
your own modules and import reusable code you've written in
Chapter 9 section "Creating Modules."

Using Keyword Arguments and Default
Parameter Values

Passing values through arguments to parameters allows you to give
information to a function. But so far, you've only seen the most basic
way to do that. Python allows greater control and flexibility with the
way you pass information, through default parameter values and
keyword arguments.

Introducing the Birthday Wishes Program

The program Birthday Wishes, a sample run of which is pictured in
Figure 6.6, sends birthday greetings through two very similar
functions. The first function uses the type of parameters you saw in
the last section, called positional parameters. The second version of
the function uses default parameter values. The best way to
appreciate the difference is to see examples of them in action.

Figure 6.6: Functions can be called in different ways with the
flexibility of keyword arguments and default parameter
values.

Here's the code for Birthday Wishes:

Birthday Wishes
Demonstrates keyword arguments and default

parameter values
Michael Dawson - 2/21/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig202_01_0.jpg

positional parameters
def birthdayl (name, age):

print "Happy birthday,", name, "!", "I hear
you're", age, "today.\n"

parameters with default values
def birthday2 (name = "Jackson", age = 1):
print "Happy birthday,", name, "!", "I hear
you're", age, "today.\n"
birthdayl ("Jackson", 1)
birthdayl (1, "Jackson™)

(
birthdayl (name = "Jackson", age = 1)
birthdayl (age = 1, name = "Jackson")
birthday?2 ()
birthday2 (name = "Katherine™)
birthday2 (age = 12)
birthday2 (name = "Katherine", age = 12)
birthday2 ("Katherine", 12)

raw_input ("\n\nPress the enter key to exit.")

Using Positional Parameters and Positional Arguments

If you just list out a series of variable names in a function's header,
you create positional parameters:

def birthdayl (name, age):

If you call a function with just a series of values, you create positional
arguments:

birthdayl ("Jackson", 1)

Using positional parameters and positional arguments means that
parameters get their values based solely on the position of the

values sent. The first parameter gets the first value sent, the second
parameter gets the second value sent, and so on.

With this particular function call, it means that name gets
"Jackson" and age gets 1. This results in the message: Happy
Birthday, Jackson ! I hear you're 1 today. Ifyou
switch the positions of two arguments, the parameters get different
values. So with the call

birthdayl (1, "Jackson™)

name gets the first value, 1, and age gets the second value,
"Jackson". As a result, you end up with a message you probably
didn'tintend: Happy Birthday, 1 ! I hear you're Jackson
today.

You've seen this way of creating and calling functions already. But
there are other ways to create parameter and argument lists in your
programs.

Using Positional Parameters and Keyword Arguments

Positional parameters get values sent to them in order, unless you
tell the function otherwise. You can tell the function to assign certain
values to specific parameters, regardless of order, if you use
keyword arguments. With keyword arguments, you use the actual
parameter names from the function header to link a value to a
parameter. So, by calling the same function birthdayl () with

birthdayl (name = "Jackson", age = 1)

name gets "Jackson" and age gets 1 and the function displays the
message Happy Birthday, Jackson ! I hear you're 1
today. This isn't terribly impressive. You could achieve the same
results without keyword arguments by just sending these values in
this order. But the beauty of keyword arguments is that their order

doesn't matter; it's the keywords that link values to parameters. So
the call

birthdayl (age = 1, name = "Jackson")

also produces the message Happy Birthday, Jackson ! I
hear you're 1 today.even though the values are listed in
opposite order.

Keyword arguments let you pass values in any order. But their
biggest benefit is clarity. When you see a function call using keyword
arguments, you get a much better understanding of what the values
represent.

TRAP You can combine keyword arguments and positional
arguments in a single function call, but this can get tricky.
Once you use a keyword argument, all the remaining
arguments in the call must be keyword arguments, too.
To keep things simple, try to use all keyword or all
positional arguments in your function calls.

Using Default Parameter Values

Finally, you have the option to assign default values to your
parameters, values that get assigned to the parameters if no value is
passed to them. That's just what | did with the birthday2 ()

function. | made changes in the header only:
def birthday2 (name = "Jackson", age = 1):

This means that if no value is supplied to name, it gets "Jackson™".
And if no value is supplied for age, it gets 1. So the call

birthday?2 ()

doesn't generate an error; instead, the default values are assigned to
the parameters, and the function displays the message Happy

Birthday, Jackson ! I hear you're 1 today.

TRAP Once you assign a default value to a parameter in the list,
you have to assign default values to all the parameters
listed after it. So, this function header is perfectly fine:

def monkey around(bananas = 100, barrel of
= "yes", uncle = "monkey's"):

But this isn't:

def monkey around(bananas = 100,
barrel of, uncle):

The above header will generate an error.

So far, so good. But you can add a wrinkle here by overriding the
default values of any or all the parameters. With the call

birthday?2 (name = "Katherine")

the default value of name is overridden. name gets "Katherine",
age still gets its default value of 1, and the message Happy
Birthday, Katherine ! I hear you're 1 today. is
displayed.

With this function call:
birthday2 (age = 12)

the default value of age is overridden. age gets the value of 12.
name gets it's default value of "Jackson". And the message Happy
Birthday, Jackson ! I hear you're 12 today. is
displayed.

With the call
birthday2 (name = "Katherine", age = 12)

both default values are overridden. name gets "Katherine" and
age gets 12. The message Happy Birthday, Katherine ! I
hear you're 12 today. is displayed.

And with the call
birthday2 ("Katherine", 12)

you get the exact same results as you did with the previous call.
Both default values are overridden. name gets "Katherine" and
age gets 12. And the message Happy Birthday, Katherine !
I hear you're 12 today. is displayed.

TRICK Default parameter values are great if you have a function
where almost every time it's called, some parameter gets
sent the same value. To save programmers using your
function the trouble of typing this value every time, you
could use a default parameter value instead.

Using Global Variables and Constants

Through the magic of encapsulation, the functions you've seen are
all totally sealed off and independent from each other and the main
part of your program. The only way to get information into them is
through their parameters, and the only way to get information out of
them is from their return values. Well, that's not completely true.
There is another way that you can share information among parts of
your program: through global variables.

Understanding Namespaces

Namespaces (also called scopes) represent different areas of your
program that are separate from each other. For example, each
function you define has its own namespace. That's why the functions
you've seen can't directly access each other's variables. A visual
representation really helps to gel this idea, so take a look at Figure
6.7.

def funcL():
variablel = 1L

def funcg():
variableg = 2

variabled = 0

e 7

Figure 6.7: This simple program has three different namespaces

— one for each function, plus one for the global
namespace.

Figure 6.7 shows a program with three different namespaces. The
first is defined by function funci (), the second is defined by
function func2 (), and the third is the global namespace (which all
programs automatically have). In this program, you're in the global
namespace when you're not inside any function. The shaded area in
the figure represents the global namespace. Any variable that you
create in the global namespace is called a global variable, while any
variable you create inside a function is called a local variable (it's
local to that function).

Since variablel is defined inside funcl (), it's a local variable
that lives only in the namespace of funcl (). variablel can't be
accessed from any other namespace. So, no command in func?2 ()

can get at it, and no command in the global space can access or
modify it either.

A good way to remember how this works is to think of namespaces
as houses and encapsulation as tinted windows, giving each house
privacy. As a result, you can see anything inside a house if you're in
it. But if you're outside a house, you can't see what's inside. This is
the way it works with functions. When you're in a function, you have
access to all of its variables. But when you're outside a function, like
in the global namespace, you can't see any of the variables inside a
function.

If two variables have the same name inside two separate functions,
they're totally different variables with no connection to each other.
For example, if | created a variable called variable?2 inside
function funcl (), it would be different and completely separate
from the variable named variable?2 in function func?2 (). Because

of encapsulation, it would be like they exist in different worlds and
have no effect on each other.

Global variables, however, create a little wrinkle in the idea of
encapsulation, as you'll see.

Introducing the Global Reach Program

The Global Reach program shows how you can read and even
change global variables from inside functions. Figure 6.8 displays
the program's results.

Figure 6.8: You can read, shadow, or even change the value of a
global variable from inside a function.

Here's the code for the program:

Global Reach
Demonstrates global variables
Michael Dawson - 2/21/03

def read global():
print "From inside the local namespace of
read global(), value is:", value

def shadow global() :

value = -10

print "From inside the local namespace of
shadow global(), value 1is:", value

def change global() :
global value
value = -10
print "From inside the local namespace of

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig208_01_0.jpg

change global (), value 1s:", value

main

value is a global variable because we're in the
global namespace here

value = 10

print "In the global namespace, value has been set
to:", value, "\n"

read global ()
print "Back in the global namespace, value 1is
still:", wvalue, "\n"

shadow global ()
print "Back in the global namespace, value 1is
still:", wvalue, "\n"

change global ()
print "Back in the global namespace, value has now
changed to:", value

raw_input ("\n\nPress the enter key to exit.")

Reading a Global Variable from Inside a Function

Although by now you're probably quite comfortable with the idea of
encapsulation, I'm going to throw you a little curve ball: you can read
the value of a global variable from within any namespace in your
program. But fear not, this can still work with the concept of houses
and tinted windows. Remember, tinted windows keep the houses (or
functions) private. But tinted windows also let you see out. So, you
can always see outside of a function to the global namespace and
see the value of a global variable. That's what | did when | created

the function read global (). It prints the global variable value
without a problem.

While you can always read the value of a global variable in any
function, you can't change it directly (at least not without asking
specifically for that kind of access). So, in read global (), doing
something like the following would generate a nasty error:

value += 1

Back to the houses and tinted glass idea, this means that you can
see a global variable from within a function through the tinted
window, but you can't touch it because it's outside. So, although you
can read the value of a global variable from inside a function, you
can't change its value without asking for special access to it.

Shadowing a Global Variable from Inside a Function

If you give a variable inside a function the same name as a global
variable, you shadow the global variable. That is, you hide it with
your new variable. It might look like you can change the value of a
global variable by doing this, but you only change the local variable
you've created. That's what | did in the function shadow global ().

When | assigned -10 to value with

value = -10

| didn't change the global version of value. Instead, | created a new,
local version of value inside the function and that got -10. You can

see that this is what happened, because when the function finishes,
the main program prints out the global version of value with

print "Back in the global namespace, value 1s
still:", wvalue, "\n"

and it's still 10.

TRAP It's not a good idea to shadow a global variable inside a

function. It can lead to confusion. You might think you're
using a global variable when you're really not. Be aware
of any global variables in your program and make sure
not to use the name anywhere else in your code.

Changing a Global Variable from Inside a Function

To gain complete access to a global variable, use the keyword
global like | did in the function change global ():

global value

At this point, the function has complete access to value. So when |
changed it with

value = -10

the global variable value got -10. When the program prints value
again back in the main part of the code with

print "Back in the global namespace, value has
changed to:", wvalue

-10 is printed. The global variable was changed from inside the
function.

Understanding When to Use Global Variables and
Constants

Just because you can, doesn't mean you should. This is a good
programming motto. Sometimes things are technically possible, but
not good ideas. Using global variables is an example of this. In
general, global variables make programs confusing because it can
be hard to keep track of their changing values. You should limit your
use of them as much as you can.

Global constants (global variables that you treat as constants), on
the other hand, can make programs less confusing. For example,

say you're writing a business application that calculates someone's
taxes. Like a good programmer, you have written a variety of
functions in your code, all of which use the somewhat cryptic value
.27 as the tax rate. Instead, you could create a global constant
called TAX RATE and setitto .27. Then, in each function, you could
replace the number .27 with TAX RATE. This produces two

benefits. It makes your code clearer and it makes changes (like a
new tax rate) no sweat.

Back to the Tic-Tac-Toe Game

The Tic-Tac-Toe game presented at the beginning of the chapter is
your most ambitious chapter project yet. You certainly have all the
skills you need to create the game, but instead of jumping straight
into the code, I'm going to go through a planning section to help you
get the bigger picture and understand how to create a larger
program.

Planning the Tic-Tac-Toe Game

If you haven't figured this out by now, I'll bore you with it again: the
most important part of programming is planning to program. Without
a roadmap, you'll never get to where you want to go (or it'll take you
a lot longer as you travel the scenic route).

Writing the Pseudocode

It's back to your favorite language that's not really a language:
pseudocode. Since I'll be using functions for most of the tasks in the
program, | can afford to think about the program at a pretty abstract
level. Each line of pseudocode should feel like one function call.
Then, later, I'll just have to write the functions that the plan implies.
Here's the pseudocode:

display the game instructions
determine who goes first
create an empty tic-tac-toe board
display the board
while nobody's won and it's not a tie
if it's the human's turn
get the human's move
update the board with the move
otherwise
calculate the computer's move
update the board with the move

display the board
switch turns
congratulate the winner or declare a tie

Representing the Data

Alright, | have a good plan, but it is pretty abstract and talks about
throwing around different elements that aren't really defined in my
mind yet. | see the idea of making a move as placing a piece on a
game board. But how exactly am | going to represent the game
board? Or a piece? Or a move?

Since I'm going to print the game board on the screen, why not just
represent a piece as one character, an "xX" oran "0"? An empty
piece could just be a space. The board itself should be a list since
it's going to change as each player makes a move. There are nine
squares on a tic-tac-toe board, so the list should be nine elements
long. Each square on the board will correspond to a position in the
list that represents the board. Figure 6.9 illustrates what | mean.

r 1
0 1 2
3 4 o
6 7 8

\ y

Figure 6.9: Each square number corresponds to a position in a
list that represents the board.

So, each square or position on the board is represented by a
number, 0-8. That means the list will be nine elements long and
have position numbers 0-8. Since each move indicates a square in
which to put a piece, a move is also just a number, 0-8.

The sides the player and computer play could also be represented
by "x" and "O", just like a game piece. And a variable to represent

the side of the current turn would be either an "X oran "o".

Creating a List of Functions

The pseudocode inspires the different functions I'll need. | created a
list of them, thinking about what they would do, what parameters
they would have, and what values they would return. Table 6.1
shows the results of my efforts.

Table 6.1: TIC-TAC-TOE FUNCTIONS

Function Description

Displays the game

display instruct i .
Pay_ 0 Instructions.

Asks a yes or no question.
Receives a question.
Returns eithera "y" or a
"n'".

def ask yes no(question)

Asks for a number within a
range. Receives a question,
a low number, and a high
number. Returns a number in
the range from 1ow to high.

def ask number (question,
low, high)

Determines who goes first.
pieces () Returns the computer's piece
and human's piece.

Creates a new, empty game

b d
new_board() board. Returns a board.

Displays the board on the

display board (board)
play_ () screen. Receives a board.

Function

Description

legal moves (board)

Creates a list of legal moves.
Receives a board. Returns a
list of legal moves.

winner (board)

Determines the game winner.
Receives a board. Returns a
piece, "TIE" or None.

human move (board, human)

Gets the human's move from
the player. Receives a board
and the human's piece.
Returns the human's move.

computer move (board,
computer, human)

Calculates the computer's
move. Receives a board, the
computer piece, and the
human piece. Returns the
computer's move.

next turn(turn)

Switches turns based on the
current turn. Receives a
piece. Returns a piece.

computer, human)

congrat winner (the winner,

Congratulates the winner or
declares a tie. Receives the
winning piece, the
computer's piece, and the

human's piece.

Setting Up the Program

The first thing | did in writing the program was set up some global
constants. These are values that more than one function will use.
Creating them will make the functions clearer and any changes

involving these values easier.

Tic-Tac-Toe

Plays the game of tic-tac-toe against a human
opponent

Michael Dawson - 2/21/03

global constants

X = "xn"
O = "O"
EMPTY = ""
TIE = "TIE"

NUM SQUARES = 9

X is just shorthand for "x", one of the two pieces in the game. O
represents "0O", the other piece in the game. EMPTY represents an
empty square on the board. It's a space because when it's printed, it
will look like an empty square. TIE represents a tie game. And

NUM_ SQUARES is the number of squares on the tic-tac-toe board.

The display instruct () Function

This function displays the game instructions. You've seen it before:

def display instruct():

""" Display game instructions."""

print \

Welcome to the greatest intellectual challenge
of all time: Tic-Tac-Toe.

This will be a showdown between your human
brain and my silicon processor.

You will make your move known by entering a
number, 0 - 8. The number

will correspond to the board position as
illustrated:

Prepare yourself, human. The ultimate battle
is about to begin. \n

The only thing | did was change the function name for the sake of
consistency in the program.

The ask_yes no () Function

This function asks a yes or no question. It receives a question and
returns eithera "y" ora "n". You've seen this function before too.

def ask yes no(question) :
""" Ask a yes or no question."™"

response = None
while response not in ("y", "n"):
response = raw_ input (question) .lower ()

return response

The ask number () Function

This function asks for a number within a range. It receives a
question, a low number, and a high number. It returns a number
within the range specified.

def ask number (question, low, high):
""" Ask for a number within a range."""

response = None
while response not in range (low, high):
response = int(raw input (question))

return response

The pieces () Function

This function asks the player if he or she wants to go first and returns
the computer's piece and human's piece, based on that choice. As
the great tradition of tic-tac-toe dictates, the X's go first.

def pileces():
""" Determine if player or computer goes

first."""

go first = ask yes no("Do you require the
first move? (y/n): ")

if go first == "y":

print "\nThen take the first move. You
will need it."

human = X
computer = O
else:
print "\nYour bravery will be your
undoing... I will go first."
computer = X
human = O

return computer, human

Notice that this function calls another one of my functions,
ask _yes no (). This is perfectly fine. One function can call another.

The new_board () Function

This function creates a new board (a list) with all nine elements set
to EMPTY and returns it:

def new board() :
""" Create new game board."""
board = []
for square in range (NUM SQUARES) :
board.append (EMPTY)
return board

The display board () Function

This function displays the board passed to it. Since each element in
the board is either a space, the character "x", or the character "o",
the function can print each one. A few other characters on my
keyboard are used to draw a decent-looking tic-tac-toe board.

def display board(board) :
""" Display game board on screen."""

print "\n\t", board[0], "|", board[1l], "I|",
board[2]

print "\t", "—7-"

print "\t", board[3], "|", board[4], "|",
board[5]

print "\t", "—7-"

print "\t", board[6], "|", board[7], "|",

board[8], "\n"

The legal moves () Function

This function receives a board and returns a list of legal moves. This
function is used by other functions. It's used by the human move ()
function to make sure that the player chooses a valid move. It's also
used by the computer move () function so that the computer can
consider only valid moves in its decision making.

A legal move is represented by the number of an empty square. For
example, if the center square were open, then 4 would be a legal
move. If only the corner squares were open, the list of legal moves
would be [0, 2, 6, 8].(Take alook at Figure 6.9 if you're
unclear about this.)

So, this function just loops over the list representing the board. Each
time it finds an empty square, it adds that square number to the list
of legal moves. Then it returns the list of legal moves.

def legal moves (board) :
""" Create list of legal moves."™"

moves = |[]
for square in range (NUM SQUARES) :
if board[square] == EMPTY:

moves.append (square)
return moves

The winner () Function

This function receives a board and returns the winner. There are four
possible values for a winner. The function will return either X or O if
one of the players has won. If every square is filled and no one has
won, it returns TIE. Finally, if no one has won and there is at least
one empty square, the function returns None.

The very first thing | do in this function is define a constant called
WAYS TO WIN, which represents all eight ways to get three in a row.
Each way to win is represented by a tuple. Each tuple is a sequence
of the three board positions that form a winning three in a row. Take
the first tuple in the sequence, (0, 1, 2). This represents the top
row: board positions 0, 1, and 2. The next tuple (3, 4, 5)
represents the middle row. And so on.

def winner (board) :

""" Determine the game winner."""
WAYS TO WIN = ((0, 1, 2)

(3, 4, 5),
(e, 7, 8),
(0, 3, 06),
(1, 4, 7),
(2, 5, 8),
(0, 4, 8),
(2, 4, 06))

~
~

Next, | use a for loop to go through each possible way a player can
win, to see if either player has three in a row. The if statement

checks to see if the three squares in question all contain the same
value and are not empty. If so, that means that the row has either
three X's or O's in it and somebody has won. The computer assigns

one of the pieces in this winning row to winner, returns winner,
and ends.

for row in WAYS TO WIN:

if board[row[0]] == board[row[l]] ==
board[row([2]] != EMPTY:
winner = board[row[0]]

return winner

If neither player has won, then the function continues. Next, it checks
to see if there are any empty squares left on the board. If there aren't
any, the game is a tie (because the function has already determined
that there is no winner, back in the for loop) and TIE is returned.

if EMPTY not in board:
return TIE

If the game isn't a tie, the function continues. Finally, if neither player
has won and the game isn't a tie, there is no winner yet. So, the
function returns None.

return None

The human move () Function

This next function receives a board and the human's piece. It returns
the square number where the player wants to move.

First, the function gets a list of all the legal moves for this board.
Then, it continues to ask the user for the square number to which he
or she wants to move until that response is in this list of legal moves.
Once that happens, the function returns the move.

def human move (board, human) :
""" Get human move."""
legal = legal moves (board)
move = None
while move not in legal:
move = ask number ("Where will you move? (O
- 8): ", 0, NUM SQUARES)
if move not in legal:
print "\nThat square is already
occupied, foolish human. Choose another.\n"
print "Fine.."
return move

The computer move () Function

The computer move () function receives the board, the computer's
piece, and the human's piece. It returns the computer's move.

TRICK This is definitely the meatiest function in the program.
Knowing it would be, | initially created a short, temporary
function that chooses a random but legal move. | wanted
time to think about this function, but didn't want to slow
the progress of the entire project. So, | dropped in the
temporary function and got the game up and running.
Later, | came back and plugged in a better function that
actually picks moves for a reason.

| had this flexibility because of the modular design
afforded by writing with functions. | knew that

computer move () was a totally independent
component and could be substituted later, without a
problem. In fact, | could even drop a new function in right
now, one that chooses even better moves. (Sounds an
awful lot like a challenge, now doesn't it?)

| have to be careful here because the board (a list) is mutable and |
change it in this function as | search for the best computer move.
The problem with this is that any change | make to the board will be
reflected in the part of the program that called this function. This is
the result of shared references, which you learned about in Chapter
5 section "Understanding_Shared References." Basically, there's only
one copy of the list, and any change | make here changes that single
copy. So, the very first thing | do is make my own, local copy to work
with:
def computer move (board, computer, human) :

""" Make computer move."""

make a copy to work with since function will
be changing list

board = board][:]

HINT Any time you get a mutable value passed to a function,
you have to be careful. If you know you're going to change
the value as you work with it, make a copy and use that
instead.

TRAP You might think that changing the board would be a good
thing. You could change it so that it contains the new
computer move. This way, you don't need to send the
board back as a return value.

Changing a mutable parameter directly like this is
considered creating a side effect. Not all side effects are
bad, but this type is generally frowned upon (I'm frowning
right now, just thinking about it). It's best to communicate
with the rest of your program through return values; that
way, it's clear exactly what information you're giving back.

Okay, here's the basic strategy | came up with for the computer:

1. If there's a move that allows the computer to win this turn,
the computer should choose that move.

2. If there's a move that allows the human to win next turn,
the computer should choose that move.

3. Otherwise, the computer should choose the best empty
square as its move. The best square is the center. The next
best squares are the corners. And the next best squares
are the rest.

So next in the code, | define a tuple to represent the best squares, in
order:

the best positions to have, in order
BEST MOVES = (4, 0, 2, 6, 8, 1, 3, 5, 7)

print "I shall take square number",

Next, | create a list of all the legal moves. In a loop, | try the
computer's piece in each empty square number | got from the legal
moves list and check for a win. If the computer can win, then that's
the move to make. If that's the case, the function returns that move
and ends. Otherwise, | undo the move | just tried and try the next
one in the list.

if computer can win, take that move
for move in legal moves (board) :
board[move] = computer
if winner (board) == computer:
print move
return move
done checking this move, undo it
board[move] = EMPTY

If | get to this point in the function, it means the computer can't win
on its next move. So, | check to see if the player can win on his or
her next move. The code loops through the list of the legal moves,
putting the human's piece in each empty square, checking for a win.
If the human can win, then that's the move to take for a block. If this

is the case, the function returns the move and ends. Otherwise, |
undo the move and try the next legal move in the list.

1f human can win, block that move
for move in legal moves (board) :
board[move] = human
if winner (board) == human:
print move
return move
done checking this move, undo it
board[move] = EMPTY

If | get to this point in the function, then neither side can win on its
next move. So, | look through the list of best moves and take the first
legal one. The computer loops through BEST MOVES, and as soon

as it finds one that's legal, it returns that move.

since no one can win on next move, pick best
open square
for move in BEST MOVES:
1f move 1n legal moves (board) :
print move
return move

IN THE REAL WORLD

The Tic-Tac-Toe program considers only the next possible move
in the game. Programs that play serious games of strategy, like
chess, look far deeper into the consequences of individual moves,
considering many levels of moves and countermoves. And today's
computers can examine a huge number of game positions.
Specialized machines, like IBM's chess-playing Deep Blue
computer, which beat world champion Garry Kasparov, can
examine far more. Deep Blue is able to explore over 200,000,000
board positions per second. That sounds quite impressive, until
you realize that the total number of board positions in a complete

search for chess is estimated to be over 100,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
which means it would take Deep Blue more than
1,585,489,599,188,229 years to look at all those possible
positions. (The universe, by the way, is estimated to be only
15,000,000,000 years old.)

The next turn () Function

This function receives the current turn and returns the next turn. A
turn represents whose turn it is and is either X or O.

def next turn(turn):
""" Switch turns."""
if turn == X:
return O
else:
return X

The function is used to switch turns after one player has made a
move.

The congrat winner () Function

This function receives the winner of the game, the computer's piece,
and the human's piece. This function is called only when the game is
over, so the winner will be passed either X or O if one of the

player's has won the game, or TIE if the game ended in a tie.

def congrat winner (the winner, computer, human):
""" Congratulate the winner."""
if the winner != TIE:
print the winner, "won!\n"
else:
print "It's a tie!\n"

if the winner == computer:
print "As I predicted, human, I am
triumphant once more. \n" \
"Proof that computers are superior
to humans in all regards."

elif the winner == human:
print "No, no! It cannot be! Somehow you
tricked me, human. \n" \
"But never again! I, the computer,
so swears it!"

elif the winner == TIE:
print "You were most lucky, human, and
somehow managed to tie me. \n" \
"Celebrate today... for this is the
best you will ever achieve."

The main () Function

| put the main part of the program into its own function, instead of
leaving it at the global level. This encapsulates the main code too.
Unless you're writing a short, simple program, it's usually a good
idea to encapsulate even the main part of it. If you do put your main
code into a function like this, you don't have to call it main ().
There's no magic to the name. But it's a pretty common practice, so
it's a good idea to use it.

Okay, here's the code for the main part of the program. As you can
see, it's almost exactly, line for line, the pseudocode | wrote earlier:

def main () :
display instruct ()
computer, human = pieces|()

turn = X
board = new board()
display board(board)

while not winner (board) :

if turn == human:
move = human move (board, human)
board[move] = human

else:
move = computer move (board, computer,

human)

board[move] = computer

display board(board)

turn = next turn(turn)

the winner = winner (board)
congrat winner (the winner, computer, human)

Starting the Program

The next line calls the main function (which in turn calls the other
functions) from the global level:

start the program
main ()
raw_input ("\n\nPress the enter key to quit.")

Summary

In this chapter, you learned to write your own functions. You then
saw how to accept and return values in your functions. You learned
about namespaces and saw how global variables can be accessed
and changed from within functions. You also learned to limit your use
of global variables, but saw how to use global constants when
necessary. You even dabbled ever so slightly in some artificial
intelligence concepts to create a computer opponent in a game of
strategy.

Challenges

1. Improve the function ask number () so that the function
can be called with a step value. Make the default value of
step 1.

2. Modify the Guess My Number chapter project from Chapter
3 by reusing the function ask number ().

3. Modify the new version of Guess My Number you created
in the last challenge so that the program's code is in a
function called main (). Don't forget to call main () so that

you can play the game.

4. Write a new computer move () function for the Tic-Tac-
Toe game to plug the hole in the computer's strategy. See if
you can create an opponent that is unbeatable!

Chapter 7: Files and Exceptions: The Trivia
Challenge Game

® Download CD Content

Overview

Variables provide a great way to store and access information while
a program runs, but often, you'll want to save data so that you can
retrieve it later. In this chapter, you'll learn to use files for this kind of
permanent storage. You'll also learn how to handle errors that your
code may generate. Specifically, you'll learn to do the following:

= Read from text files
= Write to text files
= Read and write more complex data with files

= |ntercept and handle errors during a program's execution

Introducing the Trivia Challenge Game

The Trivia Challenge game tests a player's knowledge with a series
of multiple-choice questions. The game delivers the questions as a
single "episode." The episode | created to show off the program is
about the mafia and is called "An Episode You Can't Refuse." All of
the questions relate in some way to the mafia (although a bit
indirectly at times).

The cool thing about the game is that the questions for an episode
are stored in a separate file, independent of the game code. This
way, it's easy to play different ones. Even better, this means that
anyone with a text editor (like Notepad on Windows machines) can
create their own trivia episode about whatever topic they choose—
anything from anime to zoology. Figure 7.1 shows the game (and my
episode) in action.

Figure 7.1: The player is always presented with four inviting
choices. But only one is correct.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig226_01_0.jpg

Reading from Text Files

With Python, it's easy to read strings from plain text files—files that
are made up of only ASCII characters. (Although there are different
types of text files, when | use the term "text file," | mean a plain text
file.) Text files are a good choice for permanently storing simple
information, for a number of reasons. First, text files are cross-
platform. A text file on a Windows machine is the same text file on a
Mac and is the same text file under Unix. Second, text files are easy
to use. Most operating systems come with basic tools to view and
edit them.

Introducing the Read It Program

The Read It program demonstrates several ways you can read
strings from a text file. The program demonstrates how to read
anything from a single character to the entire file. It also shows
several different ways to read one line at a time (probably the most
common way you'll access text files). The program reads a simple
text file | created on my system using a text editor. Here are the
contents of the file:

Line 1
This i1is line 2
That makes this line 3

| saved the file with the name ® read it.txt and putitin the

same directory as the Read It program file for easy access. Figure
7.2 illustrates the program.

Figure 7.2: The file is read using a few different
techniques.

Here's the code for the program:

Read It

Demonstrates reading from a text file
Michael Dawson - 4/28/03

print "Opening and closing the file."
text file = open("read it.txt", "r")
text file.close ()

print "\nReading characters from the file."
text file = open("read it.txt", "r")

print text file.read(1l)

print text file.read(5)

text file.close ()

print "\nReading the entire file at once."
text file = open("read it.txt", "r")

whole thing = text file.read()

print whole thing

text file.close ()

print "\nReading characters from a line."

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig227_01_0.jpg

text file = open("read it.txt", "r")
print text file.readline (1)

print text file.readline (D)

text file.close()

print "\nReading one line at a time."
text file = open("read it.txt", "r")
print text file.readline ()

print text file.readline ()

print text file.readline ()

text file.close()

print "\nReading the entire file into a list."
text file = open("read it.txt", "r")
lines = text file.readlines|()
print lines
print len(lines)
for line in lines:
print line
text file.close ()
print "\nLooping through the file, line by line."
text file = open("read it.txt", "r")
for line in text file:
print line
text file.close()

raw_input ("\n\nPress the enter key to exit.")

I'll show you exactly how the code works through an interactive
session.

Opening and Closing a Text File

Before you can read from a text file, you need to open it. That's the
first thing | do in the Read It program:

>>> text file = open("read it.txt", "r")

| use the open () function to open a text file and assign the results to
text file. In the function call, | provide two string arguments: a
file name and an access mode.

The file argument, "read it.txt",is pretty straightforward. Since

| don't include any path information, Python looks in the current
directory for the file. | can access a file in any directory by providing
the proper path information. For example, on my Windows machine |
could provide an absolute path with the string "C: \Documents

and Settings\Owner\Desktop\ @ read it.txt" to access
the file ® read it.txt located on my desktop. This will access the
file regardless of the directory from which Read It is run. Or, | could
provide a relative path with the string "data\read it.txt"to
access the file ® read it.txt located in the subdirectory data of

the directory from which Read It is run. In either case, I'm not limited
to accessing files from the only directory where Read It is run.

Next, | provide "r" for the access mode, which tells Python that |
want to open the file for reading. You can open a file for reading,
writing, or both. Table 7.1 describes valid access modes.

Table 7.1: SELECTED FILE ACCESS MODES

Mode|Description

o Read from a file. If the file doesn't exist, Python will
complain with an error.

ogn Write to a file. If the file exists, its contents are overwritten.
If the file doesn't exist, it's created.

o Append a file. If the file exists, new data is appended to it.
If the file doesn't exist, it's created.

S Read from and write to a file. If the file doesn't exist,
Python will complain with an error.

Mode |Description

Write to and read from a file. If the file exists, its contents

W are overwritten. If the file doesn't exist, it's created.

Append and read from a file. If the file exists, new data is

" _|_"
° appended to it. If the file doesn't exist, it's created.

After opening the file, | access it through the variable text file.
There are many useful file methods that | can invoke, but the
simplest is close (), which closes the file. That's what | do next in
the program:

>>> text file.close()

Whenever you're done with a file, it's good programming practice to
close it.

Reading Characters from a Text File

For a file to be of any use, you need to do something with its
contents between opening and closing it. So next, | open the file and
read its contents with the read () file method. read () allows you to
read a specified number of characters from a file, which the method
returns as a string. After opening the file again, | read and print
exactly one character from it:

>>> text file = open("read it.txt", "r")
>>> print text file.read(1l)
L

All I have to do is specify the number of characters between the
parentheses. Next, | read and print the next five characters:

>>> print text file.read()5)
ine 1

Notice that | read the five characters following the "L". Python
remembers where | last left off. It's like the computer puts a
bookmark in the file and each subsequent read () begins where the
last ended. When you read to the end of a file, subsequent reads
return the empty string.

To start back at the beginning of a file, you can close and open it.
That's just what | did next:

>>> text file.close()
>>> text file = open("read it.txt", "r")

If you don't specify the number of characters to be read, Python
returns the entire file as a string. Next, | read the entire file, assign
the returned string to a variable, and print the variable:

>>> whole thing = text file.read()
>>> print whole thing

Line 1

This is line 2

That makes this line 3

If a file is small enough, reading the entire thing at once may make
sense. Since I've read the entire file, any subsequent reads will just
return the empty string. So, | close the file again:

>>> text_file.close()

Reading Characters from a Line

Often, you'll want to work with one line of a text file at a time. The
readline () method lets you read characters from the current line.
You just pass the number of characters you want read from the
current line and the method returns them as a string. If you don't
pass a number, the method returns the entire line. Once you read all
of the characters of a line, the next line becomes the current line.
After opening the file again, | read the first character of the current
line:

>>> text file = open("read it.txt", "r")
>>> print text file.readline (1)
L

Then | read the next five characters of the current line:
>>> print text file.readline (5)

ine 1

>>> text_file.close()

At this point, readline () may seem no different than read (), but
readline () reads characters from the current line only, while
read () reads characters from the entire file. Because of this,
readline () is usually invoked to read one line of text at a time. In
the next few lines of code, | read the file, one line at a time:

>>> text file = open("read it.txt", "r")

>>> prinE text file.readlige()

Line 1 B

>>> print text file.readline ()
This is line 2

>>> print text file.readline ()
That makes this line 3

>>> text file.close()

Notice that a blank line appears after each line. That's because each
line in the text file ends with a newline character ("\n").

Reading All Lines into a List

Another way to work with individual lines of a text file is the
readlines () method, which reads a text file into a list, where each

line of the file becomes a string element in the list. Next, | invoke the
readlines () method:

>>> text file = open("read it.txt", "r")
>>> lines = text file.readlines|()

1lines now refers to a list with an element for each line in the text
file:

>>> print lines
['Line 1\n', 'This is line 2\n', 'That makes this
line 3\n']

lines is like any list. You can find the length of it and even loop
through it:

>>> print len(lines)

3

>>> for line 1in lines:
print line

Line 1

This 1s line 2
That makes this line 3
>>> text_file.close()

Looping through a Text File

Starting in Python 2.2, you can loop directly through the lines of a
text file:
>>> text file = open("read it.txt", "r")
>>> for line in text file:
print line

Line 1

This 1s line 2
That makes this line 3

>>> text file.close()

This technique is the most elegant solution if you want to move
through all of the lines of a text file.

Writing to a Text File

For text files to be a viable form of storage, you need to be able to
get information into them. With Python, it's also a simple matter to
write strings to text files. In fact, it's even easier than reading strings
from text files, because there are just two basic ways to write to text
files.

Introducing the Write It Program

The Write It program creates a text file with the same contents of the
® read it.txt file that| used in the Read It program. Actually, the
program creates and prints this new file twice, using a different file
writing method each time. Figure 7.3 shows the results of the
program.

......
||||||

\

Figure 7.3: The same file is created twice, each time with a
different file method.

Writing Strings to a Text File

Just as before, in order to use a file, | have to open it in the correct
mode. So, the first thing | do in the program is open a file in write

mode:
Write It

Demonstrates writing to a text file
Michael Dawson - 4/28/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig234_01_0.jpg

print "Creating a text file with the write()
method."
text file = open("write 1t.txt", "w")

The file write it.txt springs into existence as an empty text file
just waiting for the program to write to it. If the file write it.txt

had already existed, it would have been replaced with a brand-new,
empty file and all of its original contents would have been erased.

Next, | use the write () file method, which writes a string to the file:

text file.write("Line 1\n")
text file.write("This is line 2\n")
text file.write("That makes this line 3\n")

The write () method does not automatically insert a newline

character at the end of a string it writes. You have to put newlines in
where you want them. If | had left the three newline characters out of
the previous lines of code, the program would write one, long string
to the file.

Also, you don't have to end every string you write to a file with a
newline character. To achieve the same end result, | could just as
easily have stuck all three of the previous strings together to form
one long string, "Line 1\n This is line 2\n That makes

this line 3\n", and written that string to the file with a single
write () method.

Finally, | close the file:

text file.close ()

Next, just to prove that the writing worked, | read and print the entire
contents of the file:

print "\nReading the newly created file."
text file = open("write it.txt", "r")

print text file.read()
text file.close()

Writing a List of Strings to a Text File

Next, | create the same file, using the writelines () file method.
Like its counter-part, readlines (), writelines () works with a

list of strings. But instead of reading a text file into a list, the method
writes a list of strings to a file.

The first thing | do is open the file for writing:

print "\nCreating a text file with the
writelines () method."
text file = open("write 1it.txt", "w")

| open the same file, write it.txt, which means | wipe out the

existing file and start with a new, empty one. Next, | create a list of
strings to be written, in order, to the file:

lines = ["Line 1\n",
"This 1s line 2\n",
"That makes this line 3\n"]

Again, | inserted newline characters where | want them in the text
file.

Next, | write the entire lists of strings to the file with the
writelines () method:

text file.writelines(lines)

Finally, | close the file:

text file.close()

Lastly, | print out the contents of the file to show that the new file is
exactly the same as the previous version:

print "\nReading the newly created file."
text file = open("write 1t.txt", "r")
print text file.read()

text file.close ()

raw_input ("\n\nPress the enter key to exit.")

You've seen a lot of file read and write methods. Take a look at Table
7.2 for a summary of them.

Table 7.2: SELECTED FILE METHODS

Method Description

Reads size characters from a text file
and returns them as a string. If sizeis
read([size]) not specified, the method returns all of
the characters from the current position
to the end of the file.

Reads size characters from the
current line in a text file and returns
them as a string. If sizeis not
specified, the method returns all of the
characters from the current position to
the end of the line.

readline([size])

Reads all of the lines in a text file and

readlines ()))
returns them as elements in a list.

write (output) Writes the string output to a text file.

Writes the strings in the list output to a

writelines (output) i
text file.

Storing Complex Data in Files

Text files are convenient because you can read and manipulate them
with any text editor, but they're limited to storing a series of
characters. Sometimes you may want to store more complex
information, like a list or a dictionary, for example. You could try to
convert the contents of these data structures to characters and save
them to a file, but Python offers a much better way. You can store
more complex data in a file with a single line of code. You can even
store a simple database of values in a single file that acts like a
dictionary.

Introducing the Pickle It Program

Pickling means to preserve—and that's just what it means in Python.
You can pickle a complex piece of data, like a list or dictionary, and
save it in its entirety to a file. Best of all, your hands won't smell like
vinegar when you're done.

IN THE REAL WORLD

Other languages can convert complex data for storage in files too,
but may not call the process pickling. Instead, these languages
may call the process serialization or marshaling.

The Pickle It program pickles, stores, and retrieves three lists of
strings. First, the program stores and retrieves the lists sequentially
using a file, much like you've seen with characters in a text file. But
then the program stores and retrieves the same three lists so that
any list can be randomly accessed. The results of the program are
shown in Figure 7.4.

Figure 7.4: Each list is written to and read from a file in its
entirety.

Pickling Data and Writing It to a File

The first thing | do in the program is import two new modules:

Pickle It
Demonstrates pickling and shelving data
Michael Dawson 5/1/03

import cPickle, shelve

The cPickle module allows you to pickle and store more complex
data in a file. The shelve module allows you to store and randomly
access pickled objects in a file.

HINT Python also has a pickle module, which works like the
cPickle module. pickle is written in Python while
cPickle is written in C. Since cPickle can be much
faster, it's better to use cPickle over pickle in almost
every case.

Pickling is pretty simple. Instead of writing characters to a text file,
you can write a pickled object to a file. Pickled objects are stored in
files much like characters; you can store and retrieve them
sequentially.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig237_01_0.jpg

In the next section of code, | pickle and store the three lists
variety, shape, and brand in the file picklesl.dat using the
cPickle.dump () function. The function requires two arguments:
the data to pickle and the file in which to store it.

print "Pickling lists."

variety = ["sweet", "hot", "dill"]

shape = ["whole", "spear", "chip"]

brand = ["Claussen", "Heinz", "Vlassic"]
pickle file = open("picklesl.dat", "w")
cPickle.dump (variety, pickle file)
cPickle.dump (shape, pickle file)
cPickle.dump (brand, pickle file)

pickle file.close()

So, this code pickles the list referred to by variety and writes the
whole thing as one object to the file picklesl.dat. Next, the
program pickles the list referred to by shape and writes the whole
thing as one object to the file. Then, the program pickles the list
referred to by brand and writes the whole thing as one object to the

file. Finally, the program closes the file.
You can pickle a variety of objects, including:

= Numbers

Strings

Tuples

Lists

Dictionaries

Reading Data from a File and Unpickling It

Next, | retrieve and unpickle the three lists with the
cPickle.load () function. The function takes one argument: the
file from which to load the next pickled object.

print "\nUnpickling lists."

pickle file = open("picklesl.dat", "r")

variety = cPickle.load(pickle file)

shape = cPickle.load(pickle file)

brand = cPickle.load(pickle file)

The program reads the first pickled object in the file, unpickles it to
produce the list ["sweet", "hot", "dill"], and assigns the list
to variety. Next, the program reads the next pickled object from
the file, unpickles it to produce the list ["whole", "spear",
"chip"], and assigns the list to shape. Finally, the program reads

the last pickled object from the file, unpickles it to produce the list
["Claussen", "Heinz", "Vlassic"], and assigns the list to

brand.

Finally, | print the unpickled lists to prove that the process worked:

print variety, "\n", shape, "\n", brand
pickle file.close()

Using a Shelf to Store Pickled Data

Next, | take the idea of pickling one step further by shelving the lists
together in a single file. Using the shelve module, | create a shelf

that acts like a dictionary, which allows the lists to be accessed
randomly.

First, | create a shelf, pickles:

print "\nShelving lists."

pickles = shelve.open("pickles2.dat")

The shelve.open () function works a lot like the file open ()
function. However, the shelve.open () function works with a file

that stores pickled objects and not characters. In this case, |
assigned the resulting shelf to pickles, which now acts like a

dictionary whose contents are permanently stored in the file
pickles2.dat.

The shelve.open () function requires one argument: a file name. It
also takes an optional access mode. If you don't supply an access
mode (like | didn't), it defaults to "c". Table 7.3 details access

modes for the function.

Table 7.3: shelve ACCESS MODES

Mode |Description

non Open a file for reading or writing. If the file doesn't exist,
it's created.

wpn Create a new file for reading or writing. If the file exists, its
contents are overwritten.

e Read from a file. If the file doesn't exist, Python will
complain with an error.

- Write to a file. If the file doesn't exist, Python will complain
with an error.

Next, | add three lists to the shelf:

pickles["variety"] = ["sweet", "hot", "dill"]
pickles ["shape"] = ["whole", "spear", "chip"]
pickles["brand"] = ["Claussen", "Heinz",

"Vlassic"]

pickles works like a dictionary. So, the key "variety" is paired
with the value ["sweet", "hot", "dill"].The key "shape" is
paired with the value ["whole", "spear", "chip"].And the
key "brand" is paired with the value ["Claussen"™, "Heinz",

"Vlassic"]. One important thing to note is that a shelf key can
only be a string.

Lastly, | invoke the shelf's sync () method:

pickles.sync () # make sure data is written

Python writes changes to a shelf file to a buffer and then periodically
writes the buffer to the file. To make sure the file reflects all the
changes to a shelf, you can invoke a shelf's sync () method. A shelf

file is also updated when you close it with its c1ose () method.

HINT While you could simulate a shelf by pickling a dictionary,
the shelve module is more memory efficient. So, if you
need random access to pickled objects, create a shelf.

Using a Shelf to Retrieve Pickled Data

Since a shelf acts like a dictionary, you can retrieve pickled objects
from it by supplying a key. Next, | loop through all of the pickled
objects in pickles, treating it like a dictionary:

print "\nRetrieving the lists from a shelved
file:"
for key in pickles.keys():

print key, "-", picklesl[key]

| loop through a list of keys, which includes "variety", "shape"
and "brand", printing the key and its value. Finally, | close the file:

pickles.close()

raw input ("\n\nPress the enter key to exit.")

IN THE REAL WORLD

Pickling and unpickling are good ways to store and retrieve
structured information, but more complex information can require
even more power and flexibility. Databases and XML are two
popular methods for storing and retrieving more complex data,
and Python has modules that can interface with either. To learn
more, visit the Python language Web site at

http://www.python.org.
. ___|

http://www.python.org/

Handling Exceptions

When Python runs into an error, it stops the current program and
displays an error message. More precisely, it raises an exception,
indicating that, well, something exceptional has occurred. If nothing
is done with the exception, Python halts what it's doing and prints an
error message detailing the exception.

Here's a simple example of Python raising an exception:

>>> num = float (raw input ("Enter a number: "))
Enter a number: Hi!
Traceback (most recent call last):
File "<pyshell#0>", line 1, in ?
num = float (raw input ("Enter a number: "))
ValueError: invalid literal for float(): Hi!

In this interactive session, Python tries to convert the string "Hi ! " to

a floating-point number. Since it can't, Python raises an exception
and prints the details.

Using Python's exception handling functionality, you can intercept
and handle exceptions so that your program doesn't end abruptly
(even if a user enters "Hi ! " when you ask for a number). At the
very least, you can have your program exit gracefully instead of
crashing awkwardly.

Introducing the Handle It Program

The Handle It program opens itself up to errors from user input and
then purposely generates a few errors of its own. But instead of
halting, the program runs to completion. That's because the program
handles the exceptions that are raised. Figure 7.5 shows the
program in action.

Figure 7.5: Although the program can't convert "Hi!" to a

number, it doesn't halt when exceptions are
raised.

Using a try Statement with an except Clause

The most basic way to handle (or frap) exceptions is to use the try
statement with an except clause. By using a try statement, you
section off some code that could potentially raise an exception.
Then, you write an except clause with a block of statements that
are executed only if an exception is raised.

The first thing | do in the Handle It program is ask the user for a
number. | get a string from the user and then attempt to convert the
string to a floating-point number. | use try and except to handle
any exceptions that might be raised in the process.

Handle It
Demonstrates handling exceptions
Michael Dawson 5/3/03

try/except
try:

num = float (raw input ("Enter a number: "))
except:

print "Something went wrong!"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig242_01_0.jpg

If the call to f1oat () raises an exception (as a result of the user
entering an unconvertible string, like "Hi! ", for example), the
exception is caught and the user is informed that Something went
wrong! If no exception is raised, num gets the number the user
entered and the program skips the except clause, continuing with
the rest of the code.

Specifying an Exception Type

Different kinds of errors result in different types of exceptions. For
example, trying to convert the string "Hi ! "™ with f1oat () resultsin

a ValueError exception because the characters in the string are of

the wrong value (they're not digits). There are over two dozen
exception types, but Table 7.4 lists a few of the most common ones.

Table 7.4: SELECTED EXCEPTION TYPES

Exception Type Description

Raised when an 1/O operation fails, such
IOError as when an attempt is made to open a
nonexistent file in read mode.

Raised when a sequence is indexed with

IndexError .

a number of a nonexistent element.

Raised when a dictionary key is not
KeyError

found.

Raised when a name (of a variable or
NamekError . .

function, for example) is not found.
SyntaxError Raised when a syntax error is

encountered.

Raised when a built-in operation or
TypeError function is applied to an object of
inappropriate type.

Exception Type Description

Raised when a built-in operation or
ValueError function receives an argument that has
the right type but an inappropriate value.

Raised when the second argument of a

ZeroDivisionError|2
division or modulo operation is zero.

The except clause lets you specify exactly which type of exceptions
it will handle. You just list the specific type of exceptions in
parentheses after except.

| again ask the user for a number, but this time | specifically trap for a
ValueError:

specifying exception type
try:

num = float (raw_input ("\nEnter a number: "))
except (ValueError) :

print "That was not a number!"

Now, the print statement will only execute if a ValueError is
raised. As a result, | can be even more specific and display the
message That was not a number! However, if any other
exception is raised inside the try statement, the except clause will
not catch it and the program will come to a halt.

It's good programming practice to specify exception types so that
you handle each individual case. In fact, it's dangerous to catch all
exceptions the way | did in the first except clause of the program.

Generally, you should avoid that type of catchall.

HINT When should you trap for exceptions? Any point of
external interaction with your program is a good place to
think about exceptions. It's a good idea to trap for
exceptions when opening a file for reading, even if you

believe the file already exists. You can also trap for
exceptions when you attempt to convert data from an
outside source, like the user.

TRICK So, let's say you know you want to trap for an exception,
but you're not exactly sure what the exception type is
called. Well, here's a shortcut for finding out: just create
the exception. For example, if you know you want to trap
for a division-by-zero exception, but can't remember
exactly what the exception type is called, jump into the
interpreter and divide a number by zero:

>>> 1/0
Traceback (most recent call last):
File "<pyshell#0>", line 1, in ?
1/0
ZeroDivisionError: integer division oOr
modulo by zero

From this interactive session, | can see that the
exception is called ZeroDivisionError. Fortunately,
the interpreter isn't shy about telling you exactly which
type of exception you raise.

Handling Multiple Exception Types

A single piece of code can result in different types of exceptions.
Fortunately, you can trap for multiple exception types. One way to
trap for multiple exception types is to list them in a single except

clause:

handle multiple exceptions

print
for value in (None, "Hi!"):
try:
print "Attempting to convert", value, "—
>"I

print float (value)

except (TypeError, ValueError):
print "Something went wrong!"

This code tries to convert two different values to a floating-point
number. Both fail, but each raises a different exception type.

float (None) raises a TypeError because the function can only
convert strings and numbers. float ("Hi!") raises a ValueError
because, while "Hi ! " is a string, the characters in the string are of
the wrong value (they're not digits). As a result of the except
clause, each type of exception is handled.

Another way to catch multiple exceptions is with multiple except
clauses. You can list as many as you'd like, following a single try
statement:

print
for value in (None, "Hi!"):
try:
print "Attempting to convert", value, "—
>"I

print float (value)
except (TypeError) :
print "I can only convert a string or a
number!"
except (ValueError) :
print "I can only convert a string of
digits!"

Now, each exception type has its own block. So when value is
None, a TypeError is raised and the string "I can only
convert a string or a number!"is printed. When value is
"Hi!"™, aValueError is raised and the string "I can only
convert a string of digits!"is printed.

Using multiple except clauses allows you to define unique reactions
to different types of exceptions from the same try block. In this

case, | offer a more specific error message by trapping each
exception type individually.

Getting an Exception's Argument

When an exception occurs, it may have an associated value, the
exception's argument. The argument is usually an official message
from Python describing the exception. You can receive the argument
if you list a variable before the colon in the except statement.

Here, | receive the exception's argument in variable e and print it out
along with my regular error message:

get an exception's argument
Ltry:

num = float (raw_input ("\nEnter a number: "))
except (ValueError), e:

print "That was not a number! Or as Python
would say:\n", e

Adding an else Clause

You can add a single else clause after all the except clauses in a
try statement. The e1se block executes only if no exception is
raised in the try block.

try/except/else
Ltry:
num = float (raw_input ("\nEnter a number: "))
except (ValueError) :
print "That was not a number!"
else:
print "You entered the number", num

raw_input ("\n\nPress the enter key to exit.")

In this code, num is printed in the e1se block only if the assignment
statement in the try block doesn't raise an exception. This is perfect
because that means num will be printed only if the assignment
statement was successful and the variable exists.

Back to the Trivia Challenge Game

With the basics of files and exceptions under your belt, it's time to
tackle the Trivia Challenge game presented at the beginning of the
chapter. One of the cool things about the program is that it reads a
plain text file, so you can create your own trivia game episodes with
a text editor and a dash of creativity. As you'll see in the code, the
text file the program reads, ® trivia.txt, needs to be in the
same directory as the program file. To create your own episode full
of questions, all you need to do is replace this file with one
containing your own work.

Understanding the Data File Layout

Before | go over actual code from the game, you should understand
exactly how the ® trivia.txt file is structured. The very first line
in the file is the title of the episode. The rest of the file consists of
blocks of seven lines for each question. You can have as many
blocks (and thus questions) as you like. Here's a generic
representation of a block:

<category>
<question>
<answer 1>
<answer 2>
<answer 3>
<answer 4>
<correct answer>
<explanation>

And here's the beginning of the file | created for the game:

An Episode You Can't Refuse

On the Run With a Mammal

Let's say you turn state's evidence and need to
"get on the lamb." If you wait /too long, what
will happen?

You'll end up on the sheep

You'll end up on the cow

You'll end up on the goat

You'll end up on the emu

1

A lamb is Jjust a young sheep.

The Godfather Will Get Down With You Now
Let's say you have an audience with the Godfather
of Soul. How would it be /smart to address
him?

Mr. Richard

Mr. Domino

Mr. Brown

Mr. Checker

3

James Brown is the Godfather of Soul.

To save space, | only show the first 15 lines of the file—two
questions' worth. You can take a look at the complete file, ®
trivia.txt, on the CD-ROM that's included with this book.

Remember, the very first line in the file, An Episode You Can't
Refuse, is the episode title for this game. The next seven lines are
for the first question. And the next seven lines are for the second
question. So, the line On the Run With a Mammal is the
category of the first question. The category is just a clever way to
introduce the next question. The next line, Let's say you turn
state's evidence and need to "get on the lamb." If

you wait /too long, what will happen?, is the first
question in the game. The next four lines, You'll end up on

the sheep, You'll end up on the cow, You'll end up on
the goat,and You'll end up on the emu, are the four
possible answers from which the player will choose. The next line, 1,
is the number of the correct answer. So in this case, the correct

answer to the question is the first answer, You'll end up on
the sheep. The nextline, A lamb is just a young sheep.,

explains why the correct answer is correct. The rest of the questions
follow the same pattern.

An important thing to note is that | included a forward slash (/) in two
of the lines. | did this to represent a newline since Python does not
automatically wrap text when it prints it. When the program reads a
line from the text file, it replaces all of the forward slashes with the
newline character. You'll see exactly how the program does this
when | go over the code.

The open_file () Function

The first thing | do in the program is define the function
open_ file (), which receives a file name and mode (both strings)

and returns a corresponding file object. | use try and except to
trap for an IOError exception for input-output errors, which would
occur if the file doesn't exist, for example.

If | trap an exception, that means there was a problem opening the
trivia file. If this happens, there's no point in continuing the program,
so | print an appropriate message and call the sys.exit ()
function. This function raises an exception that results in the
termination of the program. You should only use sys.exit () as a
last resort, when you must end a program. Notice that | didn't have
to import the sys module to call sys.exit (). That's because the
sys module is always available.

Trivia Challenge
Trivia game that reads a plain text file
Michael Dawson - 5/3/03

def open file(file name, mode) :
"""Open a file."""
try:

the file = open(file name, mode)
except (IOError), e:
print "Unable to open the file",
file name, "Ending program.\n", e
raw_input ("\n\nPress the enter key to
exit.")
sys.exit ()
else:
return the file

The next line () Function

Next, | define the next 1ine () function, which receives a file
object and returns the next line of text from it:

def next line(the file):

"""Return next line from the trivia file,
formatted."™"

line = the file.readline()

line = line.replace("/", "\n")

return line

However, | do one small bit of formatting to the line before | return it.
| replace all forward slashes with newline characters. | do this
because Python does not automatically word wrap printed text. My
procedure gives the creator of a trivia text file some formatting
control. He or she can indicate where newlines should go so that
words don't get split across lines. Take a look at the triva. txt file
and the output of the Trivia Challenge game to see this in action. Try
removing the forward slashes from the text file and check out the
results.

The next block () Function

The next block () function reads the next block of lines for one
question. It takes a file object and returns four strings and a list of

strings. It returns a string for the category, question, correct answer,
and explanation. It returns a list of four strings for the possible
answers to the question.

def next block(the file):
"""Return the next block of data from the
trivia file."""

category = next line(the file)
question = next line(the file)
answers = |[]

for i in range (4):
answers.append (next line(the file))

correct = next line(the file)
if correct:
correct = correct[0]

explanation next line(the file)

return category, question, answers, correct,
explanation

If the end of the file is reached, reading a line returns the empty
string. So, when the program comes tothe end of ® trivia.txt,

category gets the empty string. | check category in the main ()

function of the program. When it becomes the empty string, the
game is over.

The welcome () Function
The welcome () function welcomes the player to the game and

announces the episode's title. The function gets the episode title as
a string and prints it along with a welcome message.

def welcome (title) :
"""Welcome the player and get his/her name.”"""
print "\t\tWelcome to Trivia Challenge!\n"
print "\t\t", title, "\n"

Setting Up the Game

Next, | create the main () function, which houses the main game
loop. In the first part of the function, | set up the game by opening the
trivia file, getting the title of the episode (the first line of the file),
welcoming the player, and setting the player's score to 0.

def main() :
trivia file = open file("trivia.txt", "r")
title = next line(trivia file)
welcome (title)
score = 0

Asking a Question

Next, | read the first block of lines for the first question into variables.
Then, | start the while loop, which will continue to ask questions as
long as category is not the empty string. If category is the empty
string, that means the end of the trivia file has been reached and the
loop won't be entered. | ask a question by printing the category of
the question, the question itself, and the four possible answers.

get first block
category, question, answers, correct,
explanation = next block(trivia file)
while category:
ask a question
print category
print question
for i in range (4):
print "\t", 1 + 1, "-", answers[i]

Getting an Answer

Next, | get the player's answer:

get answer
answer = raw_input ("What's your answer?: ")

Checking an Answer

Then, | compare the player's answer to the correct answer. If they
match, the player is congratulated and his or her score is increased
by one. If they don't match, the player is told he or she is wrong. In
either case, | then display the explanation, which describes why the
correct answer is correct. Lastly, | display the player's current score.

check answer
if answer == correct:

print "\nRight!",

score += 1
else:

print "\nWrong.",

print explanation
print "Score:", score, "\n\n"

Getting the Next Question

Then, | call the next block () function and get the block of strings
for the next question. If there are no more questions, category will
get the empty string and the loop won't continue.

get next block
category, question, answers, correct,
explanation = next block(trivia file)

Ending the Game

After the loop, | close the trivia file and display the player's score:

trivia_file.close()

print "That was the last question!"
print "You're final score is:", score

Starting the main () Function

The last lines of code start main () and kick off the game:

main ()
raw_input ("\n\nPress the enter key to exit.")

Summary

In this chapter, you learned about files and exceptions. You learned
how to read from text files. You saw how to read a single character
or an entire file at once. You learned several different ways to read
one full line at a time, probably the most common way to read a text
file. You also learned how to write to text files—everything from a
single character to a list of strings. Next, you learned how to save
more complex data to files through pickling and how to manage a
group of pickled objects in a single file using a shelf. Then, you saw
how to handle exceptions raised during the execution of a program.
You saw how to trap for specific exceptions and how to write code to
work around them. Finally, you saw how to put files and exceptions
together through the construction of a trivia game program that
allows anyone with a text editor to create their very own trivia
episodes.

Challenges

1. Improve the Trivia Challenge game so that each question
has a unique point value associated with it. The player's
score should be the total of all the point values of the
questions he or she answers correctly.

2. Improve the Trivia Challenge game so that it maintains a
high-scores list in a file. The program should record the
player's name and score if the player makes the list. Store
the high scores using a pickled object.

3. Change the way the high-scores functionality you created
in the last challenge is implemented. This time, use a plain
text file to store the list.

4. Create a trivia game episode that tests a player's
knowledge of Python files and exceptions.

Chapter 8: Software Objects: The Critter
Caretaker Program

® Download CD Content

Overview

Object-oriented programming (OOP) is a different way of thinking
about programming. It's a modern methodology that's been
embraced by the software industry and is used in the creation of the
majority of new, commercial software. The basic building block in
OOP is the software object—often just called an object. In this
chapter, you'll take your first steps toward understanding OOP as
you learn about objects. Specifically, you'll learn to do the following:

= Create classes to define objects

Write methods and create attributes for objects

Instantiate objects from classes

Restrict access to an object's attributes

Work with both new-style and old-style classes

Introducing the Critter Caretaker Program

The Critter Caretaker program charges the user with the care of his
or her own virtual pet. The user names the critter and is completely
responsible for keeping it happy, which is no small task. The user
must feed and play with the critter to keep it in a good mood. The
user can listen to the critter to learn how the critter is feeling, which
can range from happy to mad. Figures 8.1 through 8.3 show off the
Critter program.

Pt Ao yvas mne your eriiber!s Larry
it aker

Figure 8.1: You get to name your very own
critter.

o ice g chi -
Figure 8.2: If you fail to feed or entertain your critter, it will have a
mood change for the worse.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig256_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig256_02_0.jpg

Figure 8.3: But with the proper care, your critter will come back to
its original, sunny mood.

Though you could create this program without software objects, |
created the critter as an object. Ultimately, this makes the program
easier to work with and modify. Plus, it allows for painless scaling.
Once you've created one critter, it's no sweat to create and manage
a dozen. Could a critter farm be far off? (Not if you check the chapter
challenges.)

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig257_01_0.jpg

Understanding Object-Oriented Basics

OOP has a reputation for being complicated, but | think it's actually
simpler than some of the concepts you've already learned. In fact,
OOP allows you to represent things in your programs in a way that's
more like the real world.

What you often want to represent in your programs—anything from a
checking account to an alien spacecraft—are real-life objects. OOP
lets you represent these real-life objects as software objects. Like
real-life objects, software objects combine characteristics (called
attributes in OOP-speak) and behaviors (called methods in OOP-
speak). For example, if you were to create an alien spacecraft
object, its attributes could include its location and energy level, while
its methods could include its ability to move or fire its weapons.

Objects are created (or instantiated in OOP-speak) from a definition
called a class—programming code that can define attributes and
methods. Classes are like blue-prints. A class isn't an object, it's a
design for one. And just as a foreman can create many houses from
the same blueprint, a programmer can create many objects from the
same class. As a result, each object (also called an instance)
instantiated from the same class will have a similar structure. So, if
you have a checking account class, you could use it to create
multiple checking account objects. And those different objects would
each have the same basic structure. Each might have a balance
attribute, for example.

But just as you can take two houses built from the same blueprint
and decorate them differently, you can have two objects of the same
class and give each its own, unique set of attribute values. So, you
could have one checking account object with a balance attribute of
100 and another with a balance attribute of 1,000,000.

HINT Don't worry if all this OOP talk isn't crystal clear yet. | just
wanted to give you an overview of what objects are all

about. Like all new programming concepts, reading about
them isn't enough. But after seeing some real Python code
that defines classes and creates objects (and coding
some on your own), you'll soon "get" OOP.

Creating Classes, Methods, and Objects

To build an object, you first need a blueprint, or a class. Classes
almost always include methods, things that an object can do. You
can create a class without any methods, but that wouldn't be much
fun.

Introducing the Simple Critter Program

The Simple Critter program includes your first example of a class
written in Python. In it, | define an extremely simple type of critter
that can only do one thing: say hi. While this kind of critter might be
simple, at least it's polite. The results of the program are pictured in
Figure 8.4

[Cenonttiptionam

Figure 8.4: When the program invokes the Critter object's
talk () method, the critter greets the world.

The program is quite short. Here's the code in its entirety:

Simple Critter
Demonstrates a basic class and object
Michael Dawson - 3/23/03

class Critter (object):
mwuw "A Virtual pet" mww
def talk(self):
print "Hi. I'm an instance of class

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig258_01_0.jpg

Critter."

main
crit = Critter ()
crit.talk ()

raw_input ("\n\nPress the enter key to exit.")

Defining a Class

The program starts with a class definition, the blueprint of my first
critter. The first line of the definition is the class header:

class Critter (object):

| used the keyword class followed by the class name | chose,
Critter. You'll notice that my class name begins with a capital

letter. Python doesn't require this, but it's the standard convention, so
you should begin all your class names with a capital letter.

Next, | told Python to base my class on object, a fundamental,
built-in type. You can base a new class on object or any previously
defined class, but that's a topic for Chapter 9, "Object-Oriented
Programming: The Blackjack Game." In this chapter, | base all of my
classes on object.

TRAP If you're using a version of Python before 2.2, you can't
base your classes on object. So, to get the programs in
this chapter to run, you'll need to remove (object) from
the class headers. My advice though is to use Python 2.2
or later, if at all possible. Toward the end of this chapter,
I'll explain exactly what's going on in the evolution of
Python classes and objects.

The next line is a docstring, which documents the class. A good
docstring describes the kind of objects a class can be used to create.
My docstring is pretty straightforward:

mww "A Virtual pet" wn

Defining a Method

The last part of the class defines a method. It looks very much like a
function:
def talk(self):
print "Hi. I'm an instance of class
Critter."

In fact, you can think of methods as functions associated with an
object. (You've already seen this with string and list methods, for
example.) The talk () method prints the string "Hi. I'm an
instance of class Critter."

You'll notice that talk () has one parameter, self (which it doesn't

happen to use). Every method must have a special first parameter,
called self by convention, in its parameter list. It provides a way for

a method to refer to the object itself. For now, don't worry about
self, you'll see it in action a little later in this chapter.

TRAP If you create an instance method without any parameters,
you'll generate an error when you invoke it. Remember,
all instance methods must have a special first parameter,
called self by convention.

Instantiating an Object

After | wrote my class, instantiating a new object took just one line:

crit = Critter ()

This line creates a brand-new object of the Critter class and
assigns it to the variable crit. Notice the parentheses after the
class name Critter in the assignment statement. It's critical to use
them if you want to create a new object.

You can assign a newly instantiated object to a variable with any
name. The name doesn't have to be based on the class name.
However, you should avoid using the same name in lowercase
letters as the class name because it could lead to confusion.

Invoking a Method

My new object has a method called talk (). The method is like any

other method you've already seen. It's basically a function that
belongs to the object. | can invoke this method just like any other,
using dot notation:

crit.talk ()

The line invokes the talk () method of the Critter object
assigned to crit. The method simply prints the string "Hi. I'm
an instance of class Critter."

Using Constructors

You've seen how you can create methods, like talk (), but there's a
special method you can write, called a constructor, that is
automatically invoked right after a new object is created. A
constructor method is extremely useful. In fact, you'll almost always
write one for each class you create. The constructor method is
usually used to set up the initial attribute values of an object, though
| won't use it for that in this program.

Introducing the Constructor Critter Program

The Constructor Critter program defines a new Critter class that
includes a simple constructor method. The program also shows how
easy it is to create multiple objects from the same class. Figure 8.5
shows a sample run of the program.

i neu crittar bas haan harnt =

Figure 8.5: Two separate critters are created. Each says
hi.

Here's the Constructor Critter program code:

Constructor Critter
Demonstrates constructors
Michael Dawson - 3/23/03

class Critter (object):
mww "A Virtual pet" mwwn

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig261_01_0.jpg

def init (self):
print "A new critter has been born!"

def talk(self):
print "\nHi. I'm an instance of class
Critter."

main
critl = Critter ()
crit? Critter ()

critl.talk ()
crit2.talk ()

raw_input ("\n\nPress the enter key to exit.")

Creating a Constructor

The first new piece of code in the class definition is the constructor
method (also called the initialization method):

def 1nit (self, name):
print "A new critter has been born!"

Normally, you make up your own method names, but here | used a
specific one recognized by Python. By naming the method
__init , ltold Python that this is my constructor method. As a

constructor method, init () is automatically called by any
newly created Critter object right after the object springs to life.

As you can see from the second line in the method, that means any
newly created Critter object automatically announces itself to the

world by printing the string "A new critter has been born!".

HINT Python has a collection of built-in "special methods"
whose names begin and end with two underscores, like

init__, the constructor method.

Creating Multiple Objects

Once you've written a class, creating multiple objects is a snap. In
the main part of the program, | create two:

main
critl = Critter ()
crit?2 = Critter ()

As a result, two objects are created. Just after each is instantiated, it
prints "A new critter has been born!" through its
constructor method.

Each object is its very own, full-fledged critter. To prove the point, |
invoke their talk () methods:

critl.talk ()
crit2.talk ()

Even though these two lines of code print the exact same string,
each is the result of a different object.

Using Attributes

You can have an object's attributes automatically created and
initialized just after it's instantiated through its constructor method.
This is a big convenience and something you'll do a lot.

Introducing the Attribute Critter Program

The Attribute Critter program creates a new type of object with an
attribute, name. The Critter class has a constructor method that

creates and initializes name. The program uses the new attribute so

that the critter can offer a more personalized greeting. Figure 8.6
shows the program in action.

(T — =
N T T L =
1§

———————RRe
Figure 8.6: This time, each Critter object has an attribute
name that it uses when it says hi.

The following is the code for the program:

Attribute Critter

Demonstrates creating and accessing object
attributes

Michael Dawson - 3/23/03

class Critter (object):
vww "A Virtual pet" ww
def init (self, name) :
print "A new critter has been born!"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig264_01_0.jpg

self.name = name

def str (self):
rep = "Critter object\n"
rep += "name: "+ self.name + "\n"
return rep
def talk(self):
print "Hi. I'm", self.name, "\n"
main
critl = Critter ("Poochie")
critl.talk ()
crit2 = Critter ("Randolph™)
crit2.talk ()

print "Printing critl:"
print critl

print "Directly accessing critl.name:"
print critl.name

raw_input ("\n\nPress the enter key to exit.")

Initializing Attributes

The constructor in this program prints the message "A new

critter

has been born!" just like the constructor in the

Constructor Critter program, but the next line of the method does
something new. It creates the attribute name for the new object and

sets it to the value of the parameter name. So, in the main part of the
program, the line:

crit =

Critter ("Poochie")

results in the creation of a new Critter object with an attribute
name setto "Poochie". Finally, the object is assigned to crit.

So that you can understand exactly how this works, I'll reveal what
the mysterious self parameter is all about. As the first parameter in

every method, self automatically receives a reference to the object
invoking the method. This means that, through self, a method can

get at the object invoking it and access the object's attributes or
methods (or even create new attributes for the object).

HINT You can name the first parameter in a method header
something other than sel£, but you shouldn't. It's the
"Pythonic" way to do things and other programmers will
expect it.

So, back in the constructor method, the parameter self
automatically receives a reference to the new Critter object while
the parameter name receives "Poochie". Then, the line:

self.name = name

creates the attribute name for the object and sets it to the value of
name, Which is "Poochie".

Back in the main part of the program, the assignment statement
assigns this new object to crit. This means that crit refers to a

new object with its own attribute called name setto "Poochie". So,
a critter has been created with its own name!

The line in the main program:
crit2 = Critter ("Randolph™)

kicks off the same basic chain of events. But this time, a new
Critter objectis created with its own attribute name set to

"Randolph™. And the object is assigned to crit2.

Accessing Attributes

Attributes aren't any good unless you can use them, so | wrote a
more personal talk () method that uses a Critter object's name

attribute. Now, when a critter says hi, it introduces itself with its
name.

| got my first critter to say hi by invoking its talk () method with
critl.talk()

The talk () method receives the automatically sent reference to the
object into its self parameter:

def talk(self):

Then, the print statement displays thetext Hi. I'm Poochie by
accessing the attribute name of the object through self.name:

print "Hi. I'm", self.name, "\n"

The same basic events occur when | then call the method for my
second object:

crit2.talk()

But this time, the talk () method displays the textHi. I'm
Randolph since the name attribute of crit2 is equal to
"Randolph".

By default, you can access and modify an object's attributes outside
of its class. In the main part of the program, | directly accessed the
name attribute of crit1l:

print critl.name

The line prints the string "Poochie™. In general, to access an
attribute of an object outside the object's class, you can use dot
notation. Type the variable name, followed by a dot, followed by the
attribute name.

Printing an Object

Normally, if | were to print an object, with the code print critl,
Python would come back with something like the cryptic:

< main .Critter object at O0x00AOBAS0>

This tells me that I've printed a Critter object in the main part of
my program, but doesn't give me any useful information about the
object. However, there is a way to change this. By including the
special method str () in a class definition, you can create a
string representation for your objects that will be displayed whenever
one is printed. Whatever string you return from the method will be
the string that's printed for the object.

The str () method | wrote returns a string that includes the
value of the object's name attribute. So, when the following line is
executed:

print critl

this, more useful, text appears:

Critter object
name: Poochie

TRICK Even if you never plan to print an object in your program,
creatinga __str () method is still not a bad idea.
You may find that being able to see the values of an
object's attributes helps you understand how a program
is working (or not working).

Using Class Attributes and Static Methods

Through attributes, different objects of the same class can each
have their own, unique values. You could, for example, have 10
different critters running around, each with its own name. But you
may have some information that relates not to individual objects, but
the entire class. You might want to, say, keep track of the total
number of critters you've created. You could give each Critter
object an attribute called total. But then, whenever a new object is
instantiated, you'd have to update every existing object's total
attribute. This would be a real pain. Fortunately, Python offers a way
to create a single value that's associated with a class itself, called a
class attribute. If a class is like a blueprint, then a class attribute is
like a Post-it note stuck to the blueprint. There's only one copy of it,
no matter how many things you make from the blueprint.

You might also find that you want a method that's associated with the
class; for this, Python offers the static method. Since static methods
are associated with a class, they're often used to work with class
attributes.

Introducing the Classy Critter Program

No, the Classy Critter program doesn't involve a critter that went to
finishing school and scoffs at other critters who don't know which fork
to use. Instead, the program involves attributes and methods that
belong to a class rather than a specific object. The program defines
a class attribute that keeps track of the total number of Critter
objects instantiated. The class also has a static method that displays
this number. Figure 8.7 shows the results of the program.

Figure 8.7: Critters are being born left and right! The program
keeps track of all of them through a single, class attribute, which it
displays through a static method.

Here's the program listing for Classy Critter:

Classy Critter
Demonstrates class attributes and static methods
Michael Dawson - 3/24/03

class Critter (object):
mwiw "A Virtual pet" mwwn
total = 0

def status():
print "\nThe total number of critters is",
Critter.total

status = staticmethod (status)

def 1init (self, name):
print "A critter has been born!"
self.name = name
Critter.total += 1

#main

print "Accessing the class attribute
Critter.total:",

print Critter.total

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig268_01_0.jpg

print "\nCreating critters."

critl = Critter ("critter 1")
crit?2 = Critter ("critter 2")
crit3 = Critter ("critter 3")

Critter.status ()

print "\nAccessing the class attribute through an
object:",
print critl.total

raw_input ("\n\nPress the enter key to exit.")

Creating a Class Attribute

The second line in my class definition:
total = 0

creates a class attribute total and assigns 0 to it. Any assignment
statement like this—a new variable assigned a value outside of a
method—creates a class attribute. The assignment statement is
executed only once, when Python first sees the class definition. This
means that the class attribute exists even before a single object is
created. So, you can use a class attribute without any objects of the
class in existence.

Accessing a Class Attribute

Accessing a class attribute is simple. | access the new class attribute
in several different places in the program. In the main part of the
program, | print it with

print Critter.total

In the static method status (), | print the value of the Critter
class attribute total with the line:

print "\nThe total number of critters is",
Critter.total

In the constructor method, | increment the value of this class
attribute through the line:

Critter.total += 1

As a result of this line, every time a new object is instantiated, the
value of the attribute is incremented by 1.

In general, to access a class attribute, use dot notation. Type the
class name, followed by a dot, followed by the attribute name.

Finally, you can access a class attribute through an object of that
class. That's just what | did in the main part of the program with the
following line:

print critl.total

This line prints the value of the class attribute total (and not an
attribute of the object itself). You can read the value of a class
attribute through any object that belongs to that class. So, | could
have used print crit2.total orprint crit3.total and
gotten the same results in this case.

TRAP Although you can use an object of a class to access a
class attribute, you can't assign a new value to a class
attribute through an object. If you want to change the
value of a class attribute, access it through its class
name.

Creating a Static Method

The first method in the class, status (), is a method | wrote to be
static. Notice that it doesn't have self in its parameter list. That's
because, like all static methods, it's designed to be invoked through
a class and not an object. So, the method won't be passed a
reference to an object and therefore won't need a parameter, like
self, to receive such a reference. Static methods can certainly list

parameters, but | just didn't need any for this one.

The method definition creates a method called status (), but to
actually declare it static, | wrote one more line of code:

status = staticmethod(status)

| passed the staticmethod () function the name of the method |
want to be static, status in this case. | assigned the result to
status. The name on the left side of the assignment operator is the

name that the final, static method will have. After this line executes,
the class has a static method, status (), which displays the total

number of objects created by printing the class attribute total.

TRAP Static methods were introduced in Python 2.2. You can't
use them in an earlier version of the language. If you try,
you'll get a nasty error message.

Invoking a Static Method

Invoking a static method is simple. With the first line of the main part
of the program, | invoke the static method:

Critter.status ()

As you would guess, this displays 0 since no objects have been
instantiated. But notice that I'm able to invoke the method without a
single object in existence. Since static methods are invoked through
a class, no objects of the class need to exist before you can invoke
them.

Next, | create three objects. Then, | invoke status () again, which
prints a message stating that three critters exist. This works
because, during the execution of the constructor method for each
object, the class attribute total is increased by 1.

Understanding Object Encapsulation

You first learned about the concept of encapsulation with functions in
the "Understanding Encapsulation" section of in Chapter 6. You saw
that functions are encapsulated and hide the details of their inner
workings from the part of your program that calls it (called the client
of the function). You learned that the client of a well-defined function
communicates with the function only through its parameters and
return values. In general, objects should be treated the same way.
Clients should communicate with objects through method
parameters and return values. In general, client code should avoid
directly altering the value of an object's attribute.

As always, a concrete example helps. Say, for example, that you had
a Checking Account object with a balance attribute. Let's say
your program needs to handle withdrawals from accounts, where a
withdrawal decreases an object's balance attribute by some
amount. To make a withdrawal, client code could simply subtract a
number from the value of balance. This direct access is easy for
the client, but can cause problems. The client code may subtract a
number so that balance becomes negative, which might be
considered unacceptable (especially by the bank). It's much better to
have a method called withdraw () that allows a client to request a
withdrawal by passing an amount to the method. Then, the object
itself can handle the request. If the amount is too large, the object
can deal with it, possibly rejecting the transaction. The object keeps
itself safe by providing indirect access to its attributes through
methods.

Using Private Attributes and Private Methods

By default, all of an object's attributes and methods are public,
meaning that they can be directly accessed or invoked by a client. To
encourage encapsulation, you can define an attribute or method as
private, meaning that only other methods of the object itself can
easily access or invoke them.

Introducing the Private Critter Program

The Private Critter program instantiates an object with both private
and public attributes and methods. Figure 8.8 shows a sample run.

(ocemmiromonen

Figure 8.8: The object's private attribute and private method are
indirectly accessed.

Creating Private Attributes

To limit the direct access of object attributes by clients, you can use
private attributes. In the constructor method, | create two attributes,
one public and one private:

Private Critter
Demonstrates private variables and methods
Michael Dawson - 3/25/03

class Critter (object):
mwiw "A virtual pet" mwwn

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig272_01_0.jpg

def init (self, name, mood) :
print "A new critter has been born!"

self.name = name # public
attribute

self. mood = mood # private
attribute

The two underscore characters that begin the second attribute name
tell Python that this is a private attribute. To create a private attribute
of your own, just begin the attribute name with two underscores.

Accessing Private Attributes

It's perfectly fine to access an object's private attribute inside the
class definition of the object. (Remember, private attributes are
meant to discourage client code from directly accessing the
attribute.) | access a private attribute in the talk () method:

def talk(self):
print "\nI'm", self.name
print "Right now I feel", self. mood,
"\nn

This method prints the value of the object's private attribute, which
represents a critter's mood.

If | tried to access this attribute outside of the Critter class
definition, I'd have trouble. Here's an interactive session to show you
what | mean:

>>> crit = Critter (name = "Poochie", mood =
"happy")
A new critter has been born!
>>> print crit.mood
Traceback (most recent call last):
File "<pyshell#2>", line 1, in ?
print crit.mood

AttributeError: 'Critter' object has no attribute
'mood'

By raising an AttributeError exception, Python is saying that
crit has no attribute mood. If you think you can outsmart Python by
adding the two leading underscores, you'd be wrong. That's just
what | tried in the next part of my interactive session:

>>> print crit. mood
Traceback (most recent call last):
File "<pyshell#3>", line 1, in ?

print crit. mood
AttributeError: 'Critter' object has no attribute
' mood'

This also raises an AttributeError exception. Python is again
saying that the attribute doesn't exist. So does this mean that the
value of a private attribute is completely inaccessible outside of its
class definition? Well, no. Python hides the attribute through a
special naming convention, though it's still technically possible to
access the attribute. That's what | did in the next part of my
interactive session:

>>> print crit. Critter mood
happy

This line prints the value of the elusive private attribute, which in this
case is the string "happy".

Since it's possible to access private attributes, you may be thinking:
What good are they? Well, defining an attribute or method as private
is not about completely preventing access. Rather, it's about
preventing inadvertent access. It says that a particular attribute or
method is meant only for an object's internal use. So, you should
never try to directly access the private attributes or methods of an
object from outside of its class definition.

Creating Private Methods

You can create a private method in the same, simple way you create
a private attribute: by adding two leading underscores to its name.
That's just what | do in the next method definition in the class:

def private method(self) :
print "This is a private method."

This is a private method but can easily be accessed by any other
method in the class. Like private attributes, private methods are
meant only to be accessed by an object's own methods.

Accessing Private Methods

Just as with private attributes, accessing an object's private methods
within its class definition is simple. In the public method ()
method, | access the class' private method:

def public method(self):
print "This is a public method."
self. private method()

This method prints the string "This is a public method." and
then invokes the object's private method.

Like private attributes, private methods aren't meant to be directly
accessed by clients. Back in my interactive session, | try to access
crit's private method:

>>> crit.private method()
Traceback (most recent call last):
File "<pyshell#6>", line 1, in ?
crit.private method/()
AttributeError: 'Critter' object has no attribute
'private method'

This attempt raises the familiar AttributeError exception. Python
is saying that crit has no method with this name. Python hides the
method through the same, special naming convention. If | try again
by adding the two leading underscores to the method name, | run
into the same error message:

>>> crit. private method()
Traceback (most recent call last):
File "<pyshell#7>", line 1, in ?
crit. private method()
AttributeError: 'Critter' object has no attribute
' private method'

However, just as with private attributes, it is technically possible to
access private methods from anywhere in a program. Here's the final
part of my interactive session as proof:

>>> crit. Critter private method()
This 1s a private method.

But, as you probably know by now, a client should never attempt to
directly access an object's private methods.

Respecting an Object's Privacy

In the main part of the program, | behave myself and don't go
prodding into an object's private attributes or methods. Instead, |
create an object and invoke its two public methods:

main

crit = Critter (name = "Poochie", mood = "happy")
crit.talk ()

crit.public method()

raw_input ("\n\nPress the enter key to exit.")

crit's talk () method announces to the world how the critter is
feeling. crit's public method() method prints the string "This
is a public method." and then invokes crit's private method,
which prints the string "This is a private method." Finally,
the program ends.

Understanding When to Implement Privacy

So now that you know how to use privacy, should you make every
attribute in every class private to protect them from the evil, outside
world? Well, no. Privacy is like a fine spice: used sparingly, it can
greatly improve what you're making. Make private any method you
don't want a client to invoke. If it's critical that an attribute never be
directly accessed by a client, you can make it private. But keep this
to a minimum, as creating private attributes is rare in Python. The
philosophy among programmers is to trust that clients will use an
object's methods and not directly alter its attributes.

HINT When you write a class:
= Create methods so that clients won't need to
directly access an object's attributes.

= Use privacy sparingly and only for those few
attributes and methods that are completely internal
to the operation of objects.

When you use an object:
= Minimize the direct reading of an object's
attributes.

= Avoid directly altering an object's attributes.

= Never directly access an object's private attributes
or methods.

Understanding New-Style and Old-Style
Classes

Earlier in this chapter, in "Defining_a Class," you got a hint that
something was afoot in the evolution of classes and objects in the
Python language. Beginning in Python 2.2, a new type of class was
introduced, called new-style classes. A new-style class is a class
that is directly or indirectly based on the new, built-in ocbject
introduced in Python 2.2. All of the classes you've seen in this
chapter are based on object and are therefore new-style classes.
An old-style class is a class that is not based on ocbject, directly or
indirectly. If you removed the (object) from any of the Critter
class headers in this chapter, you'd have an old-style class. To drive
the point home, here's an example of a new-style class header:

class Critter (object):

This is the header of an old-style class:

class Critter:

Every program you've seen so far in this chapter will work equally
well with either new-style or old-style classes. However, new-style
classes offer significant improvements over old-style classes. In fact,
you'll see one of those improvements at work in the next chapter
program, the Property Critter.

HINT Create new-style classes instead of old-style classes
whenever possible. New-style classes can do everything
old-style classes can, plus more. Besides, old style
classes will cease to exist beginning in Python 3.0.

Controlling Attribute Access

Sometimes, instead of denying access to an attribute, you may want
only to limit access to it. For example, you might have an attribute
that you want client code to be able to read, but not change. Python
provides a few tools to accomplish this kind of thing, including
properties. Properties allow you to manage exactly how an attribute
is accessed or changed.

Introducing the Property Critter

The Property Critter program allows client code toread a Critter
object's attribute that refers to its name, but imposes restrictions
when client code attempts to change the attribute's value. If client
code tries to assign the attribute the empty string, the program
complains and does not allow the change. Figure 8.9 shows the
results of the program.

Figure 8.9: A property controls access to the Critter object's
attribute for its name.

Using Get Methods

One way to control access to an attribute is to create access
methods—methods that allow indirect access to attributes and often
impose some sort of restriction on that access. One type of access
method is a get method, which gets the value of an attribute. By

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig278_01_0.jpg

convention, a get method's name always starts with the word "get.” |
wrote the simplest form of a get method for the private attribute
__name, called get name (). The method simply returns the value
of the private attribute, which represents a critter's name.

Property Critter

Demonstrates get and set methods and properties
Michael Dawson - 3/26/03

class Critter (object):
mww "A Virtual pet" mwn

def init (self, name) :
print "A new critter has been born!"
self. name = name

def get name (self):
return self. name

Now, it's easy to get the value of the private attribute through the get
method as you can see in this interactive session:

>>> crit = Critter ("Poochie")
>>> print crit.get name ()
Poochie

By creating a get method, you can provide read access to a private
attribute.

Using Set Methods

Since | want to allow controlled changes to the name of a critter, |
created another type of access method, called a set method, which
sets an attribute to a value. By convention, a set method's name
always starts with the word "set." This new method, set name (),
allows a value to be assigned to the private variable name;
however, it imposes the restriction that the value cannot be the
empty string.

def set name(self, new name) :
if new name == "":
print "A critter's name can't be the
empty string."
else:
self. name = new name
print "Name change successful."

If | try to change the name of my critter to the empty string,
set name () won't let me:

>>> crit.set name("")
A critter's name can't be the empty string.

However, the method will allow me to set the name to anything else:

>>> crit.set name ("Randolph")
Name change successful.

>>> print crit.get name ()
Randolph

Using Properties

Properties allow you to harness the power of access methods while
hiding the implementation from the client. A property essentially
wraps access methods around the consistent and familiar dot
notation.

TRAP Properties only work as intended with new-style classes.
If you must work with old-style classes, you can control
attribute access with the special methods
__getattr () and __setattr (). You can find out
about these methods through the online Python
documentation at http: //www.python.org/doc.

| use the property () function to create a property in the next line
of the program:

http://www.python.org/doc

name = property(get name, set name)

This code creates a property called name that allows indirect access
to the private attribute = name through the get name () and

set name () methods. Notice that the arguments of the

property () function are the names of the methods, not calls to the
methods, so they don't include parentheses.

To create a property, follow my example. Supply the property ()
function with get and set methods to allow controlled access to a
private attribute. (You can supply just a get method to create a read-
only property.) Finally, make sure to assign the resulting property to
an attribute name which client code will use to access the property.

By using the new name property, | can get the name of my critter
through the familiar dot notation as you can see in the beginning of
this interactive session:

>>> print crit.name
Randolph

This line of code invokes the get name () method. It has the same
effect as the line print get name (), but it maintains the
consistent dot notation format.

| can also set the name of my critter through dot notation:

>>> crit.name = "Sammy"
Name change successful.
>>> print crit.name
Sammy

This first line of code indirectly invokes the set name () method. It
has the same effect as the line set name ("Sammy"), but it
maintains the consistent dot notation format.

As before, if | try to make my critter's name the empty string, | can't:

>>> crit.name = ""
A critter's name can't be the empty string.

The rest of the Property Critter program uses the name property to
indirectly access the private name attribute:

def talk(self):
print "\nHi, I'm", self.name

main

crit = Critter ("Poochie")

crit.talk ()

print "\nMy critter's name is:",

print crit.name

print "\nAttempting to change my critter's name."
crit.name = ""

print "\nAttempting to change my critter's name
again."

crit.name = "Randolph"

crit.talk ()

raw_input ("\n\nPress the enter key to exit.")

As you can see, | access the name property in the talk () method
of the Critter class the same way | access it in the main part of

the program, through dot notation. You access a property the same
way, whether you're in the class definition of the property or in some
other part of the program.

Back to the Critter Caretaker Program

The final Critter Caretaker program combines parts of classes you've
seen throughout this chapter. It also includes the menu system
you've worked with that allows the user to interact with his or her
very own critter.

The Critter Class

The critter class is the blueprint for the object that represents the
user's critter. The class isn't complicated, and most of it should look

quite familiar, but it's a long a enough piece of code that attacking it
in pieces makes sense.

The Constructor Method

The constructor method of the class initializes the three public
attributes of a Critter object: name, hunger, and boredom.
Notice that hunger and boredom both have default values of 0,
allowing a critter to start off in a very good mood.

Critter Caretaker
A virtual pet to care for
Michael Dawson - 3/28/03
class Critter (object):

"""A virtual pet"""

def init (self, name, hunger = 0, boredom
0):

self.name = name
self.hunger = hunger
self.boredom = boredom

| take the more relaxed posture of a Python programmer with this
method and leave the attributes at their default public status. | plan
to provide all the methods | suspect a client will need, which should

encourage the client to interact with a Critter object only through
those methods.

The pass time () Method

The pass time () method is a private method that increases a
critter's hunger and boredom levels. It's invoked at the end of each
method where the critter does something (eats, plays, or talks) to
simulate the passage of time. | made this method private because it
should only be invoked by another method of the class. | only see
time passing for a critter when it does something (like eat, play, or
talk).
def pass time(self):
self.hunger += 1
self.boredom += 1

The mood Property

The mood property represents a critter's mood. The property is
created from a single get method, get mood (), making it a read-
only attribute. get mood () adds the values ofa Critter
object's hunger and boredom attributes. Based on the total, the
method returns a string, either "happy", "okay", "frustrated",
or "mad".

The interesting thing about the mood property is that it doesn't simply

provide access to a private attribute. That's because the string that
represents a critter's mood is not stored as part of the Critter

object, it's calculated on the fly by get mood (). The mood
property just passes on the string returned by get mood (). To
client code, however, mood looks like any other read-only attribute of
a Critter object created with a property.

def get mood(self):
unhappiness = self.hunger + self.boredom

if unhappiness < 5:
mood = "happy"
elif 5 <= unhappiness <= 10:

mood = "okay"

elif 11 <= unhappiness <= 15:
mood = "frustrated"

else:
mood = "mad"

return mood
mood = property(get mood)

The talk () Method

The talk () method announces the critter's mood to the world by
accessing the Critter object's mood property. Then, the method
invokes pass time ().
def talk(self):
print "I'm", self.name, "and I feel",

self.mood, "now.\n"
self. pass time()

The eat () Method

The eat () method reduces the critter's hunger level by an amount
passed to the parameter food. If no value is passed, food gets the
default value of 4. The critter's hunger level is kept in check and not
allowed to go below 0. Finally, the method invokes
__pass_time ().
def eat (self, food = 4):

print "Brruppp. Thank you."

self.hunger -= food

if self.hunger < O0:

self.hunger = 0
self. pass time()

The play () Method

The play () method reduces the critter's boredom level by an
amount passed to the parameter fun. If no value is passed, fun
gets the default value of 4. The critter's boredom level is kept in
check and not allowed to go below 0. Finally, the method invokes
__pass_time().

def play(self, fun = 4):
print "Wheee!"
self.boredom -= fun
if self.boredom < O:

self.boredom = 0
self. pass time()

Creating the Critter

| put the main part of the program into its own function, main (). At
the start of the program, | get the name of the critter from the user.
Next, | instantiate a new Critter object. Since | don't supply values
for hunger or boredom, the attributes start out at 0, and the critter
begins life happy and content.

def main() :

crit name = raw input ("What do you want to
name your critter?: ")
crit = Critter(crit name)

Creating a Menu System

Next, | created the familiar menu system. If the user enters 0, the
program ends. If the user enters 1, the object's talk () method is
invoked. If the user enters 2, the object's eat () method is invoked.
If the user enters 3, the object's play () method is invoked. If the
user enters anything else, he or she is told the choice is invalid.

choice = None
while choice != "Q":
print \

Critter Caretaker

0 - Quit

1 - Listen to your critter

2 - Feed your critter

3 - Play with your critter
choice = raw_ input ("Choice: ")
print

exit

if choice == "0":

print "Good-bye."
listen to your critter
elif choice == "1":
crit.talk ()

feed your critter
elif choice == "2":
crit.eat ()

play with your critter
elif choice == "3":
crit.play()

some unknown choice
else:
print "\nSorry, but", choice,
valid choice."

"isn't a

Starting the Program

The next line of code calls the main () function and begins the
program. The last line waits for the user before ending.

main ()
("\n\nPress the enter key to exit.")

Summary

This chapter introduced you to a different way of programming by
using the software object. You learned that software objects can
combine functions and data (methods and attributes in OOP-speak)
and in many ways mimic real-world objects. You saw how to write
classes, the blueprints of objects. You learned about a special
method called the constructor that is automatically invoked when a
new object is instantiated. You saw how to create and initialize object
attributes through a constructor. You learned how to create class-
wide elements such as class attributes and static methods. Next, you
learned about object encapsulation. You saw ways to help ensure
encapsulation, including the use of private attributes. But you
learned that, more than anything, good object design is the best way
to help ensure encapsulation. Finally, you saw all of these ideas put
to work to create a demanding virtual pet that requires constant
attention.

Challenges

1. Improve the Critter Caretaker program by allowing the user
to specify how much food he or she feeds the critter and
how long he or she plays with the critter. Have these values
affect how quickly the critter's hunger and boredom levels
drop.

2. Write a program that simulates a television by creating it as
an object. The user should be able to enter a channel
number and raise or lower the volume. Make sure that the
channel number and volume level stay within valid ranges.

3. Create a "back door" in the Critter Caretaker program that
shows the exact values of the object's attributes.
Accomplish this by printing the object when a secret
selection, not listed in the menu, is entered as the user's
choice. (Hint: add the special method str () tothe
Critter class.)

4. Create a Critter Farm program by instantiating several
Critter objects and keeping track of them through a list.
Mimic the Critter Caretaker program, but instead of
requiring the user to care for a single critter, require them to
care for an entire farm. Each menu choice should allow the
user to perform some action for all of the critters (feed all of
the critters, play with all of the critters, or listen to all of the
critters). To make the program interesting, give each critter
random starting hunger and boredom levels.

Chapter 9: Object-Oriented Programming:
The Blackjack Game

® Download CD Content

Overview

In the last chapter, you learned about the software object. AiImost
every program you saw involved a single object. That's a great way
to begin to understand how objects work, but the true power of OOP
can only be appreciated by seeing a group of objects work together.
In this chapter, you'll learn to create multiple objects and define
relationships among them so that they can interact. Specifically,
you'll learn to do the following:

= Create objects of different classes in the same program

Allow objects to communicate with each other

Create more complex objects by combining simpler ones

Derive new classes from existing ones

Extend the definition of existing classes

Override method definitions of existing classes

Introducing the Blackjack Game

The final project for this chapter is a simplified version of the card
game, black-jack. The game works like this: Players are dealt cards
with point values. Each player tries to reach a total of 21 without
going over. Numbered cards count as their face value. An ace
counts as either 1 or 11 (whichever is best for the player) and any
jack, queen, or king counts as 10.

The computer is the dealer and competes against one to seven
players. At the opening of the round, the computer deals all
participants (including itself) two cards. Players can see all of their
cards, and the computer even displays their total. However, one of
the dealer's cards is hidden for the time being.

Next, each player gets a chance to take additional cards. Each
player can take one card at a time for as long as the player likes. But
if the player's total goes over 21 (known as "busting"), the player
loses. If all players bust, the computer reveals its first card and the
round is over. Otherwise, play continues. The computer must take
additional cards as long as its total is less than 17. If the computer
busts, all players who have not themselves busted, win. Otherwise,
each remaining player's total is compared with the computer's. If the
player's total is greater, the player wins. If the player's total is less,
the player loses. If the two totals are the same, the player ties the
computer (also known as "pushing"). Figure 9.1 shows off the game.

T

Figure 9.1: One player wins, the other is not so

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig288_01_0.jpg

lucky.

Sending and Receiving Messages

In a way, an object-oriented program is like an ecosystem and
objects are like organisms. To maintain a thriving ecosystem,
organisms must interact. The same is true in OOP. To have a useful
program, objects must interact in well-defined ways. In OOP-speak,
objects interact by sending messages to each other. What they do
on a practical level is invoke each other's methods. That may sound
a little impolite, but it's actually much more courteous than if an
object were to access another object's attributes directly.

Introducing the Alien Blaster Program

The Alien Blaster program simulates an action game where a player
blasts an alien. In the program, a hero blasts an invader and the
invader dies (but not before giving a grand farewell speech). The
program accomplishes this when one object sends another a
message. Figure 9.2 shows the results of the program.

Figure 9.2: The battle description is the result of objects
exchanging a message.

Technically what happens is that the program instantiates a Player
object, hero, and an Alien object, invader. When hero's

blast () method is invoked with invader as its argument, hero
invokes invader's die () method. In English, this means that when
a player blasts an alien, the player sends a message to the alien

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig289_01_0.jpg

telling it to die. Figure 9.3 provides a visual representation of the
message exchange.

invader: Alien

hero: Player

hero.blast (invader)

% r
Figure 9.3: hero, a Player object, sends invader,an Alien
object, a message.

IN THE REAL WORLD

The diagram | created to show two objects exchanging a
message is a pretty simple one. But with many objects and many
relationships among them, diagrams like this can become
complex. In fact, there are a variety of formal methods for
mapping software projects. One of the most popular is the Unified
Modeling Language (UML), a notational language that is
especially useful for visualizing object-oriented systems.

Here's the program listing for Alien Blaster:

Alien Blaster
Demonstrates object interaction
Michael Dawson - 4/10/03

class Player (object) :
""" A player in a shooter game.
def blast(self, enemy):
print "The player blasts an enemy.\n"
enemy.die ()

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig290_01_0.jpg

class Alien (object):

""" An alien in a shooter game.

def die(self):

print "The alien gasps and says, 'Oh, this
is it. This is the big one. \n" \
"Yes, it's getting dark now. Tell

my 1.6 million larvae that I loved them...
wA\n" o\

"Good-bye, cruel universe.'"

main
print "\t\tDeath of an Alien\n"

hero = Player ()
invader = Alien ()
hero.blast (invader)

raw_input ("\n\nPress the enter key to exit.")

Sending a Message

Before you can have one object send another object a message, you
need two objects! So, | create two in the main part of the program
through the following lines:

hero = Player ()
invader = Alien{()

The first line creates a P1ayer object and assigns it to hero. The
second line creates an A1 ien object and assigns it to invader.

The next line of code invokes hero's blast () method:

hero.blast (invader)

There's something new going on in this line. In the method call, | list
invader as an argument. By examining the definition of blast (),

you can see that it accepts this value into its parameter enemy:

def blast(self, enemy):

This just means that, in this method, the A1 ien object is called
enemy. While this method executes, enemy refers to the same
object as invader does in the main part of the program.

After displaying a message, blast () invokes the Alien object's
die () method through the following line:

enemy.die ()

The Player object is sending the A1 ien object a message, telling it
to die.

Receiving a Message

The Alien object receives the message from the Player object in
the form of its die () method being invoked. The die () method is
pretty simple. All it does is display a melodramatic good-bye, which
appears as follows:

The alien gasps and says, 'Oh, this is it. This 1is
the big one.

Yes, it's getting dark now. Tell my 1.6 million
larvae that I loved them...

Good-bye, cruel universe.'

Combining Objects

In the real world, interesting objects are usually made up of other,
independent objects. For example, a drag racer can be seen as a
single object that's composed of individual objects such as a body,
tires, and an engine. Other times, you may see an object as a
collection of other objects. For example, a zoo can be seen as a
collection of animals. Well, you can mimic these kinds of
relationships among objects in OOP. You could write a Drag Racer
class that has an attribute engine which references an Engine
object. Or, you could write a Zoo class that has an attribute
animals which is a list of different Animal objects. Combining
objects like this allows you to create more complex objects from
simpler ones.

Introducing the Playing Cards Program

The Playing Cards program uses objects to represent individual
playing cards that you might use in a game of Blackjack or Go Fish
(depending upon your tastes . . . and your tolerance for losing
money). The program goes on to represent a hand of cards through
an object that is a collection of card objects. Figure 9.4 shows the
results of the program.

i
Frinting the rest of the shjects individsslly:

Figure 9.4: Each Hand object is a collection of Card
objects.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig292_01_0.jpg

Creating the Card Class

The first thing | do in the program is create a Card class for objects
that represent playing cards. Here's the code for the Card class:

Playing Cards
Demonstrates combining objects
Michael Dawson - 4/9/03

class Card(object) :
""" A playing card.
RANKS = ["A", "2", "3", "4", "5", n"ew, "7v,
"gn, moM, "1QM, "J", "QU, "K"]
SUITS = ["c", "d", "h", "s"]

def init (self, rank, suit):
self.rank = rank
self.suit = suit

def str (self) :

rep = self.rank + self.suit
return rep

Each Card object has a rank attribute, which represents the rank of
the card. The possible values are listed in the class attribute RANKS.
"A" represents an ace, "2" through "10" represent their
corresponding numeric values, "J" represents a jack, "Q"
represents a queen, and "K" represents a king.

Each card also has a suit attribute, which represents the suit of the

card. The possible values for this attribute are listed in the class
attribute SUITS. "c" represents clubs, "d" means diamonds, "h"

stands for hearts, and "s" represents spades. So, an object with the
rank attribute of "A" and a suit attribute of "d" represents the ace
of diamonds.

The special method str () simply returns the concatenation of
the rank and suit attributes so that an object can be printed.

Creating the Hand Class

The next thing | do in the program is create a Hand class for objects,
which is a collection of Card objects:

class Hand(object) :
""" A hand of playing cards. """
def init (self):
self.cards = []

def str (self):

if self.cards:

rep = ""

for card in self.cards:

rep += str(card) + " "

else:

rep = "<empty>"
return rep

def clear(self):
self.cards = []

def add(self, card):
self.cards.append (card)

def give(self, card, other hand):

self.cards.remove (card)
other hand.add(card)

A new Hand object has an attribute cards that is intended to be a
list of Card objects. So each single Hand object has an attribute that
is a list of possibly many other objects.

The special method str () returns a string that represents the
entire hand. The method loops through each Card object in the
Hand object and concatenates the Card object's string
representation. If the Hand object has no Card objects, the string "
<empty>" is returned.

The clear () method clears the list of cards by assigning an empty
list to an object's cards attribute.

The add () method adds an object to the cards attribute.

The give () method removes an object from the Hand object and
appends it to another Hand object by invoking the other Hand
object's add () method. Another way to say this is that the first Hand
object sends the second Hand object a message to add a Card
object.

Using Card Objects

In the main part of the program, | create and print five Card objects:

main

cardl = Card(rank = "A", suit = "c")
print "Printing a Card object:"
print cardl

|l

card?2 = Card(rank = "2", suit = "c")
card3 = Card(rank = "3", suit = "c")
card4d = Card(rank = "4", suit = "c")
cardb = Card(rank = "5", suit = "c")
print "\nPrinting the rest of the objects

individually:"
print card?
print card3
print card4
print cardb5

The first Card object created has a rank attribute equal to "A" and
a suit attribute of "c". When | print the object, it's displayed on the
screen as Ac. The remaining objects follow the same pattern.

Combining Card Objects Using a Hand Object

Next, | create a Hand object, assign it to my hand, and print it:

my hand = Hand ()
print "\nPrinting my hand before I add any cards:"
print my hand

Since the object's cards attribute is an empty list, printing the object
displays the text <empty>.

Next, | add the five Card objects to my hand and print it again:

my hand.add
my hand.add (card2

cardl)

)

my hand.add (card3)
)

)

o~ o~ o~ o~

my hand.add (card4

my hand.add (cardd

print "\nPrinting my hand after adding 5 cards:"
print my hand

This time, the text Ac 2c 3¢ 4c 5c is displayed.

Then, | create another Hand object, your hand. Usingmy hand's
give () method, | transfer the first two cards from my hand to
your hand. Then, | print both hands:

your hand = Hand()

my hand.give (cardl, your hand)

my hand.give (card2, your hand)

print "\nGave the first two cards from my hand to
your hand."

print "Your hand:"

print your hand

print "My hand:"
print my hand

As you'd expect, your hand is displayed as Ac 2c while my hand
appears as 3c 4c 5c.

Finally, | invoke my hand's clear () method and print it one last
time:

my hand.clear ()
print "\nMy hand after clearing it:"
print my hand

raw input ("\n\nPress the enter key to exit.")

As it should, the text <empty> is displayed.

Using Inheritance to Create New Classes

One of the key elements of OOP is inheritance, which allows you to
base a new class on an existing one. By doing so, the new class
automatically gets (or inherits) all of the methods and attributes of
the existing class—it's like getting all of the work that went into
writing the existing class for free!

TRAP In Python, it's possible to create a new class that directly
inherits from more than one class. This is called multiple
inheritance. But multiple inheritance is a thorny subject
and can get confusing fast. In fact, several of the most
popular modern languages, such as C# and Java, have
eliminated multiple inheritance and opted for the simpler,
yet still powerful, single inheritance—where an object can
inherit from only one class. As a beginning programmer,
it's best to steer clear of multiple inheritance since it can
be more heartache than help.

Extending a Class through Inheritance

Inheritance is especially useful when you want to create a more
specialized version of an existing class. As you just learned, by
inheriting from an existing class, a new class gets all of the methods
and attributes of the existing class. But you can also add methods
and attributes to the new class to extend what objects of the new
class can do.

For example, imagine that your Drag Racer defines a drag racer
with methods stop () and go () . You could create a new class for a
specialized type of drag racer that can clean its windshield (you get a
lot of squashed bugs at 250 miles per hour) by basing it on the
existing Drag Racer class. Your new class would automatically
inherit stop () and go () from Drag Racer. So, all you'd have to
do is define one new method for cleaning the windshield and the
new class would be done.

Introducing the Playing Cards 2.0 Program

The Playing Cards 2.0 program is based on the Playing Cards
program. The new version introduces the Deck class to describe a
deck of playing cards. However, unlike any other class you've seen,
Deck is based on an existing class, Hand. As a result, Deck
automatically inherits all of Hand's methods. | create Deck this way
because a deck of cards is really like a specialized hand of cards. It's
a hand, but with extra behaviors. A deck can do anything that a hand
can. It's a collection of cards. It can give a card to another hand, and
so on. On top of that, a deck can do a few things that a hand can't. A
deck can be shuffled and it can deal cards to multiple hands. The
Playing Cards 2.0 program creates a deck that deals cards to two
different hands. Figure 9.5 illustrates the results of the program.

Figure 9.5: The Deck object inherits all of the methods of the
Hand class.

Creating a Base Class

| begin the new program like the old version. The first two classes,
Card and Hand, are the same as before:

Playing Cards 2.0
Demonstrates inheritance - object extension
Michael Dawson 4/9/03

class Card(object) :
""" A playing card. """
RANKS = ["A", "2", "3", "4", "5", n"ew, "7v,
"gn, moM, "1QM, "J", "QU, "K"]
SUITS = ["c", "d", "h", "s"]

def init (self, rank, suit):
self.rank = rank
self.suit = suit

def str (self):
rep = self.rank + self.suit
return rep

class Hand (object) :

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig298_01_0.jpg

""" A hand of playing cards. """
def init (self):
self.cards = []

def str (self):

if self.cards:

rep = ""

for card in self.cards:

rep += str(card) + "\t"

else:

rep = "<empty>"
return rep

def clear(self):
self.cards = []

def add(self, card):
self.cards.append (card)

def give(self, card, other hand):

self.cards.remove (card)
other hand.add(card)

Inheriting from a Base Class

The next thing | do is create the Deck class. You can see from the
class header that Deck is based on Hand:

class Deck (Hand) :

Hand is called a base class because Deck is based on it. Deck is
considered a derived class because it derives part of its definition
from Hand. As a result of this relationship, Deck inherits all of Hand's
methods. So, even if | didn't define a single new method in this class,
Deck objects would still have all of the methods defined in Hand:

clear ()
= add ()
m give ()

If it helps, for this simple example, you can even imagine that you've
copied and pasted all of Hand's methods right into Deck because of
inheritance.

Extending a Derived Class

You can extend a derived class by defining additional methods in it.
That's what | do in the class definition of Deck:

A deck of playing cards. """
def populate(self):
for suit in Card.SUITS:
for rank in Card.RANKS:
self.add(Card(rank, suit))

def shuffle(self):
import random
random.shuffle(self.cards)

def deal(self, hands, per hand = 1):
for rounds in range (per hand) :
for hand in hands:
if self.cards:
top card = self.cards[0]
self.gilve (top card, hand)
else:

print "Can't continue deal.
Out of cards!"

So, in addition to all of the methods that Deck inherits, it has the
following new methods:

= populate ()
m shuffle()
m deal ()

As far as client code is concerned, any Deck method is as valid as
any other—whether it's inherited from Hand or defined in Deck. And
all of a Deck object's methods are invoked the same way, through
dot notation.

Using the Derived Class

The first thing | do in the main part of the program is instantiate a
new Deck object:

main
deckl = Deck ()

Looking at the class, you'll notice that | don't define a constructor
method in Deck. But Deck inherits the Hand constructor, so that

method is automatically invoked with the newly created Deck object.
As a result, the new Deck object gets a cards attribute which is
initialized to an empty list, just as any newly created Hand object
would get a similar cards attribute. Finally, the assignment
statement assigns the new object to deckl1.

Now armed with a new (but empty) deck, | print it:

print "\nNew deck:"
print deckl

| didn't define the special str () method in Deck either, but
again, Deck inherits the method from Hand. Since the deck is empty,
the code displays the text <empty>. So far, a deck seems just like a
hand. That's because a deck is a specialized type of hand.
Remember, a deck can do anything a hand can, plus more.

An empty deck is no fun, so | invoke the object's populate ()
method, which populates the deck with the traditional 52 cards:

deckl .populate ()

Now the deck has finally done something a hand can't. That's
because the populate () method is a new method that | define in
the Deck class. The populate () method loops through all of the
52 possible combinations of values of Card.SUITS and
Card.RANKS (one for each card in a real deck). For each
combination, the method creates a new Card object that it adds to
the deck.

Next, | print the deck:

print "\nPopulated deck:"
print deckl

This time, all 52 cards are displayed! But if you look closely, you'll
see that they're in an obvious order. To make things interesting, |
shuffle the deck:

deckl.shuffle ()

| define the shuffle () method in Deck. It imports the random
module and then calls the random.shuffle () function with the
object's cards attribute. As you might guess, the
random.shuffle () method shuffles a list's elements into a
random order. So, all of the elements of cards get shuffled. Perfect.

Now, with the cards in random order, | display the deck again:

print "\nShuffled deck:"
print deckl

Next, | create two Hand objects and put them in a list that | assign to
hands:

my hand = Hand()
your hand = Hand()
hands = [my hand, your hand]

Then, | deal each hand five cards:
deckl.deal (hands, per hand = 5)

The deal () method is a new method | define in Deck. It takes two
arguments: a list of hands and the number of cards to deal each
hand. The method gives a card from the deck to each hand. If the
deck is out of cards, the method prints the message "Can't
continue deal. Out of cards!" The method repeats this
process for the number of cards to be dealt each hand. So, this line
deals five cards from deckl to each hand (my hand and

your hand).

To see the results of the deal, | print each hand and the deck once
more:

print "\nDealt 5 cards to my hand and your hand."
print "My hand:"

print my hand

print "Your hand:"

print your hand

print "Deck:"

print deckl

By looking at the output, you can see that each hand has 5 cards
and the deck now has only 42.

Finally, | put the deck back to its initial state by clearing it:

deckl.clear ()
print "\nCleared the deck."

And then | print the deck one last time:
print "Deck:", deckl

Altering the Behavior of Inherited Methods

You've seen how you can extend a class by adding new methods to
a derived class. But you can also redefine how an inherited method
of a base class works in a derived class. This is known as overriding
the method. When you override a base class method, you have two
choices. You can create a method with completely new functionality,
or you can incorporate the functionality of the base class method that
you're overriding.

As an example, take your Drag Racer class again. Let's say that
its stop () method simply applies the racer's brakes. If you want to
create a new drag racer class that can stop even more quickly (by
releasing a parachute behind the racer), you could derive a new,
Parachute Racer class from Drag Racer and override its
stop () method. You could write the new stop () method so that it
invokes the stop () method of the original Drag Racer class

(which applies the racer's brakes) and then defines the action of the
racer releasing a parachute.

Introducing the Playing Cards 3.0 Program

The Playing Cards 3.0 program derives two new classes of playing
cards from the Card class you've been working with. The first new
class defines cards that can't be printed. More precisely, when you
print an object of this class, the text <unprintable> is displayed.

The next class defines cards that can be either face up or face down.
When you print an object of this class, there are two possible results.
If the card is face up, it prints out just like an object of the card

class. But if the card is face down, the text XX is displayed. Figure
9.6 shows a sample run of the program.

Figure 9.6: By overriding the inherited str () method,

objects of different derived classes are printed?ut
differently.

Creating a Base Class

To derive a new class, you need to start with a base class. For this
program, | use the same Card class you've come to know and love:

Playing Cards 3.0
Demonstrates inheritance - overriding methods
Michael Dawson 4/16/03

class Card(object) :
mwwmwnw A playing Card- mwrwmwnw

RANKS = ["A", "2", "3", "4", "5", "', "7V,
"gm, "ow, "1i0", "Jg", "Q", "K"]
SUITS = ["c¢", "d", "h", "s"]
def init (self, rank, suit):
self.rank = rank
self.suit = suit

def str (self):

rep = self.rank + self.suit
return rep

Overriding Base Class Methods

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig303_01_0.jpg

Next, | derive a new class for unprintable cards based on Card. The
class header looks pretty standard:

class Unprintable Card(Card):

From this header, you know that Unprintable Card inherits all of
the methods of Card. But | can change the behavior of an inherited

method by defining it in a derived class. And that's just what | did in
the remainder of the method definition:

""" A Card that won't reveal its rank or suit
when printed. """
def str (self) :

return "<unprintable>"

The Unprintable Cardclassinheritsthe str () method
from Card. But | also defineanew str () method in
Unprintable Card that overrides (or replaces) the inherited one.
Any time you create a method in a derived class with the same name
as an inherited method, you override the inherited method in the new
class. So, when you print an Unprintable Card object, the text
<unprintable> is displayed.

A derived class has no effect on a base class. A base class doesn't
care if you derive a new class from it, or if you override an inherited
method in the new class. The base class still functions as it always

has. This means that when you print a Card object, it will appear as
it always does.

Invoking Base Class Methods

Sometimes when you override the method of a base class, you want
to incorporate the inherited method's functionality. For example, |
want to create a new type of playing card class based on Card. |
want an object of this new class to have an attribute that indicates
whether or not the card is face up. This means | need to override the
inherited constructor method from Card with a new constructor that

creates a face up attribute. However, | also want my new constructor
to create and set rank and suit attributes, just like the Card
constructor already does. Instead of retyping the code from the Card
constructor, | could invoke it from inside my new constructor. Then, it
would take care of creating and initializing rank and suit attributes
for an object of my new class. Back in the constructor method of my
new class, | could add the attribute that indicates whether or not the
card is face up. Well, that's exactly the approach | take in the
Positionable Card class:

class Positionable Card(Card) :
""" A Card that can be face up or face down.

def init (self, rank, suit, face up =
True) :
super (Positionable Card,
self). 1init (rank, suit)
self.is face up = face up

The new function in the constructor, super (), lets you invoke the
method of a base class (also called a superclass). The line

super (Positionable Card, self). init (rank,

suit) invokesthe init () method of Card (the superclass of
Positionable Card). The first argument in this function call,
Positionable Card, says that | want to invoke a method of the
superclass (or base class) of Positionable Card, whichis Card.
The next argument, self, passes a reference to the object so that
Card can get at the object to add the rank and suit attributes to it.
The next part of the statement, init (rank, suit),tells
Python that | want to invoke the constructor method of Card and |
want to pass it the values of rank and suit.

TRAP The super () function was introduced in Python 2.2 and
only works with new-style classes. If you're using old-
style classes, you can still invoke a base class method,
you just have to explicitly specify the name of the class.

For example, if | want to explicitly invoke the constructor
of the Card class in Positionable Card, | could use
this line:

Card. init (self, rank, suit)

But the super () function is much better in more complex
situations, so use super () whenever possible over this
explicit way of calling a base class method.

The next method in Positionable Card also overrides a method
inherited from Ccard and invokes the overridden method:

def str (self):
1f self.is face up:
rep = super (Positionable Card,
self). str ()
else:
rep = "XX"
return rep

This str () method first checks to see if an object's face up
attribute is True (which means that the card is face up). If so, the
string representation for the card is set to the string returned from
Card's str () method called with the Positionable Card
object. In other words, if the card is face up, the card prints out like
any object of the Card class. However, if the card is not face up, the
string representation returned is "xx".

The last method in the class doesn't override an inherited method. It
simply extends the definition of this new class:

def flip(self):
self.is face up = not self.is face up

The method flips a card over by toggling the value of an object's
face up attribute. If an object's face up attribute is True, then
invoking the object's f1ip () method sets the attribute to False. If

an object's face up attribute is False, then invoking the object's
flip () method sets the attribute to True.

Using the Derived Classes

In the main part of the program, | create three objects: one from
Card, another from Unprintable Card, and the last from

Positionable Card:

#main

cardl = Card("A", "c")

card2 = Unprintable Card("A", "d")
card3 = Positionable Card("A", "h")

Next, | print the Card object:

print "Printing a Card object:"
print cardl

This works just like in previous programs, and the text Ac is
displayed.

The next thing | do is print an Unprintable Card object:

print "\nPrinting an Unprintable Card object:"
print card?

Even though the object has a rank attribute setto "A" and a suit
attribute set to "d", printing the object displays the text
<unprintable> because the Unprintable Card class overrides
its inherited str () method with one that always returns the
string "<unprintable>".

The next two lines print a Positionable Card object:

print "\nPrinting a Positionable Card object:"
print card3

Since the object's face up attribute is True, the object's
__str () method invokes Card's str () method and the
text Ah is displayed.

Next, | invoke the Positionable Card object's f£1ip () method:

print "Flipping the Positionable Card object."
card3.flip()

As a result, the object's face up attribute is set to False.

The next two lines print the Positionable Card object again:

print "Printing the Positionable Card object:"
print card3

raw input ("\n\nPress the enter key to exit.")

This time the second line displays the text xx because the object's
face up attribute is False.

Understanding Polymorphism

Polymorphism is the quality of being able to treat different types of
things in the same way. Polymorphism is usually associated with
OORP, but you've seen it in action before. The 1en () function is
polymorphic because it works with different types, such as strings,
tuples, or lists. For example, the following calls to 1en () all produce
valid results even though each argument is of a different type:

>>> len("How long am I?")

14
>>> len((1, 2, 3, 4, 5))
5
>>> len(["a", "b", "c"])
3

Used in the context of OOP, polymorphism means that you can send
the same message to objects of different classes related by
inheritance and achieve different results. For example, the
Unprintable Card is derived from Card, but when you invoke the

__str () method of an Unprintable Card object, you geta
different result than when you invoke the str () method of a
Card object. This means that you can prlnt an object even if you
don't know if it's an Unprintable Card ora Card object.
Regardless of the class of the object, when printed, its str ()
method is invoked and a string representation of it is dlsplayed

Creating Modules

You first learned about modules in Chapter 3, in the section "Using
the import Statement," where you met the random module. But a
powerful aspect of Python programming is that you can create, use,
and even share your own modules. Creating your own modules
provides important benefits.

First, by creating your own modules, you can reuse code, which can
save you time and effort. For example, you could reuse the Card,

Hand, and Deck classes you've seen so far to create many different

types of card games without having to reinvent basic card, deck, and
hand functionality every time.

Second, by breaking up a program into logical modules, large
programs become easier to manage. So far, the programs you've
been working with have been contained in one file. Since they've
been pretty short, this is no big deal. But imagine a program that's
thousands (or even tens of thousands) of lines long. Working with a
program of this size, in one, massive file, would be a real nightmare
(professional projects, by the way, can easily get this large).

Third, by creating modules, you can share your genius. If you create
a useful module, you can e-mail it to a friend, who then can use it
much like any built-in Python module.

Introducing the Simple Game Program

The Simple Game program, as the name suggests, is simple. The
program first asks how many players wish to participate and then
proceeds to get each player's name. Finally, the program assigns a
random score to each player and displays the results. Not very
thrilling, but the point of the program is not the game, but rather how
the game works. The program uses a brand-new module with
functions and a class that | created. Figure 9.7 displays the results of
the program.

Figure 9.7: Several functions and a class used in the program are
from a programmer-created module.

Writing Modules

Normally, I'd show you the code for the next program, Simple Game,
but in this section, | go over the module I've written that Simple
Game uses.

You create a module the same way you write any other Python
program. When you create a module, though, you should build a
collection of related programming components, such as functions
and classes, and store them in a single file to be imported into a new
program.

| created a basic module, called games, that contains two functions
and a class that might be useful in creating a game. Here's the code:
Games

Demonstrates module creation
Michael Dawson 4/10/03

class Player (object):
""" A player for a game. """

def init (self, name, score = 0):
self.name = name
self.score = score

def str (self) :

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig309_01_0.jpg

rep = self.name + ":\t" + str(self.score)
return rep

def ask yes no(question) :
""" Ask a yes or no question."™"

response = None
while response not in ("y", "n"):
response = raw_ input (question) .lower ()

return response

def ask number (question, low, high):
""" Ask for a number within a range."""

response = None
while response not in range (low, high):
response = int (raw input (question))

return response
if name == " main ":
print "You ran this module directly (and did
not 'import' it)."
raw_input ("\n\nPress the enter key to exit.")

This module is named games because | saved the file with the name
® games.py. Programmer-created modules are named (and
imported) based on their file names.

The bulk of the module is straightforward. The Player class defines
an object with two attributes, name and score, which are set in the
constructor method. There's only one other method, str (),
which returns a string representation so that objects can be printed.

You've seen the next two functions, ask yes no () and
ask_number (), before in Chapter 6, in the "The ask_yves no ().
Function" and the "The ask_number ()_Function" sections.

The next part of the program introduces a new idea, related to
modules. The condition of the i f statement, name ==

" main_ ", is true if the program is run directly. It's false if the file
is imported as a module. So, if the ® games.py file is run directly, a
message is displayed telling the user that the file is meant to be
imported and not directly run.

Importing Modules

Now that you've seen the games module, I'll introduce the code of
the Simple Game program. The following are the first few lines:

Simple Game
Demonstrates importing modules
Michael Dawson 4/10/03

import games, random

You import a programmer-created module the same way you import
a built-in module, with the import statement. In fact, | import the

games module along with the familiar random module in the same
import statement.

TRAP If a programmer-created module isn't in the same
directory as the program that imports it, Python won't be
able to find the module. There are ways around this. It's
even possible to install a programmer-created module so
that it's available system-wide, just like built-in modules,
but this requires a special installation procedure that's
beyond the scope of this book. So for now, make sure
that any module you want to import is in the same
directory as the programs that import it.

Using Imported Functions and Classes

| use the imported modules in the remainder of the Simple Game
program. After welcoming the players and setting up a simple loop, |
ask how many players there will be in the game:

print "Welcome to the world's simplest game!\n"

again = None
while again != "n":

players = []

num = games.ask number (question = "How many
players? (2 - 5): ",

low = 2, high = 5)

| get the number of players by calling the ask number () function
from the games module. Just as with other imported modules, to call
a function, | use dot notation, specifying first the module name,
followed by the function name.

Next, for each player, | get the player's name and generate a random
score between 1 and 100 by calling the randrange () function from
the random module. Then, | create a player object using this name
and score. Since the Player class is defined in the games module,
again | use dot notation and include the module name before the
class name. Then, | append this new player object to a list of
players.

for i in range (num) :
name = raw input ("Player name: ")
score = random.randrange (100) + 1
player = games.Player (name, score)
players.append(player)

Next, | print each player in the game:
print "\nHere are the game results:"
for player in players:
print player

Finally, | ask if the players want to play another game. | use the
ask_yes no () function from the games module to obtain my

answer.
again = games.ask yes no("\nDo you want to
play again? (y/n): ")

raw input ("\n\nPress the enter key to exit.")

Back to the Blackjack Game

At this point, you're an expert in using Python classes to create
playing cards, hands, and decks. So now it's time to build on that
expertise and see how to combine these classes in a larger program
to create a complete, casino-style, card game (tacky green felt not
included).

The Cards Module

To write the Blackjack game, | created a final cards module based
on the Playing Cards programs. The Hand and Deck classes are
exactly the same as those in the Playing Cards 2.0 program. The
new Card class represents the same functionality as the
Positionable Card from the Playing Cards 3.0 program. Here's
the code for this module, stored in the file ® cards.py:

Cards Module

Basic classes for a game with playing cards
Michael Dawson 4/18/03

class Card(object) :
""" A playing card. """
RANKS = ["A", "2", "3", "4", "5", "g", "7,
"8"1 "9"1 ":I-O"I "J"I "Q"I "K"]
SUITS = ["c¢", "d", "h", "s"]

def init (self, rank, suit, face up =
True) :
self.rank = rank
self.suit = suit
self.is face up = face up

def str (self) :

if sezf.is_face_up:
rep = self.rank + self.suit

else:
rep = "XX"
return rep

def flip(self):
self.is face up = not self.is face up
class Hand (object) :
""" A hand of playing cards. """
def init (self):
self.cards = []

def str (self):

if self.cards:

rep = ""

for card in self.cards:

rep += str(card) + "\t"

else:

rep = "<empty>"
return rep

def clear(self):
self.cards = []

def add(self, card):
self.cards.append (card)

def give(self, card, other hand):

self.cards.remove (card)
other hand.add(card)

class Deck (Hand) :
""" A deck of playing cards. """
def populate(self):
for suit in Card.SUITS:
for rank in Card.RANKS:

self.add(Card(rank, suit))

def shuffle(self):
import random
random.shuffle(self.cards)

def deal(self, hands, per hand = 1):
for rounds in range (per hand):

for hand in hands:
if self.cards:
top card = self.cards[0]
self.give (top card, hand)

else:
print "Can't continue deal. Out of

cards!"

if name == " main
print "This is a module with classes for
playing cards."
raw_input ("\n\nPress the enter key to exit.")

Designing the Classes

Before you start coding a project with multiple classes, it can help to
map them out on paper. You might make a list and include a brief
description of each class. Table 9.1 shows my first pass at such a
listing for the Blackjack game.

Table 9.1: BLACKJACK CLASSES

Class Base Class |Description

Class

Base Class

Description

BJ Card

cards.Card

A blackjack playing card. Define an
attribute value to represent the point

value of a card.

BJ Deck

cards.Deck

A blackjack deck. A collection of
BJ Card objects.

BJ Hand

cards.Hand

A blackjack hand. Define an attribute
total to represent the point total of a

hand. Define an attribute name to
represent the owner of the hand.

BJ Player

BJ Hand

A blackjack player.

BJ_Dealer

BJ_Hand

A blackjack dealer.

BJ Game

object

A blackjack game. Define an attribute
deck to reference a BJ Deck object.

Define an attribute dealer to
reference a BJ_ Dealer object.
Define an attribute players to
reference a list of BJ Player
objects.

You should try to include all of the classes you think you'll need, but

don't worry about making your class descriptions complete, because

invariably they won't be (mine aren't). But making such a list should
help you get a good overview of the types of objects you'll be
working with in your project.

In addition to describing your classes in words, you might want to
draw a family tree of sorts to visualize how your classes are related.
That's what | did in Figure 9.8.

cards.Card |c;trd5.H;J.nd cards.Deck B]_Game

E]_Card B]_Hand B]_Deck

T Y

B]_Player B]_Dealer

o

Figure 9.8: Inheritance hierarchy of classes for the Blackjack
game.

A class hierarchy diagram, like the one in Figure 9.8, can give you a
summary view of how you're using inheritance.

Writing Pseudocode for the Game Loop

The next thing | did in planning the game was write some
pseudocode for the play of one round. | thought this would help me
see how objects will interact. Here's the pseudocode | came up with:

Deal each player and dealer initial 2 cards
For each player
While the player asks for a hit and the player is not busted
Deal the player an additional card
If there are no players still playing
Show the dealer's 2 cards
Otherwise
While the dealer must hit and the dealer is not busted
Deal the dealer an additional card
If the dealer is busted
For each player who is still playing
The player wins
Otherwise
For each player who is still playing
If the player's total is greater than the dealer's total
The player wins
Otherwise, if the player's total is less than the dealer's total

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig316_01_0.jpg

The player loses
Otherwise
The player pushes

Importing the cards and games Modules

Now that you've seen the planning, it's time to check out the code. In
the first part of the Blackjack program, | import the two modules
cards and games:

Blackjack
From 1 to 7 players compete against a dealer
Michael Dawson 4/18/03

import cards, games

| created the games module, you'll remember, in the Simple Game
program, earlier in this chapter.

The BJ_Card Class

The BJ_ Card class extends the definition of what a card is by
inheriting from cards.Card. In BJ Card, | create a new property,
value, for the point value of a card:

class BJ Card(cards.Card) :
""" A Blackjack Card. """
ACE VALUE = 1

def get value (self):
if self.is face up:
value = BJ Card.RANKS.index (self.rank)

if value > 10:
value = 10
else:
value = None

return value

value = property(get value)

The get value () method returns a number between 1 and 10,

which represents the value of a blackjack card. The first part of the
calculation is computed through the expression
BJ Card.RANKS.index (self.rank) + 1. This expression

takes the rank attribute of an object (say "6") and finds its
corresponding index number in BJ Card.RANKS through the list
method index () (for "6" this would be 5). Finally, 1 is added to the
result since the computer starts counting at 0 (this makes the value
calculated from " 6" the correct 6). However, since rank attributes
of "Jg", "Q", and "K" result in numbers larger than 10, any value
greater than 10 is set to 10. If an object's face up attribute is
False, this whole process is avoided and a value of None is
returned. Finally, | use the property () function with the

get value () method to create the property value.

The BJ_Deck Class

The BJ Deck class is used to create a deck of blackjack cards. The
class is almost exactly the same as its base class, cards.Deck.
The only difference is that | override cards.Deck's populate ()
method so that a new BJ Deck object gets populated with BJ Card
objects:

class BJ Deck(cards.Deck) :
""" A Blackjack Deck. """
def populate(self):
for suit in BJ Card.SUITS:
for rank in BJ Card.RANKS:
self.cards.append(BJ Card(rank, suit))

The BJ_Hand Class

The BJ Hand class, based on cards.Hand, is used for blackjack
hands. | override the cards.Hand constructor and add a name
attribute to represent the name of the hand owner:

class BJ Hand(cards.Hand) :
""" A Blackjack Hand. """

def init (self, name):
super (BJ Hand, self). 1init ()
self.name = name
Next, | override the inherited str () method to display the total

point value of the hand:
def str (self) :

rep = self.name + ":\t" + super (BJ Hand,
self). str ()
if self.total:
rep += " ("+ str(self.total) + ")"

return rep

| concatenate the object's name attribute with the string returned
from the cards.Hand _ str () method for the object. Then, if
the object's total property isn't None, | concatenate the string
representation of the value of total. Finally, | return that string.

Next, | create a property called total, which represents the total
point value of a blackjack hand. If a blackjack hand has a face-down
card in it, then its total property is None. Otherwise, total is
calculated by adding the point values of all the cards in the hand.

def get total (self):
1f a card in the hand has value of None,
then total is None

for card in self.cards:

if not card.value:

return None

add up card values, treat each Ace as 1
total = 0

for card in self.cards:
total += card.value

determine if hand contains an Ace

contains ace = False
for card in self.cards:
if card.value == BJ Card.ACE VALUE:
contains ace = True

if hand contains Ace and total is low
enough, treat Ace as 11
if contains ace and total <= 11:
add only 10 since we've already
added 1 for the Ace
total += 10

return total

total = property(get total)

The first part of this method checks to see if any card in the
blackjack hand has a value attribute equal to None (which would
mean that the card is face down). If so, the method returns None.
The next part of the method simply sums the point values of all the
cards in the hand. The next part determines if the hand contains an
ace. If so, the last part of the method determines if the card's point
value should be 11 or 1. The last line of this section creates the
property total.

The last method in BJ Hand is busted(). It returns True if the
object's total property is greater than 21. Otherwise, it returns
False.

def 1is busted(self):
return self.total > 21

Notice that in this method, | return the result of the condition
self.total > 21 instead of assigning the result to a variable and

then returning that variable. You can create this kind of return

statement with any condition (any expression actually) and it often
results in a more elegant method.

This kind of method, which returns either True or False, is pretty
common. It's often used (like here) to represent a condition of an
object with two possibilities, such as "on" or "off," for example. This
type of method almost always has a name that starts with the word
"is,"asinis on().

The BJ Player Class

The BJ Player class, derived from BJ Hand, is used for blackjack
players:
class BJ Player (BJ Hand):

""" A Blackjack Player. """
def is hitting(self):

response = games.ask yes no("\n" +
self.name + ", do you want a hit? (Y/N): ")
return response == "y"

def bust(self):
print self.name, "busts."
self.lose()

def lose(self):
print self.name, "loses."

def win(self) :
print self.name, "wins."

def push(self):
print self.name, "pushes."

The first method, 1s hitting (), returns True if the player wants
another hit and returns False if the player doesn't. The bust ()
method announces that a player busts and invokes the object's
lose () method. The 1lose () method announces that a player
loses. The win () method announces that a player wins. And the
push () method announces that a player pushes. The bust (),
lose (), win (), and push () methods are so simple that you may

wonder why they exist. | put them in the class because they form a
great skeleton structure to handle the more complex issues that
arise when players are allowed to bet (which they will, when you
complete one of the chapter challenges at the end of the chapter).

The BJ Dealer Class

The BJ Dealer class, derived from BJ Hand, is used for the
game's blackjack dealer:

class BJ Dealer (BJ Hand):
""" A Blackjack Dealer. """
def is hitting(self):
return self.total < 17
def bust(self):
print self.name, "busts."

def flip first card(self):
first card = self.cards[0]
first card.flip()

The first method, is_hitting (), represents whether or not the
dealer is taking additional cards. Since a dealer must hit on any hand
totaling 17 or less, the method returns True if the object's total
property is less than 17, otherwise it returns False. The bust ()
method announces that the dealer busts. The

flip first card() method turns over the dealer's first card.

The BJ_Game Class

The BJ Game class is used to create a single object that represents
a blackjack game. The class contains the code for the main game
loop in its play () method. However, the mechanics of the game are
complex enough that | create a few elements outside the method,
includingan additional cards () method that takes care of
dealing additional cards to a player and a still playing property
that returns a list of all players still playing in the round.

The init () Method

The constructor receives a list of names and creates a player for
each name. The method also creates a dealer and a deck.

class BJ Game (object) :
""" A Blackjack Game. """
def init (self, names):
self.players = []
for name in names:
player = BJ Player (name)
self.players.append(player)

self.dealer = BJ Dealer ("Dealer")

self.deck = BJ Deck()
self.deck.populate ()
self.deck.shuffle ()

The still playing Pro