
Python Programming for the Absolute
Beginner
by Michael Dawson ISBN:1592000738
Premier Press © 2003

With this text, you will acquire the skills that
you need for more practical Python
programming applications, and learn how
these skills can be put to use in real-world
scenarios.

Table of Contents
Python Programming for the Absolute Beginner
Introduction

Chapter 1 - Getting Started: The Game over
Program

Chapter 2 - Types, Variables, and Simple I/O: The
Useless Trivia Program

Chapter 3 - Branching, while Loops, and Program
Planning: The Guess My Number Game

Chapter 4 - for Loops, Strings, and Tuples: The
Word Jumble Game

Chapter 5 - Lists and Dictionaries: The Hangman
Game

Chapter 6 - Functions: The Tic-Tac-Toe Game

Chapter 7 - Files and Exceptions: The Trivia
Challenge Game

Chapter 8 - Software Objects: The Critter

Caretaker Program

Chapter 9 - Object-Oriented Programming: The
Blackjack Game

Chapter 10 - GUI Development: The Mad Lib
Program

Chapter 11 - Graphics: The Pizza Panic Game

Chapter 12 - Sound, Animation, and Program
Development: The Astrocrash Game

Appendix A - LiveWires Reference
Index
List of Figures
List of Tables
List of Sidebars
 CD Content

Back Cover

If you are new to programming with Python and are
looking for a solid introduction, this is the book for
you. Developed by computer science instructors,
books in the for the absolute beginner series teach
the principles of programming through simple game
creation. You will acquire the skills that you need for
more practical Python programming applications and
you will learn how these skills can be put to use in
real-world scenarios. Best of all, by the time you
finish this book you will be able to apply the basic
principles you’ve learned to the next programming
language you tackle.

With the instructions in this book, you’ll learn to:

Build, slice, and index strings

Read from, and write to, text files

Create and manipulate sprites

Tackle object-oriented programming

Create a GUI

Work with sound and music and create
animation

About the Author

Michael Dawson is a writer who has worked as both
a programme. He has written for several television
shows, including a sitcom and an animated series.
Michael earned his bachelor's degree in Computer
Science from the University of Southern Californai.

Python Programming for the Absolute
Beginner
MICHAEL DAWSON

Copyright © 2003 by Premier Press, a division of Course
Technology.

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or
retrieval system without written permission from Premier Press,
except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of
Premier Press and may not be used without written permission.

All trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support.
Please contact the appropriate software
manufacturer 's technical support line or Web site for
assistance.

Premier Press and the author have attempted through-out this book
to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier
Press from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy,

adequacy, or completeness of any information and is not responsible
for any errors or omissions or the results obtained from use of such
information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed
since this book went to press.
ISBN: 1-59200-073-8

Library of Congress Catalog Card Number: 2003104024

Printed in the United States of America

03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

SVP, Retail and Strategic Market Group: Andy Shafran

Publisher: Stacy L. Hiquet

Senior Marketing Manager: Sarah O 'Donnell

Marketing Manager: Heather Hurley

Manager of Editorial Services: Heather Talbot

Acquisitions Editor: Todd Jensen

Associate Marketing Manager: Kristin Eisenzopf

Technical Reviewer: Greg Perry

Retail Market Coordinator: Sarah Dubois

Copy Editor: William McManus

Interior Layout: Argosy Publishing

Cover Design: Mike Tanamachi

CD-ROM Producer: Keith Davenport

Indexer: Sharon Shock

Proofreader: Darla Bruno

To my parents, who have read everything I've ever written

Acknowledgments

Writing a book is like giving birth—and I have the stretch marks of
the brain to prove it. So, I want to thank all the people who helped
me bring my little bundle of joy into this world.

Thanks to Todd Jensen for being such a terrific editor. I appreciated
your patience, encouragement, and understanding.

Thanks to Edalin Michael for leading the team at Argosy Publishing. I
appreciated all of your efforts—especially as we got down to the
wire.

Thanks to Bill McManus for his copyediting. I always appreciated
your suggestions and your eagle eye.

Thanks to Greg Perry for his technical editing (and for your non-
technical suggestions too).

Thanks to Andy Harris for setting such a fine example with this book
series. I hope I lived up to the standards.

I also want to thank Pete Shinners, author of Pygame, and all the
folks who contributed to LiveWires. Because of all of you, writing
multimedia programs (especially games!) is now within reach of a
new Python programmer.

Last, and certainly not least, I want to thank Matt for his audio
expertise, Chris for his musical expertise, and Dave for wearing a
chef's hat.

About the Author

Michael Dawson is a writer who has worked as both a programmer
and a computer game designer. He has written for several different
television shows, including a sitcom and an animated series. Michael
earned his bachelor's degree in Computer Science from the
University of Southern California. This is his first book.

Introduction
Staring back at me on the screen was an image I recognized: a face
—my face. Grainy and pixilated, it was still me. I watched with
detached curiosity as my expression twisted and contorted beyond
human limits until finally, an alien embryo burst from my skull. A
voice behind me said, "You wanna see it again?"

No, this wasn't some horrible dream, it was my job. I worked at a
company producing and designing computer games. I also got to
"star" in our first release, an adventure game where the player clicks
me around the screen. And if the player fails to solve the game in
time . . . well, I think you know how that turns out. I've also worked
as a programmer for a major Internet services company, traveling to
sites around the country. And while those two lines of work may
seem quite different, the basic skills necessary to succeed in each
started to take shape while I wrote simple games on my home
computer as a kid.

The goal of this book is to teach you the Python programming
language, learning to program the same way I did: by creating
simple games. There's something more exciting about learning to
program by writing software that's fun. And even though the
examples are entertaining, you'll still see some serious
programming. I cover all of the fundamental topics you'd expect from
an introductory text and then some. In addition, I point out concepts
and techniques that you can apply to more mainstream projects.

If you're new to programming, you've made the right choice. Python
is the perfect beginners' language. It has a clear and simple syntax
that will get you writing useful programs in short order. Python even
has an interpreted mode, which offers immediate feedback, allowing
you to test out new ideas almost instantly.

If you've done some programming before, you've still made the right
choice. Python has all the power and flexibility you'd expect from a

modern, object-oriented programming language. But even with all of
its power, you may be surprised how quickly you can build programs.
In fact, ideas translate so quickly to the computer, Python has been
called "programming at the speed of thought."

Like any good book, this one starts at the beginning. The first thing I
cover is installing Python under Windows. Then, I move through
concepts, one step at a time, by writing small programs to
demonstrate each step. By the end of the book, I'll have covered
such fancy-sounding topics as data structures, file handling,
exceptions, object-oriented design, and GUI and multimedia
programming. I also hope to show you how to design as well as
program. You'll learn how to organize your work, break problems
down into manageable chunks, and refine your code.

You'll be challenged at times, but never overwhelmed. Most of all,
you'll have fun while learning. And in the process, you'll create some
small, but cool computer games.

Throughout the book, I'll throw in a few other tidbits, notably the
following:

HINT These are good ideas that experienced programmers like
to pass on.

TRAP There are a few areas where it's easy to make a mistake.
I'll point them out to you as we go.

TRICK These will suggest techniques and shortcuts that will
make your life as a programmer easier.

IN THE REAL WORLD

As you examine the games in this book, I'll show you how the
concepts are used for purposes beyond game development.

Challenges
At the end of each chapter, I'll suggest some programs that you can
write with the skills you've learned so far. This should help you start
writing your own programs.

Chapter 1: Getting Started: The Game over
Program

 Download CD Content

Overview
Programming basically is getting your computer to do stuff. This is
not the most technical definition, but it's a pretty accurate one. By
learning Python, you'll be able to create a program, whether it's a
simple game, a small utility, or a business product with a full-featured
graphical user interface (GUI). It'll be all yours, something you made,
and it will do just what you told it to. Programming is part science,
part art, and one great adventure. This chapter starts you on your
Python programming journey. In it, you'll learn

What Python is and what's so great about it

How to install Python on your computer

How to print text to the screen

What comments are and how to use them

How to use Python's integrated development environment
(IDLE) to write, edit, run, and save your programs

Examining the Game Over Program
The chapter project, Game Over, displays the two most infamous
words in computer gaming: "Game Over". Figure 1.1 shows the
program in action.

Figure 1.1: The all-too familiar words from a computer
game.

Figure 1.1 shows what's called a console window, a window that can
display only text. Though not as nice as windows with a Graphical
User Interface (GUI), console applications are easier to write and a
good place for the beginning programmer to start.

The Game Over program is pretty simple; in fact, it's about the
simplest Python program you can write. That is the reason it is
presented in this chapter. By completing such a modest program,
you cover all the setup work required to start programming in
Python, such as installing the language on your system. You also
work through the entire process of writing, saving, and running a
program. Once you finish all of this groundwork, you'll be ready to
tackle larger programs with some real meat to them.

IN THE REAL WORLD

The Game Over program is really just a variation of the traditional
Hello World program, which displays the words "Hello World" on
the screen. The Hello World program is often the first program a

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig30_01_0.jpg

beginning programmer writes in order to dip his or her toe in a
new language. It's such a common first program that Hello World
is an understood term in the programming world.

Introducing Python
Python is a powerful yet easy to use programming language
developed by Guido van Rossum, first released over a decade ago
in 1991. With Python, you can quickly write a small project. But
Python also scales up nicely and can be used for mission-critical,
commercial applications.

HINT If you check out any Python documentation, you may
notice an alarming number of references to spam, eggs,
and the number 42. These references all pay homage to
Monty Python, the English comedy troupe that inspired
Python's name. Even though Guido van Rossum named
Python after the group, the official mascot of the language
has become a cute, little, green snake. (Which is really for
the best, since it would be pretty hard to fit six British
comedians' faces on a program icon anyway.)

There are a lot of programming languages out there. What's so great
about Python? Let me tell you.

Python Is Easy to Use

The major goal of any programming language is to bridge the gap
between the programmer's brain and the computer. Most of the
popular languages you've probably heard of, like C, C++, C#, and
Java, are considered high-level languages, which means that they're
closer to human language than machine language. And they are. But
Python, with its clear and simple rules, is even closer to English than
any of these. Creating Python programming is so straightforward that
it's been called "programming at the speed of thought."

Python's ease of use translates into productivity for professional
programmers. Python programs are shorter and take less time to
create than programs in many other popular languages. In fact,
Python programs are typically 3 to 5 times shorter than equivalent

Java programs, and often 5 to 10 times shorter than equivalent C++
programs. There's even some evidence to suggest that a single
Python programmer can finish in two months what takes two C++
programmers more than a year to complete.

Python Is Powerful

Python has all the power you'd expect from a modern programming
language. By the end of this book, you'll be able to write programs
that employ a GUI, process files, and incorporate multimedia
elements like graphics, sound, and animation.

Python is powerful enough to attract hundreds of thousands of
programmers from around the world as well as companies such as
Google, Hewlett-Packard, IBM, Industrial Light + Magic, Microsoft,
NASA, Red Hat, Verizon, Xerox, and Yahoo!. Python is also used as
a tool by professional game programmers. Activision, Electronic Arts,
and Infogrames all publish games that incorporate Python.

Python Is Object-Oriented

If you know anything about programming, you've probably heard the
term object-oriented programming, or OOP for short. It's certainly a
hot topic, and OOP are three letters every programmer wants on
their resume. OOP is basically a shift in the way programmers think
about solving problems with computers. It embodies an intuitive way
of representing information and actions in a program. It's not the only
way to write programs, but for most large projects, it's the way to go.

Languages like C#, Java, and Python are all object-oriented. But
Python does them one better. In C# and Java, OOP is not optional.
This makes short programs unnecessarily complex, and it requires a
bunch of explanation before a new programmer can do anything
significant. Python takes a different approach. In Python, using OOP
techniques is optional. You have all of OOP's power at your disposal,
but you can use it when you need it. Got a short program that

doesn't really require OOP? No problem. Got a large project with a
team of programmers that demands OOP? That'll work too. Python
gives you power and flexibility.

Python Is a "Glue" Language

Python can be integrated with other languages such as C, C++, and
Java. This means that a programmer can take advantage of work
already done in another language while using Python. It also means
that he or she can leverage the strengths of other languages, such
as the extra speed that C or C++ can offer, while still enjoying the
ease of development that's a hallmark of Python programming.

Python Runs Everywhere

Python runs on everything from a Palm to a Cray. And if you don't
happen to have a supercomputer in the den, you can still run Python
on Windows, DOS, Macintosh®, or Linux machines. And that's just
the top of the list. Python can run on practically every operating
system in existence.

Python programs are platform independent, which means that
regardless of the operating system you use to create your program,
it'll run on any other computer with Python. So if you write a game on
your PC, you can e-mail a copy to your friend who runs Linux or to
your aunt who has a Mac, and the program will work (as long as your
friend and Aunt have Python on their computers).

Python Has a Strong Community

A lot of people use Python, and the community is growing all the
time. In fact, the traffic at the comp.lang.python newsgroup,
where all kinds of people come together to discuss Python, doubles
almost every two years.

Now, most programming languages have a dedicated newsgroup.
But Python also has something called the Python Tutor mailing list, a
more informal way for beginning programmers to ask those first
questions. The list is at
http://mail.python.org/mailman/listinfo/tutor.
Although the list is called Tutor, anyone, whether novice or expert,
can answer questions.

There are other Python communities focused on different areas, but
the common element they share is that they tend to be friendly and
open. That only makes sense since the language itself is so
approachable for beginners.

Python Is Free and Open Source

Python is free. You can install it on your computer and never pay a
penny. But Python's license lets you do much more than that. You
can copy or modify Python. You can even resell Python if you want
(but don't quit your day job just yet). Embracing open-source ideals
like this is part of what makes Python so popular and successful.

http://mail.python.org/mailman/listinfo/tutor

Setting Up Python on Windows
Before you can jump in and write your first Python program, you
need to get the language on your computer. But don't worry, because
everything required to install Python on Windows 95/98/Me/XP/2000
is on the CD-ROM that is included with this book.

Installing Python on Windows

Okay, go grab the CD-ROM and follow these steps:
1. Insert the CD-ROM into your computer. The CD-ROM

comes with a bunch of goodies, but first and foremost, it
has Python on it.

2. Run the Python Windows Installer. You can find the Python
Windows installer, Python-2.2.3.exe, on the CD-ROM,
under the Software section. Click on the Install Python
2.2.3 from this CD-ROM link to copy the file to your
computer. Then, go ahead and run it. It's a standard
installer and works like any other program installation
you've done before. Figure 1.2 shows it in action.

Figure 1.2: Your computer is soon to be home to

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig34_01_0.jpg

Python.

3. Accept the default configuration. Once you're done, you
have Python on your computer. Specifically, you have
version 2.2.3 in the C:\Python22 folder.

HINT If you're the kind of person who always has to have the
latest and greatest, you can visit the official Python Web
site and download the most recent release. Go to
http://www.python.org. Under Special Topics, click
the link of the latest release that doesn't say "alpha" next
to it. That'll take you to the download section for that
release. Download the Windows installer. Then follow the
preceding installation directions.

http://www.python.org/

Setting Up Python on Other Operating
Systems
Python runs on literally dozens of other operating systems. If you're
running something other than Windows, you'll need to visit the official
Python Web site at http://www.python.org, shown in Figure
1.3.

Figure 1.3: Visit Python's home page to download the latest
version of Python and read loads of information about the
language.

HINT If Linux is your operating system, you may already have
Python on your computer. To check, try running python
from the command prompt. If that doesn't work, then you'll
have to install Python like everybody else.

Under Special Topics, click the link of the latest Python release that
doesn't say "alpha" next to it. That'll take you to the download
section for that release. Follow the links for your particular operating
system.

HINT If you own a Mac, then even after visiting Python's official
home, you owe it to yourself to check out Jack's

http://www.python.org/
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig35_01_0.jpg

MacPython page at
http://www.cwi.nl/~jack/macpython.html. Jack
Jansen, the guy who runs this page, maintains Python for
the Mac and has a lot of excellent information on how to
install Python under the different versions of Mac OS.

http://www.cwi.nl/~jack/macpython.html

Introducing the Python IDLE
Python comes with a GUI-integrated development environment
called IDLE. A development environment is a set of tools that makes
writing programs easier. You can think of it as a word processor for
your programs. But it's even more than a place to write, save, and
edit your work. IDLE provides two modes in which to work: an
interactive mode and a script mode.

HINT MacPython has its own integrated development
environment called IDE. It works a little differently than
IDLE, but allows you to do the same basic things.

Programming in Interactive Mode

Finally, it's time to get your hands dirty with some actual Python
programming. The quickest way is to start Python in interactive
mode. In this mode, you can tell Python what to do and it'll do it
immediately.

Writing Your First Program

To begin your interactive session, from the Start menu, choose
Programs, Python 2.2, IDLE (Python GUI). You should see
something very similar to Figure 1.4 on your screen.

Figure 1.4: Python in an interactive session, awaiting your
command.

TRAP If you have an trouble running IDLE, you may need to
modify your Windows System Path—a list of the
directories where your computer looks to find program
files. You'll want to add the following to the end of your
current Path: ;c:\Python22;c:\Program
Files\Tcl;c:\Program Files\Tcl\bin. The
process of modifying your Path is different for each
version of Windows, so check your Windows Help
documentation for Environment Variable (since the Path
is one of your Environment Variables).

This window, also called the Python Shell, may look a little different
from the screen shot in Figure 1.4. At the command prompt (>>>),
type: print "Game Over". The interpreter responds by displaying
Game Over

on the screen. Ta da! You've written your first Python program!
You're a real programmer (with a little more to learn, but that goes for
all of us).

Using the print Statement

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig36_01_0.jpg

Take a look again at the line you entered, print "Game Over".
Notice how straight-forward it is. Without knowing anything about
programming, you could have probably guessed what it does. That's
Python in a nutshell. It's concise and clear. You'll appreciate this
even more as you learn how to do more complex things.

The print statement displays whatever text you type between the
pair of quotes. You can also use it by itself to print a blank line.

Learning the Jargon

Okay, time to learn some jargon. Now that you're a programmer, you
have to throw around those fancy terms that only programmers
understand. The line you entered in the interpreter is considered a
statement. In English, a statement is a complete thought. In Python,
a statement is a complete instruction. It does something. So, print
"Game Over" is a statement.

The statement you entered is made up of two parts. The first part,
print, is a command. It's like a verb. It tells the computer to take an
action. In this case, it tells the computer to display text on the screen.
Python is case-sensitive and commands are in lowercase. So,
print "Game Over" will work, but Print "Game Over" and
PRINT "Game Over" won't.

The second part of the statement, "Game Over", is an expression.
It doesn't do something. It is something. A good way to think about it
is that an expression has a value, like the letters in the phrase
"Game Over", or even the number 17. An expression can also
evalute to some value. For example, 2 + 5 is an expression that
evalutes to 7.

In this particular case, you can be even more specific by saying that
"Game Over" is a string expression. This just means that it's a
series of characters, like the ones on your keyboard. "String" may
seem like an odd name—"text" or "words" might be more clear—but

the name comes from the idea that text is a string or a series of
characters. (Not only do you know jargon, but you have some trivia
under your belt now too.)

Now that you're a programmer, you can tell someone that you wrote
some Python code. Code means programming statements. You can
use it as a verb, too; you can say that you were up all night eating
Doritos, drinking Jolt Cola, and coding like crazy.

Generating an Error

Computer's take everything literally. If you misspell a command by
even just one letter, the computer will have absolutely no idea what
you mean. For example, at the interactive prompt I typed primt
"Game Over". The interpret responded with
SyntaxError: invalid syntax

Translated to English, the interpreter is saying "Huh?!" It doesn't
understand primt. As a human being, you can ignore my typo and
know what I meant. Computers are not so forgiving. This error in my
statement, called a bug in a program, gets me an error message and
nothing else printed on the screen. Specifically, this is a syntax error,
meaning the computer doesn't recognize something. Syntax errors
are usually just caused by a typo and are an easy fix.

Understanding Color Coding

You probably noticed that words on the screen are printed in different
colors. This color coding helps you quickly understand what you've
typed by visually categorizing it. And there is a method to this
coloring madness. Special words, like print, are displayed in
orange. Strings, like "Game Over", are in green. And the output of
your statements—what the interpreter prints as a result of what you
type—is in blue. As your write larger programs, this color scheme will
come in really handy. It will help you take in your code in one glance.

Programming in Script Mode

Using the interactive mode gives you immediate feedback. This is
great because you can see the results of a statement right away. But
it's not designed to create programs you can save and run later.
Luckily, Python's IDLE also offers a script mode, in which you can
write, edit, load, and save your programs. It's like a word processor
for your code. In fact, you can perform such familiar tasks as find
and replace, and cut and paste.

Writing Your First Program (Again)

You can open a script mode window from the interactive window
you've been using. Select the File menu, then New Window. A new
window will appear that looks just like the one in Figure 1.5.

Figure 1.5: Your blank canvas awaits. Python is ready for you to
write a program in script mode.

Now type print "Game Over" and press Enter. Nothing happens!
That's because you're in script mode. What you're doing is writing a
list of statements for the computer to execute later. Once you save
your program, you can run it.

Saving and Running Your Program

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig39_01_0.jpg

To save your program, select File, Save As. I gave my copy the
name game_over.py. To make it easy to get to later, I saved it
on my desktop.

To run my Game Over program, I simply select Edit, Run Script.
("Script," by the way, is just another name for a program.) Then, the
interactive window becomes my active window and displays the
results of my program. Take a look at my desktop in Figure 1.6.

Figure 1.6: The results of running the Game Over program
through IDLE.

You'll notice that the interactive window contains the old text from
before. It still has the statement I entered while in interactive mode,
print "Game Over", and the results, the message Game Over.
Below all of that, you'll see the results of running the program from
script mode: the message Game Over.

TRAP To run your program from IDLE like I just did, you need to
first save your program. If you don't, IDLE will give you a
Not Saved dialog box.

TRICK Interactive mode is great for trying out a small idea
quickly. Script mode is perfect for writing programs you

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig40_01_0.jpg

can run later. Using both modes together is a great way
to code.

Even though I need only script mode to write a program,
I always keep an interactive window open while I code.
As I write my programs in script mode, I jump over to the
interactive window to try out an idea or to be sure I have
the usage of a command just right.

The script window is where I craft my final product. The
interactive window is like a scratch pad where I can think
and experiment. Using them together helps me to write
better programs more quickly.

Back to the Game Over Program
So far, you've run a version of the Game Over program through
IDLE. While you're in the process of writing a program, running it
through IDLE is a fine way to go. But I'm sure you want your finished
products to work like any other program on your computer. You want
a user to simply double-click your program's icon to launch your
program.

If you were to try to run the version of the Game Over program I've
shown so far in this way, you'd see a window appear and, just as
quickly, disappear. You'd probably think that nothing happened. But
something would have happened. It just would have happened too
fast for you to notice. The program would run, Game Over would be
displayed, and the program would end, all in a split second. What the
program needs is a way to keep its console window open.

This updated version of Game Over, the final chapter project, keeps
the program window open so the user can see the message. After
displaying Game Over, the program also displays the message
Press the enter key to exit. Once a user presses the
Enter key, the program exits, and the console window disappears.

I'll walk you through the code one section at a time. But I
recommend that you load the program from the CD-ROM and take a
look at it. Better yet, type in the program yourself and run it.

Using Comments

The following are the first three lines of the program:
Game Over
Demonstrates the print command
Michael Dawson - 12/26/02

These lines aren't statements for the computer to execute. In fact,
the computer totally ignores them. These notes, called comments,

are for the humans. Comments explain programming code in English
(or any other language for that matter). Comments are invaluable to
other programmers and help them to understand your code. But
comments are also helpful to you. They remind you of how you
accomplished something that may not be clear at first glance.

You create a comment with the number sign symbol, #. Anything
after this symbol (except in a string) on the rest of the line is a
comment. Comments are ignored by the computer. Notice that
comments are colored red in IDLE to make them stand out.

It's a good idea to start all of your programs with a few comments,
like I did here. It's helpful to list the title of the program, its purpose,
the programmer, and the date the program was written.

You may be thinking: "Why have comments at all? I wrote the
program, so I know what it does." That may be true a month after
you write your code, but experienced programmers know that after a
few months away from a program, your original intentions may not
be as clear. If you want to modify an old program, a few well-placed
comments may make your life much easier.

IN THE REAL WORLD

Comments are even more helpful to another programmer who
needs to modify a program you wrote. This kind of situation
comes up a lot in the world of professional programming. In fact,
it's estimated that 80 percent of a programmer's time and effort go
toward maintaining code that already exists. It's not uncommon for
a programmer to be charged with the task of modifying a program
written by someone else—and there's a chance that the original
programmer won't be around to answer any questions. So, good
comments are critical.

Using Blank Lines

Technically, the next line in the program is blank. The computer
generally ignores blank lines; these, too, are just for the humans
reading the code. Blank lines can make programs easier to read.
Usually, I keep lines of related code together and separate sections
with a blank line. In this program, I separated the comments from the
print statement with a blank line.

Printing the String

The next line in the program should seem familiar to you:
print "Game Over"

It's your old friend, the print statement. This line, just as it does in
interactive mode, prints Game Over.

Waiting for the User

The last line of the program:
raw_input("\n\nPress the enter key to exit.")

displays the prompt, Press the enter key to exit. and waits
for the user to press the Enter key. Once the user presses the key,
the program ends. This is a nice trick to keep a console window
open until the user is done with an application.

Normally, this is about the time I'd explain just what is going on in
this line. But I'm going to keep you in suspense. Sorry. You'll have to
wait until the next chapter to fully appreciate this one line.

Summary
You covered a lot of ground in this chapter. You learned a bit about
Python and its strengths. You installed the language on your
computer and gave it a little test drive. You learned to use Python's
interactive mode to instantly execute a programming statement. You
saw how to use the script mode to write, edit, save, and run longer
programs. You learned how to print text to the screen and how to
wait for the user before closing a program's console window. You laid
all the ground-work necessary for your adventure in Python
programming.

Challenges
1. Create a syntax error of your very own by entering your

favorite ice cream flavor in interactive mode. Then, make
up for your misdeed and enter a statement that prints the
name of your favorite ice cream.

2. Write and save a program that prints out your name and
waits for the user to press the Enter key before the
program ends. Then, run the program by double-clicking its
icon.

3. Write a program that prints your favorite quote. It should
give credit to the person who said it, on the next line (hint:
use two different print statements).

Chapter 2: Types, Variables, and Simple I/O:
The Useless Trivia Program

 Download CD Content

Overview
Now that you've been introduced to the basics of saving and
executing a program, it's time to dig in and create some more. In this
chapter, you'll learn about different ways computers can categorize
and store data and, more importantly, how to use this data in your
programs. You'll even see how to get information from the user so
that your programs become interactive. Specifically, you'll learn how
to do the following:

Use triple-quoted strings and escape sequences to gain
more control over text

Make your programs do math

Store data in the computer's memory

Use variables to access and manipulate that data

Get input from users to create interactive programs

Introducing the Useless Trivia Program
Combining the skills presented in this chapter, you'll create the
Useless Trivia program shown in Figure 2.1.

Figure 2.1: Whoa! Steve might think about a diet before he visits
the sun.

The program takes three pieces of personal information from the
user: name, age, and weight. From these mundane items, the
program is able to produce some amusing but trivial facts about the
person, such as how old the person is in dog years and how much
the person would weigh on the moon.

Though this may seem like a simple program (and it is), you'll find
that the program is more interesting when you run it because you've
had input. You'll care more about the results because they're
personally tailored to you. This holds true for all programs, from
games to business applications.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig46_01_0.jpg

Using Quotes with Strings
You saw an example of a string, "Game Over", in the previous
chapter. But strings can become much longer and more complex.
You may want to give a user several paragraphs of instructions. Or
you might want to format your text in a very specific manner. Using
quotes can help you to create strings to accomplish all of this.

Introducing the Game Over 2.0 Program

Game Over 2.0 improves upon its predecessor program, Game
Over, by displaying a more impressive version of the same message,
which tells a player that his or her computer game has come to an
end. Using single and double quotes, the result is more visually
appealing. Check out Figure 2.2 to see a sample run.

Figure 2.2: Now I get it, the game is over.

The code for the program shows that it's pretty simple to present text
using quotes in different ways:
Game Over - Version 2
Demonstrates the use of quotes in strings
Michael Dawson - 1/9/03

print "Program 'Game Over' 2.0"

print \
"""

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig47_01_0.jpg

"""

raw_input("\n\nPress the enter key to exit.")

Using Quotes Inside Strings

You've seen how to create simple strings by surrounding text with
quotes. You can use either a pair of single (' ') or double quotes ("
") to create string values. The computer doesn't care. So, 'Game
Over' is exactly the same string as "Game Over". But take a look
at the first appearance of a string in the program:
print "Program 'Game Over' 2.0"

This statement uses both kinds of quotes. Check out the sample run
in Figure 2.2 again. Only the single quotes show up, because they
are part of the string, just like, for example, the letter G. But the
double quotes are not part of the string. The double quotes are like
bookends, telling the computer where the string begins and ends.
So, if you use a pair of double quotes to "bookend" your string, you

can use as many single quotes inside the string as you want. And, if
you surround your string with a pair of single quotes, you can use as
many double quotes inside the string as you like.

Once you've used one kind of quote as bookends for your string, you
can't use that type of quote inside your string. This make sense,
because once the computer sees the second appearance of the
quote that began the string, it thinks the string is over. For example,
"With the words, 'Houston, we have a problem.',
Jim Lovell became one of our most famous
astronauts." is a valid string. But, "With the words,
"Houston, we have a problem.", Jim Lovell became one of our most
famous astronauts." isn't valid, because once the computer sees the
second double quote, it thinks the string is over. So, the computer
sees the string "With the words," followed by the word,
Houston. And since the computer has no idea what Houston is, you
get a nasty syntax error.

Continuing a Statement on the Next Line

The next line of code, print \, looks awfully lonely. And it should.
It's not a complete statement. Generally, you write one statement per
line. But you don't have to. You can stretch a single statement across
multiple lines. All you have to do is use the line-continuation
character, \ (which is just a backslash). Put it anywhere you'd
normally use a space (but not inside a string) to continue your
statement on the next line. The computer will act as if it sees one
long line of code.

HINT The computer doesn't care how long a programming line
is, but people do. If a line of your code feels too long, or
would be more clear as several lines, use the line-
continuation character to split it up.

Creating Triple-Quoted Strings

Certainly the coolest part of the program is where it prints out "Game
Over" in a big block of text. The following string is responsible:
"""

"""

This is what's called a triple-quoted string. It's a string enclosed by a
pair of three quotes in a row. Like before, it doesn't matter which kind
of quotes you use, as long as you bookend with the same type.

As you can see, triple-quoted strings can span multiple lines. They
print on the screen exactly the way you type them. If you ever need
to print more than a few lines of text, triple-quoted strings are the
way to go.

IN THE REAL WORLD

If you like the letters made from multiple characters in Game Over
2.0, then you'll really like ASCII Art. ASCII Art is basically pictures
made from just the characters on your keyboard. ASCII, by the

way, stands for the American Standard Code for Information
Interchange. It's a code that represents 128 standard characters.

Through ASCII art, you can make simple messages (like I did) or
create elaborate pictures (which I can't), all with just the
characters on your keyboard. You'd be amazed at some of the
things true ASCII artists can do. For some great examples of this
art form, check out http://www.chris.com/ascii/.

By the way, this kind of art isn't new, and it didn't start with the
computer. The first recorded typewriter art dates back to 1898.

Using Escape Sequences with Strings
Escape sequences allow you to put special characters into your
strings. These give you greater control and flexibility over the text
you display. The escape sequences you'll work with are made up of
two characters: a backslash followed by another character. This may
all sound a little mysterious, but once you see a few sequences in
action, you'll realize just how easy they are to use.

Introducing the Fancy Credits Program

Besides telling a player that the game is over, a program often
displays credits, a list of all the people who worked so hard to make
it a reality. Fancy Credits uses escape sequences to achieve some
effects it just couldn't without them. Figure 2.3 shows the results.

Figure 2.3: Please, contain your applause.

The code looks a bit cryptic at first glance:
Fancy Credits
Demonstrates escape sequences
Michael Dawson 1/11/03

sound the system bell
print "\a"

print "\t\t\tFancy Credits"

print "\t\t\t \\ \\ \\ \\ \\ \\ \\"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig50_01_0.jpg

print "\t\t\t\tby"
print "\t\t\tMichael Dawson"
print "\t\t\t \\ \\ \\ \\ \\ \\ \\"
print "\nSpecial thanks goes out to:"
print "My hair stylist, Henry \'The Great\', who
never says \"can\'t\"."

raw_input("\n\nPress the enter key to exit.")

But you'll soon understand it all.

Sounding the System Bell

Upon running this program, you'll notice something different right
away. It makes noise! The very first statement in the program,
print "\a"

sounds the system bell of your computer. It does this through the
escape sequence, \a, which represents the system bell character.
Every time you print it, the bell rings. You can print a string with just
this sequence, as I have, or you can put it inside a longer string. You
can even use the sequence several times to ring the bell more than
once.

Moving Forward a Tab Stop

Sometimes you'll want to set some text off from the left margin where
it normally prints. In a word processor, you could use the Tab key.
With strings, you can use the escape sequence for a tab, \t. That's
exactly what I did in the following line:
print "\t\t\tFancy Credits"

I used the tab escape sequence, \t, three times in a row. So, when
the program prints the string, it prints three tabs and then Fancy
Credits. This makes Fancy Credits, look nearly centered in the

console window. Tab sequences are good for setting off text, as in
this program, but they're also perfect for arranging text into columns.

Printing a Backslash

If you've thought ahead, you may be wondering how you can print a
backslash if the computer always interprets a backslash as the
beginning of an escape sequence. Well, the solution is pretty simple:
just use two backslashes in a row. Each of the following two lines
prints three tabs, as a result of the three \t sequences:
print "\t\t\t \\ \\ \\ \\ \\ \\ \\"

print "\t\t\t \\ \\ \\ \\ \\ \\ \\"

Then, each prints exactly eight backslashes, separated by spaces.
Go ahead and count. You'll find exactly eight pairs of backslashes,
separated by spaces.

Inserting a Newline

The most useful sequence at your disposal is the newline sequence.
It's represented by \n. By using this sequence, you can insert a
newline character into your strings for a blank line where you need it.
Newlines are often used right at the beginning of a string to separate
it from the text last printed. That's what I did in the line:
print "\nSpecial thanks goes out to:"

The computer sees the \n sequence, prints a blank line, then prints
Special thanks goes out to:. This single statement is
equivalent to the following two statements:
print
print "Special thanks goes out to:"

Inserting a Quote

Inserting a quote into a string, even the type of quote you use to
bookend it, is simple. Just use the sequence \' for a single quote
and \" for a double quote. They mean "put a quote here", and won't
be mistaken by the computer as a marker for the end of your string.
This is what I used to get both kinds of quotes in one line of text:
print "My hair stylist, Henry \'The Great\', who
never says \"can\'t\"."

The pair of double quotes at both ends are the bookends, defining
the string. To make the string easier to understand, look at it in parts:

\'The Great\' prints as 'The Great'

Each \' sequence is printed as a single quote

\"can\'t\" prints as "can't"

Both \" sequences print as double quotes

The lone \' sequence prints as a single quote

As you can see, escape sequences aren't so bad once you've seen
them in action. And they can come in quite handy. Table 2.1
summarizes some useful ones.

Table 2.1: SELECTED ESCAPE SEQUENCES

Sequence Description
\\ Backslash. Prints one backslash.
\' Single quote. Prints a single quote.
\" Double quote. Prints a double quote.
\a Bell. Sounds the system bell.
\b Backspace. Moves cursor back one space.
\n Newline. Moves cursor to beginning of next line.

Sequence Description

\t Horizontal tab. Moves cursor forward one tab stop.

TRAP A few escape sequences only work as advertised if you
run your program directly from the operating system and
not through IDLE. The escape sequences \a and \b are
good examples. Let's say I have a program that simply
prints the escape sequence \a. If I run it through IDLE, I
get a little square box printed on my screen—not what I
wanted. But if I run that same program directly from
Windows, by double-clicking the program file icon, my
computer's system bell rings just as I intended.

Concatenating and Repeating Strings
You've seen how you can insert special characters into a string, but
there are things you can do with entire strings themselves. You can
combine two separate strings into a larger one. And you can even
repeat a single string as many times as you want.

Introducing the Silly Strings Program

The Silly Strings program prints several strings to the screen. The
results are shown in Figure 2.4.

Figure 2.4: The strings on the screen appear differently than in
the program code.

Though you've already seen strings printed, the way these strings
were created is brand-new to you. Take a look at the code:
Silly Strings
Demonstrates string concatenation and repetition
Michael Dawson - 1/11/03

print "You can concatenate two " + "strings with
the '+' operator."

print "\nThis string " + "may not " + "seem terr"
+ "ibly impressive. " \
 + "But what " + "you don't know," + " is
that " + "it's one real" \
 + "l" + "y" + " long string, created from

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig54_01_0.jpg

the concatenation " \
 + "of " + "thirty-two " + "different
strings, broken across " \
 + "nine lines." + " Now are you" + "
impressed?\n\n" + "See, " \
 + "even newlines can be embedded into a
single string, making" \
 + " it look " + "as " + "if " + "it" + "'s "
+ "got " + "to " \
 + "be" + " multiple strings." + " Okay, now
this " + "one " \
 + "long" + " string " + "is over!"

print \
"""
If you really like a string, you can repeat it.
For example, who doesn't
like pie? That's right, nobody. But if you really
like it, you should
say it like you mean it:""",

print "Pie" * 10

print "\nNow that's good eating."

raw_input("\n\nPress the enter key to exit.")

Concatenating Strings

Concatenating strings means joining them together, to create a
whole new string. A simple example is in the first print statement:
print "You can concatenate two " + "strings with
the '+' operator."

The + operator joins the two strings, "You can concatenate
two " and "strings with the '+' operator.", together to
form a new, larger string. It's pretty intuitive. It's like adding the
strings together using the same symbol you've always used for
adding numbers.

TRAP When you join two strings, their exact values are fused
together, with no space or separator character inserted
between them. So, if you were to join the two strings
"cup" and "cake", you'd end up with "cupcake" and
not "cup cake". In most cases, you'll want to insert a
space between strings you join, so don't forget to put one
in.

The next print statement shows that you can concatenate 'till your
heart's content:
print "\nThis string " + "may not " + "seem terr"
+ "ibly impressive. " \
 + "But what " + "you don't know," + " is
that " + "it's one real" \
 + "l" + "y" + " long string, created from
the concatenation " \
 + "of " + "thirty-two " + "different
strings, broken across " \
 + "nine lines." + " Now are you" + "
impressed?\n\n" + "See, " \
 + "even newlines can be embedded into a
single string, making" \
 + " it look " + "as " + "if " + "it" + "'s "
+ "got " + "to " \
 + "be" + " multiple strings." + " Okay, now
this " + "one " \
 + "long" + " string " + "is over!"

The computer prints one long string that was created by the
concatenation of 32 individual strings. One thing you may notice is

that the string doesn't correctly wrap in the console window. So be
careful when you create super-long strings.

Suppressing a Newline

You've seen how you can add extra newlines with the \n escape
sequence. But you can also suppress a newline so that the text of
two consecutive print statements appears on the same line. All
you have to do is add a comma to the end of a print statement,
like so:
print \
"""
If you really like a string, you can repeat it.
For example, who doesn't
like pie? That's right, nobody. But if you really
like it, you should
say it like you mean it:""",

By adding the comma at the end of this triple-quoted string, the next
text printed will appear on the same line as say it like you
mean it:.

Repeating Strings

The next new idea presented in the program is illustrated in the
following line:
print "Pie" * 10

This line creates a new string, "Pie Pie Pie Pie Pie Pie Pie
Pie Pie Pie", and prints it out. That's the string "Pie" repeated
10 times, by the way.

Like the concatenation operator, the repetition operator, *, is pretty
intuitive. It's the same symbol used for multiplying numbers on a
computer, so repeating a string with it makes sense. It's like you're

multiplying the string. You can repeat a string as many times as you
want. To repeat a string, just put the string and number of repetitions
together with the repetition operator, *.

Working with Numbers
So far, you've been using strings to represent text. That's just one
type of value. Computers let you represent information in other ways,
too. One of the most basic but most important ways is as numbers.
Numbers are used in almost every program. Whether you're writing
a space shooter game or home finance package, you need to
represent numbers some way. You've got high scores or checking
account balances to work with, after all. Fortunately, Python has
several different types of numbers to fit all of your game or
application programming needs.

Introducing the Word Problems Program

This next program uses those dreaded word problems. You know,
the kind that always seems to involve two trains leaving different
cities at the same time headed in opposite directions. . . bringing
back nightmares of junior high algebra as they're about to collide.
Well, fear not. You won't have to solve a single word problem, or
even do any math at all. I promise. The computer will do all the work.
All you have to do is press the Enter key. The Word Problems
program is just an amusing (hopefully) way to explore working with
numbers. Check out Figure 2.5 to see a sample run.

Figure 2.5: With Python, you can add, subtract, multiply, divide,
and keep track of a pregnant hippo's weight.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig57_01_0.jpg

The following is the source code for the program:
Word Problems
Demonstrates numbers and math
Michael Dawson 1/12/03

print \
"""
If a pregnant hippo, weighing 2,000 pounds, gives
birth to a 100 pound calf,
but then eats 50 pounds of food, how much does she
weigh?"""
raw_input("Press the enter key to find out.")
print "2000 - 100 + 50 = ",
print 2000 - 100 + 50

print \
"""
If an adventurer returns from a successful quest
and buys each of
6 companions 3 bottles of ale, how many bottles
does the adventurer buy?"""
raw_input("Press the enter key to find out.")
print "6 * 3 = ",
print 6 * 3

print \
"""
If a kid has 24 pieces of Halloween candy and eats
6 pieces a day,
how many days will the stash last?"""
raw_input("Press the enter key to find out.")
print "24 / 6 = ",
print 24 / 6

print \

"""
If a group of 4 pirates finds a chest full of 107
gold coins, and
they divide the booty evenly, how many coins will
be left over?"""
raw_input("Press the enter key to find out.")
print "107 % 4 = ",
print 107 % 4

print \
"""
If a restaurant check comes to 19 dollars with
tip, and you and
your friends split it evenly 4 ways, how much do
you each throw in?"""
raw_input("Press the enter key to find out.")
print "19 / 4 = ",
print 19 / 4
print "WRONG!"
raw_input("Press the enter key for the right
answer.")
print 19.0 / 4

raw_input("\n\nPress the enter key to exit.")

Understanding Numeric Types

The program Word Problems uses numbers. That's obvious. But
what may not be obvious is that it uses two different types of
numbers. Python allows programmers to use several different types
of numbers. The two types used in this program, and probably the
most common, are integers and floating-point numbers (or floats).
Integers are whole numbers—numbers with no fractional part. Or,
another way to think about them is that they can be written without a
decimal point. The numbers 1, 27, -100, and 0 are all examples of

integers. Floats are numbers with a decimal point, like 2.376, -99.1,
and 1.0.

You might be thinking, "Numbers are numbers. What's the big deal?"
But integers and floats can act a little differently under special
circumstances, as you'll see.

Using Mathematical Operators

With mathematical operators, you can turn your computer into an
expensive calculator. The operators should look pretty familiar. For
example, the following line
print 2000 - 100 + 50

subtracts 100 from 2000 and then adds 50 before printing the result
of 1950. Technically, it evaluates the expression 2000 – 100 +
50, which evaluates to 1950. An expression is just a sequence of
values, joined by operators, that can be simplified to another value.

The line
print 6 * 3

multiplies 6 by 3 and prints the result of 18.

The line
print 24 / 6

divides 24 by 6 and prints the result of 4.

Pretty standard stuff. But check out the next calculation:
print 107 % 4

Okay, using % as a mathematical operator is probably new to you.
Used here, the symbol % stands for modulus, which is just a fancy

way of saying, "give me the remainder." So 107 % 4 evaluates to
the remainder of 107 / 4, which is 3.

The next calculation might also make you scratch your head. The
following line produces a result of 4:
print 19 / 4

But if each person puts 4 dollars in, that's a total of only 16, not 19.
And that leaves the waitress short 3 bucks. What happened? Well,
when Python performs integer division (where all the numbers
involved are integers), the result is always an integer. So, any
fractional part is ignored. If you want floating-point division, or what
some people call true division, then at least one of your numbers
must be a floating-point number. The following line results in true
division:
print 19.0 / 4

This line prints the expected 4.75. Now you've done true division
and made your waitress happy.

IN THE REAL WORLD

Python is an evolving language. There's a highly open process for
discussing potential changes and improvements. In fact, there's a
list of every proposed enhancement at
http://www.python.org/peps/. One change that is
definitely on its way is the end of integer division. Starting in
Python 3.0, all division will be true division. So, beginning in that
release, 3 / 4 will be .75 and not 0.

Table 2.2 summarizes mathematical operators for integers, while
Table 2.3 summarizes mathematical operators for floating-point
numbers. Take a close look at the results of the division operator in
each table.

http://www.python.org/peps/

Table 2.2: MATHEMATICAL OPERATORS WITH INTEGERS

Operator Description Example Evaluates To
* Multiplication 7 * 3 21

/ Division 7 / 3 2

% Modulus 7 % 3 1

+ Addition 7 + 3 10

- Subtraction 7 - 3 4

Table 2.3: MATHEMATICAL OPERATORS WITH FLOATING-
POINT NUMBERS

Operator Description Example Evaluates To
* Multiplication 7.0 * 3.0 21.0

/ Division 7.0 / 3.0 2.3333333333333335

% Modulus 7.0 % 3.0 1.0

+ Addition 7.0 + 3.0 10.0

- Subtraction 7.0 - 3.0 4.0

TRAP Notice the division entry in Table 2.3. It says that 7.0
divided by 3.0 is 2.3333333333333335. While this is
pretty accurate, it's not exact. Computers tend to round
floating-point numbers. The results are fine for most
purposes. But you should be aware of this when using
floats.

Understanding Variables
Through variables, you can store and manipulate information, a
fundamental aspect of programming. Python lets you create
variables to organize and access this information.

Introducing the Greeter Program

Check out Figure 2.6 to see the results of the Greeter program.

Figure 2.6: A shout-out to all the Larry's of the
world.

From just a screen shot, the program looks like something you could
have already written. But within the code lurks the whole, new,
powerful concept of variables. Take a look:
Greeter
Demonstrates the use of a variable
Michael Dawson 1/13/03

name = "Larry"

print name

print "Hi, " + name

raw_input("\n\nPress the enter key to exit.")

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig61_01_0.jpg

Creating Variables

A variable provides a way to label and access information. Instead of
having to know exactly where in the computer's memory some
information is stored, you use a variable to get at it. It's kind of like
calling your friend on his cell phone. You don't have to know where in
the city your friend is to reach him. You just press a button and you
get him. But before you use a variable, you have to create it, as in
the following line:
name = "Larry"

This line is called an assignment statement. It creates a variable
called name and assigns it the value "Larry". In general,
assignment statements assign a value to a variable. If the variable
doesn't exist, like in the case of name, it's created, then assigned the
value.

Using Variables

Once a variable has been created, it refers to some value. The
convenience and power of variables is that they can be used just like
their values. So the line
print name

prints the string "Larry" just like the statement print "Larry"
does. And the line
print "Hi, " + name

concatenates the values "Hi," and "Larry" to create a new
string, "Hi, Larry.", and prints it out. The results are the same
as the results of print "Hi," + "Larry".

Naming Variables

Like the proud parent of your program, you pick the names of your
variables. For this program, I chose to call my variable name, but I
could just as easily have used person, guy, or alpha7345690876,
and the program would have run exactly the same. There are only a
few rules that you have to follow to create legal variable names.
Create an illegal one and Python will let you know about it with an
error. The following are the two most important rules:

1. A variable name can contain only numbers, letters, and
underscores.

2. A variable name can't start with a number.

In addition to the rules for creating legal variable names, the
following are some guidelines that more experienced programmers
follow for creating good variable names—because, once you've
programmed for a while, you know the chasm of difference that
exists between a legal variable name and a good one. (I'll give you
one guideline right now: Don't ever name a variable
alpha7345690876.)

Choose desccriptiv names. Variable names should be
clear enough so that another programmer could look at the
name and have a good idea what it represents. So, for
example, use score instead of s. (One exception to this rule
involves variables used for a brief period. Often,
programmers give those variables short names, like x. But
that's fine, because by using x, the programmer clearly
conveys the variable represents a quick holding place.)

Be consistent. There are different schools of thought about
how to write multiword variable names. Is it high_score or
highScore? I use the underscore style. But it's not
important which method you use, as long as you're
consistent.

Follow the traditions off the language. Some naming
conventions are just traditions. For example, in most
languages (Python included) variable names start with a
lowercase letter. Another tradition is to avoid using an
underscore as the first character of your variable names.
Names that begin with an underscore have special meaning
in Python.

Keep the length in check. This may seem to go against the
first guideline: Choose descriptive names. Isn't
checking_account_balance a great variable name?
Maybe not. Long variable names can lead to problems. They
can make statements hard to read. Plus, the longer the
variable name, the greater the chance of a typo. As a
guideline, try to keep your variable names under 15
characters.

TRICK Self-documenting code is written in such a way that it's
easy to understand what is happening in the program
independent of any comments. Choosing good variable
names is an excellent step toward this kind of code.

Getting User Input
After appreciating all that program Greeter has to offer, you may still
be thinking, "So what?" Yes, you could write a program that does
exactly what Greeter does without going to the trouble of creating
any fancy variables. But to do fundamentally important things,
including getting, storing, and manipulating user input, you need
variables. Check out the next program, which uses input to give a
personalized greeting.

Introducing the Personal Greeter Program

The Personal Greeter program adds a single, but very cool, element
to the Greeter program: user input. Instead of working with a
predefined value, the computer lets the user enter his or her name
and then uses it to say Hi. Figure 2.7 shows off the program.

Figure 2.7: Now, name is assigned a string based on whatever
the user enters, including "Rupert".

Getting user input isn't very hard. As a result, the code doesn't look
much different:
Personal Greeter
Demonstrates getting user input
Michael Dawson 1/13/03

name = raw_input("Hi. What's your name? ")

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig64_01_0.jpg

print name

print "Hi, " + name

raw_input("\n\nPress the enter key to exit.")

Using the raw_input() Function

The only line that's changed is the assignment statement:
name = raw_input("Hi. What's your name? ")

The left side of the statement is exactly the same as in the Greeter
program. name is created and a value is assigned to it, just like
before. But this time, the value isn't a string I supply. It's the string
value of whatever the user enters.

On the right side of the assignment statement is a call to the function
raw_input(). A function is like a mini-program that goes off and
does some specific task. The task of raw_input() is to get some
text from the user. Sometimes you give a function values to use. You
put these values, called arguments, between the parentheses. In this
case, the one argument passed to raw_input() is the string "Hi.
What's your name? ". As you can see from Figure 2.7,
raw_input() uses the string to prompt the user. raw_input()
waits for the user to enter something. Once the user presses the
Enter key, raw_input() returns whatever the user typed, as a
string. That's the string that name gets.

If you're still not totally clear on how this works, think of it this way:
using raw_input() is like ordering a pizza. The raw_input()
function is like a pizza parlor. You make a call to a pizza parlor to
place your order, and you make a call to the raw_input() function
to kick it into gear. When you call the pizza parlor, you provide
information, like "pepperoni". When you call the raw_input()
function, you pass it the argument, "Hi. What's your name?".

After you finish your call to the pizza parlor, the employees get a
pepperoni pizza to your door. And after you make your call to
raw_input(), the function returns whatever string the user
entered.

The rest of the Personal Greeter program works just like the Greeter
program. It makes no difference to the computer how name gets its
value. So the line
print name

prints the value of name. While the line
print "Hi, " + name

concatenates the "Hi," and the value of name, and prints this new
string out. At this point, you know enough to understand the last line
in all of these console programs. The goal of the last line is to wait
for the user to press the Enter key:
raw_input("\n\nPress the enter key to exit.")

It does exactly that through the raw_input() function. Since I don't
care what the user enters, so long as he or she presses the Enter
key, I don't assign the return value of raw_input() to a variable
like before. It may seem weird to get a value and do nothing with it,
but it's my option. If I don't assign the return value to a variable, the
computer just ignores it. So once the user presses the Enter key, the
program ends and the console window closes.

Using String Methods
Python has a rich set of tools for working with strings. One type of
these tools is string methods. String methods allow you to create
new strings from old ones. You can do everything from the simple,
such as create a string that's just an all-capital-letters version of the
original, to the complex, such as create a new string that's the result
of a series of intricate letter substitutions.

Introducing the Quotation Manipulation Program

According to Mark Twain, "The art of prophecy is very difficult,
especially with respect to the future." No one can accurately foretell
the future, but it's still amusing to read predictions that pundits have
made about technology. A good one is, "I think there is a world
market for maybe five computers." This was made by then IBM
chairman, Thomas Watson, in 1943. The Quotation Manipulation
program that I wrote prints this quote several ways using string
methods. (Fortunately, I was able to write this program because I
happen to own computer #3.) Take a look at the sample run in Figure
2.8.

Figure 2.8: This slightly low guess is printed several ways with
the help of string methods.

The following is the code for the program:
Quotation Manipulation
Demonstrates string methods
Michael Dawson 1/11/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig66_01_0.jpg

quote from IBM Chairman, Thomas Watson, in 1943
quote = "I think there is a world market for maybe
five computers."
print "Original quote:"
print quote

print "\nIn uppercase:"
print quote.upper()

print "\nIn lowercase:"
print quote.lower()

print "\nAs a title:"
print quote.title()

print "\nWith a minor replacement:"
print quote.replace("five", "millions of")

print "\nOriginal quote is still:"
print quote

raw_input("\n\nPress the enter key to exit.")

Creating New Strings with String Methods

Though there's a new concept at work here, the code is still pretty
understandable. Take a look at the line:
print quote.upper()

You can probably guess what it does: print a version of quote in all
uppercase letters.

The line does this through the use of a string method, upper(). A
string method is like an ability a string has. So, quote has the ability

to create a new string, a capitalized version of itself, through its
upper() method. When it does this, it returns this new string, and
the line becomes equivalent to the following line:
print "I THINK THERE IS A WORLD MARKET FOR MAYBE
FIVE COMPUTERS."

Now, the line of code is never like this, but you can think of it in this
way to help you understand how the method works.

You've probably noticed the parentheses in this method call. It
should remind you of functions, which you just learned about in this
chapter. Methods are similar to functions. The main difference is that
a built-in function, like raw_input(), can be called on its own. But
a string method has to be called through a particular string. It makes
no sense to just type the following:
print upper()

You kick off a method, or invokeit, by adding a dot, followed by the
name of the method, followed by a pair of parentheses, after a string
value. The parentheses aren't just for show. Just as with functions,
you can pass arguments inside them. upper() doesn't take any
arguments, but you'll see an example of a string method that does
with replace().

The line
print quote.lower()

invokes the lower() method of quote to create an all-lowercase-
letters version, which it returns. Then, that new, lowercase string is
printed.

The line
print quote.title()

prints a version of quote that's like a title. The title() method
returns a string where the first letter of each word is capitalized and
the rest of the string is in lowercase.

The line
print quote.replace("five", "millions of")

prints a new string, where every occurrence of "five" in quote are
replaced with "millions of".

The method replace() needs at least two pieces of information:
the old text to be replaced, and the new text that replaces it. You
separate the two arguments with a comma. You can add an optional
third argument, an integer, that tells the method the maximum
number of times to make the replacement.

Finally, the program prints quote again, with
print "\nOriginal quote is still:"
print quote

You can see from Figure 2.8 that quote hasn't changed. Remember,
string methods create a new string. They don't affect the original
one. Table 2.4 summarizes the string methods you've just seen,
along with a few others.

Table 2.4: USEFUL STRING METHODS

Method Description
upper() Returns the uppercase version of the string.
lower() Returns the lowercase version of the string.

swapcase()
Returns a new string where the case of each
letter is switched. Uppercase becomes
lowercase and lowercase becomes uppercase.

Method Description

capitalize() Returns a new string where the first letter is
capitalized and the rest are lowercase.

title()
Returns a new string where the first letter of
each word is capitalized and all others are
lowercase.

strip()
Returns a string where all the white space (tabs,
spaces, and newlines) at the beginning and end
is removed.

replace(old,
new [,max])

Returns a new string where occurrences of the
string old are replaced with the string new. The
optional max limits the number of replacements.

Using the Right Types
You've used three different types so far: strings, integers, and
floating-point numbers. It's important to know not only which data
types are available to you, but how to work with them. If you don't,
you might end up with programs that produce unintended results.

Introducing the Trust Fund Buddy-Bad Program

The idea for the next program was to create a tool for those souls
who play all day, living off a generous trust fund. The program is
supposed to calculate a grand total for monthly expenditures based
on user input. This grand total is meant to help those living beyond
any reasonable means stay within budget so they don't ever have to
think about getting a real job. But, as you may have guessed from
the program's title, Trust Fund Buddy-Bad doesn't work as the
programmer intended. Figure 2.9 shows a sample run.

Figure 2.9: The monthly total should be high, but not that high.
Something is wrong.

Alright, the program obviously isn't working correctly. It has a bug.
But not a bug that causes it to crash, like the syntax error you saw
last chapter. When a program produces unintended results but
doesn't crash, it has a logical error. Based on what you already
know, you might be able to figure out what's happening by looking at
the code. Here's the listing:
Trust Fund Buddy - Bad
Demonstrates a logical error

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig70_01_0.jpg

Michael Dawson - 1/14/03

print \
"""

 Trust Fund Buddy

Totals your monthly spending so that your trust
fund doesn't run out
(and you're forced to get a real job).

Please enter the requested, monthly costs. Since
you're rich, ignore pennies
and use only dollar amounts.

"""

car = raw_input("Lamborghini Tune-Ups: ")
rent = raw_input("Manhattan Apartment: ")
jet = raw_input("Private Jet Rental: ")
gifts = raw_input("Gifts: ")
food = raw_input("Dining Out: ")
staff = raw_input("Staff (butlers, chef, driver,
assistant): ")
guru = raw_input("Personal Guru and Coach: ")
games = raw_input("Computer Games: ")
total = car + rent + jet + gifts + food + staff +
guru + games

print "\nGrand Total: " + total

raw_input("\n\nPress the enter key to exit.")

It's okay if you don't see the problem right now. I'll give you one more
hint, though. Take a look at the output in Figure 2.9 again. Examine
the huge number that the program prints as the grand total. Then

look at all the numbers the user entered. Notice any connection?
Okay, whether you do or don't, read on.

Tracking Down Logical Errors

Logical errors can be the toughest bugs to fix. Since the program
doesn't crash, you don't get the benefit of an error message to offer
a clue. You have to observe the behavior of the program and
investigate the code.

In this case, the program's output tells the story. The huge number is
clearly not the sum of all the numbers the user entered. But, by
looking at the numbers, you can see that the grand total printed is a
concatenation of all the numbers. How did that happen? Well, if you
remember, the raw_input() function returns a string. So each
"number" the user enters is treated like a string. Which means that
each variable in the program has a string value associated with it.
So, the line
total = car + rent + jet + gifts + food + staff +
guru + games

is not adding numbers. It's concatenating strings!

IN THE REAL WORLD

The + symbol works with pairs of strings as well as pairs of
integers. Using the same operator for values of different types is
called operator overloading. Now, "overloading" may sound like a
bad thing, but actually it's a good thing. Doesn't it make sense that
strings are joined using the plus sign? You immediately
understand what it means. Implemented well, operator
overloading can make for clearer and more elegant code.

Now that you know the problem, how do you fix it? Somehow those
string values need to be converted to numbers. Then the program
will work as intended. If only there was some way to do this. Well, as
you may have guessed, there is.

Converting Values
The solution to the Trust Fund Buddy-Bad program is to convert the
string values returned by raw_input() to numeric ones. Since the
program works with whole dollar amounts, it makes sense to convert
each string to an integer before working with it.

Introducing the Trust Fund Buddy-Good Program

The Trust Fund Buddy-Good program fixes the logical bug in Trust
Fund Buddy-Bad. Take a look at the output of the new program in
Figure 2.10.

Figure 2.10: Ah, 61,300 dollars a month is much more
reasonable.

Now the program arrives at the correct total. Here's the code:
Trust Fund Buddy - Good
Demonstrates type conversion
Michael Dawson - 1/14/03

print \
"""

 Trust Fund Buddy

Totals your monthly spending so that your trust
fund doesn't run out

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig72_01_0.jpg

(and you're forced to get a real job).

Please enter the requested, monthly costs. Since
you're rich, ignore pennies
and use only dollar amounts.

"""

car = raw_input("Lamborghini Tune-Ups: ")
car = int(car)
rent = int(raw_input("Manhattan Apartment: "))
jet = int(raw_input("Private Jet Rental: "))
gifts = int(raw_input("Gifts: "))
food = int(raw_input("Dining Out: "))
staff = int(raw_input("Staff (butlers, chef,
driver, assistant): "))
guru = int(raw_input("Personal Guru and Coach: "))
games = int(raw_input("Computer Games: "))

total = car + rent + jet + gifts + food + staff +
guru + games

print "\nGrand Total: ", total

raw_input("\n\nPress the enter key to exit.")

Converting Strings to Integers

There are several functions that convert between types. The function
to convert a value to an integer is demonstrated in the following
lines:
car = raw_input("Lamborghini Tune-Ups: ")
car = int(car)

The first line is just like before. It gets input from the user as a string
and assigns that value to car. The second line does the conversion.
The function int() takes the string referenced by car and converts
it to an integer. Then, car gets this new integer value.

The next seven lines get and convert the remaining expenditure
categories:
rent = int(raw_input("Manhattan Apartment: "))
jet = int(raw_input("Private Jet Rental: "))
gifts = int(raw_input("Gifts: "))
food = int(raw_input("Dining Out: "))
staff = int(raw_input("Staff (butlers, chef,
driver, assistant): "))
guru = int(raw_input("Personal Guru and Coach: "))
games = int(raw_input("Computer Games: "))

Notice that the assignments are done in just one line now. That's
because the two function calls, raw_input() and int(), are
nested. Nesting function calls means putting one inside the other.
This is perfectly fine as long as the return values of the inner function
can be used by the outer function. Here, the return value of
raw_input() is a string, and a string is a perfectly acceptable type
for int() to convert.

In the assignment statement for rent, raw_input() goes out and
asks the user how much the rent was. The user enters some text,
and that is returned as a string. Then, the program calls the function
int() with that string. int() returns the integer the string
represented. Then, that integer is assigned to rent. The other six
assignment statements work the same way.

There are other functions that convert values to a specific type. Table
2.5 lists several.

Table 2.5: SELECTED TYPE CONVERSION FUNCTIONS

Function Description Example ReturnsFunction Description Example Returns

float(x) Returns a floating-point
value by converting x float("10.0") 10.0

int(x) Returns an integer value
by converting x int("10") 10

str(x) Returns a string value by
converting x str(10) '10'

Using Augmented Assignment Operators

Augmented assignment operatorsis a mouthful. But the concept is
simple. Let's say you want to know the yearly amount the user
spends on food. To calculate and assign the yearly amount, you
could use the line
food = food * 52

This line multiplies the value of food by 52 and then assigns the
result back to food. You could accomplish the same thing with this
following line:
food *= 52

*= is an augmented assignment operator. It also multiplies the value
of food by 52 and then assigns the result back to food, but it's
shorter than the first version. Since assigning a new value to a
variable based on its original value is something that happens a lot in
programming, these operators provide a nice shortcut to a common
task. There are other augmented assignment operators. Table 2.6
summarizes some useful ones.

Table 2.6: USEFUL AUGMENT ASSIGNMENT OPERATORS

Operator To Example Is Equivalent

Operator To Example Is Equivalent
*= x *= 5 x = x * 5

/= x /= 5 x = x / 2

%= x %= 5 x = x % 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

Printing Strings and Numbers Together

The next line of code
print "\nGrand Total: ", total

is only slightly different than the corresponding line in the Trust Fund
Buddy-Bad program:
print "\nGrand Total: " + total

But the difference is an important one. In the Trust Fund Buddy-Bad
program, the string "\nGrand Total: " and the value of total
are joined together by string concatenation through the + operator.
That's great because both are strings. However, in the Trust Fund
Buddy-Good program, the value of total is an integer. So string
concatenation won't work. Instead, the values are listed, separated
by a comma. In general, you can list values separated by commas in
a print statement to have them all print out together.

Back to the Useless Trivia Program
You now know everything you need to know to program the project
Useless Trivia from the beginning of the chapter. I'll present the
program a little differently than the others. Instead of listing the code
out in its entirety, I'll go over the program one section at a time.

Creating the Initial Comments

Although comments don't have any effect while the program runs,
they are an important part of every project. As always, I list the
program's purpose, my name, and the date I wrote the code:
Useless Trivia

Gets personal information from the user and then
prints true, but useless facts about him or her

Michael Dawson - 12/4/02

TRICK Experienced programmers also use the initial comments
area to describe any modifications they make to code
over time. This provides a great history of the program
right up front. This practice is especially helpful when
several programmers have their hands on the same
code.

Getting the User Input

Using the raw_input() function, the program gets the user's
name, age, and weight:
name = raw_input("Hi. What's your name? ")

age = raw_input("And how old are you? ")
age = int(age)

weight = raw_input("Okay, last question. How many
pounds do you weigh? ")
weight = int(weight)

Remember, raw_input() always returns a string. Since age and
weight will be treated as numbers, they must be converted. I broke
up this process into two lines for each variable. First, I assigned the
string from raw_input() to a variable. Then, I converted that string
to an integer and assigned it to the variable again. I could have done
both the assignments in one line, but I felt it's clearer this way.

Printing Lowercase and Uppercase Versions of name

The following lines print a version of name in uppercase and a
version in lowercase with the help of string methods:
print "\nIf poet ee cummings were to email you,
he'd address you as", name.lower()

ee_mad = name.upper()
print "But if ee were mad, he'd call you", ee_mad

In the uppercase version, I assigned the value to the variable
ee_mad before printing. As you can see from the lowercase version
before it, it's not necessary to use a variable. But I think it makes it
clearer.

ee cummings, by the way, was an experimental American poet who
didn't use uppercase letters. So, if he were alive and e-mailing you,
he'd probably use all lowercase letters in your name. But if he were
mad, he'd probably make an exception and "shout" via e-mail by
addressing you in uppercase.

Calculating dog_years

The user's age in dog years is calculated and printed out:
dog_years = age / 7
print _\nDid you know that you're just",
dog_years, "in dog years?"

It's a common belief that seven human years is equal to one dog
year. So, in the first line, I divide age by 7 and assign that value to
dog_years. Since 7 and age are both integers, diving them results
in an integer. That works out great since dog years are always
expressed as integers.

The next line combines two strings and dog_years into larger string
and displays it.

Calculating seconds

The user's age, in seconds, is calculated and printed in the two
following lines:
seconds = age * 365 * 24 * 60 * 60
print "But you're also over", seconds, "seconds
old."

Since there are 365 days in a year, 24 hours in a day, 60 minutes in
an hour, and 60 seconds in a minute, age is multiplied by the
product of 365 * 24 * 60 * 60. This value is assigned to
seconds. The next line combines two strings and seconds into a
larger string and displays it.

Printing name Five Times

The program displays the user's name five times in a row using
string repetition:
called = name * 5
print "\nIf a small child were trying to get your

attention, " \
 "your name would become:"
print called

The variable called is assigned the value of name, repeated five
times. Then, a message is printed followed by called.

Calculating moon_weight and sun_weight

The next four lines calculate and display the user's weight on the
moon and sun:
moon_weight = weight / 6.0
print "\nDid you know that on the moon you would
weigh only", moon_weight, "pounds?"

sun_weight = weight * 27.1
print "But on the sun, you'd weigh", sun_weight, "
(but, ah... not for long)."

Since the moon has one-sixth the gravitational pull of the earth,
moon_weight is assigned the value of weight divided by 6.0. I
use a floating-point number so that the result is a more accurate
floating-point number instead of an integer.

Since the gravitational force on the sun is about 27.1 times stronger
than it is here on earth, I multiply weight by 27.1 and assign the
result to sun_weight. Again, since 27.1 is a floating-point number,
sun_weight will be a float too.

The next two lines print out messages telling the user about his or
her new weights.

Waiting for the User

The last statement waits for the user to press the Enter key:

raw_input("\n\nPress the enter key to exit.")

Summary
In this chapter, you saw how to create strings with single, double,
and triple quotes. You learned how to include special characters in
them with escape sequences. You saw how to join and repeat
strings. You learned about two different numeric types, integers and
floating-point numbers, and how to work with them. You also now
know how to convert values between strings and numbers. You
learned about variables and saw how to use them to store and
retrieve information. Finally, you learned how to get user input to
make your programs interactive.

Challenges
1. Create a list of legal and illegal variable names. Describe

why each is either legal or illegal. Next, create a list of
"good" and "bad" legal variable names. Describe why each
is either a good or bad choice for a variable name.

2. Write a program that allows a user to enter his or her two
favorite foods. The program should then print out the name
of a new food by joining the original food names together.

3. Write a Tipper program where the user enters a restaurant
bill total. The program should then display two amounts: a
15 percent tip and a 20 percent tip.

4. Write a Car Salesman program where the user enters the
base price of a car. The program should add on a bunch of
extra fees such as tax, license, dealer prep, and destination
charge. Make tax and license a percent of the base price.
The other fees should be set values. Display the actual
price of the car once all the extras are applied.

Chapter 3: Branching, while Loops, and
Program Planning: The Guess My Number
Game

 Download CD Content

Overview
So far, the programs you've written have had a simple, sequential
flow: each statement is executed once, in order, every time. If you
were limited to just this type of programming, it would be very
difficult, if not impossible, to write complex applications. But in this
chapter, you learn how to selectively execute certain portions of your
code and repeat parts of your program. Specifically, you learn to do
the following:

Generate random numbers using randrange()

Use if structures to execute code based on a condition

Use if-else structures to make a choice based on a
condition

Use if-else-elif structures to make a choice based on
several conditions

Use while loops to repeat parts of your program

Plan your programs using pseudocode

Introducing the Guess My Number Game
The program you'll create in this chapter is the classic number
guessing game. For those who missed out on this game in their
childhood, the game goes like this: the computer chooses a random
number between 1 and 100 and the player tries to guess it in as few
attempts as possible. Each time the player enters a guess, the
computer tells the player whether the guess is too high, too low, or
right on the money. Once the player guesses the number, the game
is over. Figure 3.1 shows Guess My Number in action.

Figure 3.1: Got it in only three guesses! Try to beat
that.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig82_01_0.jpg

Generating Random Numbers
As much as users want consistent, predictable results from
programs, sometimes what makes the programs exciting is their
unpredictability: the sudden change in a computer opponent's
strategy, or an alien creature bursting out from an arbitrary door.
Random numbers can supply this element of chance or surprise, and
Python provides an easy way to generate those random numbers.

TRAP Python generates random numbers based on a formula,
so they are not truly random. This kind of random
generation is called pseudorandom and is good enough
for most applications (just don't try to start an online
casino with it). If you really need truly random numbers,
visit http://www.fourmilab.ch/hotbits/. The site
generates random numbers based on the natural and
unpredictable process of radioactive decay.

Introducing the Craps Roller Program

Craps Roller replicates the dice roll of the fast-paced, casino game
of craps. But you don't have to know anything about craps to
appreciate the program. Craps Roller just simulates the roll of two,
six-sided dice. It displays the value of each and their total. To
determine the dice values, the program uses a function that
generates random numbers. Figure 3.2 shows the program in action.

Figure 3.2: Ack! I got a total of 7 on my first roll, which means I
lose.

http://www.fourmilab.ch/hotbits/
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig83_01_0.jpg

Here's the code:
Craps Roller
Demonstrates random number generation
Michael Dawson - 12/29/02

import random

generate random numbers 1 - 6
die1 = random.randrange(6) + 1
die2 = random.randrange(6) + 1

total = die1 + die2

print "You rolled a", die1, "and a", die2, "for a
total of", total

raw_input("\n\nPress the enter key to exit.")

Using the import Statement

The first line of code in the program introduces the import
statement. The statement allows you to import, or load, modules, in
this case the random module in:
import random

Modules are files that contain code meant to be used in other
programs. These modules usually group together a collection of
programming related to one area. The random module contains
functions related to generating random numbers and producing
random results.

If you think of your program as a construction project, then modules
are like special toolkits that you can pull out from the garage when

you need them. But instead of going to the shelf and grabbing a
powered, circular saw, here, I imported the random module.

Once you import a module, you can use its code. Then, it just
becomes a matter of accessing it.

Accessing randrange()

The random module contains a function, randrange(), which
produces a random integer. The Craps Roller program accesses
randrange() through the following function call:
random.randrange(6)

You'll notice the program doesn't directly call randrange().
Instead, it's called with random.randrange(), because the
program accesses randrange() through its module, random. In
general, you can call a function from an imported module by giving
the module name, followed by a period, followed by the function call
itself. This method of access is called dot notation. Dot notation is
like the possessive in English. In English, "Mike's Ferrari" means that
it's the Ferrari that belongs to Mike. Using dot notation,
random.randrange() means the function randrange() that
belongs to the module random. Dot notation can be used to access
different elements of imported modules.

Now that you know how to access randrange(), you need to know
how to use it.

Using randrange()

There are several ways to call randrange(), but the simplest is to
use a single, positive, integer argument. Called this way, the function
returns a random integer from, and including, 0, up to, but not
including, that number. So the call random.randrange(6)
produces either a 0, 1, 2, 3, 4, or 5. Alright, where's the 6? Well,

randrange() is picking a random number from a group of six
numbers—and the list of numbers starts with 0. You may think this is
odd, but you'll find that most computer languages start counting at 0
instead of 1. So, I just added 1 to the result to get the right values for
a die:
die1 = random.randrange(6) + 1

Now, die1 gets either a 1, 2, 3, 4, 5, or 6.

TRAP It's a common mistake to think that the single argument
you provide randrange() could be returned as a result.
It can't. Remember, randrange() starts counting at 0,
so you'll get back a random number between (and
including) 0 and up to one less than the number you
provide.

Using the if Structure
Branching is a fundamental part of computer programming. It
basically means making a decision to take one path or another.
Through the if structure, your programs can branch to a section of
code or just skip it, all based on how you've set things up.

Introducing the Password Program

The Password program uses the if structure to simulate the login
procedure of a highly secure computer server. The program grants
the user access if he or she enters the right password. Figures 3.3
and 3.4 show a few sample runs.

Figure 3.3: Ha, you'll never crack the code.

Figure 3.4: Guess I should have picked a better password than
"secret".

Here is the program code for Password:
Password
Demonstrates the if structure

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig85_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig85_02_0.jpg

Michael Dawson - 12/29/02

print "Welcome to System Security Inc."
print "— where security is our middle name\n"

password = raw_input("Enter your password: ")

if password == "secret":
 print "Access Granted"

raw_input("\n\nPress the enter key to exit.")

IN THE REAL WORLD

While the program Password does a good job of demonstrating
the if structure, it's not a good example of how to implement
computer security. In fact, anyone could simply examine the
source code and discover the "secret" password.

To create a password validation system, a programmer would
most likely use some form of cryptography. Cryptography, an
ancient idea that dates back thousands of years, is used to
encode information so that only the intended recipients can
understand it. Cryptography is an entire field unto itself and some
computer scientists devote their careers to it.

Examining the if Structure

The key to program Password is the if structure:
if password == "secret":
 print "Access Granted"

The if structure is pretty straightforward. You can probably figure
out what's happening just by reading the code. If password is equal
to "secret", then "Access Granted" is printed and the program
continues to the next statement. But, if it isn't equal to "secret",
the program does not print the message and continues directly to the
next statement following the if structure.

Creating Conditions

All if structures have a condition. A condition is just an expression
that is either true or false. You're already familiar with conditions.
They're pretty common in daily life. In fact, almost any statement you
make could be viewed as a condition. For example, the statement
"It's 100 degrees outside." could be treated as a condition. It's either
true or false.

In the Password program, the condition used in the if structure is
password == "secret". It means that password is equal to
"secret". This condition evaluates to either true or false,
depending on the value of password. If the value of password is
equal to "secret", then the condition is true. Otherwise, the
condition is false.

Understanding Comparison Operators

Conditions are often created by comparing values. You can compare
values using comparison operators. You've already seen one
comparison operator by way of the Password program. It's the
equal-to comparison operator, written as ==.

TRAP The equal-to comparison operator is two equal signs in a
row. Using just one equal sign in a condition will result in
a syntax error, because one equal sign represents the
assignment operator. So, password = "secret" is an
assignment statement. It assigns a value. And password

== "secret" is a condition. It evaluates to either true or
false. Even though the assignment operator and the
equal-to operator look similar, they are two different
things.

In addition to equal-to, there are other comparison operators. Table
3.1 summarizes some useful ones.

Table 3.1: COMPARISON OPERATORS

Operator Meaning Sample
Condition

Evaluates
To

== equal to 5 == 5 True

!= not equal to 8 != 5 True

> greater than 3 > 10 False

< less than 5 < 8 True

>= greater than or equal
to 5 >= 10 False

<= less than or equal to 5 <= 5 True

Using comparison operators, you can compare any values. If you
compare strings, you get results based on alphabetical order. For
example, "apple" < "orange" is true because "apple" is
alphabetically less than "orange" (it comes before it in the
dictionary).

Python allows you to compare any values you like, regardless of
their type. But just because you can doesn't mean you should. When
using comparison operators, it's best to "compare apples to apples
and oranges to oranges" and only compare values of the same type,
because even though you can create the condition "orange" < 2,
it doesn't really make much sense. (If you're curious, "orange" <
2 is false.)

Using Indentation to Create Blocks

You may have noticed that the second line of the if structure,
print "AccessGranted", is indented. By indenting the line, it
becomes a block. A block is one or more consecutive lines indented
by the same amount. Indenting sets lines off not only visually, but
logically too. Together, they form a single unit.

Blocks can be used, among other ways, as the last part of an if
structure. They're the statement or group of statements that gets
executed if the condition is true. In the Password program, the block
is the single statement print "Access Granted".

Since blocks can be as many statements as you like, you could add
a special welcome for users who enter the proper password by
changing the block in the if structure like so:
if password == "secret":
 print "Access Granted"
 print "Welcome! You must be someone very
important."

Now, users who correctly enter the secret password will see the
Access Granted followed by Welcome! You must be
someone very important. And if a user enters something
besides secret, the user won't see either of the messages.

Indenting to create blocks is not optional. It's the only way to define a
block. This is one of Python's more unique features. And believe it or
not, it's one of it's most controversial.

If you've programmed in another language before, odds are,
indenting was optional. You could have written every line of code
flush left, if you wanted. But required indentation has its benefits. It
makes for more consistent and readable code. After a short time, it'll
become second nature.

If you haven't programmed before, don't worry about it. By indenting
your code, you'll pick up a good programming habit without even
realizing it.

HINT There's passionate debate within the Python community
about whether to use tabs or spaces (and if spaces, the
number to use) for indentation. This is really a question of
personal style. But there are two guidelines worth
following. First, be consistent. If you indent blocks with two
spaces, then always use two spaces. Second, don't mix
spaces and tabs. Even though you can line up blocks
using a combination of both, this can lead to big
headaches later. Common indentation styles include one
tab, or two spaces, or (the style the creator of Python
uses) four spaces. The choice is yours.

Building Your Own if Structure

You've seen a full example of an if structure, but I want to leave the
topic by summarizing how to build your own. You can construct an
if structure by using if, followed by a condition, followed by a
colon, followed by a block of one or more statements. If the condition
evaluates to true, then the statements that make up the block are
executed. If the condition evaluates to false, then the program
moves on to the next statement after the if structure.

Using the if-else Structure
Sometimes you'll want your program to "make a choice" based on a
condition: do one thing if the condition is true, do something else if
it's false. The if-else structure gives you that power.

Introducing the Granted or Denied Program

The program Password did a good job welcoming a user who
entered the correct password, but it didn't do anything if the wrong
password was entered. Program Granted or Denied solves this
problem by using the if-else structure. Figures 3.5 and 3.6 show
off the new and improved version.

Figure 3.5: The correct password grants the user access, just like
before.

Figure 3.6: Now, an incorrect password generates the stinging
"Denied" message.

Here is the code for Granted or Denied:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig89_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig90_01_0.jpg

Granted or Denied
Demonstrates the if-else structure
Michael Dawson - 12/29/02

print "Welcome to System Security Inc."
print "— where security is our middle name\n"

password = raw_input("Enter your password: ")

if password == "secret":
 print "Access Granted"
else:
 print "Access Denied"

raw_input("\n\nPress the enter key to exit.")

Examining the else Statement

I only made one change from the Password program. I added an
else clause to create an if-else structure:
if password == "secret":
 print "Access Granted"
else:
 print "Access Denied"

If the value of password is equal to "secret", the program prints
Access Granted, just like before. But now, thanks to the else
statement, the program prints Access Denied otherwise.

In an if-else structure, you're guaranteed that exactly one of the
code blocks will execute. If the condition is true, then the block
immediately following the condition is executed. If the condition is
false, then the block immediately after the else is executed.

You can create an else clause immediately following the if block
with else, followed by a colon, followed by a block of statements.
The else statement must be in the same block as its corresponding
if. That is, the else and if must be indented the same amount;
otherwise, your program will generate a nasty error.

Using the if-elif-else Structure
Choosing from among several possibilities is the job of the if-
elif-else structure. It's the most powerful and flexible of all the
conditional structures. It can be used in multiple ways, but comes in
quite handy when you have one variable that you want to compare to
a bunch of different values.

Introducing the Mood Computer Program

In the mid-1970s (yes, last century), there was a wildly successful,
fad product called the Mood Ring. The ring revealed the wearer's
mood through a color-changing gem. Well, the Mood Computer
program takes the technology to the next level by looking into the
psyche of the user and displaying his or her mood. Figure 3.7
reveals my mood while writing this very chapter.

Figure 3.7: Looks like I was in a great mood while writing the
Mood Computer program.

Okay, the program doesn't really plum the emotional depths of the
user through electrodermal impulses transmitted via the keyboard.
Instead, Mood Computer generates a random number to choose one
of three faces to print through an if-elif-else structure. By the
way, the Mood Ring didn't really reveal the wearer's emotions either.
It was just an LCD that changed colors based on body temperature.

The program code for Mood Computer:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig91_01_0.jpg

Mood Computer
Demonstrates the if-elif-else structure
Michael Dawson - 12/29/02

import random

print "I sense your energy. Your true emotions are
coming across my screen."
print "You are..."

mood = random.randrange(3)

if mood == 0:
 # happy
 print \
 """

 | |
 | O O |
 | < |
 | |
 | . . |
 | `...` |

 """
elif mood == 1:
 # neutral
 print \
 """

 | |
 | O O |
 | < |
 | |
 | ------- |
 | |

 """
elif mood == 2:
 # sad
 print \
 """

 | |
 | O O |
 | < |
 | |
 | .'. |
 | ' ' |

 """
else:
 print "Illegal mood value! (You must be in
a really bad mood)."

print "...today."

raw_input("\n\nPress the enter key to exit.")

Examining the if-elif-else Structure

An if-elif-else structure can contain a whole list of conditions
for a program to evaluate. In Mood Computer, the lines containing
the different conditions are

if mood == 0:

elif mood == 1:

elif mood == 2:

Notice that you write the first condition using an if clause, but then
list the remaining conditions using elif (short for "else if") clauses.
elif clauses are constructed just like if clauses. And you can
have as many elif clauses as you like.

HINT Although the if-elif-else structure is flexible enough
to test a list of unrelated conditions, it's almost always
used to test related ones.

By isolating the conditions, you can see the purpose of the structure:
to test mood against three different values. The program first checks
to see if mood is equal to 0. If it is, then the happy face is printed. If
not, the program moves to the next condition and checks if mood is
equal to 1. If it is, the neutral face is printed. If not, the program
checks if mood is equal to 2. If so, the sad face is printed.

TRAP An important feature of the if-elif-else structure is
that once a condition evaluates to true, the computer
executes its corresponding block and exits the structure.
This means that at most, only one block executes, even if
several conditions are true. In Mood Computer, that's no
big deal. mood can only be equal to a single number, so
only one of the conditions can be true. But it's important
to be aware of this behavior because it's possible to
create structures where more than one condition can be
true at the same time. In that case, only the block
associated with the first true condition executes.

If none of the preceding conditions for mood turn out to be true, then
the final else clause's block runs and Illegal mood value!
(You must be in a really bad mood). appears on the
screen. This should never happen, since mood will always be either
0, 1, or 2. But I put the clause in there just in case. I didn't have to,
though, since the final else clause is optional.

HINT Even though it's not necessary to use the final else
clause, it's a good idea. It works as a catchall for when
none of the conditions are true. Even if you think one of
your conditions will always be true, you can still use it to
catch the "impossible" case, like I did.

You've seen three similar, but progressively more powerful branching
structures. For a concise review, check out Table 3.2.

Table 3.2: B RANCHING STRUCTURES SUMMARY

Structure Description

if
<condition>:
 <block>

if structure. If <condition> is true, <block> is
executed; otherwise it's skipped.

if
<condition>:
 <block 1>
else:
 <block 2>

if-else structure. If <condition> is true, <block1>
is executed; otherwise <block2> is executed.

Structure Description

if <condition
1>:
 <block 1>
elif
<condition
2>:
 <block 2>
 .
 .
 .
.elif
<condition
N>:
 <block N>
else:
 <block
N+1>

if-elif-else structure. The block of the first true
condition is executed. If no condition is true, the
optional else clause's block, <block N+1>, is
executed.

Creating while Loops
Loops are all around us. Even your shampoo bottle has looping
instructions on it: "While your hair is not clean: Rinse. Lather.
Repeat." This may seem like a simple idea—while some condition is
true, repeat something—but it's a powerful tool in programming. It
would come in quite handy, for example, in making a quiz show
game. You might want to tell your program: while there are questions
left, keep playing the game. Or, in a banking application, you might
want to tell your program: while the user hasn't entered a valid
account number, keep asking the user for an account number. The
while loop lets you do exactly this.

Introducing the Three-Year-Old Simulator Program

In today's fast-paced world, many people don't get to spend the time
they'd like with the children in their lives. A busy lawyer might be
stuck at the office and not see her small son. A salesman might be
on the road and not see his little niece. Well, the Three-Year-Old
Simulator solves that problem by reproducing a conversation with a
three-year-old child. The key to mimicking a three-year-old, it turns
out, is the while loop. Figure 3.8 shows a sample run.

Figure 3.8: If you've ever been in charge of a three-year-old, this
should bring back warm memories.

As you can see, the program keeps asking Why? until the answer,
Because., is entered. The code for the program is short:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig95_01_0.jpg

Three-Year-Old Simulator
Demonstrates the while loop
Michael Dawson - 1/3/03

print "\tWelcome to the 'Three-Year-Old
Simulator'\n"
print "This program simulates a conversation with
a three-year-old child."
print "Try to stop the madness.\n"

response = ""
while response != "Because.":
 response = raw_input("Why?\n")

print "Oh. Okay."

raw_input("\n\nPress the enter key to exit.")

Examining the while Structure

The loop from the Three-Year-Old Simulator program is just two
lines:
while response != "Because.":
 response = raw_input("Why? ")

If the format of the while loop looks familiar, there's a good reason.
It bears a striking resemblance to its cousin, the if structure. The
only difference is that if is replaced by while. And the similarities
aren't just skin-deep. In both structures, if the condition is true, the
block (sometimes call the loop body in a loop) is executed. But in the
while structure, the computer tests the condition and executes the
block over and over, until the condition is false. That's why it's called
a loop.

So, the block

 response = raw_input("Why? ")

will continue to execute until the user enters Because.. At that
point, response !="Because." is false and the loop mercifully
ends. Then, the program executes the next statement, print "Oh.
Okay.".

Initializing the Sentry Variable

Often, while loops are controlled by a sentry variable, a variable
used in the condition and compared to some other value or values.
Like a human sentry, you can think of your sentry variable as a
guard, helping form a barrier around the while loop's block. In the
Three-Year-Old Simulator program, the sentry variable is response.
It's used in the condition and is compared to the string "Because."
before the block is executed each time.

It's important to initialize your sentry variable. Most of the time,
sentry variables are initialized right before the loop itself. That's what
I did:
response = ""
while response != "Because.":
 response = raw_input("Why? ")

TRAP If the sentry variable doesn't have a value when the
condition is evaluated, your program will generate an
error.

It's usually a good idea to initialize your sentry variables to some
type of empty value. I assign "", the empty string, to response.
While I could assign the string "aardvark", and the program would
work just the same, it would make the code needlessly confusing.

Checking the Sentry Variable

Make sure that it's possible for the while condition to evaluate to
true at some point; otherwise, the block will never run. Take, for
example, one minor change to the loop you've been working with:
response = "Because."
while response != "Because.":
 response = raw_input("Why? ")

Since response is equal to "Because." right before the loop, the
block will never run. The program will act like the loop isn't even
there.

Updating the Sentry Variable

Once you've established your condition, initialized your sentry
variable, and are sure that under some conditions the loop block will
execute, you have yourself a working loop. Next, make sure the loop
will end.

If you write a loop that never stops, you've created an infinite loop.
Welcome to the club. At one time or another, all programmers have
accidentally created an infinite loop and watched their program get
stuck doing something over and over. Or they see their programs
just plain freeze up.

Here's a simple example of an infinite loop:
counter = 0
while counter <= 10
 print counter

What the programmer probably meant was for the loop to print the
numbers from 0 to 10. Unfortunately, what this program does is print
0, forever. The programmer forgot to change counter, the sentry
variable inside the block. So remember, the values in the condition
must change inside the loop block. If they never change, the loop
won't end, and you have yourself an infinite loop.

Avoiding Infinite Loops
One type of infinite loop is where the sentry variable is never
updated, like you just saw. But there are more insidious forms of the
never-ending loop. Check out the next program. It does change the
value of the sentry variable in the loop body. But something is wrong,
because the loop never ends. See if you can spot the trouble before
I explain what's going on.

Introducing the Losing Battle Program

The Losing Battle program describes the last, valiant fight of a hero
overwhelmed by an army of trolls, a scenario you might find in a role-
playing game. The program narrates the battle action. It describes
the struggle, blow-by-blow, as the hero defeats a troll, but then takes
more damage. In the end, the program always ends with the death of
the hero. Or does it? Here's the code:
Losing Battle
Demonstrates the dreaded infinite loop
Michael Dawson - 1/2/03

print "Your lone hero is surrounded by a massive
army of trolls."
print "Their decaying green bodies stretch out,
melting into the horizon."
print "Your hero unsheathes his sword and begins
the last fight of his life.\n"

health = 10
trolls = 0
damage = 3

while health != 0:
 trolls += 1

 health = health - damage

 print "Your hero swings and defeats an evil
troll, " \
 "but takes", damage, "damage points.\n"
print "Your hero fought valiantly and defeated",
trolls, "trolls."
print "But alas, your hero is no more."

raw_input("\n\nPress the enter key to exit.")

Figure 3.9 shows a run of the program. This resulted in an infinite
loop and I had to stop the process by pressing Ctrl+C, or it would
have continued.

Figure 3.9: It seems you have an immortal hero. The only way to
end the program was to stop the process.

So, what's going on?

Tracing the Program

Well, it looks like the program has a logical error. A good way to
track down this kind of error is to trace your program's execution.
Tracing means you simulate the running of your program and do
exactly what it would do, following every command and keeping
track of the values assigned to variables. This way, you can step
through the program, understand exactly what is happening at each

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig99_01_0.jpg

point, and discover the circumstances that conspire to produce the
bug in your code.

The most basic way to trace a program is with old-fashioned pencil
and paper. I created columns, one for each variable and condition.
So to start, my page looks like this:

health trollsdamagehealth != 0

Right after the condition of the while structure is evaluated, my
page looks like this:

health trolls damage health != 0
10 0 3 true

Since the condition is true, the loop executes for the first time. After
one full time through and back up to evaluate the condition again, my
trace looks like this:

health trolls damage health != 0
10 0 3 true
7 1 3 true

After a few more times through the loop, my trace looks like:

health trolls damage health != 0
10 0 3 true
7 1 3 true
4 2 3 true
1 3 3 true
-2 4 3 true
-5 5 3 true

health trolls damage health != 0
-7 6 3 true

I stopped the trace because it seemed like I was in an infinite loop.
Since the value of health is negative (and not equal to 0) in the last
three lines of the trace, the condition is still true. The problem is,
health will never become 0. It will just grow in the negative
direction each time the loop executes. As a result, the condition will
never become false, and the loop will never end.

Creating Conditions That Can Become False

In addition to making sure values in a while loop's condition
change, you should be sure that the condition can eventually
evaluate to false; otherwise, you still have an infinite loop on your
hands. In the case of the Losing Battle program, the fix is easy. The
line with the condition just needs to become
while health > 0:

Now, if health becomes 0 or negative, the condition evaluates to
false and the loop ends. To be sure, you can trace the program using
this new condition:

health trolls damage health > 0
10 0 3 true
7 1 3 true
4 2 3 true
1 3 3 true
-2 4 3 false

And the program ends as it should. Figure 3.10 shows how the
debugged program runs.

Figure 3.10: Now, the program runs correctly, avoiding an infinite
loop. Your hero's fate, however, is not as bright.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig101_01_0.jpg

Treating Values as Conditions
If I asked you to evaluate 35 + 2 you'd come back quickly with 37.
But if I asked you to evaluate 37 as either true or false, you'd
probably come back with, "Huh?" But the idea of looking at any value
as either true or false is valid in Python. Any value, of any type, can
be treated this way. So, 2749, 8.6, "banana", 0, and "" can each
be interpreted as true or false. This may seem bizarre, but it's easy.
The rules that establish true and false are simple. More importantly,
interpreting values this way can make for more elegant conditions.

Introducing the Maitre D' Program

If you haven't been snubbed at a fancy, French restaurant lately,
then I have just the program for you. Maitre D' welcomes you to the
fine eatery and then asks you how much money you slip your host. If
you give zero dollars, then you are rightly ignored. If you give some
other amount, then your table is waiting. Figures 3.11 and 3.12 show
off the program.

Figure 3.11: When you don't tip the maitre d', there are no tables
to be found.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig101_02_0.jpg

Figure 3.12: This time, my money has helped cure the maitre d'
of his amnesia.

From watching the program run, you might not be impressed. This
seems like something you could have already done. The difference
is, there is no comparison operator used in this program. Instead, a
value (the amount of money) is treated as a condition. Take a look at
the code to see how it works:
Maitre D'
Demonstrates treating a value as a condition
Michael Dawson - 1/3/03

print "Welcome to the Chateau D' Food"
print "It seems we are quite full this evening.\n"

money = int(raw_input("How many dollars do you
slip the Maitre D'? "))

if money:
 print "Ah, I am reminded of a table. Right
this way."
else:
 print "Please, sit. It may be a while."

raw_input("\n\nPress the enter key to exit.")

Interpreting Any Value as True or False

The new concept is demonstrated in the line:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig102_01_0.jpg

if money:

Notice that money is not compared to any other value. money is the
condition. When it comes to evaluating numbers, 0 is false and
everything else is true. So, the above line is equivalent to
if money != 0:

The first version is simpler, more elegant, and more intuitive. It reads
more naturally and could be translated to "if there is money".

The rules for what makes a value true or false are simple. The basic
principal is this: any empty or zero value is false, everything else is
true. So, 0 evaluates to false, but any other number evaluates to
true. The empty string, "", is false, while any other string is true. As
you can see, most every value is true. It's only the empty or zero
value that's false. You'll find that testing for an empty value is a
common thing to do, so this way of treating values can come up a lot
in programs.

One last thing to note here is that if you enter a negative dollar
amount, the maitre d' will still seat you. Remember, for numbers,
only 0 is false. So, all negative numbers are true, just like positive
ones.

Creating Intentional Infinite Loops
Coming soon after a section called "Avoiding Infinite Loops," you
might be more than a bit surprised to see a section about creating
infinite loops. Aren't infinite loops always a mistake? Well, if a loop
were truly infinite, that is, it could never end, then yes, it would be a
logical error. But what I call intentional infinite loops are infinite loops
with an exit condition built into the loop body. The best way to
understand an intentional infinite loop is to see an example.

Introducing the Finicky Counter Program

The Finicky Counter program counts from 1 to 10 using an
intentional infinite loop. It's finicky because it doesn't like the number
5 and skips it. Figure 3.13 shows a run of the program.

Figure 3.13: The number 5 is skipped with a continue
statement and the loop ends through a break
statement.

Here's the code to the program:
Finicky Counter
Demonstrates the break and continue statements
Michael Dawson - 1/3/03

count = 0
while True:
 count += 1

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig103_01_0.jpg

 # end loop if count is greater than 10
 if count > 10:
 break
 # skip 5
 if count == 5:
 continue
 print count

raw_input("\n\nPress the enter key to exit.")

Understanding True and False

You know that any value can be interpreted as true or false, but
Python also has a direct way to represent these values. True
represents true. False (drumroll) represents false. You can use
True and False like any other value. You can use them in a
condition or even assign them to a variable. I'll show you what I
mean through an interactive session.
>>> if True:
 print "I'm true!"

I'm true!

Because True is true, the if block executes and prints the string
"I'm true!"

>>> game_over = True
>>> if game_over:
 print "Sorry, your game is
over."

Sorry, your game is over.

Because game_over is equal to True, the if block executes and
prints the string "Sorry, your game is over."

>>> if False:
 print "I'm true!"
else:
 print "I'm false!"

I'm false!

Because False is not true, the if block is skipped and the else block
runs, printing the string "I'm false!"

TRAP True and False didn't exist in Python before version
2.2. In earlier versions of Python, it was common to use 1
to represent true and 0 to represent false.

Using the break Statement to Exit a Loop

I set up the loop with:
while True:

This technically means that the loop will continue forever, unless
there is an exit condition in the loop body. Luckily, I put one in:
 # end loop if count greater than 10
 if count > 10:
 break

Since count is increased by 1 each time the loop body begins, it will
eventually reach 11. When it does, the break statement, which
means "break out of the loop", is executed and the loop ends.

Using the continue Statement to Jump Back to the Top
of a Loop

Just before count is printed, I included the lines:
 # skip 5
 if count == 5:

 continue

The continue statement means "jump back to the top of the loop."
At the top of the loop, the while condition is tested and the loop is
entered again if it's true. So when count is equal to 5, the program
does not get to the print count statement.

Instead it goes right back to the top of the loop and 5 is skipped and
never printed.

Understanding When to Use break and continue

You can use break and continue in any loop you create. They
aren't just restricted for use in intentional infinite loops. But they
should be used sparingly. Both break and continue make it
harder for someone (including you!) to see the flow of a loop and
understand under what conditions it ends. Plus, you don't actually
need break and continue. Any loop you can write using them can
be written without them.

In Python, there are times when an intentional infinite loop can be
clearer than a traditional loop. In those few cases, where it's really
clunky to write the loop with a regular condition, some programmers
use intentional infinite loops. But again, I say avoid them when
possible.

Using Compound Conditions
So far, you've only seen comparisons where exactly two values are
involved. These are called simple conditions. This is probably the
most common way to create a condition. But you may find yourself
wishing for more power. Luckily, you can combine simple conditions
together with logical operators. Combined, these simple conditions
become compound conditions. Using compound conditions, your
programs can make decisions based on how multiple groups of
values compare.

Introducing the Exclusive Network Program

Exclusive clubs are no fun, unless you're a member. So, I created
the Exclusive Network program. It simulates an elite computer
network where only a select few are members. The membership
consists of me and several top game designers in the world today
(not bad company).

Like real-world computer systems, each person has to enter a
username and a password. A member has to enter both his or her
username and password, or the member won't be able to log in. With
a successful login, the member is personally greeted. Also like real-
world systems, everyone has a security level.

Because I'm not a total elitist, guests are allowed to log in. Guests
have the lowest security level, though.

Figures 3.14 through 3.16 show off the program.

Figure 3.14: If you're not a member or a guest, you can't get
in.

Figure 3.15: A guest can log in, but their security level is set quite
low.

Figure 3.16: Looks like one of the guys logged in
today.

Here's the code:
Exclusive Network
Demonstrates logical operators conditions
Michael Dawson - 1/3/03

print "\tExclusive Computer Network"
print "\t\tMembers only!\n"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig107_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig107_02_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig107_03_0.jpg

security = 0
username = ""
while not username:
 username = raw_input("Username: ")

password = ""
while not password:
 password = raw_input("Password: ")

if username == "M.Dawson" and password ==
"secret":
 print "Hi, Mike."
 security = 5
elif username == "S.Meier" and password ==
"civilization":
 print "Hey, Sid."
 security = 3
elif username == "S.Miyamoto" and password ==
"mariobros":
 print "What's up, Shigeru?"
 security = 3
elif username == "W.Wright" and password ==
"thesims":
 print "How goes it, Will?"
 security = 3
elif username == "guest" or password == "guest":
 print "Welcome, guest."
 security = 1
else:
 print "Login failed. You're not so
exclusive.\n"

raw_input("\n\nPress the enter key to exit.")

IN THE REAL WORLD

If you really want to implement a private network, you wouldn't
write usernames and passwords directly into your code. You'd
probably use some type of database management system
(DBMS). Database management systems allow you to organize,
access, and update related information. These systems are
powerful and could handle thousands or even millions of pairs of
usernames and passwords, quickly and securely.

Understanding the not Logical Operator

I wanted to make sure that the user enters something for the
username and password. Just pressing the Enter key, which results
in the empty string, won't do. I wanted a loop that continues to ask
for a username until the user enters something. This is the loop I
came up with for getting the username:
username = ""
while not username:
 username = raw_input("Username: ")

In the while condition, I used the logical not operator. It works a lot
like the word "not." In English, putting the word "not" in front of
something creates a new phrase that means the opposite of the old
one. In Python, putting not in front of a condition creates a new
condition that evaluates to the opposite of the old one.

That means not username is true when username is false. And
not username is false when username is true. Here's another way
to understand how not works:

username not username

true false

username not username

false true

Since username is initialized to the empty string in the program, it
starts out as false. That makes not username true and the loop
runs the first time. Then, the program gets a value for username
from the user. If the user just presses Enter, username is the empty
string, just as before. And just as before, not username is true and
the loop keeps running. So, as long as the user just hits Enter, the
loop keeps running, and the user keeps getting prompted for a
username.

But when the user finally enters something, username becomes a
new string, something other than the empty string. That makes
username evaluate to true and not username evaluate to false.
As a result, the loop ends, just like I wanted.

The program does the same thing for the variable password.

Understanding the and Logical Operator

If a member wants to log in to this exclusive network, the member
has to enter a username and password that are recognized together.
If, for example, Sid Meier wants to log in, he has to enter S.Meier
for his username and civilization for his password. If Sid
doesn't enter both, just that way, he can't log in. S.Meier and
mariobros won't work. Neither will M.Dawson and
civilization. The combination civilization and S.Meier
fails too. The program checks that Sid enters S.Meier for his
username and civilization for his password with the following
code:
elif username == "S.Meier" and password ==
"civilization":

The line contains a single compound condition made up of two
simple conditions. The simple conditions are username ==
"S.Meier" along with password == "civilization". These
are just like conditions you've already seen, but they've been joined
together by the and logical operator to form a larger, compound
condition, username == "S.Meier" and password ==
"civilization". This compound condition, though longer than
you're used to, is still just a condition, which means that it can be
either true or false.

So, when is username == "S.Meier" and password ==
"civilization" true, and when is it false? Well, just like in
English, "and" means both. So, the condition is true only if both
username == "S.Meier" and password == "civilization"
are true; otherwise it's false. Here's another way to see how this
works:

username
==
"S.Meier"

password ==
"civilization"

username == "S.Meier"
and password ==
"civilization"

true true true
true false false
false true false
false false false

HINT Put and between two conditions when you want to create
a new condition that is true only if both original conditions
are true.

So, when Sid enters S.Meier for his username and
civilization for his password, the compound condition is true.
Sid is then greeted and assigned a security level.

The program, of course, works for others besides Sid Meier. Through
an if-elif-else structure, the program checks four different
username and password pairs. If a user enters a recognized pair,
the member is personally greeted and assigned a security value.

If a member or guest doesn't properly log in, the computer prints a
"failed login" message and tells the person that he or she is not so
exclusive.

Understanding the or Logical Operator

Guests are allowed in the network, too, but with a limited security
level. To make it easy for a guest to try the network, all he or she has
to do is enter guest for either the username or password. The
following lines of code log in a guest:
elif username == "guest" or password == "guest":
 print "Welcome, guest."
 security = 1

The elif condition, username == "guest" or password ==
"guest", looks a lot like the other conditions, the ones used for the
members. But there's a major difference. The guest condition is
created by using the logical or operator.

A compound condition created with an or is true as long as at least
one of the simpler conditions is true. Again, the operator works just
like in English. "Or" means either, so if either condition is true, the
compound condition is true. In this particular case, if username ==
"guest" is true or if password == "guest" is true, or even if
both are true, then username == "guest" or password ==
"guest" is true; otherwise, it's false. Here's another way to look at
how or works:

username ==
"guest"

password ==
"guest"

username == "guest" or
password == "guest"

username ==
"guest"

password ==
"guest"

username == "guest" or
password == "guest"

true true true
true false true
false true true
false false false

Planning Your Programs
So far, all the programs you've seen have been pretty simple. The
idea of planning any of them formally on paper probably seems like
overkill. It's not. Planning your programs, even the small ones, will
almost always result in time (and often frustration) saved.

Programming is a lot like construction. So, imagine a contractor
building a house for you without a blueprint. Yikes! You're liable to
end up with a house that has 12 bathrooms, no windows, and a front
door on the second floor. Plus, it will cost you 10 times the estimated
price.

Programming is the same way. Without a plan, you'll likely struggle
through the process, wasting time. You might even end up with a
program that doesn't quite work.

Program planning is so important that there's an entire field of
software engineering dedicated to it. But even a beginning
programmer can benefit from a few simple planning tools and
techniques.

Creating Algorithms with Pseudocode

An algorithm is a set of clear, easy-to-follow instructions for
accomplishing some task. An algorithm is like a blueprint for your
program. It's something you planned out, before programming, to
guide you along as you code.

An algorithm isn't just a goal—it's a concrete list of steps to be
followed in order. So, for example, "Be a millionaire" is not really an
algorithm. It's more like a goal. But a worthy one. So I wrote the
Make a Million Dollars algorithm. Here it is:
if you can think of a new and useful product
 then that's your product
otherwise

 repackage an existing product as your product
make an infomercial about your product
show the infomercial on TV
charge $100 per unit of your product
sell 10,000 units of your product

There you go. It's a clear series of finite steps that can be followed to
achieve the goal.

Algorithms are generally written in something called pseudocode,
and mine is no exception. Pseudocode falls somewhere between
English and a programming language. Anyone who understands
English can understand my algorithm. But at the same time, my
algorithm should feel vaguely like a program. The first four lines
resemble an if-else structure, and that's intentional.

Applying Stepwise Refinement to Your Algorithms

Like any outline or plan, your algorithm might not be finished after
one draft. Often, algorithms need multiple passes before they can be
implemented in code. Stepwise refinement is one process used to
rewrite algorithms so that they're ready for implementation. Stepwise
refinement is pretty simple. Basically, it means "make it more
detailed." By taking each step in an algorithm and breaking it down
into a series of simpler steps, the algorithm becomes closer to
programming code. In stepwise refinement, you keep breaking down
each step until you feel that the entire algorithm could be fairly easily
translated into a program. As an example, take a step from the Make
a Million Dollars algorithm:
create an infomercial about your product

This might seem like too vague a task. How do you create an
infomercial? Using stepwise refinement, the single step can be
broken down into several others. So, it becomes the following:
write a script for an infomercial about your product
rent a TV studio for a day

hire a production crew
hire an enthusiastic audience
film the infomercial

If you feel that these five steps are clear and achievable, then that
part of the algorithm has been thoroughly refined. If you're still
unclear about a step, refine it some more. Continue with this process
and you will have a complete algorithm and a million dollars.

Returning to the Guess My Number Game
The Guess My Number game combines many of the concepts you
learned in this chapter. But, more importantly, it represents the first
full game that you can use to show off to your friends, family, and
members of the opposite sex.

Planning the Program

To plan the game, I wrote some pseudocode first:
pick a random number
while the player hasn't guessed the number
 let the player guess
congratulate the player

This isn't a bad first pass, but it's missing some important elements.
First, the program needs to tell the player if the guess is too high, or
too low. Second, the program should keep track of how many
guesses the player has made and then tell the player this number at
the end of the game.

HINT It's okay if your first program plan isn't complete. Start
planning with the major ideas first, then fill in the gaps until
it feels done.

Okay, here's a refinement of my algorithm:
welcome the player to the game and explain it
pick a random number between 1 and 100
ask the player for a guess
set the number of guesses to 1
 while the player's guess does not equal the number
 if the guess is greater than the number
 tell the player to guess lower
 otherwise

 tell the player to guess higher
 get a new guess from the player
 increase the number of guesses by 1
congratulate the player on guessing the number
let the player know how many guesses it took

Now I feel ready to write the program. Take a look over the next few
sections and see how directly pseudocode can be translated into
Python.

Creating the Initial Comment Block

Like all good programs, this one begins with a block of comments,
describing the program's purpose and identifying the author:
Guess My Number

The computer picks a random number between 1 and
100
The player tries to guess it and the computer
lets
the player know if the guess is too high, too
low
or right on the money

Michael Dawson - 1/8/03

Importing the random Module

To be fun, the program needs to generate a random number. So, I
imported the random module:
import random

Explaining the Game

The game is simple, but a little explanation wouldn't hurt:

print "\tWelcome to 'Guess My Number'!"
print "\nI'm thinking of a number between 1 and
100."
print "Try to guess it in as few attempts as
possible.\n"

Setting the Initial Values

Next, I set all the variables to their initial values:
set the initial values
the_number = random.randrange(100) + 1
guess = int(raw_input("Take a guess: "))
tries = 1

the_number represents the number the player has to guess. I
assign it a random integer from 1 to 100 with a call to
random.randrange(). Next, raw_input() gets the player's first
guess. int() converts the guess to an integer. I assign this number
to guess. I assign tries, which represents the number of guesses
so far, the value 1.

Creating a Guessing Loop

This is the core of the program. The loop executes as long as the
player hasn't correctly guessed the computer's number. During the
loop, the player's guess is compared to the computer's number. If the
guess is higher than the number, Lower. . . is printed; otherwise,
Higher. . . is printed. The player enters the next guess, and the
number of guesses counter is incremented.
guessing loop
while (guess != the_number):
 if (guess > the_number):
 print "Lower..."
 else:

 print "Higher..."

 guess = int(raw_input("Take a guess: "))
 tries += 1

Congratulating the Player

When the player guesses the number, guess is equal to
the_number, which means that the loop condition, guess !=
the_number, is false and the loop ends. At that point, the player
needs to be congratulated:
print "You guessed it! The number was", the_number
print "And it only took you", tries, "tries!\n"

The computer tells the player what the secret number was and how
many tries it took the player to guess it.

Waiting for the Player to Quit

As always, the last line waits patiently for the player to press the
Enter key:
raw_input("\n\nPress the enter key to exit.")

Summary
In this chapter, you saw how to change the flow of your program.
You learned that the key to changing the flow is the computer's
ability to evaluate conditions. You saw how to create simple and
compound conditions. You learned about the if, if-else, and if-
elif-else structures, which allow programs to make a decision.
You met the while structure, useful for repeating code sections. You
learned about the importance of program planning. You saw how to
plan a program by creating an algorithm in pseudocode. You also
learned how to generate random numbers to add some excitement
to your programs.

Challenges
1. Write a program that simulates a fortune cookie. The

program should display one of five unique fortunes, at
random, each time it's run.

2. Write a program that flips a coin 100 times and then tells
you the number of heads and tails.

3. Modify the Guess My Number game so that the player has
a limited number of guesses. If the player fails to guess in
time, the program should display an appropriately
chastising message.

4. Here's a bigger challenge. Write the pseudocode for a
program where the player and the computer trade places in
the number guessing game. That is, the player picks a
random number between 1 and 100 that the computer has
to guess. Before you start, think about how you guess. If all
goes well, try coding the game.

Chapter 4: for Loops, Strings, and Tuples:
The Word Jumble Game

 Download CD Content

Overview
You've seen how variables are a great way to access information,
but as your programs grow in size and complexity, so can the
number of your variables. Keeping track of all of them can become a
lot of work. Therefore, in this chapter, you'll learn about the idea of
sequences and meet a new type, called the tuple, which let's you
organize and manipulate information in ordered groups. You'll also
see how a type you've already encountered, the string, is really a
sequence too. You'll also learn about a new kind of loop that's built
just for working with sequences. Specifically, you'll learn how to do
the following:

Construct for loops to move through a sequence

Use the range() function to create a sequence of numbers

Treat strings as sequences

Use tuples to harness the power of sequences

Use sequence functions and operators

Index and slice sequences

Introducing the Word Jumble Game
The Word Jumble game, featured in Figure 4.1, utilizes many of the
new ideas you'll learn in this chapter.

Figure 4.1: The Word Jumble game. This jumble looks
"difficult."

This game re-creates the typical word jumble you might find in the
Sunday paper (you know, that thing people used to get their news
from before the Internet). The computer picks a random word from a
group and then creates a jumbled version of it, where the letters are
in random order. The player has to guess the original word to win the
game.

Using for Loops

In the last chapter, you saw one kind of loop, the while loop, which
repeats part of your code based on a condition. As long as the
condition is true, some code repeats. The for loop also repeats
code, but not based on a condition. Instead, the for loop repeats
part of a program based on a sequence, an ordered list of things. If
you've ever written a list of, say, your top 10 favorite movies, then
you've created a sequence.

A for loop repeats its loop body for each element of the sequence,
in order. When it reaches the end of the sequence, the loop ends. As

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig120_01_0.jpg

an example, consider your movie list sequence again. A for loop
could go through this sequence of movie titles, one at a time, and
print each one. But the best way to understand a for loop is to see
one in action.

Introducing the Loopy String Program

This program takes a word from the user and prints its letters, in
order, on separate lines. Take a look at a sample run in Figure 4.2.

Figure 4.2: A for loop goes through a word the user enters, one
character at a time.

This simple program provides a good example of a for loop. Here's
the code:
Loopy String
Demonstrates the for loop with a string
Michael Dawson - 1/26/03

word = raw_input("Enter a word: ")

print "\nHere's each letter in your word:"
for letter in word:
 print letter

raw_input("\n\nPress the enter key to exit.")

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig121_01_0.jpg

Understanding for Loops

The new idea in this program is the for loop, which is just the
following two short lines:
for letter in word:
 print letter

Even before you know anything about for loops, the code is pretty
clear. But I'll explain exactly how it works. Any string, like the one I
entered, "Loop", is really a sequence. All sequences are made up
of elements. For strings, each element is one character. In this case,
the first element is the character "L", the second is "o", and so on.
Since a for loop goes through a sequence one element at a time,
this loop goes through the letters in "Loop" one at a time. To begin,
letter gets the first character in word, which is "L". Next, the loop
body, which is just the print statement, displays L. Then, letter
gets the next character in word, which is "o". The computer
displays o, and the loop continues until each character in the string
"Loop" is displayed.

IN THE REAL WORLD

Most modern languages offer a form of the for loop. However,
these loops tend to be more restrictive. The loops generally only
allow a counter variable, which must be assigned a number. Then,
the counter changes by the same amount, each time the loop
executes. The ability to loop directly through a sequence makes
the Python for loop more flexible than this other, more traditional
type of loop.

Creating a for Loop

To create a for loop, you can follow the example in the program.
Start with for, followed by a variable for each element, followed by
in, followed by the sequence you want to loop through, followed by
a colon, and finally, the loop body. That's all there is to it.

Counting with a for Loop
When you write a program, you'll often find that you need to count.
And for loops are usually the best way to go. In combination with
the for loop, you can use Python's range() function to count in all
kinds of ways.

Introducing the Counter Program

The Counter program is nothing fancy, but it shows you how to use
the range() function to generate lists of numbers. Paired with a
for loop, you can use the list to count forwards or backwards, or
even to skip numbers if you like. Take a look at Figure 4.3 to see the
results of the program.

Figure 4.3: The range() function and for loop allow you to
count forwards, by fives, and backwards.

Here's the code for the program:
Counter
Demonstrates the range() function
Michael Dawson - 1/26/03

print "Counting:"
for i in range(10):
 print i,

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig123_01_0.jpg

print "\n\nCounting by fives:"
for i in range(0, 50, 5):
 print i,

print "\n\nCounting backwards:"
for i in range(10, 0, -1):
 print i,

raw_input("\n\nPress the enter key to exit.\n")

IN THE REAL WORLD

It's traditional to name generic counter and loop variables i, j, or
k. Normally, you want to create descriptive, clear variable names.
Believe it or not, i, j, and k are clear to experienced
programmers, who know when reading your code that you just
need a quick, counter variable.

Counting Forwards

The first loop in the program counts forwards:
for i in range(10):
 print i,

This for loop works just like the for loop you saw in the Loopy
String program—it loops through a sequence. It just may be hard to
tell what the sequence is. The sequence the loop moves through is
created by the range() function. It creates a sequence of numbers.
Give range() a positive integer and it will create a sequence
starting with 0, up to, but not including, the number you gave it. Take
a look at part of an interactive session I ran with IDLE:

>>> range(5)
[0, 1, 2, 3, 4]
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

TRICK Even experienced programmers sometimes forget the
way a function or a command works. But instead of
guessing, they open an interactive window and
experiment. When they get the results they want, they
jump back to script mode and use what they learned to
continue coding.

Another way to look at this loop is to substitute the results of the
range() function into the code when you read it. So, when you look
at the code, you can imagine that it reads:
for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 print i,

and that the range() function call is replaced with the sequence of
numbers it creates. In fact, this loop is a valid one. You can create a
list of values by enclosing them in brackets, separated by commas.
But don't go off creating a bunch of lists just yet. You'll learn all about
lists in the Chapter 5, "Lists and Dictionaries: The Hangman Game,"
I promise.

Counting by Fives

The next loop counts by fives:
for i in range(0, 50, 5):
 print i,

It does this with a call to range() that creates a list of numbers that
are multiples of 5. To create a sequence of numbers with range(),
you can give it the start point, the end point, and the number by

which to count. Here, the sequence starts at 0, and goes up by 5
each time, to, but not including, 50. I used interactive mode again so
that you can see the exact sequence range(0, 50, 5) produces:
>>> range(0, 50, 5)
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

Notice though that the sequence ends at 45. Remember, 50 is the
end point, so it's not included. If you wanted to include 50, your end
point would have to be greater than 50. So, range(0, 51, 5)
would do the trick.

Counting Backwards

The last loop in the program counts backwards:
for i in range(10, 0, -1):
 print i,

It does this because the last number in the range() call is -1. This
tells the function to go from the start point to the end point by adding
-1 each time. This is the same as saying "subtract 1." Again, the end
point isn't included, so the loop counts from 10 down to 1 and does
not include 0.

TRICK There's no law that says you have to use the loop
variable inside a for loop. You might find that you want
to repeat some action a specific number of times. To do
this, create a for loop and just ignore the loop variable.
For example, let's say I just wanted to print "Hi!" 10
times. The following two lines are all I would need:
for i in range(10):
 print "Hi!"

Using Sequence Operators and Functions
with Strings
As you just learned, strings are one type of sequence, made up of
individual characters. Python offers some useful functions and
operators that work with any kind of sequence, including strings.
These operators and functions can tell you basic but important things
about a sequence, such as how long it is or whether a certain
element is in it.

Introducing the Message Analyzer Program

This next program analyzes any message that you enter. It tells you
how long the message is and whether or not it contains the most
common letter in the English language (the letter "e"). The program
accomplishes this with a new sequence function and sequence
operator. Figure 4.4 shows off the program.

Figure 4.4: This program uses the len() function and the in
operator to produce some information about your
message.

Here's the code for the program:
Message Analyzer
Demonstrates the len() function and the in
operator
Michael Dawson - 1/26/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig126_01_0.jpg

message = raw_input("Enter a message: ")

print "\nThe length of your message is:",
len(message)

print "\nThe most common letter in the English
language, 'e',",
if "e" in message:
 print "is in your message."
else:
 print "is not in your message."

raw_input("\n\nPress the enter key to exit.")

Using the len() Function

After the program imports the random module and gets the user's
message, it prints the message length with
print "\nThe length of your message is:",
len(message)

You can give any sequence you want to len() and it will tell you
that sequence's length. A sequence's length is the number of
elements it has. Since message has 10 characters in it (you count
every character, including the space and exclamation point), it has a
length of 10, just like the computer told you.

Using the in Operator

The letter "e" is the most common letter in English. The program
uses the following lines to test whether "e" is in the message the
user entered:

print "\nThe most common letter in the English
language, 'e',",
if "e" in message:
 print "is in your message."
else:
 print "is not in your message."

The condition in the if statement is "e" in message. If message
contains the character "e", it's true. If message doesn't contain
"e", it's false. In the sample run, the value of message is "Game
Over!", which does contain the character "e". So, the condition
"e" in message evaluated to true and the computer printed "is
in your message." If the condition had been false (for example,
if message had been equal to "Python Programming"), then the
computer would have displayed is not in your message. If an
element is in a sequence, it's said to be a member of the sequence.

You can use in anywhere in your own programs to check if an
element is a member of sequence. Just put the element you want to
check for, followed by in, followed by the sequence. This creates a
condition. If the element is a member, the condition is true; otherwise
it's false.

TRAP The in operator can only check for a single element in a
sequence. In the case of strings, that means it can only
check for a single character. So, if "e" in message is
a valid use of in, but if "Over" in message is not.
Using in to test if more than one letter is in a string will
get you an nice, juicy error.

Indexing Strings
By using a for loop, you're able to go through a string, one
character at a time, in order. This is known as sequential access,
which means you have to go through a sequence one element at a
time, starting from the beginning. Sequential access is like going
through a stack of heavy boxes that you can only lift one at a time.
To get to the bottom box in a stack of five, you'd have to lift the top
box, then the next box, followed by the next box, then one more to
finally get to the last box. Wouldn't it be nice to just grab the last box
without messing with any of the others? This kind of direct access is
called random access. Random access allows you to get to any
element in a sequence directly. Fortunately, there's a way to
randomly access elements of a sequence. It's called indexing.
Through indexing, you specify a position (or index) number in a
sequence and get the element at that position. In the box example,
you could get the bottom box directly, by asking for box number five.

Introducing the Random Access Program

The Random Access program uses sequence indexing to directly
access random characters in a string. The program picks a random
position from the string "index", and prints the letter and the
position number. The program does this 10 times to give a good
sampling of random positions. Figure 4.5 shows the program in
action.

Figure 4.5: You can directly access any character in a string

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig128_01_0.jpg

through indexing.

The following is the code for the program:
Random Access
Demonstrates string indexing
Michael Dawson - 1/27/03

import random

word = "index"
print "The word is: ", word, "\n"

high = len(word)
low = -len(word)
for i in range(10):
 position = random.randrange(low, high)
 print "word[", position, "]\t", word[position]

raw_input("\n\nPress the enter key to exit.")

Working with Positive Position Numbers

In this program, one of the first things I do is assign a string value to
a variable:
word = "index"

Nothing new here. But by doing this, I create a sequence (like every
time I create a string) where each character has a numbered
position. The first letter, "i," is at position 0. (Remember, computers
usually start counting from 0.) The second letter, "n," is at position 1.
The third letter, "d," is at position 2, and so on.

Accessing an individual character of a string is easy. To access the
letter in position 0 from the variable word, you'd just type word[0].

For any other position, you'd just substitute that number. To help
cement the idea, take a look at part of an interactive session I had:
>>> word = "index"
>>> print word[0]
i
>>> print word[1]
n
>>> print word[2]
d
>>> print word[3]
e
>>> print word[4]
x

TRAP Since there are five letters in the string "index", you
might think that the last letter, "x," would be at position 5.
But you'd be wrong. There is no position 5 in this string,
because the computer begins counting at 0. Valid positive
positions are 0, 1, 2, 3, and 4. Any attempt to access a
position 5 will cause an error. Take a look at an interactive
session for proof:
>>> word = "index"
>>> print word[5]
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in ?
 print word[5]
IndexError: string index out of range

Somewhat rudely, the computer is saying there is no
position 5. So remember, the last element in a sequence
is at the position number of its length minus one.

Working with Negative Position Numbers

Except for the idea that the first letter of a string is at position 0 and
not 1, working with positive position numbers seems pretty natural.
But there's also a way to access elements of a sequence through
negative position numbers. With positive position numbers, your
point of reference is the beginning of the sequence. For strings, this
means that the first letter is where you start counting. But with
negative position numbers, you start counting from the end. For
strings, that means you start counting from the last letter and work
backwards.

The best way to understand how negative position numbers work is
to see an example. Take a look at another interactive session I had,
again, using the string "index":
>>> word = "index"
>>> print word[-1]
'x'
>>> print word[-2]
'e'
>>> print word[-3]
'd'
>>> print word[-4]
'n'
>>> print word[-5]
'i'

You can see from this session that word[-1] accesses the last
letter of "index", the "x." When using negative position numbers, -1
means the last element, the index -2 means the second to the last
element, the index -3 means the third to the last element, and so on.
Sometimes it makes more sense for your reference point to be the
end of a sequence. For those times, you can use negative position
numbers.

Figure 4.6 provides a nice way to see the string "index" broken up
by position numbers, both positive and negative.

Figure 4.6: You can access any letter of "index" with a positive
or negative position number.

Accessing a Random String Element

It's time to get back to the Random Access program. To access a
random letter from the "index", I need to generate random
numbers. So, the first thing I did in the program was import the
random module:
import random

Next, I wanted a way to pick any valid position number in word,
negative or positive. I wanted my program to be able to generate a
random number between -5 and 4, inclusive, because those are all
the possible position values of word. Luckily, the
random.randrange() function can take two end points and
produce a random number from between them. So, I created two
end points:
high = len(word)
low = -len(word)

high gets the value 5, because "index" has five characters in it.
The variable low gets the negative value of the length of the word
(that's what putting a minus sign in front of a number does). So low
gets the value of -5. This represents the range from which I want to
grab a random number.

Actually, I want to generate a random number between, and
including, -5 up to, but not including, 5. And that's exactly the way
the random.randrange() function works. If you pass it two

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig131_01_0.jpg

arguments, it will produce a random number from and including the
low end point, up to, but not including, the high end point. So in my
sample run, the line:
 position = random.randrange(low, high)

produces either -5, -4, -3, -2, -1, 0, 1, 2, 3, or 4. This is exactly what I
want, since these are all the possible valid position numbers for the
string "index".

Finally, I created a for loop that executes 10 times. In the loop body,
the program picks a random position value and prints that position
value and corresponding letter:
for i in range(10):
 position = random.randrange(low, high)
 print "word[", position, "]\t", word[position]

Understanding String Immutability
Sequences fall into one of two categories: mutable or immutable.
(Again, more fancy computer jargon.) Mutable means changeable.
So, a sequence that's a mutable sequence is one that can change.
Immutable means unchangeable. So, a sequence that's immutable
is one that can't change. Strings are immutable sequences, which
means that they can't change. So, for example, the string "Game
Over!" will always be the string "Game Over!". You can't change
it. In fact, you can't change any string you create. Now, you might
think, from your experience with strings, that I'm totally wrong on
this. You might even run an interactive session to prove that you can
change a string, maybe something resembling this:
>>> name = "Chris"
>>> print name
Chris
>>> name = "Jackson"
>>> print name
Jackson

You might offer this as proof that you can change a string. After all,
you changed the string "Chris" to "Jackson". But, you didn't
change any strings in this session. You just created two different
strings. First, you created a string "Chris" and assigned it to the
variable name. Then, you created another string, "Jackson", and
assigned it to name. Now, both "Chris" and "Jackson" are great
names, but they're different names and always will be, just as they
are different strings and always will be. Take a look at Figure 4.7 for
a visual representation of what happened in the interactive session.

Figure 4.7: First, name gets the string "Chris", then it gets a
different string, "Jackson". But no string values ever
change.

Another way to think about this is to imagine that strings are written
in ink on pieces of paper. You can throw out a piece of paper with a
string on it and replace it with another piece of paper with a new
string on it, but you can't change the words once they've been
written.

You might think this is much ado about nothing. So what if a string is
immutable? But string immutability does have consequences. Since
you can't change a string, you can't assign a new character to a
string through indexing. Here's an interactive session to show you
what I mean:
>>> word = "game"
>>> word[0] = "l"
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in ?
 word[0] = "l"
TypeError: object doesn't support item assignment

In this session, I wanted to change the string "game" to the string
"lame" (obviously, I didn't much like the game I was referring to). All
I needed to do was change the letter "g" to an "l." So I just assigned
"l" to the first position in the string, word[0]. But as you can see,
this resulted in a big, fat error. The interpreter even tells me that
strings don't support item assignment (you can't assign a new value
to a character in a string).

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig133_01_0.jpg

But, just because you can't alter a string doesn't mean you can't
create new strings from existing ones.

Building a New String
You've already seen how you can concatenate two strings with the +
operator. Sometimes, you may want to build a new string, one
character at a time. Since strings are immutable, what you'll really be
doing is creating a new string every time you use the concatenation
operator.

Introducing the No Vowels Program

This next program, No Vowels, takes a message from the user and
prints it, minus any vowels. Figure 4.8 shows the program in action.

Figure 4.8: Using a for loop, new strings are created. The
program skips the concatenation operation for any
vowels.

The program creates a new string of the original message, without
the vowels. Really what it does is create a series of new strings.
Here's the code:
No Vowels
Demonstrates creating new strings with a for
loop
Michael Dawson - 1/27/03

message = raw_input("Enter a message: ")
new_message = ""

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig134_01_0.jpg

VOWELS = "aeiou"

print
for letter in message:
 if letter.lower() not in VOWELS:
 new_message += letter
 print "A new string has been created:",
new_message

print "\nYour message without vowels is:",
new_message

raw_input("\n\nPress the enter key to exit.")

Creating Constants

After the program gets the message from the user and creates an
empty new message, it creates a string:
VOWELS = "aeiou"

This variable, VOWELS, is assigned a string of all the vowels. You
probably notice that the variable name is in all caps, contrary to what
you have learned: that, traditionally, variable names are in
lowercase. Well, I haven't veered from tradition here. In fact, there's
a special meaning associated with variable names in all caps.
They're called constants and refer to a value that is not meant to
change (their value is constant).

Constants are valuable to programmers in two ways. First, they
make programs clearer. In this program, I can use the variable name
VOWELS anywhere I need the sequence of vowels, instead of the
string "aeiou". Using the variable name instead of the string is
clearer. When you see the variable name, you understand what it
means, but you might be confused by seeing the odd-looking string

itself. Second, constants save retyping (and possibly errors from
mistyping). Constants are especially useful if you have a long value,
like a very long number or string. Use a constant in programs where
you have the same, unchanging value used in multiple places.

TRAP You have to be careful when you create constants by
making an all-caps variable name. Even though you're
saying to yourself and other programmers that this
variable will always refer to the same value, there's
nothing in Python that will stop you from changing it in
your program. This naming practice is simply a
convention. So, once you create a variable with a name
in all caps, make sure to treat it as unchangeable.

IN THE REAL WORLD

In some programming languages, constants are exactly that. They
can't be changed once they're defined. That's the safest way to
create and use constants. In Python, though, there isn't a simple
way to create true constants of your own.

Creating New Strings from Existing Ones

The real work of the program happens in the loop. The program
creates a new message, without any vowels, as the loop runs. Each
time through, the computer checks the next letter in the original
message. If it's not a vowel, it adds this letter to the new message it's
creating. If it is a vowel, the program moves on to the next letter. You
know that a program can't literally add a character to a string, so,
more precisely, when the program comes across a character that's
not a vowel, it concatenates the new message it has so far with this
character. The code that accomplishes this is:
for letter in message:
 if letter.lower() not in VOWELS:

 new_message += letter
 print "A new string has been created:",
new_message

There are two new ideas in the loop, so let me go over both of them.
First, Python is picky when dealing with strings and characters. "A"
is not the same as "a". Since VOWELS is assigned a string that
contains only lowercase letters, I needed to make sure that I
checked only lowercase letters when using the in operator. That's
why I used letter.lower().

TRICK Often, when you compare two strings, you don't care
about the case matching, only the letters. If you ask a
player if he or she wants to continue a game, the string
"Yes" is as good as the string "yes". Well, in these
instances, just make sure to convert both strings to the
same case (upper- or lowercase, it doesn't matter)
before you compare them.

Here's an example. Let's say I want to compare two
strings, name and winner, to see if they are equal, and I
don't care about matching the case. I could create the
condition:
name.lower() == winner.lower()

This condition is true whenever name and winner each
have the same sequence of characters, regardless of
case. So, "Larry" and "larry" is a match. "LARRY"
and "larry" is too. Even "LaRrY" and "lArRy"
works.

Second, you also might notice that I used the augmented
assignment operator, +=, in the program for string concatenation.
You saw the augmented assignment operators with numbers, but
they also work with strings. So, this line:
 new_message += letter

is exactly the same as
 new_message = new_message + letter

Slicing Strings
Indexing is a useful technique, but you aren't restricted to copying
just one element at a time from a sequence. You can make copies of
continuous sections of elements (called slices). You can copy (or
slice) one element (just like indexing) or part of a sequence (like,
say, the middle three elements). You can even create a slice that is a
copy of the entire sequence. So, for strings, that means you can
grab anything ranging from a single character, to a group of
consecutive characters, to the entire string.

Introducing the Pizza Slicer Program

The Pizza Slicer program lets you slice the string "pizza" any way
you want. It's a great, interactive way to help you understand slicing.
All you do is enter the starting and ending positions of the slice, and
the program displays the results. Figure 4.9 shows off the program.

Figure 4.9: Fresh, hot slices of "pizza", made just the way you
asked. The program also offers a "cheat sheet" so you can
visualize how a slice will be created.

Here's the code:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig137_01_0.jpg

Pizza Slicer
Demonstrates string slicing
Michael Dawson - 1/27/03

word = "pizza"

print \
"""
 Slicing 'Cheat Sheet'
0 1 2 3 4 5
+—--+—--+—--+—--+-—-+
| p | i | z | z | a |
+—-+—-+—-+—-+—-+
-5 -4 -3 -2 -1

"""

print "Enter the beginning and ending index for
your slice of 'pizza'."
print "Press the enter key at 'Begin' to exit."

begin = None
while begin != "":
 begin = (raw_input("\nBegin: "))

 if begin:
 begin = int(begin)

 end = int(raw_input("End: "))

 print "word[", begin, ":", end, "]\t\t",
 print word[begin:end]

raw_input("\n\nPress the enter key to exit.")

Introducing None

Before you get to the code about slicing, take a look at this line
which introduces a new idea:
begin = None

The line assigns a special value, called None, to begin. None is
Python's way of representing nothing. None makes a good
placeholder for a value. It also evaluates to false when treated as a
condition. I used it here because I wanted to initialize begin for use
in the while loop condition.

Understanding Slicing

Creating a slice is similar to indexing. But instead of using a single
position number, you supply a starting position and ending position.
Every element between the two points becomes part of the slice.
Figure 4.10 shows a way to look at slicing end point numbers for the
string "pizza". Notice that it's a slightly different numbering system
than the index numbering in Figure 4.6.

Figure 4.10: An example of slicing end point numbers for the
string "pizza". You can use any combination of positive and
negative end points for your slice.

To specify the end points of a slice, include both in brackets,
separated by a colon. Here's a quick interactive session to show you
what I mean:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig139_01_0.jpg

>>> word = "pizza"
>>> print word[0:5]
pizza
>>> print word[1:3]
iz
>>> print word[-4:-2]
iz
>>> print word[-4:3]
iz

word[0:5] returns the entire string because all its characters are
between those two end points. word[1:3] returns the string "iz"
because those two characters are between the end points. Just like
with indexing, you can use negative numbers. word[-4:-2] also
produces the string "iz" because those characters are between the
two negative positions. You can also mix and match positive and
negative end points. This works just like creating any other slice; the
elements between the two position numbers will be in the slice. So,
word[-4:3] also produces the string "iz", because they are the
two characters between those two end points.

TRAP If you create an "impossible" slice, where the starting
point is bigger than the ending point, like word[2:1],
you won't cause an error. Instead, Python will quietly
return an empty sequence. For strings, that means you'll
get the empty string. So be careful, because this is
probably not the kind of result you're after.

Creating Slices

Inside the loop of program Pizza Slicer, the program prints the
syntax for creating a slice based on the beginning and ending
positions the user entered, through the following line:
 print "word[", begin, ":", end, "]\t\t",

Then, the program prints the actual slice using the variables begin
and end:
 print word[begin:end]

Using Slicing Shorthand

Although you can get every possible slice by specifying two
numbers, there are a few slicing shortcuts you can use. You can omit
the beginning point for the slice to start the slice at the beginning of
the sequence. So, given that word has been assigned "pizza", the
slice word[:4] is exactly the same as word[0:4]. You can omit
the ending point so that the slice ends with the very last element. So,
word[2:] is just shorthand for word[2:5]. You can even omit both
numbers to get a slice that is the entire sequence. So, word[:] is
shorthand for word[0:5].

Here's an interactive session to back up this proposition:
>>> word = "pizza"
>>> word[0:4]
'pizz'
>>> word[:4]
'pizz'
>>> word[2:5]
'zza'
>>> word[2:]
'zza'
>>> word[0:5]
'pizza'
>>> word[:]
'pizza'

TRICK If there's one bit of slicing shorthand you should
remember, it's that [:] returns a complete copy of a

sequence. As you program, you'll find you may need to
make a copy of a sequence, and this is a quick and
efficient way to do just that.

Creating Tuples
Tuples are a type of sequence, like strings. But unlike strings, which
can only contain characters, tuples can contain elements of any
type. That means you can have a tuple that stores a bunch of high
scores for a game, or one that stores a group of employee names.
But tuple elements don't have to all be of the same type. You could
create a tuple with both strings and numbers, if you wanted. And you
don't have to stop at strings and numbers. You can create a tuple
that contains a sequence of graphic images, sound files, or even a
group of aliens (once you learn how to create these things, which
you will in later chapters). Whatever you can assign to a variable,
you can group together and store as a sequence in a tuple.

Introducing the Hero's Inventory Program

Hero's Inventory maintains the inventory of a hero from a typical
role-playing game. Like most role-playing games ever created, the
hero is from a small, insignificant village. His father was, of course,
killed by an evil warlord (What's a quest without a dead father?). And
now that the hero has come of age, it's time for him to seek his
revenge.

In this program, the hero's inventory is represented by a tuple. The
tuple contains strings, one for each item in the hero's possession.
The hero starts out with nothing, but then I give him a few items.
Figure 4.11 shows the humble beginnings of our hero's journey.

Figure 4.11: At first, the hero has no items in his inventory. Then,
the program creates a new tuple with string elements and our
hero is stocked.

Here's the code for the program:
Hero's Inventory
Demonstrates tuple creation
Michael Dawson - 1/29/03

create an empty tuple
inventory = ()

treat the tuple as a condition
if not inventory:
 print "You are empty-handed."

raw_input("\nPress the enter key to continue.")

create a tuple with some items
inventory = ("sword",
 "armor",
 "shield",
 "healing potion")

print the tuple
print "\nThe tuple inventory is:\n", inventory

print each element in the tuple

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig141_01_0.jpg

print "\nYour items:"
for item in inventory:
 print item

raw_input("\n\nPress the enter key to exit.")

Creating an Empty Tuple

To create a tuple, you just surround a list of values, separated by
commas, with parentheses. Even a pair of lone parentheses is a
valid (but empty) tuple. I created an empty tuple in the first part of the
program to represent that the hero has nothing:
inventory = ()

It's as simple as that. So in this line, the variable inventory gets an
empty tuple.

Treating a Tuple as a Condition

When you learned about conditions, you saw that you could treat
any value in Python as a condition. That means you can treat a tuple
as a condition, too. And that's what I did in the next lines:
if not inventory:
 print "You are empty-handed."

As a condition, an empty tuple is false. A tuple with at least one
element is true. Since the tuple assigned to inventory is empty, it's
false. That means not inventory is true. So the computer prints
the string, "You are empty-handed.", just as it should.

Creating a Tuple with Elements

An unarmed hero is a boring hero. So next, I created a new tuple
with string elements that represent useful items for our hero. I
assigned this new tuple to inventory with the following:

inventory = ("sword",
 "armor",
 "shield",
 "healing potion")

Each element in the tuple is separated by a comma. That makes the
first element the string "sword", the next "armor", the next
"shield", and the last element "healing potion". So each
string is a single element in this tuple.

Also, notice that the tuple spans multiple lines. You can write a tuple
in one line, or span it across multiple lines like I did, as long as you
end each line after a comma. This is one of the few cases where
Python lets you break up a statement across multiple lines.

TRICK Make your programs easier to read by creating tuples
across multiple lines. You don't have to write exactly one
element per line, though. It might make sense to write
several on a line. Just end each line at one of the
commas separating elements and you'll be fine.

Printing a Tuple

Though a tuple can contain many elements, you can print the entire
tuple just like you would any single value. That's what I did in the
next line:
print "\nThe tuple inventory is:\n", inventory

The computer displays all of the elements, surrounded by
parentheses.

Looping Through a Tuple's Elements

Finally, I wrote a for loop to march through the elements in
inventory and print each one individually:

print "\nYour items:"
for item in inventory:
 print item

This loop prints each element (each string) in inventory on a
separate line. This loop looks just like the ones you've seen with
strings. In fact, you can use this kind of loop to go through the
elements of any sequence.

Even though I created a tuple where all the elements are of the
same type (strings in this case), tuples don't have to be filled with
values of the same type. A single tuple can just as easily contain
strings, integers, and floating-point numbers, for example.

TRAP Other programming languages offer structures similar to
tuples. Some go by the name "arrays" or "vectors."
However, those other languages usually restrict the
elements of these sequences to just one type. So, for
example, you couldn't mix strings and numbers together.
Just be aware that these other structures don't usually
offer all the flexibility that Python sequences do.

Using Tuples
Since tuples are simply another kind of sequence, everything you
learned about sequences from strings works with tuples. You can get
the length of a tuple, print each element with a for loop, and use the
in operator to test if an element is in a tuple. You can index, slice,
and concatenate tuples, too.

Introducing the Hero's Inventory 2.0

Our hero's journey continues. In this program, his inventory is
counted, tested, indexed, and sliced. Our hero will also happen upon
a chest with items in it (represented by another tuple). Through tuple
concatenation, our hero's inventory will be replaced with all of his
current items plus the treasure he finds in the chest. Figure 4.12
shows a sample run of the program.

Figure 4.12: The hero's inventory is a tuple, which means it can
be counted, indexed, sliced, and even concatenated with another
tuple.

Since this program is a little long, I'll go through the code one section
at a time rather than show you the whole thing at once. But check
out the CD to see the program in its entirety.

Setting Up the Program

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig145_01_0.jpg

The first part of the program works just like it did in the previous
program, Hero's Inventory. These lines create a tuple and print out
each element:
Hero's Inventory 2.0
Demonstrates tuples
Michael Dawson - 1/29/03

create a tuple with some items and display with
a for loop
inventory = ("sword",
 "armor",
 "shield",
 "healing potion")
print "Your items:"
for item in inventory:
 print item

raw_input("\nPress the enter key to continue.")

Using the len() Function with Tuples

The len() function works with tuples just the way it does with
strings. If you want to know the length of a tuple, place it inside the
parentheses. The function returns the number of elements in the
tuple. Empty tuples, or any empty sequences for that matter, have a
length of 0. The following lines use the len() function with the
tuple:
get the length of a tuple
print "You have", len(inventory), "items in your
possession."

raw_input("\nPress the enter key to continue.")

Since this tuple has four elements (the four strings: "sword",
"armor", "shield", and "healing potion"), the message You
have 4 items in your possession. is displayed.

TRAP Notice that in the tuple inventory, the string "healing
potion" is counted as a single element, even though it's
two words. A single string is always considered one
element in a tuple, no matter how many individual words
are in it.

Using the in Operator with Tuples

Just like with strings, you can use the in operator with tuples to test
for element membership. And, just like before, the in operator is
usually used to create a condition. That's how I used it here:
test for membership with in
if "healing potion" in inventory:
 print "You will live to fight another day."

The condition "healing potion" in inventory tests if the
entire string "healing potion" is an element in inventory.
Since it is, the message You will live to fight another
day. is displayed.

Indexing Tuples

Indexing tuples works like indexing strings. You specify a position
number, in brackets, to access a particular element. In the following
lines, I let the user choose the index number and then the computer
displays the corresponding element:
display one item through an index
index = int(raw_input("\nEnter the index number
for an item in inventory: "))

print "At index", index, "is", inventory[index]

Figure 4.13 shows this tuple with index numbers.

Figure 4.13: Each string is a single element in the
tuple.

Slicing Tuples

Slicing works just like you saw with strings. You give a beginning and
ending position. The result is a tuple containing every element
between those two positions.

Just as in the Pizza Slicer program from earlier in this chapter, I let
the user pick the beginning and ending position numbers. Then, like
before, the program displays the slice:
display a slice
begin = int(raw_input("\nEnter the index number to
begin a slice: "))
end = int(raw_input("Enter the index number to end
the slice: "))
print "inventory[", begin, ":", end, "]\t\t",
print inventory[begin:end]

raw_input("\nPress the enter key to continue.")

Using this tuple as an example, Figure 4.14 provides a visual way to
understand tuple slicing.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig147_01_0.jpg

Figure 4.14: Slicing positions for tuples are defined between
elements, just as they are for strings.

Understanding Tuple Immutability

Like strings, tuples are immutable. That means you can't change a
tuple. Here's an interactive session to prove my point:
>>> inventory = ("sword", "armor", "shield",
"healing potion")
>>> print inventory
('sword', 'armor', 'shield', 'healing potion')
>>> inventory[0] = "battleax"
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 inventory[0] = "battleax"
TypeError: object doesn't support item assignment

Although you can't change tuples, like strings, you can create new
tuples from existing ones.

Concatenating Tuples

You can concatenate tuples the same way you concatenate strings.
You simply join them together with +, the concatenation operator:
concatenate two tuples
chest = ("gold", "gems")
print "You find a chest. It contains:"
print chest

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig147_02_0.jpg

print "You add the contents of the chest to your
inventory."
inventory += chest
print "Your inventory is now:"
print inventory

raw_input("\n\nPress the enter key to exit.")

The first thing I did was create a new tuple, chest, with the two
string elements "gold" and "gems". Next, I printed chest to show
its elements. After that, I used an augmented assignment operator to
concatenate inventory with chest and assign the result back to
inventory. I did not modify the original tuple assigned to
inventory (since that's impossible, because tuples are immutable).
Instead, the augmented assignment operator created a brand-new
tuple with the elements from inventory and chest and assigned
that to inventory.

Back to the Word Jumble Game
The Word Jumble game combines several new ideas you learned
about in this chapter. You can easily modify the program to contain
your own list of words to guess.

Setting Up the Program

After my initial comments, I import the random module:
Word Jumble

The computer picks a random word and then
"jumbles" it
The player has to guess the original word

Michael Dawson - 1/28/03

import random

Next, I used a tuple to create a sequence of words. Notice that the
variable name WORD is in all caps, implying that I'll treat it as a
constant.
create a sequence of words to choose from
WORDS = ("python", "jumble", "easy", "difficult",
"answer", "xylophone")

Next, I use a new function, random.choice(), to grab a random
word from WORDS:
pick one word randomly from the sequence
word = random.choice(WORDS)

This function is new to you, but it's pretty simple. The computer looks
at whatever sequence you give and picks a random element.

Once the computer has chosen a random word, it assigns it to word.
This is the word the player will have to guess. Lastly, I assign word
to correct, which I'll use later to see if the player makes a correct
guess:
create a variable to use later to see if the
guess is correct
correct = word

Planning the Jumble Creation Section

The next section of code uses the new concepts in the chapter and
is the most interesting part of the program. It's the section that
actually creates the jumbled word from the original, randomly chosen
word.

But, before I wrote any code, I planned out this part of the program in
pseudocode (yes, I actually use all that stuff I write about). Here's my
first pass at the algorithm to create a jumbled word from the chosen
word:
create an empty jumble word
while the chosen word has letters in it
 extract a random letter from the chosen word
 add the random letter to the jumble word

Conceptually, this is pretty good, but I have to watch my semantics.
Because strings are immutable, I can't actually "extract a random
letter" from the string the user entered. But, I can create a new string
that doesn't contain the randomly chosen letter. And while I can't
"add the random letter" to the jumble word string either, I can create
a new string by concatenating the current jumble word with the
"extracted" letter.

Creating an Empty Jumble String

The very first part of the algorithm is easy:

create a jumbled version of the word
jumble =""

The program creates the empty string and assigns it to jumble,
which will refer to the final, jumbled word.

Setting Up the Loop

The jumble creation process is controlled by a while loop. The loop
condition is pretty simple, as you can see:
while word:

I set the loop up this way so that it will continue until word is equal to
the empty string. This is perfect, because each time the loop
executes, the computer creates a new version of word with one
letter "extracted" and assigns it back to word. Eventually, word will
become the empty string and the jumbling will be done.

Generating a Random Position in word

The first line in the loop body generates a random position in word,
based on its length:
 position = random.randrange(len(word))

So, the letter word[position] is the letter that is going to be
"extracted" from word and "added to" jumble.

Creating a New Version of jumble

The next line in the loop creates a new version of the string jumble.
It becomes equal to its old self, plus the letter word[position].
 jumble += word[position]

Creating a New Version of word

The next line in the loop,
 word = word[:position] + word[(position + 1):]

creates a new version of word minus the one letter at position
position. Using slicing, the computer creates two new strings from
word. The first slice, word[:position], is every letter up to, but
not including, word[position]. The next slice, word[(position
+ 1):], is every letter after word[position]. These two string
are joined together and assigned to word, which is now equal to its
old self, minus the one letter word[position].

Welcoming the Player

After the jumbled word has been created, the next section of the
program welcomes the player to the game and displays the jumbled
word to be rearranged:
start the game
print \
"""
 Welcome to Word Jumble!

 Unscramble the letters to make a word.
(Press the enter key at the prompt to quit.)
"""
print "The jumble is:", jumble

Getting the Player's Guess

Next, the computer gets the player's guess. The computer keeps
asking the player for a guess as long as the player doesn't enter the
correct word or presses the Enter key at the prompt:
guess = raw_input("\nYour guess: ")
guess = guess.lower()

while (guess != correct) and (guess != ""):
 print "Sorry, that's not it."
 guess = raw_input("Your guess: ")
 guess = guess.lower()

I made sure to convert guess to lowercase since the word the player
is trying to guess is in lowercase.

Congratulating the Player

At this point in the program, the player has either correctly guessed
the word or quit the game. If the player has guessed the word, then
the computer offers its hearty congratulations:
if guess == correct:
 print "That's it! You guessed it!\n"

Ending the Game

Finally, the program thanks the player for playing the game and
ends:
print "Thanks for playing."

raw_input("\n\nPress the enter key to exit.")

Summary
In this chapter, you learned about the concept of sequences. You
saw how to create a sequence of numbers with the range()
function. You saw how strings are really just sequences of
characters. You learned about tuples, which let you organize a
sequence of any type. You saw how to go through the elements of a
sequence with a for loop. You learned how to get the length of a
sequence and how to check if an element is a member of a
sequence. You saw how to copy pieces of a sequence through
indexing and slicing. You learned about immutability and some of the
limitations it places on you. But you also saw how to create new
sequences from existing ones through concatenation, in spite of this
immutability. Finally, you put everything together to create a
challenging word jumble game.

Challenges
1. Write a program that counts for the user. Let the user enter

the starting number, the ending number, and the amount by
which to count.

2. Create a program that gets a message from the user and
then prints it out backwards.

3. Improve "Word Jumble" so that each word is paired with a
hint. The player should be able to see the hint if he or she
is stuck. Add a scoring system that rewards players who
solve a jumble without asking for the hint.

4. Create a game where the computer picks a random word
and the player has to guess that word. The computer tells
the player how many letters are in the word. Then the
player gets five chances to ask if a letter is in the word. The
computer can only respond with "yes" or "no". Then, the
player must guess the word.

Chapter 5: Lists and Dictionaries: The
Hangman Game

 Download CD Content

Overview
Tuples are a great way to work with sequences of any type, but their
immutability can be limiting. Fortunately, another sequence type,
called lists, do everything that tuples can, plus more. That's because
lists are mutable. Elements can be added or removed from a list. You
can even sort or reverse an entire list. You'll also be introduced to
another type, dictionaries. Whereas lists work with sequences of
information, dictionaries work with pairs of data. Dictionaries, like
their real-life counterparts, let you look up one value with another.
Specifically in this chapter, you'll learn to do the following:

Create, index, and slice a list

Add and delete elements from a list

Use list methods to append, sort, and reverse a list

Use nested sequences to represent even more complex
information

Use dictionaries to work with pairs of data

Add and delete dictionary items

Introducing the Hangman Game
The project for this chapter is the game of hangman. The computer
picks a secret word and the player has to try to guess it, one letter at
a time. Each time the player makes an incorrect guess, the computer
shows a new image of a figure being hanged. If the player doesn't
guess the word in time, the stick figure is a goner. Figures 5.1
through 5.3 show off the game in all its glory.

Figure 5.1: The "Hangman" game in action. Hmm . . . I wonder
what the word could be.

Figure 5.2: I won this game!

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig156_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig156_02_0.jpg

Figure 5.3: This game ended badly, especially for the little guy
made of text.

Not only is this game fun, but by the end of the chapter, you'll know
how to create your own version. You can have a personalized group
of secret words, and even update my marginally adequate artwork.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig157_01_0.jpg

Using Lists
Lists are sequences, just like tuples, but lists are mutable. They can
be modified. So, lists can do everything tuples can, plus more. Lists
work just like tuples, so everything you learned about tuples is
applicable to lists, which makes learning to use them a snap.

Introducing the Hero's Inventory 3.0 Program

This program is based on the Hero's Inventory 2.0 program,
introduced in Chapter 4, section "Creating Tuples." But instead of
using tuples to store the hero's inventory, this program uses lists.
The first part of Hero's Inventory 3.0 creates the same results as
version 2.0. In fact, the code is almost exactly the same. The only
difference is that it uses lists instead of tuples. Figure 5.4 shows off
the results of the first part of the program. The second part of the
program takes advantage of the mutability of lists and does some
brand-new things with sequences. Figure 5.5 shows that part in
action.

Figure 5.4: The hero's inventory is now represented by a list. The
results look almost exactly the same as when the inventory was
represented by a tuple in Hero's Inventory 2.0.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig158_01_0.jpg

Figure 5.5: Since the hero's inventory is represented by a list,
items can be added, modified, and deleted.

Creating a List

The first line of the program creates a new list, assigns it to
inventory, and prints each element. The last line waits for the user
before continuing. This works almost exactly like it did in Hero's
Inventory 2.0. The only difference is that I surrounded the elements
with square brackets instead of parentheses, to create a list instead
of a tuple.
Hero's Inventory
Demonstrates lists
Michael Dawson - 1/29/03

create a list with some items and display with a
for loop
inventory = ["sword", "armor", "shield", "healing
potion"]
print "Your items:"
for item in inventory:
 print item

raw_input("\nPress the enter key to continue.")

Using the len() Function with Lists

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig158_02_0.jpg

The following code is exactly the same as the corresponding code in
Hero's Inventory 2.0:
get the length of a list
print "You have", len(inventory), "items in your
possession."

raw_input("\nPress the enter key to continue.")

Using the in Operator with Lists

Again, the code for this section is exactly the same as in the older
version. The in operator works the same with lists as it does with
tuples.
test for membership with in
if "healing potion" in inventory:
 print "You will live to fight another day."

Indexing Lists

Once again, the code is exactly the same as it was with tuples.
Indexing a list is the same as indexing a tuple: just supply the
position number of the element you're after in brackets.
display one item through an index
index = int(raw_input("\nEnter the index number
for an item in inventory: "))
print "At index", index, "is", inventory[index]

Slicing Lists

Would you believe that slicing a list is exactly the same as slicing a
tuple? Again, you just supply the two end points, separated by a
colon, in brackets:
display a slice
begin = int(raw_input("\nEnter the index number to

begin a slice: "))
end = int(raw_input("Enter the index number to end
the slice: "))
print "inventory[", begin, ":", end, "]\t\t",
print inventory[begin:end]

raw_input("\nPress the enter key to continue.")

Concatenating Lists

Concatenating lists works the same way concatenating tuples does.
The only real difference here is that I created a list (rather than a
tuple) and assigned it to chest. This is a small but important
difference, because you can only concatenate sequences of the
same type.
concatenate two lists
chest = ["gold", "gems"]
print "You find a chest which contains:"
print chest
print "You add the contents of the chest to your
inventory."
inventory += chest
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

Understanding List Mutability

At this point, you may be getting a bit tired of reading the phrase
"works exactly the same as it did with tuples." So far, with the
exception of using brackets instead of parentheses, lists seem no
different than tuples. But there is one huge difference between them.
Lists are mutable. They can change. This makes lists the most

powerful and flexible sequence type at your disposal. Since lists are
mutable, there are many things you can do with them that you can't
do with tuples.

Assigning a New List Element by Index

Because lists are mutable, you can assign an existing element a new
value:
assign by index
print "You trade your sword for a crossbow."
inventory[0] = "crossbow"
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

The following line assigns the string "crossbow" to the element in
inventory at position 0:
inventory[0] = "crossbow"

The new string replaces the previous value (which was "sword").
You can see the results when the print statement displays the new
version of inventory.

TRAP You can assign an existing list element a new value with
indexing, but you can't create a new element in this way.
An attempt to assign a value to a nonexistent element will
result in an error.

Assigning a New List Slice

In addition to assigning a new value to a single element, you can
assign a new value to a slice. I assigned the list ["orb of future
telling"] to the slice inventory[4:6]:

assign by slice
print "You use your gold and gems to buy an orb of
future telling."
inventory[4:6] = ["orb of future telling"]
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

This assignment statement replaces the two items inventory[4]
and inventory[5] with the string "orb of future telling".
Because I assigned a list with one element to a slice with two
elements, the length of the list shrunk by one.

Deleting a List Element

You can delete an element from a list with the del command. Just
designate the element after the del command:
delete an element
print "In a great battle, your shield is
destroyed."
del inventory[2]
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

After this code executes, the element that was at position number 2,
the string "shield", is removed from inventory. Deleting an
element doesn't create a gap in a sequence. All the elements after
the deleted one "slide down" one position. So, in this case, there is
still an element in position 2, it's just the element that was at position
3.

Deleting a List Slice

You can also delete a slice from a list:
delete a slice
print "Your crossbow and armor are stolen by
thieves."
del inventory[:2]
print "Your inventory is now:"
print inventory

raw_input("\n\nPress the enter key to exit.")

The following line removes the slice inventory[:2], which is
["crossbow", "armor"], from inventory:
del inventory[:2]

Just as with deleting an element, the remaining elements form a
new, continuous list, starting from position 0.

Using List Methods
Lists have methods that allow you to manipulate them. Through list
methods, you can add an element, remove an element based on its
value, sort a list, and even reverse the order of a list.

Introducing the High Scores Program

The High Scores program uses list methods to create and maintain a
list of the user's best scores for a computer game. The program uses
a simple, menu-driven interface. The user has a few choices. He or
she can add a new score, delete a score, sort the scores, or quit the
program. Figure 5.6 shows the program in action.

Figure 5.6: The user chooses from a menu to maintain the high
scores list. Behind the scenes, list methods do the bulk of the
work.

Setting Up the Program

The setup code for the program is pretty simple. After the initial
comments, I create two variables. scores is a list that will contain
the scores. I set it to an empty list to start out. choice represents
the user's choice from the menu. I initialized it to None.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig163_01_0.jpg

High Scores
Demonstrates list methods
Michael Dawson - 1/30/03

scores = []
choice = None

Displaying the Menu

The while loop is the bulk of the program. It continues until the user
enters 0. The rest of this code prints the menu and gets the user's
choice:
while choice != "0":

 print \
 """
 High Scores Keeper

 0 - Exit
 1 - Show Scores
 2 - Add a Score
 3 - Delete a Score
 4 - Sort Scores
 """

 choice = raw_input("Choice: ")
 print

Exiting the Program

I first check if the user wants to quit. If the user enters 0, the
computer says "Good-bye.":
 # exit
 if choice == "0":
 print "Good-bye."

If the user enters 0, then the while loop's condition will be false the
next time it's tested. The loop will end and so will the program.

Displaying the Scores

If the user enters 1, then this elif block executes and the computer
displays the scores:
 # list high-score table
 elif choice == "1":
 print "High Scores"
 for score in scores:
 print score

Adding a Score with the append() Function

If the user enters 2, the computer asks the user for a new score and
assigns it to score. The last line appends this new number to
scores, which means it tacks it on to the end of the list. The list
becomes one element longer.
 # add a score
 elif choice == "2":
 score = int(raw_input("What score did you
get?: "))
 scores.append(score)

Removing a Score with the remove() Function

When the user enters 3, the computer gets a score from the user to
remove. If the score is in the list, the computer removes the first
occurrence of it. If the score isn't in the list, the user is informed.
 # delete a score
 elif choice == "3":
 score = int(raw_input("Delete which

score?: "))
 if score in scores:
 scores.remove(score)
 else:
 print score, "isn't in the high scores
list."

The computer first checks to see if the score is in the list. If so, the
computer goes through the list, starting at position 0, and searches
for the score. When it finds the score, that element is deleted. If the
score is in the list more than once, only the first occurrence is
removed. You can see how this is different from the del command.
The remove() function doesn't delete an element based on a
position, but rather on a value. If the score wasn't found in the list,
the user is informed.

TRAP Watch out when you use the remove() method. If you
try to remove a value that isn't in a list, you'll generate an
error.

Sorting the Scores with the sort() Function

The scores in the list are in the exact order the user entered them.
Normally, you want a high score list to be sorted with the highest
scores at the top. To sort the scores, all the user has to do is enter 4:
 # sort scores
 elif choice == "4":
 scores.sort()

The sort() method sorts the elements in the list. This is great,
except that with sort(), you end up with the list in ascending order,
where the smallest values are first. But what I want is the largest
numbers first. I need the reverse of this.

Reversing the Scores with the reverse() Function

Luckily, there's a reverse() method for lists. It just reverses the list
order. This is exactly what I need so that the highest scores will be at
the beginning of the list. Before the elif block ends, I use the
reverse() method, like so:
 scores.reverse() # want the highest
number first

Now, all the scores are in order, from largest to smallest. Perfect.

Dealing with an Invalid Choice

If the user enters a number that isn't a valid choice, the else clause
catches it. The program lets the user know that the choice isn't
understood.
 # some unknown choice
 else:
 print "Sorry, but", choice, "isn't a valid
choice."

Waiting for the User

After the user enters 0 to exit, the loop ends. As always, the program
waits for the user:
raw_input("\n\nPress the enter key to exit.")

You've seen a bunch of useful list methods in action. To get a
summary of these methods (plus a few more), take a look at Table
5.1.

Table 5.1: SELECTED LIST METHODS

Method Description

append(value) Adds value to end of a list.

sort() Sorts the elements, smallest value first.

Method Description

reverse() Reverses the order of a list.

count(value) Returns the number of occurrences of value.

index(value) Returns the first position number of where
value occurs.

insert(i,
value) Inserts value at position i.

pop([i])

Returns value at position i and removes
value from the list. Providing the position
number i is optional. Without it, the last
element in the list is removed and returned.

remove(value) Removes the first occurrence of value from
the list.

Understanding When to Use Tuples Instead
of Lists
At this point, you may be thinking, "Why use tuples at all?" It's true
that lists can do everything tuples can, plus more. But don't be so
quick to dismiss tuples. There is a place for them in your Python
programming world. There are a few occasions where tuples make
more sense than lists.

Tuples are faster than lists. Because the computer knows
they won't change, tuples can be stored in a way that makes
using them faster than using lists. For simple programs, this
speed difference won't matter, but in more complex
applications, with very large sequences of information, it
could.

Tuples' immutability makes them perfect for creating
constants since they can't change. Using tuples can add a
level of safety and clarity to your code.

Sometimes tuples are required. In some cases, Python
requires immutable values. Okay, you haven't actually seen
any of those cases yet, but there is a common situation you'll
see when you learn about dictionaries, later in this chapter.
Dictionaries require immutable types, so tuples will be
essential when creating some kinds of dictionaries.

But, because lists are so flexible, you're probably best off using them
over tuples in most cases.

Using Nested Sequences
Before, I said that lists or tuples can be sequences of anything. If
that's true, then lists can contain other lists or tuples, and tuples can
contain other tuples or lists. Well, they can, and when they do,
they're called nested sequences. Nested sequences are sequences
inside other sequences. Nested sequences are a great way to
organize more complex collections of information.

Although the term sounds like another cryptic piece of computer
jargon, I bet you create and use nested sequences all the time. Let
me give you an example. Say you're making a holiday shopping list.
You start by making a list of names. Under each name, you list a few
possible gifts. Well, you've just created a nested sequence: you have
a list of names and each name represents a list of gifts. That's all
there is to it.

Introducing the High Scores 2.0 Program

The last program, High Scores, uses only scores. But most high
score lists store a name along with a score. That's what this new
version does. It also has a few other improvements. It automatically
sorts the scores and even limits the list to just the top five. Figure 5.7
shows a sample run.

Figure 5.7: The new and improved version of High Scores stores
a name with a score through nested sequences.

Creating Nested Sequences

You create a nested list or tuple like always: type each element,
followed by a comma. The difference with nested sequences is that
you include entire lists or tuples as elements. Here's an example:
>>> nested = ["first", ("second", "third"),
["fourth", "fifth", "sixth"]]
>>> print nested
['first', ('second', 'third'), ['fourth', 'fifth',
'sixth']]

So, although you see six strings here, nested has only three
elements. The first element is the string "first", the second
element is the tuple ("second", "third"), and the third element
is the list ["fourth", "fifth", "sixth"].

While you can create a list or tuple with any number of lists and
tuples, useful nested sequences often have a consistent pattern.
Take a look at the next example:
>>> scores = [("Moe", 1000), ("Larry", 1500),
("Curly", 3000)]

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig168_01_0.jpg

>>> print scores
[('Moe', 1000), ('Larry', 1500), ('Curly', 3000)]

scores is a list with three elements. Each element is a tuple. Each
tuple has exactly two elements, a string and a number. This kind of
uniform structure makes for the most useful nested sequences.

This sequence, by the way, represents a high score table with
names and scores (like a real high score table should!). In this
particular instance, Moe got a score of 1,000; Larry got 1,500; and
Curly got a high score of 3,000.

TRAP Although you can create nested sequences inside nested
sequences many times over, as in the following example,
this usually isn't a good idea.
nested = ("deep", ("deeper", ("deepest",
"still deepest")))

Things can get confusing fast. Even experienced
programmers rarely use sequences more than a level or
two deep. For most programs you'll write, one level of
nesting (like the scores list you just saw) is really all
you'll need.

Accessing Nested Elements

You access elements of a nested sequence just like any other
sequence, through indexing:
>>> scores = [("Moe", 1000), ("Larry", 1500),
("Curly", 3000)]
>>> print scores[0]
('Moe', 1000)
>>> print scores[1]
('Larry', 1500)
>>> print scores[2]
('Curly', 3000)

Each element is a tuple, so that's exactly what you get when you
access one. But what if you want to access one of the elements of
one of the tuples? One way is to assign the tuple to a variable and
index it, as in:
>>> a_score = scores[2]
>>> print a_score
('Curly', 3000)
>>> print a_score[0]
Curly

But there's a direct way to access "Curly" right from scores:
>>> print scores[2][0]
Curly

By supplying two indices with scores[2][0], you're telling the
computer to go get the element from scores at position 2 (which is
("Curly", 3000)) and then, from that, to get the element at
position 0 (which is "Curly"). You can use this kind of multiple
indexing with nested sequences to get directly to a nested element.

Unpacking a Sequence

If you know how many elements are in a sequence, you can assign
each to its own variable in a single line of code:
>>> name, score = ("Shemp", 175)
>>> print name
Shemp
>>> print score
175

This is called unpacking and works with any sequence type. Just
remember to use the same number of variables as elements in the
sequence, because otherwise you'll generate an error.

Setting Up the Program

Just as in the original High Scores program, I set up the variables
and while loop. As before, if the user enters 0, the computer prints
"Good-bye.":
High Scores 2.0
Demonstrates nested sequences
Michael Dawson - 1/31/03

scores = []

choice = None
while choice != "0":

 print \
 """
 High Scores Keeper
 0 - Quit
 1 - List Scores
 2 - Add a Score
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."

Displaying the Scores by Accessing Nested Tuples

If the user enters 1, the computer goes through each element in
scores and unpacks the score and name into the variables score
and name. Then the computer prints them out.

 # display high-score table
 elif choice == "1":
 print "NAME\tSCORE"
 for entry in scores:
 score, name = entry
 print name, "\t", score

Adding a Score by Appending a Nested Tuple

If the user enters 2, the computer lets the user enter a new score
and name. With these two values, the computer creates a tuple,
entry. I chose to store the score first in this tuple because I wanted
the entries to be sorted by score, then name. Next, the computer
appends this new high score entry to the list. The computer sorts the
list and reverses it so that the highest scores are first. The final
statement slices and assigns the list so that only the top five scores
are kept.
 # add a score
 elif choice == "2":
 name = raw_input("What is the player's
name?: ")
 score = int(raw_input("What score did the
player get?: "))
 entry = (score, name)
 scores.append(entry)
 scores.sort()
 scores.reverse() # want the highest
number first
 scores = scores[:5] # keep only top 5
scores

Dealing with an Invalid Choice

If the user enters something other than 0, 1, or 2, the else clause
catches it. The program lets the user know that the choice wasn't

understood.
 # some unknown choice
 else:
 print "Sorry, but", choice, "isn't a valid
choice."

Waiting for the User

After the user enters 0 to exit, the loop ends and the program waits
for the user:
raw_input("\n\nPress the enter key to exit.")

Understanding Shared References
In Chapter 2, you learned that a variable refers to a value. This
means that, technically, a variable doesn't store a copy of a value,
but just refers to the place in your computer's memory where the
value is stored. For example, language = "Python" stores the
string "Python" in your computer's memory somewhere and then
creates the variable language, which refers to that place in
memory. Take a look at Figure 5.8 for a visual representation.

Figure 5.8: The variable language refers to a place in memory
where the string value "Python" is stored.

To say the variable language stores the string "Python", like a
piece of Tupperware stores a chicken leg, is not accurate. In some
programming languages, this might be a good analogy, but not in
Python. A better way to think about it is like this: A variable refers to
a value the same way a person's name refers to a person. It would
be wrong (and silly) to say that a person's name "stores" the person.
Using a person's name, you can get to a person. Using a variable
name, you can get to a value.

So what does all this mean? Well, for immutable values that you've
been using, like numbers, strings, and tuples, it doesn't mean much.
But it does mean something for mutable values, like lists. When
several variables refer to the same mutable value, they share the
same reference. They all refer to the one, single copy of that value.
And a change to the value through one of the variables results in a
change for all the variables, since there is only one, shared copy to
begin with.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig172_01_0.jpg

Here's an example to show how this works. Suppose that I'm
throwing a hip, happening party with my friends and dignitaries from
around the world. (Hey, this is my book. I can make up any example
I want.) Different people at the party call me by different names, even
though I'm only one person. Let's say that a friend calls me "Mike," a
dignitary calls me "Mr. Dawson," and my Pulitzer Prize winning,
supermodel girlfriend, just back from her literacy, fundraising world-
tour (again, my book, my fictional girlfriend) calls me "Honey." So, all
three people refer to me with different names. This is the same way
that three variables could all refer to the same list. Here's the
beginning of an interactive session to show you what I mean:
>>> mike = ["khakis", "dress shirt", "jacket"]
>>> mr_dawson = mike
>>> honey = mike
>>> print mike
['khakis', 'dress shirt', 'jacket']
>>> print mr_dawson
['khakis', 'dress shirt', 'jacket']
>>> print honey
['khakis', 'dress shirt', 'jacket']

So, all three variables, mike, mr_dawson, and honey, refer to the
same, single list, representing me (or at least what I'm wearing at
this party). Figure 5.9 helps drive this idea home.

Figure 5.9: The variables mike, mr_dawson, and honey all refer
to the same list.

This means that a change to the list using any of these three
variables will change the list they all refer to. Back at the party, let's

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig174_01_0.jpg

say that my girlfriend gets my attention by calling "Honey." She asks
me to change my jacket for a red sweater she knitted (yes, she knits
too). I, of course, do what she asks. In my interactive session, this
could be expressed as follows:
>>> honey[2] = "red sweater"
>>> print honey
['khakis', 'dress shirt', 'red sweater']

The results are what you would expect. The element in position
number 2 of the list referred to by honey is no longer "jacket", but
is now "red sweater".

Now, at the party, if a friend were to get my attention by calling
"Mike" or a dignitary were to call me over with "Mr. Dawson," both
would see me in my red sweater, even though neither had anything
to do with me changing my clothes. The same is true in Python.
Even though I changed the value of the element in position number 2
by using the variable honey, that change is reflected by any variable
that refers to this list. So, to continue my interactive session:
>>> print mike
['khakis', 'dress shirt', 'red sweater']
>>> print mr_dawson
['khakis', 'dress shirt', 'red sweater']

The element in position number 2 of the list referred to by mike and
mr_dawson is "red sweater". It has to be since there's only one
list.

So, the moral of this story is: be aware of shared references when
using mutable values. If you change the value through one variable,
it will be changed for all.

However, you can avoid this effect if you make a copy of a list,
through slicing. For example:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> honey = mike[:]
>>> honey[2] = "red sweater"
>>> print honey
['khakis', 'dress shirt', 'red sweater']
>>> print mike
['khakis', 'dress shirt', 'jacket']

Here, honey is assigned a copy of mike. honey does not refer to
the same list. Instead, it refers to a copy. So, a change to honey has
no effect on mike. It's like I've been cloned. Now, my girlfriend is
dressing my clone in a red sweater, while the original me is still in a
jacket. Okay, this party is getting pretty weird with my clone walking
around in a red sweater that my fictional girlfriend knitted for me, so I
think it's time to end this bizarre yet useful analogy.

One last thing to remember is that sometimes you'll want this
shared-reference effect, while other times you won't. Now that you
understand how it works, you can control it.

Using Dictionaries
By now you probably realize that programmers love to organize
information. You saw that lists and tuples let you organize things into
sequences. Well, dictionaries let you organize information too, but in
a different way. With a dictionary, you don't store information in a
sequence; instead, you store it in pairs. It's a lot like an actual
dictionary where each entry is a pair: a word and its definition. When
you look up a word, you get its definition. Python dictionaries work
the same way: you look up a key and get its value.

Introducing the Geek Translator Program

The high-tech world has created many things that impact our lives,
including a culture of its own. As the result of technology, new words
and concepts have been born. There's a brand-new kind of slang out
there, and the Geek Translator is here to help you understand the
technophile in your life. The program creates a dictionary with geek
terms and definitions. The program not only lets the user look up a
term, but also add a term, replace a definition, and delete a term.
Figure 5.10 illustrates the program.

Figure 5.10: So "uninstalled" means fired. I was totally 404 on
that.

Creating Dictionaries

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig176_01_0.jpg

The first thing I did in the program was create a dictionary of terms
and definitions. The geek terms are on the left, and their definitions
are on the right.
Geek Translator
Demonstrates using dictionaries
Michael Dawson - 2/16/03

geek = {"404" : "Clueless. From the web error
message 404, meaning page not found.",
 "Googling" : "Searching the Internet for
background information on a person.",
 "Keyboard Plaque" : "The collection of
debris found in computer keyboards.",
 "Link Rot" : "The process by which web
page links become obsolete.",
 "Percussive Maintenance" : "The act of
striking an electronic device to make it work.",
 "Uninstalled" : "Being fired. Especially
popular during the dot-bomb era."}

This code creates a dictionary named geek. It consists of six pairs,
called items. As an example, one of the items is "Keyboard
Plaque" : "The collection of debris found in
computer keyboards." Each item is made up of a key and a
value. The keys are on the left side of the colons. The values are on
the right. So, "Keyboard Plaque" is a key, and its value is "The
collection of debris found in computer keyboards."
The key is literally the "key" to getting the value. That means you
could use the key "Keyboard Plaque" to get its value "The
collection of debris found in computer keyboards."

To create your own dictionary, follow the pattern I used. Type a key,
followed by a colon, followed by the key's value. Use commas to
separate all of the key-value pairs, and surround the whole thing with

curly brackets. Like tuples and lists, you can either type the whole
thing on one line or use separate lines after any of the commas.

Accessing Dictionary Values

The most common thing you'll do with a dictionary is use a key to get
its value. There are a few different ways you can do this. I'll show
you an example of each in this section, using the interactive
interpreter.

Using a Key to Retrieve a Value

The simplest way to retrieve a value from a dictionary is by directly
accessing it with a key. To get a key's value, just put the key in
brackets, following the name of the dictionary. Here's an interactive
session to show you what I mean (assume that I've already defined
the dictionary geek):
>>> geek["404"]
'clueless. From the web error message 404, meaning
page not found.'
>>> geek["Link Rot"]
'the process by which web page links become
obsolete.'

This looks similar to indexing a sequence, but there's an important
difference. When you index a sequence, you use a position number.
When you look up a value in a dictionary, you use a key. This is the
only direct way to retrieve a value from a dictionary. In fact,
dictionaries don't have position numbers at all.

One thing that sometimes trips up beginning programmers is that a
value can't be used to get a key in a dictionary. That would be like
trying to use a definition to find a word in a real-life dictionary. Real-
life dictionaries just aren't set up for that kind of thing, and neither
are Python dictionaries. So remember, it's give a key and get a
value, only.

TRAP If you try to get a value from a dictionary by directly
accessing it with a key that doesn't exist, you'll generate
an error:
>>> geek["Dancing Baloney"]
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 geek["Dancing Baloney"]
KeyError: Dancing Baloney

Since "Dancing Baloney" isn't a key in the dictionary,
this results in an error. ("Dancing Baloney," by the way,
means animated graphics and other visual effects that
have no substantive value, often used by web designers
to impress clients.)

Testing for a Key with the in Operator Before Retrieving
a Value

Since using a nonexistent key can lead to an error, it's usually best
not to directly access a dictionary without taking some precautions.
One thing you can do is check to see if a key exists before
attempting to retrieve its value. You can check for the existence of a
key with the in operator:
>>> if "Dancing Baloney" in geek:
 print "I know what Dancing Baloney is."
 else:
 print "I have no idea what Dancing
Baloney is."

I have no idea what Dancing Baloney is.

Because the dictionary doesn't contain "Dancing Baloney" as a
key, the condition "Dancing Baloney" in geek is false. So, the
computer says it doesn't know what it is.

You use the in operator with dictionaries much the same way you've
used it with lists and tuples. You type the value your checking for,
followed by in, followed by the dictionary. This creates a condition.
The condition is true if the key is in the dictionary, otherwise it's false.
This is a handy thing to do before trying to get a value. But
remember, in only checks for keys; it can't check for values used
this way.

TRAP The in operator didn't work with dictionaries before
Python 2.2. If you're using a version of Python before
that, you can use the dictionary method has_key() to
test for a key in a dictionary. Check out Table 5.2, later in
the chapter, for a description of this dictionary method
and a few others.

Table 5.2: SELECTED DICTIONARY METHODS

Method Description

has_key(key) Returns true if key is in the dictionary
as a key. Otherwise it returns false.

get(key,
[default])

Returns the value of key. If key
doesn't exist, then the optional
default is returned. If key doesn't
exist and default isn't specified,
then None is returned.

keys() Returns a list of all the keys in a
dictionary.

values() Returns a list of all the values in a
dictionary.

Method Description

items()

Returns a list of all the items in a
dictionary. Each item is a two-
element tuple, where the first element
is a key and the second element is
the key's value.

Using the get() Method to Retrieve a Value

There's another way to retrieve a value from a dictionary. You can
use the dictionary method get(). The method has a built-in safety
net for handling situations where you ask for a value of a key that
doesn't exist. If the key doesn't exist, the method returns a default
value, which you can define. Take a look at another attempt:
>>> print geek.get("Dancing Baloney", "I have no
idea.")
I have no idea.

By using the get() method here, I was guaranteed to get a value
back. If this term was in the dictionary as a key, then I'd get its
definition. Since it wasn't, I got back the default value that I defined,
the string "I have no idea."

To use the get() method, all you have to do is supply the key
you're looking for followed by an optional default value. If the key is
in the dictionary, you get its value. If the key isn't in the dictionary,
you get the default value. But here's the twist: if you don't supply a
default value (it's your option), then you get back None. Here's an
example I created without providing a default value:
>>> print geek.get("Dancing Baloney")
None

Setting Up the Program

Time to get back to the code for the Geek Translator program. After I
created the geek dictionary, I implemented the menu system you've
seen before, this time with five choices. Like before, if the user
chooses 0, the computer says good-bye.
choice = None
while choice != "0":

 print \
 """
 Geek Translator

 0 - Quit
 1 - Look Up a Geek Term
 2 - Add a Geek Term
 3 - Redefine a Geek Term
 4 - Delete a Geek Term
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."

Getting a Value

If the user enters 1, the next section asks for a term to look up. The
computer checks to see if the term is in the dictionary. If it is, the
program accesses the dictionary, using the term as the key, gets its
definition, and prints it out. If the term is not in the dictionary, the
computer informs the user.
 # get a definition
 elif choice == "1":
 term = raw_input("What term do you want me

to translate?: ")
 if term in geek:
 definition = geek[term]
 print "\n", term, "means", definition
 else:
 print "\nSorry, I don't know", term

Adding a Key-Value Pair

Dictionaries are mutable, so you can modify them. If the user enters
2, the next section adds a new term to the dictionary:
 # add a term-definition pair
 elif choice == "2":
 term = raw_input("What term do you want me
to add?: ")
 if term not in geek:
 definition = raw_input("What's the
definition?: ")
 geek[term] = definition
 print "\n", term, "has been added."
 else:
 print "\nThat term already exists! Try
redefining it."

The computer asks the user for the new term to add. If the term is
not already in the dictionary, the computer gets the definition and
adds the pair through the line:
 geek[term] = definition

This creates a new item in geek. The term is the key and the
definition is its value. This is exactly how you assign a new item to a
dictionary. You use the dictionary, followed by the key, in square
brackets, followed by the assignment operator, followed by the key's
value.

I wrote the program so that the computer refuses to add a term if it's
already in the dictionary. This is a safety measure I created to insure
that the user doesn't accidentally overwrite an existing term. If the
user really wants to redefine an existing term, he or she should
choose menu option 3.

TRICK A dash of pessimism is a good thing, at least when
you're programming. As you saw here, I assumed that
the user might try to add a new term without realizing it's
already in the dictionary. If I hadn't checked for this, a
user could overwrite a term without realizing it. When
you're writing your own programs, try to think of things
that could go wrong, then try to make sure your program
can deal with them. So be a pessimist, just a little bit.

Replacing a Key-Value Pair

If the user enters 3, then the next section replaces an existing key-
value pair:
 # redefine an existing term
 elif choice == "3":
 term = raw_input("What term do you want me
to redefine?: ")
 if term in geek:
 definition = raw_input("What's the new
definition?: ")
 geek[term] = definition
 print "\n", term, "has been
redefined."
 else:
 print "\nThat term doesn't exist! Try
adding it."

To replace a key-value pair, I used the exact same line of code that I
used for adding a new pair:

 geek[term] = definition

Python replaces the current value (the definition) with the new one.

TRAP If you assign a value to a dictionary using a key that
already exists, Python replaces the current value without
complaint. So you have to watch out, because you might
overwrite the value of an existing key without realizing it.

Deleting a Key-Value Pair

If the user enters 4, then this elif block runs:
 # delete a term-definition pair
 elif choice == "4":
 term = raw_input("What term do you want me
to delete?: ")
 if term in geek:
 del geek[term]
 print "\nOkay, I deleted", term
 else:
 print "\nI can't do that!", term,
"doesn't exist in the dictionary."

The program asks the user for the geek term to delete. Next, the
program checks to see if the term is actually in the dictionary, with
the in operator. If it is, the item is deleted with
 del geek[term]

This deletes the item with the key term from the dictionary geek.
You can delete any item in a dictionary this way. Just put del in front
of the dictionary followed by the key of the item you wish to delete in
square brackets.

If the geek term doesn't exist in the first place, the else clause
executes and the computer lets the user know.

TRAP Trying to delete a dictionary item through a key that
doesn't exist will give you an error. It's a smart move to be
sure the key you're using exists.

Wrapping Up the Program

The final else clause lets the user know that he or she entered an
invalid choice:
 # some unknown choice
 else:
 print "\nSorry, but", choice, "isn't a
valid choice."

raw_input("\n\nPress the enter key to exit.")

Understanding Dictionary Requirements

There are a few things you should keep in mind when creating
dictionaries:

A dictionary can't contain multiple items with the same key.
Think again about a real dictionary. It becomes pretty
meaningless if you can keep adding the same word with
totally new definitions whenever you want.

A key has to be immutable. It can be a string, a number, or a
tuple, which gives you lots of possibilities. A key has to be
immutable because, if it weren't, you could sneak into a
dictionary later and change its keys, possibly ending up with
two identical keys. And you just learned you can't have that!

Values don't have to be unique. Also, values can be
immutable. They can be anything you want.

There's even more you can do with dictionaries. Table 5.2
summarizes some useful methods that can help you get more out of

this new type.

Back to the Hangman Game
By putting together all you've learned so far, you can create the
Hangman game presented at the beginning of the chapter. This
program is much longer than anything you've seen, but don't be
intimidated by its size. The code isn't much more complex than that
of the other projects you've worked through. The biggest part of the
program is just my modest ASCII art, the eight versions of the stick
figured being hanged. The real meat of the program is not much
more than a screenful of code.

Setting Up the Program

First things first. As always, I started with opening comments,
explaining the program. Next, I imported the random module. I'll
need the module to pick a random word from a sequence.
Hangman Game

The classic game of Hangman. The computer picks
a random word
and the player tries to guess it, one letter at
a time. If the player
can't guess the word in time, the little stick
figure gets hanged.

Michael Dawson

imports
import random

Creating Constants

Though there are several screenfuls of code in this next section, I
only create three constants in all that programming. First, I created
the biggest tuple you've seen. It's really just a sequence of eight

elements, but each element is a triple-quoted string that spans 12
lines.

Each string is a representation of the gallows where the stick figure
is being hanged. Each subsequent string shows a more complete
figure. Each time the player guesses incorrectly, the next string is
displayed. By the eighth entry, the image is complete and the figure
is a goner. If this final string is displayed, the player has lost and the
game is over. I assigned this tuple to HANGMAN, a variable name in
all caps, because I'll be using it as a constant.
constants
HANGMAN = (
"""

 | |
 |
 |
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 |
 |
 |
 |

 |
 |

""",
"""

 | |
 | O
 | -+-
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-/
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+/
 | |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+/
 | |
 | |
 | |
 | |

 |

""",
"""

 | |
 | O
 | /-+/
 | |
 | |
 | | |
 | | |
 |

""")

Next, I created a constant to represent the maximum number of
wrong guesses a player can make before the game is over:
MAX_WRONG = len(HANGMAN) - 1

The maximum number of wrong guesses is one less than the length
of HANGMAN. This is because the first image, of the empty gallows, is
displayed even before the player makes a first guess. So although
there are eight images in HANGMAN, the player only gets seven
wrong guesses before the game is over.

Finally, I created a tuple containing all of the possible words that the
computer can pick from for the player to guess. Feel free to modify
the program and make up your own list.
WORDS = ("OVERUSED", "CLAM", "GUAM", "PUCK",
"TAFFETA")

Initializing the Variables

Next, I initialized the variables. I used the random.choice()
function to pick a random word from the list of possible words. I
assigned this secret word to the variable word.
initialize variables
word = random.choice(WORDS) # the word to be
guessed

I created another string, so_far, to represent what the player has
guessed so far in the game. The string starts out as just a series of
dashes, one for each letter in the word. When the player correctly
guesses a letter, the dashes in the positions of that letter are
replaced with the letter itself.
so_far = "-" * len(word) # one dash for each
letter in word to be guessed

I created wrong and assigned it the number 0. wrong keeps track of
the number of wrong guesses the player makes.
wrong = 0 # number of wrong
guesses player has made

I created an empty list, used, to contain all the letters the player has
guessed:
used = [] # letters already
guessed

Creating the Main Loop

I created a loop that continues until either the player has guessed
too many wrong letters or the player has guessed all the letters in
the word:

print "Welcome to Hangman. Good luck!"

while (wrong < MAX_WRONG) and (so_far != word):
 print HANGMAN[wrong]
 print "\nYou've used the following
letters:\n", used
 print "\nSo far, the word is:\n", so_far

Notice that I put both conditions in parentheses. When using just one
logical operator (like I did here), using parentheses has no real
effect. The computer doesn't care. But I think that the parentheses
help separate the conditions and make the program easier for
humans to read, so I used them.

Next, I print the current stick figure, based on the number of wrong
guesses the player has made. The more wrong guesses the player
has made, the closer the stick figure is to being done in. After that, I
display the list of letters that the player has used in this game. And
then I show what the partially guessed word looks like so far.

Getting the Player's Guess

I get the player's guess and convert it to uppercase so that it can be
found in the secret word (which is in all caps). After that, I make sure
that the player hasn't already used this letter. If the player has
already guessed this letter, then I make the player enter a new
character until the player enters one he or she hasn't used yet. Once
the player enters a valid guess, I convert the guess to uppercase
and add it to the list of used letters.
 guess = raw_input("\n\nEnter your guess: ")
 guess = guess.upper()

 while (guess in used):
 print "You've already guessed the
letter:", guess
 guess = raw_input("Enter your guess: ")

 guess = guess.upper()

 used.append(guess)

Checking the Guess

Next, I check to see if the guess is in the secret word. If it is, I let the
player know. Then I go about creating a new version of so_far to
include this new letter in all the places where the letter is in the
secret word.
 if (guess in word):

 print "\nYes!", guess, "is in the word!"

 # create a new so_far to include guess
 new = ""
 for i in range(len(word)):
 if guess == word[i]:
 new += guess
 else:
 new += so_far[i]
 so_far = new

If the player's guess isn't in the word, then I let the player know and
increase the number of wrong guesses by one.
 else:
 print "\nSorry,", guess, "isn't in the
word."
 wrong += 1

Ending the Game

At this point, the game is over. If the number of wrong guesses has
reached the maximum, the player has lost. In that case, I print the
final image of the stick figure. Otherwise, I congratulate the player. In
either case, I let the player know what the secret word was.
if (wrong == MAX_WRONG):
 print HANGMAN[wrong]
 print "\nYou've been hanged!"
else:
 print "\nYou guessed it!"

print "\nThe word was", word

raw_input("\n\nPress the enter key to exit.")

Summary
In this chapter, you learned all about lists and dictionaries, two new
types. You learned that lists are mutable sequences. You saw how to
add, delete, sort, and even reverse those elements. But even with all
that lists offer, you learned that there are some cases where the less
flexible tuple is actually the better (or required) choice. You also
learned about shared references that can occur with mutable types
and saw how to avoid them when necessary. You saw how to create
and use nested sequences to work with even more interesting
information, like a high score list. You learned how to create and
modify dictionaries that let you work with pairs of data, too.

Challenges
1. Create a program that prints a list of words in random

order. The program should print all the words and not
repeat any.

2. Write a Character Creator program for a role-playing game.
The player should be given a pool of 30 points to spend on
four attributes: Strength, Health, Wisdom, and Dexterity.
The player should be able to spend points from the pool on
any attribute and should also be able to take points from an
attribute and put them back into the pool.

3. Write a Who's Your Daddy? program that lets the user
enter the name of a male and produces the name of his
father. (You can use celebrities, fictional characters, or
even historical figures for fun.) Allow the user to add,
replace, and delete son-father pairs. The program should
also allow the user to get a list of all sons, or fathers, or
son-father pairs.

4. Improve the Who's Your Daddy program by adding a
choice that lets the user enter a name and get back a
grandfather. Your program should still only use one
dictionary of son-father pairs. Make sure to include several
generations in your dictionary so that a match can be
found.

Chapter 6: Functions: The Tic-Tac-Toe Game
 Download CD Content

Overview
Every program you've written so far has been one large, continuous
series of instructions. Once your programs reach a certain size or
level of complexity, it becomes hard to work with them this way.
Fortunately, there are ways to break up big programs into smaller,
manageable chunks of code. In this chapter, you learn one way of
doing this by creating your own functions. Specifically in this chapter,
you'll learn to do the following:

Write your own functions

Accept values into your functions through parameters

Return information from your functions through return values

Work with global variables and constants

Create a computer opponent that plays a strategy game

Introducing the Tic-Tac-Toe Game
In this chapter project, you'll learn how to create a computer
opponent using a dash of artificial intelligence (AI). In the game, the
player and computer square off in a high-stakes, human-machine
showdown of Tic-Tac-Toe. The computer plays a formidable, though
not perfect, game, and comes with enough attitude to make any
match fun. Figures 6.1 through 6.3 illustrate the gameplay.

Figure 6.1: The computer is full of ...
confidence.

Figure 6.2: I did not see that coming. Even with simple
programming techniques, the computer makes some pretty good
moves.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig192_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig192_02_0.jpg

Figure 6.3: I found the computer's weakness and won this
time.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig193_01_0.jpg

Creating Functions
You've already seen several built-in functions in action, including
len() and range(). Well, if these aren't enough for you, Python
lets you create functions of your very own. Your functions work just
like the ones that come standard with the language. They go off and
perform a task and then return control to your program. Creating
your own functions offers you many advantages. One of the biggest
is that it allows you to break up your code into manageable, bite-
sized chunks. Programs that are one, long series of instructions with
no logical breaks are hard to write, understand, and maintain.
Programs that are made up of functions can be much easier to
create and work with. Just like the functions you've already met, your
new functions should do one job well.

Introducing the Instructions Program

From the screen shots of the Tic-Tac-Toe game, you can probably
tell that the computer opponent has a little attitude. It comes across
quite clearly in the instructions the computer gives before the game.
You'll get a look at the code that produces those instructions in this
next program, Instructions. The code is a little different than you
might expect. That's because I created a function to display the
instructions. I used that same function here in Instructions. Take a
look at Figure 6.4 to see a sample run of the program.

Figure 6.4: The instructions are displayed each time with just a
single line of code— a call to a function I
created.

Here's the code:
Instructions
Demonstrates programmer-created functions
Michael Dawson - 2/21/03

def instructions():
 """ Display game instructions."""
 print \
 """
 Welcome to the greatest intellectual challenge
of all time: Tic-Tac-Toe.
 This will be a showdown between your human
brain and my silicon processor.

 You will make your move known by entering a
number, 0 - 8. The number
 will correspond to the board position as
illustrated:

 0 | 1 | 2

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig194_01_0.jpg

 3 | 4 | 5

 6 | 7 | 8

 Prepare yourself, human. The ultimate battle
is about to begin. \n
 """

main
print "Here are the instructions to the Tic-Tac-
Toe game:"
instructions()
print "Here they are again:"
instructions()
print "You probably understand the game by now."

raw_input("\n\nPress the enter key to exit.")

Defining a Function

I began the definition of my new function with a single line:
def instructions():

This line tells the computer that the block of code that follows is to be
used together as the function instructions(). I'm basically
naming this block of statements. This means that whenever I call the
function instructions() in this program, the block of code runs.

This line and its block are a function definition. They define what the
function does, but don't run the function. When the computer sees
the function definition, it makes a note that this function exists so it
can use it later. It won't actually run the function until it sees a
function call for it, later in the program.

To define a function of your own, follow my example. Start with def,
followed by your function name, followed by a pair of parentheses,

followed by a colon, and then your indented block of statements. To
name a function, follow the basic rules for naming variables. Also, try
to use a name that conveys what the function produces or does.

Documenting a Function

Functions have a special mechanism that allows you to document
them with what's called a docstring (or documentation string). I
created the following docstring for instructions():
 """ Display game instructions."""

A docstring is typically a triple-quoted string and, if you use one,
must be the first line in your function. For simple functions, you can
do what I did here: write a single sentence that describes what the
function does. Functions work just fine without docstrings, but using
them is a good idea. It gets you in the habit of commenting your
code and makes you describe the function's one, well-defined job.
Also, a function's docstring can pop up as interactive documentation
while you type your call to it in IDLE.

Calling a Programmer-Created Function

Calling a programmer-created function works just like calling a built-
in function. Use the name of the function followed by a set of
parentheses. I called my new function several times, each time with
the line:
instructions()

This tells the computer to go off and execute the function I defined
earlier. So each time I call it, the computer prints the instructions to
the game.

Understanding Abstraction

By writing and calling functions, you practice what's known as
abstraction. Abstraction lets you think about the big picture without
worrying about the details. So, in this program, I can just use the
function instructions() without worrying about the details of
displaying the text. All I have to do is call the function with one line of
code, and it gets the job done.

You might be surprised where you find abstraction, but people use it
all the time. For example, consider two employees at a fast food
place. If one tells the other that he just filled a #3, and "sized it," the
other employee knows that the first employee took a customer's
order, went to the heat lamps, grabbed a burger, went over to the
deep fryer, filled their biggest cardboard container with French fries,
went to the soda fountain, grabbed their biggest cup, filled it with
soda, gave it all to the customer, took the customer's money, and
gave the customer change. Not only would this version be a boring
conversation, but it's unnecessary. Both employees understand what
it means to fill a #3 and "size it." They don't have to concern
themselves with all the details because they're using abstraction.

Using Parameters and Return Values
As you've seen with built-in functions, you can provide a function
values and get values back from them. With the len() function, for
example, you provide a sequence, and the function returns its
length. Your own functions can also receive and return values. This
allows your functions to communicate with the rest of your program.

Introducing the Receive and Return Program

I created three functions in the program Receive and Return to show
the various combinations of receiving and returning values. One
function receives a value. The next function returns a value. And the
last function both receives and returns a value. Take a look at Figure
6.5 to see exactly what happens as a result of the program.

Figure 6.5: Each function uses a parameter, a return value, or
both to communicate with the main part of the
program.

Here's the code:
Receive and Return
Demonstrates parameters and return values
Michael Dawson - 2/21/03

def display(message):
 print message

def give_me_five():
 five = 5
 return five

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig197_01_0.jpg

def ask_yes_no(question):
 """ Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()
 return response
main
display("Here's a message for you.\n")

number = give_me_five()
print "Here's what I got from give_me_five():",
number

answer = ask_yes_no("\nPlease enter 'y' or 'n': ")
print "Thanks for entering:", answer

raw_input("\n\nPress the enter key to exit.")

Receiving Information through Parameters

The first function I defined, display(), receives a value and prints
it. It receives a value through its parameter. Parameters are
essentially variable names inside the parentheses of a function
header:
def display(message):

Parameters catch the values sent to the function from a function call
through its arguments. So here, when display() is called,
message is assigned the value provided through the argument
"Here's a message for you.\n" In the main part of the program, I call
display() with
display("Here's a message for you.\n")

As a result, message gets the string "Here's a message for
you.\n". Then, the function runs. message, like any parameter,
exists inside the function as a variable. So, the line
 print message

prints the string "Here's a message for you.\n".

Although display() has only one parameter, functions can have
many. To define a function with multiple parameters, list them out,
separated by commas.

TRAP When you define a function with parameters, any call to
that function must include a number of argument values
that can be received by all of the parameters. Otherwise,
Python will complain by generating an error.

Returning Information through Return Values

The next function I wrote, give_me_five(), returns a value. It
returns a value through (believe it or not) the return statement:
 return five

When this line runs, the function passes the value of five back to
the part of the program that called it, and then ends. A function
always ends after it hits a return statement.

It's up to the part of the program that called a function to catch the
values it returns and do something with them. Here's the main part of
the program, where I called the function:
number = give_me_five()
print "Here's what I got from give_me_five():",
number

I set up a way to catch the return value of the function by assigning
the result of the function call to number. So, when the function

finishes, number gets the value of 5, which is equal to 5. The next
line prints number to show that it got the return value okay.

You can pass more than one value back from a function. Just list all
the values you want to return, separated by commas.

TRAP Make sure to have enough variables to catch all the
return values of a function. If you don't have the right
number when you try to assign them, you'll generate an
error.

Understanding Encapsulation

You might not see the need for return values when using your own
functions. Why not just use the variable five back in the main part
of the program? Because you can't. five doesn't exist outside of its
function give_me_five(). In fact, no variable you create in a
function, including its parameters, can be directly accessed outside
its function. This is a good thing and is called encapsulation.
Encapsulation helps keep independent code truly separate by hiding
or encapsulating the details. That's why you use parameters and
return values: to communicate just the information that needs to be
exchanged. Plus, you don't have to keep track of variables you
create within a function in the rest of your program. As your
programs get large, this is a great benefit.

Encapsulation might sound a lot like abstraction. That's because
they're closely related. Encapsulation is a principal of abstraction.
Abstraction saves you from worrying about the details.
Encapsulation hides details from you. As an example, consider a
remote control for a TV with volume up and down buttons. When you
use a TV remote to change the volume, you're employing
abstraction, because you don't need to know what happens inside
the TV for it to work. Now suppose the TV remote has 10 volume
levels. You can get to them all through the remote, but you can't
directly access them. That is, you can't get a specific volume number

directly. You can only press the up volume and down volume buttons
to eventually get to the level you want. The actual volume number is
encapsulated and not directly available to you.

HINT Don't worry if you don't totally get the subtle difference
between abstraction and encapsulation right now. They're
intertwined concepts, so it can be a little tricky. Plus, you'll
get to see them in action again when you learn about
software objects and object-oriented programming in later
Chapters 8 and 9.

Receiving and Returning Values in the Same Function

The final function I wrote, ask_yes_no(), receives one value and
returns another. It receives a question and returns a response from
the user, either the character "y" or "n". The function receives the
question through its parameter:
def ask_yes_no(question):

question gets the value of the argument passed to the function. In
this case, it's the string, "\nPlease enter 'y' or 'n': ". The
next part of the function uses this string to prompt the user for a
response:
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()

The while loop keeps asking the question until the user enters
either y, Y, n, or N. The function always converts the user's entry to
lowercase.

Finally, when the user has entered a valid response, the function
sends a string back to the part of the program that called it with
 return response

and the function ends.

In the main part of the program, the return value is assigned to
answer and printed:
answer = ask_yes_no("\nPlease enter 'y' or 'n': ")
print "Thanks for entering:", answer

Understanding Software Reuse

Another great thing about functions is that they can easily be reused
in other programs. For example, since asking the user a yes or no
question is such a common thing to do, you could grab the
ask_yes_no() function and use it in another program without doing
any extra coding. This type of thing is called software reuse. So
writing good functions not only saves you time and energy in your
current project, but can also save you effort in future ones!

IN THE REAL WORLD

It's always a waste of time to "reinvent the wheel," so software
reuse, using existing software and other project elements in new
projects, is a technique that business has taken to heart. Software
reuse can do the following:

Increase company productivity. By reusing code and other
elements that already exist, companies can get their
projects done with less effort.

Improve software quality. If a company already has a
tested piece of code, then it can use the code with the
knowledge that it's bug-free.

Provide consistency across software products. By using
the same user interface, for example, companies can
create new software that users feel comfortable with right
out of the box.

Improve software performance. Once a company has a
good way of doing something through software, using it
again not only saves the company the trouble of
reinventing the wheel, but also saves it from the possibility
of reinventing a less efficient wheel.

One way to reuse functions you've written is to copy them into your
new program. But there is a better way. You can create your own
modules and import your functions into a new program, just like
you import standard Python modules (such as random) and use
their functions (such as randrange()). You'll learn how to create
your own modules and import reusable code you've written in
Chapter 9 section "Creating Modules."

Using Keyword Arguments and Default
Parameter Values
Passing values through arguments to parameters allows you to give
information to a function. But so far, you've only seen the most basic
way to do that. Python allows greater control and flexibility with the
way you pass information, through default parameter values and
keyword arguments.

Introducing the Birthday Wishes Program

The program Birthday Wishes, a sample run of which is pictured in
Figure 6.6, sends birthday greetings through two very similar
functions. The first function uses the type of parameters you saw in
the last section, called positional parameters. The second version of
the function uses default parameter values. The best way to
appreciate the difference is to see examples of them in action.

Figure 6.6: Functions can be called in different ways with the
flexibility of keyword arguments and default parameter
values.

Here's the code for Birthday Wishes:
Birthday Wishes
Demonstrates keyword arguments and default
parameter values
Michael Dawson - 2/21/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig202_01_0.jpg

positional parameters
def birthday1(name, age):
 print "Happy birthday,", name, "!", "I hear
you're", age, "today.\n"

parameters with default values
def birthday2(name = "Jackson", age = 1):
 print "Happy birthday,", name, "!", "I hear
you're", age, "today.\n"
birthday1("Jackson", 1)
birthday1(1, "Jackson")
birthday1(name = "Jackson", age = 1)
birthday1(age = 1, name = "Jackson")

birthday2()
birthday2(name = "Katherine")
birthday2(age = 12)
birthday2(name = "Katherine", age = 12)
birthday2("Katherine", 12)

raw_input("\n\nPress the enter key to exit.")

Using Positional Parameters and Positional Arguments

If you just list out a series of variable names in a function's header,
you create positional parameters:
def birthday1(name, age):

If you call a function with just a series of values, you create positional
arguments:
birthday1("Jackson", 1)

Using positional parameters and positional arguments means that
parameters get their values based solely on the position of the

values sent. The first parameter gets the first value sent, the second
parameter gets the second value sent, and so on.

With this particular function call, it means that name gets
"Jackson" and age gets 1. This results in the message: Happy
Birthday, Jackson ! I hear you're 1 today. If you
switch the positions of two arguments, the parameters get different
values. So with the call
birthday1(1, "Jackson")

name gets the first value, 1, and age gets the second value,
"Jackson". As a result, you end up with a message you probably
didn't intend: Happy Birthday, 1 ! I hear you're Jackson
today.

You've seen this way of creating and calling functions already. But
there are other ways to create parameter and argument lists in your
programs.

Using Positional Parameters and Keyword Arguments

Positional parameters get values sent to them in order, unless you
tell the function otherwise. You can tell the function to assign certain
values to specific parameters, regardless of order, if you use
keyword arguments. With keyword arguments, you use the actual
parameter names from the function header to link a value to a
parameter. So, by calling the same function birthday1() with
birthday1(name = "Jackson", age = 1)

name gets "Jackson" and age gets 1 and the function displays the
message Happy Birthday, Jackson ! I hear you're 1
today. This isn't terribly impressive. You could achieve the same
results without keyword arguments by just sending these values in
this order. But the beauty of keyword arguments is that their order

doesn't matter; it's the keywords that link values to parameters. So
the call
birthday1(age = 1, name = "Jackson")

also produces the message Happy Birthday, Jackson ! I
hear you're 1 today. even though the values are listed in
opposite order.

Keyword arguments let you pass values in any order. But their
biggest benefit is clarity. When you see a function call using keyword
arguments, you get a much better understanding of what the values
represent.

TRAP You can combine keyword arguments and positional
arguments in a single function call, but this can get tricky.
Once you use a keyword argument, all the remaining
arguments in the call must be keyword arguments, too.
To keep things simple, try to use all keyword or all
positional arguments in your function calls.

Using Default Parameter Values

Finally, you have the option to assign default values to your
parameters, values that get assigned to the parameters if no value is
passed to them. That's just what I did with the birthday2()
function. I made changes in the header only:
def birthday2(name = "Jackson", age = 1):

This means that if no value is supplied to name, it gets "Jackson".
And if no value is supplied for age, it gets 1. So the call
birthday2()

doesn't generate an error; instead, the default values are assigned to
the parameters, and the function displays the message Happy

Birthday, Jackson ! I hear you're 1 today.

TRAP Once you assign a default value to a parameter in the list,
you have to assign default values to all the parameters
listed after it. So, this function header is perfectly fine:
def monkey_around(bananas = 100, barrel_of
= "yes", uncle = "monkey's"):

But this isn't:
def monkey_around(bananas = 100,
barrel_of, uncle):

The above header will generate an error.

So far, so good. But you can add a wrinkle here by overriding the
default values of any or all the parameters. With the call
birthday2(name = "Katherine")

the default value of name is overridden. name gets "Katherine",
age still gets its default value of 1, and the message Happy
Birthday, Katherine ! I hear you're 1 today. is
displayed.

With this function call:
birthday2(age = 12)

the default value of age is overridden. age gets the value of 12.
name gets it's default value of "Jackson". And the message Happy
Birthday, Jackson ! I hear you're 12 today. is
displayed.

With the call
birthday2(name = "Katherine", age = 12)

both default values are overridden. name gets "Katherine" and
age gets 12. The message Happy Birthday, Katherine ! I
hear you're 12 today. is displayed.

And with the call
birthday2("Katherine", 12)

you get the exact same results as you did with the previous call.
Both default values are overridden. name gets "Katherine" and
age gets 12. And the message Happy Birthday, Katherine !
I hear you're 12 today. is displayed.

TRICK Default parameter values are great if you have a function
where almost every time it's called, some parameter gets
sent the same value. To save programmers using your
function the trouble of typing this value every time, you
could use a default parameter value instead.

Using Global Variables and Constants
Through the magic of encapsulation, the functions you've seen are
all totally sealed off and independent from each other and the main
part of your program. The only way to get information into them is
through their parameters, and the only way to get information out of
them is from their return values. Well, that's not completely true.
There is another way that you can share information among parts of
your program: through global variables.

Understanding Namespaces

Namespaces (also called scopes) represent different areas of your
program that are separate from each other. For example, each
function you define has its own namespace. That's why the functions
you've seen can't directly access each other's variables. A visual
representation really helps to gel this idea, so take a look at Figure
6.7.

Figure 6.7: This simple program has three different namespaces

— one for each function, plus one for the global
namespace.

Figure 6.7 shows a program with three different namespaces. The
first is defined by function func1(), the second is defined by
function func2(), and the third is the global namespace (which all
programs automatically have). In this program, you're in the global
namespace when you're not inside any function. The shaded area in
the figure represents the global namespace. Any variable that you
create in the global namespace is called a global variable, while any
variable you create inside a function is called a local variable (it's
local to that function).

Since variable1 is defined inside func1(), it's a local variable
that lives only in the namespace of func1(). variable1 can't be
accessed from any other namespace. So, no command in func2()
can get at it, and no command in the global space can access or
modify it either.

A good way to remember how this works is to think of namespaces
as houses and encapsulation as tinted windows, giving each house
privacy. As a result, you can see anything inside a house if you're in
it. But if you're outside a house, you can't see what's inside. This is
the way it works with functions. When you're in a function, you have
access to all of its variables. But when you're outside a function, like
in the global namespace, you can't see any of the variables inside a
function.

If two variables have the same name inside two separate functions,
they're totally different variables with no connection to each other.
For example, if I created a variable called variable2 inside
function func1(), it would be different and completely separate
from the variable named variable2 in function func2(). Because
of encapsulation, it would be like they exist in different worlds and
have no effect on each other.

Global variables, however, create a little wrinkle in the idea of
encapsulation, as you'll see.

Introducing the Global Reach Program

The Global Reach program shows how you can read and even
change global variables from inside functions. Figure 6.8 displays
the program's results.

Figure 6.8: You can read, shadow, or even change the value of a
global variable from inside a function.

Here's the code for the program:
Global Reach
Demonstrates global variables
Michael Dawson - 2/21/03

def read_global():
 print "From inside the local namespace of
read_global(), value is:", value

def shadow_global():
 value = -10
 print "From inside the local namespace of
shadow_global(), value is:", value

def change_global():
 global value
 value = -10
 print "From inside the local namespace of

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig208_01_0.jpg

change_global(), value is:", value

main
value is a global variable because we're in the
global namespace here
value = 10
print "In the global namespace, value has been set
to:", value, "\n"

read_global()
print "Back in the global namespace, value is
still:", value, "\n"

shadow_global()
print "Back in the global namespace, value is
still:", value, "\n"

change_global()
print "Back in the global namespace, value has now
changed to:", value

raw_input("\n\nPress the enter key to exit.")

Reading a Global Variable from Inside a Function

Although by now you're probably quite comfortable with the idea of
encapsulation, I'm going to throw you a little curve ball: you can read
the value of a global variable from within any namespace in your
program. But fear not, this can still work with the concept of houses
and tinted windows. Remember, tinted windows keep the houses (or
functions) private. But tinted windows also let you see out. So, you
can always see outside of a function to the global namespace and
see the value of a global variable. That's what I did when I created

the function read_global(). It prints the global variable value
without a problem.

While you can always read the value of a global variable in any
function, you can't change it directly (at least not without asking
specifically for that kind of access). So, in read_global(), doing
something like the following would generate a nasty error:
 value += 1

Back to the houses and tinted glass idea, this means that you can
see a global variable from within a function through the tinted
window, but you can't touch it because it's outside. So, although you
can read the value of a global variable from inside a function, you
can't change its value without asking for special access to it.

Shadowing a Global Variable from Inside a Function

If you give a variable inside a function the same name as a global
variable, you shadow the global variable. That is, you hide it with
your new variable. It might look like you can change the value of a
global variable by doing this, but you only change the local variable
you've created. That's what I did in the function shadow_global().
When I assigned -10 to value with
 value = -10

I didn't change the global version of value. Instead, I created a new,
local version of value inside the function and that got -10. You can
see that this is what happened, because when the function finishes,
the main program prints out the global version of value with
print "Back in the global namespace, value is
still:", value, "\n"

and it's still 10.

TRAP It's not a good idea to shadow a global variable inside a

function. It can lead to confusion. You might think you're
using a global variable when you're really not. Be aware
of any global variables in your program and make sure
not to use the name anywhere else in your code.

Changing a Global Variable from Inside a Function

To gain complete access to a global variable, use the keyword
global like I did in the function change_global():
 global value

At this point, the function has complete access to value. So when I
changed it with
 value = -10

the global variable value got -10. When the program prints value
again back in the main part of the code with
print "Back in the global namespace, value has
changed to:", value

-10 is printed. The global variable was changed from inside the
function.

Understanding When to Use Global Variables and
Constants

Just because you can, doesn't mean you should. This is a good
programming motto. Sometimes things are technically possible, but
not good ideas. Using global variables is an example of this. In
general, global variables make programs confusing because it can
be hard to keep track of their changing values. You should limit your
use of them as much as you can.

Global constants (global variables that you treat as constants), on
the other hand, can make programs less confusing. For example,

say you're writing a business application that calculates someone's
taxes. Like a good programmer, you have written a variety of
functions in your code, all of which use the somewhat cryptic value
.27 as the tax rate. Instead, you could create a global constant
called TAX_RATE and set it to .27. Then, in each function, you could
replace the number .27 with TAX_RATE. This produces two
benefits. It makes your code clearer and it makes changes (like a
new tax rate) no sweat.

Back to the Tic-Tac-Toe Game
The Tic-Tac-Toe game presented at the beginning of the chapter is
your most ambitious chapter project yet. You certainly have all the
skills you need to create the game, but instead of jumping straight
into the code, I'm going to go through a planning section to help you
get the bigger picture and understand how to create a larger
program.

Planning the Tic-Tac-Toe Game

If you haven't figured this out by now, I'll bore you with it again: the
most important part of programming is planning to program. Without
a roadmap, you'll never get to where you want to go (or it'll take you
a lot longer as you travel the scenic route).

Writing the Pseudocode

It's back to your favorite language that's not really a language:
pseudocode. Since I'll be using functions for most of the tasks in the
program, I can afford to think about the program at a pretty abstract
level. Each line of pseudocode should feel like one function call.
Then, later, I'll just have to write the functions that the plan implies.
Here's the pseudocode:
display the game instructions
determine who goes first
create an empty tic-tac-toe board
display the board
while nobody's won and it's not a tie
 if it's the human's turn
 get the human's move
 update the board with the move
 otherwise
 calculate the computer's move
 update the board with the move

 display the board
 switch turns
congratulate the winner or declare a tie

Representing the Data

Alright, I have a good plan, but it is pretty abstract and talks about
throwing around different elements that aren't really defined in my
mind yet. I see the idea of making a move as placing a piece on a
game board. But how exactly am I going to represent the game
board? Or a piece? Or a move?

Since I'm going to print the game board on the screen, why not just
represent a piece as one character, an "X" or an "O"? An empty
piece could just be a space. The board itself should be a list since
it's going to change as each player makes a move. There are nine
squares on a tic-tac-toe board, so the list should be nine elements
long. Each square on the board will correspond to a position in the
list that represents the board. Figure 6.9 illustrates what I mean.

Figure 6.9: Each square number corresponds to a position in a
list that represents the board.

So, each square or position on the board is represented by a
number, 0–8. That means the list will be nine elements long and
have position numbers 0–8. Since each move indicates a square in
which to put a piece, a move is also just a number, 0–8.

The sides the player and computer play could also be represented
by "X" and "O", just like a game piece. And a variable to represent
the side of the current turn would be either an "X" or an "O".

Creating a List of Functions

The pseudocode inspires the different functions I'll need. I created a
list of them, thinking about what they would do, what parameters
they would have, and what values they would return. Table 6.1
shows the results of my efforts.

Table 6.1: TIC-TAC-TOE FUNCTIONS

Function Description

display_instruct() Displays the game
instructions.

def ask_yes_no(question)

Asks a yes or no question.
Receives a question.
Returns either a "y" or a
"n".

def ask_number(question,
low, high)

Asks for a number within a
range. Receives a question,
a low number, and a high
number. Returns a number in
the range from low to high.

pieces()
Determines who goes first.
Returns the computer's piece
and human's piece.

new_board() Creates a new, empty game
board. Returns a board.

display_board(board) Displays the board on the
screen. Receives a board.

Function Description

legal_moves(board)
Creates a list of legal moves.
Receives a board. Returns a
list of legal moves.

winner(board)
Determines the game winner.
Receives a board. Returns a
piece, "TIE" or None.

human_move(board, human)

Gets the human's move from
the player. Receives a board
and the human's piece.
Returns the human's move.

computer_move(board,
computer, human)

Calculates the computer's
move. Receives a board, the
computer piece, and the
human piece. Returns the
computer's move.

next_turn(turn)
Switches turns based on the
current turn. Receives a
piece. Returns a piece.

congrat_winner(the_winner,
computer, human)

Congratulates the winner or
declares a tie. Receives the
winning piece, the
computer's piece, and the
human's piece.

Setting Up the Program

The first thing I did in writing the program was set up some global
constants. These are values that more than one function will use.
Creating them will make the functions clearer and any changes
involving these values easier.

Tic-Tac-Toe
Plays the game of tic-tac-toe against a human
opponent
Michael Dawson - 2/21/03

global constants
X = "X"
O = "O"
EMPTY = ""
TIE = "TIE"
NUM_SQUARES = 9

X is just shorthand for "X", one of the two pieces in the game. O
represents "O", the other piece in the game. EMPTY represents an
empty square on the board. It's a space because when it's printed, it
will look like an empty square. TIE represents a tie game. And
NUM_SQUARES is the number of squares on the tic-tac-toe board.

The display_instruct() Function

This function displays the game instructions. You've seen it before:
def display_instruct():
 """ Display game instructions."""
 print \
 """
 Welcome to the greatest intellectual challenge
of all time: Tic-Tac-Toe.
 This will be a showdown between your human
brain and my silicon processor.

 You will make your move known by entering a
number, 0 - 8. The number
 will correspond to the board position as
illustrated:

 0 | 1 | 2

 3 | 4 | 5

 6 | 7 | 8

 Prepare yourself, human. The ultimate battle
is about to begin. \n
 """

The only thing I did was change the function name for the sake of
consistency in the program.

The ask_yes_no() Function

This function asks a yes or no question. It receives a question and
returns either a "y" or a "n". You've seen this function before too.
def ask_yes_no(question):
 """ Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()
 return response

The ask_number() Function

This function asks for a number within a range. It receives a
question, a low number, and a high number. It returns a number
within the range specified.
def ask_number(question, low, high):
 """ Ask for a number within a range."""
 response = None
 while response not in range(low, high):
 response = int(raw_input(question))
 return response

The pieces() Function

This function asks the player if he or she wants to go first and returns
the computer's piece and human's piece, based on that choice. As
the great tradition of tic-tac-toe dictates, the X's go first.
def pieces():
 """ Determine if player or computer goes
first."""
 go_first = ask_yes_no("Do you require the
first move? (y/n): ")
 if go_first == "y":
 print "\nThen take the first move. You
will need it."
 human = X
 computer = O
 else:
 print "\nYour bravery will be your
undoing... I will go first."
 computer = X
 human = O
 return computer, human

Notice that this function calls another one of my functions,
ask_yes_no(). This is perfectly fine. One function can call another.

The new_board() Function

This function creates a new board (a list) with all nine elements set
to EMPTY and returns it:
def new_board():
 """ Create new game board."""
 board = []
 for square in range(NUM_SQUARES):
 board.append(EMPTY)
 return board

The display_board() Function

This function displays the board passed to it. Since each element in
the board is either a space, the character "X", or the character "O",
the function can print each one. A few other characters on my
keyboard are used to draw a decent-looking tic-tac-toe board.
def display_board(board):
 """ Display game board on screen."""
 print "\n\t", board[0], "|", board[1], "|",
board[2]
 print "\t", "————-"
 print "\t", board[3], "|", board[4], "|",
board[5]
 print "\t", "————-"
 print "\t", board[6], "|", board[7], "|",
board[8], "\n"

The legal_moves() Function

This function receives a board and returns a list of legal moves. This
function is used by other functions. It's used by the human_move()
function to make sure that the player chooses a valid move. It's also
used by the computer_move() function so that the computer can
consider only valid moves in its decision making.

A legal move is represented by the number of an empty square. For
example, if the center square were open, then 4 would be a legal
move. If only the corner squares were open, the list of legal moves
would be [0, 2, 6, 8]. (Take a look at Figure 6.9 if you're
unclear about this.)

So, this function just loops over the list representing the board. Each
time it finds an empty square, it adds that square number to the list
of legal moves. Then it returns the list of legal moves.

def legal_moves(board):
 """ Create list of legal moves."""
 moves = []
 for square in range(NUM_SQUARES):
 if board[square] == EMPTY:
 moves.append(square)
 return moves

The winner() Function

This function receives a board and returns the winner. There are four
possible values for a winner. The function will return either X or O if
one of the players has won. If every square is filled and no one has
won, it returns TIE. Finally, if no one has won and there is at least
one empty square, the function returns None.

The very first thing I do in this function is define a constant called
WAYS_TO_WIN, which represents all eight ways to get three in a row.
Each way to win is represented by a tuple. Each tuple is a sequence
of the three board positions that form a winning three in a row. Take
the first tuple in the sequence, (0, 1, 2). This represents the top
row: board positions 0, 1, and 2. The next tuple (3, 4, 5)
represents the middle row. And so on.
def winner(board):
 """ Determine the game winner."""
 WAYS_TO_WIN = ((0, 1, 2),
 (3, 4, 5),
 (6, 7, 8),
 (0, 3, 6),
 (1, 4, 7),
 (2, 5, 8),
 (0, 4, 8),
 (2, 4, 6))

Next, I use a for loop to go through each possible way a player can
win, to see if either player has three in a row. The if statement
checks to see if the three squares in question all contain the same
value and are not empty. If so, that means that the row has either
three X's or O's in it and somebody has won. The computer assigns
one of the pieces in this winning row to winner, returns winner,
and ends.
 for row in WAYS_TO_WIN:
 if board[row[0]] == board[row[1]] ==
board[row[2]] != EMPTY:
 winner = board[row[0]]
 return winner

If neither player has won, then the function continues. Next, it checks
to see if there are any empty squares left on the board. If there aren't
any, the game is a tie (because the function has already determined
that there is no winner, back in the for loop) and TIE is returned.
 if EMPTY not in board:
 return TIE

If the game isn't a tie, the function continues. Finally, if neither player
has won and the game isn't a tie, there is no winner yet. So, the
function returns None.
 return None

The human_move() Function

This next function receives a board and the human's piece. It returns
the square number where the player wants to move.

First, the function gets a list of all the legal moves for this board.
Then, it continues to ask the user for the square number to which he
or she wants to move until that response is in this list of legal moves.
Once that happens, the function returns the move.

def human_move(board, human):
 """ Get human move."""
 legal = legal_moves(board)
 move = None
 while move not in legal:
 move = ask_number("Where will you move? (0
- 8): ", 0, NUM_SQUARES)
 if move not in legal:
 print "\nThat square is already
occupied, foolish human. Choose another.\n"
 print "Fine.."
 return move

The computer_move() Function

The computer_move() function receives the board, the computer's
piece, and the human's piece. It returns the computer's move.

TRICK This is definitely the meatiest function in the program.
Knowing it would be, I initially created a short, temporary
function that chooses a random but legal move. I wanted
time to think about this function, but didn't want to slow
the progress of the entire project. So, I dropped in the
temporary function and got the game up and running.
Later, I came back and plugged in a better function that
actually picks moves for a reason.

I had this flexibility because of the modular design
afforded by writing with functions. I knew that
computer_move() was a totally independent
component and could be substituted later, without a
problem. In fact, I could even drop a new function in right
now, one that chooses even better moves. (Sounds an
awful lot like a challenge, now doesn't it?)

I have to be careful here because the board (a list) is mutable and I
change it in this function as I search for the best computer move.
The problem with this is that any change I make to the board will be
reflected in the part of the program that called this function. This is
the result of shared references, which you learned about in Chapter
5 section "Understanding Shared References." Basically, there's only
one copy of the list, and any change I make here changes that single
copy. So, the very first thing I do is make my own, local copy to work
with:
def computer_move(board, computer, human):
 """ Make computer move."""
 # make a copy to work with since function will
be changing list
 board = board[:]

HINT Any time you get a mutable value passed to a function,
you have to be careful. If you know you're going to change
the value as you work with it, make a copy and use that
instead.

TRAP You might think that changing the board would be a good
thing. You could change it so that it contains the new
computer move. This way, you don't need to send the
board back as a return value.

Changing a mutable parameter directly like this is
considered creating a side effect. Not all side effects are
bad, but this type is generally frowned upon (I'm frowning
right now, just thinking about it). It's best to communicate
with the rest of your program through return values; that
way, it's clear exactly what information you're giving back.

Okay, here's the basic strategy I came up with for the computer:
1. If there's a move that allows the computer to win this turn,

the computer should choose that move.

2. If there's a move that allows the human to win next turn,
the computer should choose that move.

3. Otherwise, the computer should choose the best empty
square as its move. The best square is the center. The next
best squares are the corners. And the next best squares
are the rest.

So next in the code, I define a tuple to represent the best squares, in
order:
 # the best positions to have, in order
 BEST_MOVES = (4, 0, 2, 6, 8, 1, 3, 5, 7)

 print "I shall take square number",

Next, I create a list of all the legal moves. In a loop, I try the
computer's piece in each empty square number I got from the legal
moves list and check for a win. If the computer can win, then that's
the move to make. If that's the case, the function returns that move
and ends. Otherwise, I undo the move I just tried and try the next
one in the list.
 # if computer can win, take that move
 for move in legal_moves(board):
 board[move] = computer
 if winner(board) == computer:
 print move
 return move
 # done checking this move, undo it
 board[move] = EMPTY

If I get to this point in the function, it means the computer can't win
on its next move. So, I check to see if the player can win on his or
her next move. The code loops through the list of the legal moves,
putting the human's piece in each empty square, checking for a win.
If the human can win, then that's the move to take for a block. If this

is the case, the function returns the move and ends. Otherwise, I
undo the move and try the next legal move in the list.
 # if human can win, block that move
 for move in legal_moves(board):
 board[move] = human
 if winner(board) == human:
 print move
 return move
 # done checking this move, undo it
 board[move] = EMPTY

If I get to this point in the function, then neither side can win on its
next move. So, I look through the list of best moves and take the first
legal one. The computer loops through BEST_MOVES, and as soon
as it finds one that's legal, it returns that move.
 # since no one can win on next move, pick best
open square
 for move in BEST_MOVES:
 if move in legal_moves(board):
 print move
 return move

IN THE REAL WORLD

The Tic-Tac-Toe program considers only the next possible move
in the game. Programs that play serious games of strategy, like
chess, look far deeper into the consequences of individual moves,
considering many levels of moves and countermoves. And today's
computers can examine a huge number of game positions.
Specialized machines, like IBM's chess-playing Deep Blue
computer, which beat world champion Garry Kasparov, can
examine far more. Deep Blue is able to explore over 200,000,000
board positions per second. That sounds quite impressive, until
you realize that the total number of board positions in a complete

search for chess is estimated to be over 100,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
which means it would take Deep Blue more than
1,585,489,599,188,229 years to look at all those possible
positions. (The universe, by the way, is estimated to be only
15,000,000,000 years old.)

The next_turn() Function

This function receives the current turn and returns the next turn. A
turn represents whose turn it is and is either X or O.
def next_turn(turn):
 """ Switch turns."""
 if turn == X:
 return O
 else:
 return X

The function is used to switch turns after one player has made a
move.

The congrat_winner() Function

This function receives the winner of the game, the computer's piece,
and the human's piece. This function is called only when the game is
over, so the_winner will be passed either X or O if one of the
player's has won the game, or TIE if the game ended in a tie.
def congrat_winner(the_winner, computer, human):
 """ Congratulate the winner."""
 if the_winner != TIE:
 print the_winner, "won!\n"
 else:
 print "It's a tie!\n"

 if the_winner == computer:
 print "As I predicted, human, I am
triumphant once more. \n" \
 "Proof that computers are superior
to humans in all regards."

 elif the_winner == human:
 print "No, no! It cannot be! Somehow you
tricked me, human. \n" \
 "But never again! I, the computer,
so swears it!"

 elif the_winner == TIE:
 print "You were most lucky, human, and
somehow managed to tie me. \n" \
 "Celebrate today... for this is the
best you will ever achieve."

The main() Function

I put the main part of the program into its own function, instead of
leaving it at the global level. This encapsulates the main code too.
Unless you're writing a short, simple program, it's usually a good
idea to encapsulate even the main part of it. If you do put your main
code into a function like this, you don't have to call it main().
There's no magic to the name. But it's a pretty common practice, so
it's a good idea to use it.

Okay, here's the code for the main part of the program. As you can
see, it's almost exactly, line for line, the pseudocode I wrote earlier:
def main():
 display_instruct()
 computer, human = pieces()

 turn = X
 board = new_board()
 display_board(board)

 while not winner(board):
 if turn == human:
 move = human_move(board, human)
 board[move] = human
 else:
 move = computer_move(board, computer,
human)
 board[move] = computer
 display_board(board)
 turn = next_turn(turn)

 the_winner = winner(board)
 congrat_winner(the_winner, computer, human)

Starting the Program

The next line calls the main function (which in turn calls the other
functions) from the global level:
start the program
main()
raw_input("\n\nPress the enter key to quit.")

Summary
In this chapter, you learned to write your own functions. You then
saw how to accept and return values in your functions. You learned
about namespaces and saw how global variables can be accessed
and changed from within functions. You also learned to limit your use
of global variables, but saw how to use global constants when
necessary. You even dabbled ever so slightly in some artificial
intelligence concepts to create a computer opponent in a game of
strategy.

Challenges
1. Improve the function ask_number() so that the function

can be called with a step value. Make the default value of
step 1.

2. Modify the Guess My Number chapter project from Chapter
3 by reusing the function ask_number().

3. Modify the new version of Guess My Number you created
in the last challenge so that the program's code is in a
function called main(). Don't forget to call main() so that
you can play the game.

4. Write a new computer_move() function for the Tic-Tac-
Toe game to plug the hole in the computer's strategy. See if
you can create an opponent that is unbeatable!

Chapter 7: Files and Exceptions: The Trivia
Challenge Game

 Download CD Content

Overview
Variables provide a great way to store and access information while
a program runs, but often, you'll want to save data so that you can
retrieve it later. In this chapter, you'll learn to use files for this kind of
permanent storage. You'll also learn how to handle errors that your
code may generate. Specifically, you'll learn to do the following:

Read from text files

Write to text files

Read and write more complex data with files

Intercept and handle errors during a program's execution

Introducing the Trivia Challenge Game
The Trivia Challenge game tests a player's knowledge with a series
of multiple-choice questions. The game delivers the questions as a
single "episode." The episode I created to show off the program is
about the mafia and is called "An Episode You Can't Refuse." All of
the questions relate in some way to the mafia (although a bit
indirectly at times).

The cool thing about the game is that the questions for an episode
are stored in a separate file, independent of the game code. This
way, it's easy to play different ones. Even better, this means that
anyone with a text editor (like Notepad on Windows machines) can
create their own trivia episode about whatever topic they choose—
anything from anime to zoology. Figure 7.1 shows the game (and my
episode) in action.

Figure 7.1: The player is always presented with four inviting
choices. But only one is correct.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig226_01_0.jpg

Reading from Text Files
With Python, it's easy to read strings from plain text files—files that
are made up of only ASCII characters. (Although there are different
types of text files, when I use the term "text file," I mean a plain text
file.) Text files are a good choice for permanently storing simple
information, for a number of reasons. First, text files are cross-
platform. A text file on a Windows machine is the same text file on a
Mac and is the same text file under Unix. Second, text files are easy
to use. Most operating systems come with basic tools to view and
edit them.

Introducing the Read It Program

The Read It program demonstrates several ways you can read
strings from a text file. The program demonstrates how to read
anything from a single character to the entire file. It also shows
several different ways to read one line at a time (probably the most
common way you'll access text files). The program reads a simple
text file I created on my system using a text editor. Here are the
contents of the file:
Line 1
This is line 2
That makes this line 3

I saved the file with the name read_it.txt and put it in the
same directory as the Read It program file for easy access. Figure
7.2 illustrates the program.

Figure 7.2: The file is read using a few different
techniques.

Here's the code for the program:
Read It
Demonstrates reading from a text file
Michael Dawson - 4/28/03
print "Opening and closing the file."
text_file = open("read_it.txt", "r")
text_file.close()

print "\nReading characters from the file."
text_file = open("read_it.txt", "r")
print text_file.read(1)
print text_file.read(5)
text_file.close()

print "\nReading the entire file at once."
text_file = open("read_it.txt", "r")
whole_thing = text_file.read()
print whole_thing
text_file.close()

print "\nReading characters from a line."

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig227_01_0.jpg

text_file = open("read_it.txt", "r")
print text_file.readline(1)
print text_file.readline(5)
text_file.close()

print "\nReading one line at a time."
text_file = open("read_it.txt", "r")
print text_file.readline()
print text_file.readline()
print text_file.readline()
text_file.close()

print "\nReading the entire file into a list."
text_file = open("read_it.txt", "r")
lines = text_file.readlines()
print lines
print len(lines)
for line in lines:
 print line
text_file.close()
print "\nLooping through the file, line by line."
text_file = open("read_it.txt", "r")
for line in text_file:
 print line
text_file.close()

raw_input("\n\nPress the enter key to exit.")

I'll show you exactly how the code works through an interactive
session.

Opening and Closing a Text File

Before you can read from a text file, you need to open it. That's the
first thing I do in the Read It program:

>>> text_file = open("read_it.txt", "r")

I use the open() function to open a text file and assign the results to
text_file. In the function call, I provide two string arguments: a
file name and an access mode.

The file argument, "read_it.txt", is pretty straightforward. Since
I don't include any path information, Python looks in the current
directory for the file. I can access a file in any directory by providing
the proper path information. For example, on my Windows machine I
could provide an absolute path with the string "C:\Documents
and Settings\Owner\Desktop\ read_it.txt" to access
the file read_it.txt located on my desktop. This will access the
file regardless of the directory from which Read It is run. Or, I could
provide a relative path with the string "data\read_it.txt" to
access the file read_it.txt located in the subdirectory data of
the directory from which Read It is run. In either case, I'm not limited
to accessing files from the only directory where Read It is run.

Next, I provide "r" for the access mode, which tells Python that I
want to open the file for reading. You can open a file for reading,
writing, or both. Table 7.1 describes valid access modes.

Table 7.1: SELECTED FILE ACCESS MODES

Mode Description

"r" Read from a file. If the file doesn't exist, Python will
complain with an error.

"w" Write to a file. If the file exists, its contents are overwritten.
If the file doesn't exist, it's created.

"a" Append a file. If the file exists, new data is appended to it.
If the file doesn't exist, it's created.

"r+" Read from and write to a file. If the file doesn't exist,
Python will complain with an error.

Mode Description

"w+" Write to and read from a file. If the file exists, its contents
are overwritten. If the file doesn't exist, it's created.

"a+" Append and read from a file. If the file exists, new data is
appended to it. If the file doesn't exist, it's created.

After opening the file, I access it through the variable text_file.
There are many useful file methods that I can invoke, but the
simplest is close(), which closes the file. That's what I do next in
the program:
>>> text_file.close()

Whenever you're done with a file, it's good programming practice to
close it.

Reading Characters from a Text File

For a file to be of any use, you need to do something with its
contents between opening and closing it. So next, I open the file and
read its contents with the read() file method. read() allows you to
read a specified number of characters from a file, which the method
returns as a string. After opening the file again, I read and print
exactly one character from it:
>>> text_file = open("read_it.txt", "r")
>>> print text_file.read(1)
L

All I have to do is specify the number of characters between the
parentheses. Next, I read and print the next five characters:
>>> print text_file.read(5)
ine 1

Notice that I read the five characters following the "L". Python
remembers where I last left off. It's like the computer puts a
bookmark in the file and each subsequent read() begins where the
last ended. When you read to the end of a file, subsequent reads
return the empty string.

To start back at the beginning of a file, you can close and open it.
That's just what I did next:
>>> text_file.close()
>>> text_file = open("read_it.txt", "r")

If you don't specify the number of characters to be read, Python
returns the entire file as a string. Next, I read the entire file, assign
the returned string to a variable, and print the variable:
>>> whole_thing = text_file.read()
>>> print whole_thing
Line 1
This is line 2
That makes this line 3

If a file is small enough, reading the entire thing at once may make
sense. Since I've read the entire file, any subsequent reads will just
return the empty string. So, I close the file again:
>>> text_file.close()

Reading Characters from a Line

Often, you'll want to work with one line of a text file at a time. The
readline() method lets you read characters from the current line.
You just pass the number of characters you want read from the
current line and the method returns them as a string. If you don't
pass a number, the method returns the entire line. Once you read all
of the characters of a line, the next line becomes the current line.
After opening the file again, I read the first character of the current
line:

>>> text_file = open("read_it.txt", "r")
>>> print text_file.readline(1)
L

Then I read the next five characters of the current line:
>>> print text_file.readline(5)
ine 1
>>> text_file.close()

At this point, readline() may seem no different than read(), but
readline() reads characters from the current line only, while
read() reads characters from the entire file. Because of this,
readline() is usually invoked to read one line of text at a time. In
the next few lines of code, I read the file, one line at a time:
>>> text_file = open("read_it.txt", "r")
>>> print text_file.readline()
Line 1

>>> print text_file.readline()
This is line 2

>>> print text_file.readline()
That makes this line 3

>>> text_file.close()

Notice that a blank line appears after each line. That's because each
line in the text file ends with a newline character ("\n").

Reading All Lines into a List

Another way to work with individual lines of a text file is the
readlines() method, which reads a text file into a list, where each

line of the file becomes a string element in the list. Next, I invoke the
readlines() method:
>>> text_file = open("read_it.txt", "r")
>>> lines = text_file.readlines()

lines now refers to a list with an element for each line in the text
file:
>>> print lines
['Line 1\n', 'This is line 2\n', 'That makes this
line 3\n']

lines is like any list. You can find the length of it and even loop
through it:
>>> print len(lines)
3
>>> for line in lines:
 print line
Line 1

This is line 2

That makes this line 3

>>> text_file.close()

Looping through a Text File

Starting in Python 2.2, you can loop directly through the lines of a
text file:
>>> text_file = open("read_it.txt", "r")
>>> for line in text_file:
 print line

Line 1

This is line 2

That makes this line 3

>>> text_file.close()

This technique is the most elegant solution if you want to move
through all of the lines of a text file.

Writing to a Text File
For text files to be a viable form of storage, you need to be able to
get information into them. With Python, it's also a simple matter to
write strings to text files. In fact, it's even easier than reading strings
from text files, because there are just two basic ways to write to text
files.

Introducing the Write It Program

The Write It program creates a text file with the same contents of the
 read_it.txt file that I used in the Read It program. Actually, the

program creates and prints this new file twice, using a different file
writing method each time. Figure 7.3 shows the results of the
program.

Figure 7.3: The same file is created twice, each time with a
different file method.

Writing Strings to a Text File

Just as before, in order to use a file, I have to open it in the correct
mode. So, the first thing I do in the program is open a file in write
mode:
Write It
Demonstrates writing to a text file
Michael Dawson - 4/28/03

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig234_01_0.jpg

print "Creating a text file with the write()
method."
text_file = open("write_it.txt", "w")

The file write_it.txt springs into existence as an empty text file
just waiting for the program to write to it. If the file write_it.txt
had already existed, it would have been replaced with a brand-new,
empty file and all of its original contents would have been erased.

Next, I use the write() file method, which writes a string to the file:
text_file.write("Line 1\n")
text_file.write("This is line 2\n")
text_file.write("That makes this line 3\n")

The write() method does not automatically insert a newline
character at the end of a string it writes. You have to put newlines in
where you want them. If I had left the three newline characters out of
the previous lines of code, the program would write one, long string
to the file.

Also, you don't have to end every string you write to a file with a
newline character. To achieve the same end result, I could just as
easily have stuck all three of the previous strings together to form
one long string, "Line 1\n This is line 2\n That makes
this line 3\n", and written that string to the file with a single
write() method.

Finally, I close the file:
text_file.close()

Next, just to prove that the writing worked, I read and print the entire
contents of the file:
print "\nReading the newly created file."
text_file = open("write_it.txt", "r")

print text_file.read()
text_file.close()

Writing a List of Strings to a Text File

Next, I create the same file, using the writelines() file method.
Like its counter-part, readlines(), writelines() works with a
list of strings. But instead of reading a text file into a list, the method
writes a list of strings to a file.

The first thing I do is open the file for writing:
print "\nCreating a text file with the
writelines() method."
text_file = open("write_it.txt", "w")

I open the same file, write_it.txt, which means I wipe out the
existing file and start with a new, empty one. Next, I create a list of
strings to be written, in order, to the file:
lines = ["Line 1\n",
 "This is line 2\n",
 "That makes this line 3\n"]

Again, I inserted newline characters where I want them in the text
file.

Next, I write the entire lists of strings to the file with the
writelines() method:
text_file.writelines(lines)

Finally, I close the file:
text_file.close()

Lastly, I print out the contents of the file to show that the new file is
exactly the same as the previous version:

print "\nReading the newly created file."
text_file = open("write_it.txt", "r")
print text_file.read()
text_file.close()

raw_input("\n\nPress the enter key to exit.")

You've seen a lot of file read and write methods. Take a look at Table
7.2 for a summary of them.

Table 7.2: SELECTED FILE METHODS

Method Description

read([size])

Reads size characters from a text file
and returns them as a string. If size is
not specified, the method returns all of
the characters from the current position
to the end of the file.

readline([size])

Reads size characters from the
current line in a text file and returns
them as a string. If size is not
specified, the method returns all of the
characters from the current position to
the end of the line.

readlines() Reads all of the lines in a text file and
returns them as elements in a list.

write(output) Writes the string output to a text file.

writelines(output) Writes the strings in the list output to a
text file.

Storing Complex Data in Files
Text files are convenient because you can read and manipulate them
with any text editor, but they're limited to storing a series of
characters. Sometimes you may want to store more complex
information, like a list or a dictionary, for example. You could try to
convert the contents of these data structures to characters and save
them to a file, but Python offers a much better way. You can store
more complex data in a file with a single line of code. You can even
store a simple database of values in a single file that acts like a
dictionary.

Introducing the Pickle It Program

Pickling means to preserve—and that's just what it means in Python.
You can pickle a complex piece of data, like a list or dictionary, and
save it in its entirety to a file. Best of all, your hands won't smell like
vinegar when you're done.

IN THE REAL WORLD

Other languages can convert complex data for storage in files too,
but may not call the process pickling. Instead, these languages
may call the process serialization or marshaling.

The Pickle It program pickles, stores, and retrieves three lists of
strings. First, the program stores and retrieves the lists sequentially
using a file, much like you've seen with characters in a text file. But
then the program stores and retrieves the same three lists so that
any list can be randomly accessed. The results of the program are
shown in Figure 7.4.

Figure 7.4: Each list is written to and read from a file in its
entirety.

Pickling Data and Writing It to a File

The first thing I do in the program is import two new modules:
Pickle It
Demonstrates pickling and shelving data
Michael Dawson 5/1/03

import cPickle, shelve

The cPickle module allows you to pickle and store more complex
data in a file. The shelve module allows you to store and randomly
access pickled objects in a file.

HINT Python also has a pickle module, which works like the
cPickle module. pickle is written in Python while
cPickle is written in C. Since cPickle can be much
faster, it's better to use cPickle over pickle in almost
every case.

Pickling is pretty simple. Instead of writing characters to a text file,
you can write a pickled object to a file. Pickled objects are stored in
files much like characters; you can store and retrieve them
sequentially.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig237_01_0.jpg

In the next section of code, I pickle and store the three lists
variety, shape, and brand in the file pickles1.dat using the
cPickle.dump() function. The function requires two arguments:
the data to pickle and the file in which to store it.
print "Pickling lists."
variety = ["sweet", "hot", "dill"]
shape = ["whole", "spear", "chip"]
brand = ["Claussen", "Heinz", "Vlassic"]
pickle_file = open("pickles1.dat", "w")
cPickle.dump(variety, pickle_file)
cPickle.dump(shape, pickle_file)
cPickle.dump(brand, pickle_file)
pickle_file.close()

So, this code pickles the list referred to by variety and writes the
whole thing as one object to the file pickles1.dat. Next, the
program pickles the list referred to by shape and writes the whole
thing as one object to the file. Then, the program pickles the list
referred to by brand and writes the whole thing as one object to the
file. Finally, the program closes the file.

You can pickle a variety of objects, including:

Numbers

Strings

Tuples

Lists

Dictionaries

Reading Data from a File and Unpickling It

Next, I retrieve and unpickle the three lists with the
cPickle.load() function. The function takes one argument: the
file from which to load the next pickled object.
print "\nUnpickling lists."
pickle_file = open("pickles1.dat", "r")
variety = cPickle.load(pickle_file)
shape = cPickle.load(pickle_file)
brand = cPickle.load(pickle_file)

The program reads the first pickled object in the file, unpickles it to
produce the list ["sweet", "hot", "dill"], and assigns the list
to variety. Next, the program reads the next pickled object from
the file, unpickles it to produce the list ["whole", "spear",
"chip"], and assigns the list to shape. Finally, the program reads
the last pickled object from the file, unpickles it to produce the list
["Claussen", "Heinz", "Vlassic"], and assigns the list to
brand.

Finally, I print the unpickled lists to prove that the process worked:
print variety, "\n", shape, "\n", brand
pickle_file.close()

Using a Shelf to Store Pickled Data

Next, I take the idea of pickling one step further by shelving the lists
together in a single file. Using the shelve module, I create a shelf
that acts like a dictionary, which allows the lists to be accessed
randomly.

First, I create a shelf, pickles:
print "\nShelving lists."
pickles = shelve.open("pickles2.dat")

The shelve.open() function works a lot like the file open()
function. However, the shelve.open() function works with a file

that stores pickled objects and not characters. In this case, I
assigned the resulting shelf to pickles, which now acts like a
dictionary whose contents are permanently stored in the file
pickles2.dat.

The shelve.open() function requires one argument: a file name. It
also takes an optional access mode. If you don't supply an access
mode (like I didn't), it defaults to "c". Table 7.3 details access
modes for the function.

Table 7.3: shelve ACCESS MODES

Mode Description

"c" Open a file for reading or writing. If the file doesn't exist,
it's created.

"n" Create a new file for reading or writing. If the file exists, its
contents are overwritten.

"r" Read from a file. If the file doesn't exist, Python will
complain with an error.

"w" Write to a file. If the file doesn't exist, Python will complain
with an error.

Next, I add three lists to the shelf:
pickles["variety"] = ["sweet", "hot", "dill"]
pickles ["shape"] = ["whole", "spear", "chip"]
pickles["brand"] = ["Claussen", "Heinz",
"Vlassic"]

pickles works like a dictionary. So, the key "variety" is paired
with the value ["sweet", "hot", "dill"]. The key "shape" is
paired with the value ["whole", "spear", "chip"]. And the
key "brand" is paired with the value ["Claussen", "Heinz",

"Vlassic"]. One important thing to note is that a shelf key can
only be a string.

Lastly, I invoke the shelf's sync() method:
pickles.sync() # make sure data is written

Python writes changes to a shelf file to a buffer and then periodically
writes the buffer to the file. To make sure the file reflects all the
changes to a shelf, you can invoke a shelf's sync() method. A shelf
file is also updated when you close it with its close() method.

HINT While you could simulate a shelf by pickling a dictionary,
the shelve module is more memory efficient. So, if you
need random access to pickled objects, create a shelf.

Using a Shelf to Retrieve Pickled Data

Since a shelf acts like a dictionary, you can retrieve pickled objects
from it by supplying a key. Next, I loop through all of the pickled
objects in pickles, treating it like a dictionary:
print "\nRetrieving the lists from a shelved
file:"
for key in pickles.keys():
 print key, "-", pickles[key]

I loop through a list of keys, which includes "variety", "shape"
and "brand", printing the key and its value. Finally, I close the file:
pickles.close()

raw_input("\n\nPress the enter key to exit.")

IN THE REAL WORLD

Pickling and unpickling are good ways to store and retrieve
structured information, but more complex information can require
even more power and flexibility. Databases and XML are two
popular methods for storing and retrieving more complex data,
and Python has modules that can interface with either. To learn
more, visit the Python language Web site at
http://www.python.org.

http://www.python.org/

Handling Exceptions
When Python runs into an error, it stops the current program and
displays an error message. More precisely, it raises an exception,
indicating that, well, something exceptional has occurred. If nothing
is done with the exception, Python halts what it's doing and prints an
error message detailing the exception.

Here's a simple example of Python raising an exception:
>>> num = float(raw_input("Enter a number: "))
Enter a number: Hi!
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in ?
 num = float(raw_input("Enter a number: "))
ValueError: invalid literal for float(): Hi!

In this interactive session, Python tries to convert the string "Hi!" to
a floating-point number. Since it can't, Python raises an exception
and prints the details.

Using Python's exception handling functionality, you can intercept
and handle exceptions so that your program doesn't end abruptly
(even if a user enters "Hi!" when you ask for a number). At the
very least, you can have your program exit gracefully instead of
crashing awkwardly.

Introducing the Handle It Program

The Handle It program opens itself up to errors from user input and
then purposely generates a few errors of its own. But instead of
halting, the program runs to completion. That's because the program
handles the exceptions that are raised. Figure 7.5 shows the
program in action.

Figure 7.5: Although the program can't convert "Hi!" to a
number, it doesn't halt when exceptions are
raised.

Using a try Statement with an except Clause

The most basic way to handle (or trap) exceptions is to use the try
statement with an except clause. By using a try statement, you
section off some code that could potentially raise an exception.
Then, you write an except clause with a block of statements that
are executed only if an exception is raised.

The first thing I do in the Handle It program is ask the user for a
number. I get a string from the user and then attempt to convert the
string to a floating-point number. I use try and except to handle
any exceptions that might be raised in the process.
Handle It
Demonstrates handling exceptions
Michael Dawson 5/3/03

try/except
try:
 num = float(raw_input("Enter a number: "))
except:
 print "Something went wrong!"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig242_01_0.jpg

If the call to float() raises an exception (as a result of the user
entering an unconvertible string, like "Hi!", for example), the
exception is caught and the user is informed that Something went
wrong! If no exception is raised, num gets the number the user
entered and the program skips the except clause, continuing with
the rest of the code.

Specifying an Exception Type

Different kinds of errors result in different types of exceptions. For
example, trying to convert the string "Hi!" with float() results in
a ValueError exception because the characters in the string are of
the wrong value (they're not digits). There are over two dozen
exception types, but Table 7.4 lists a few of the most common ones.

Table 7.4: SELECTED EXCEPTION TYPES

Exception Type Description

IOError
Raised when an I/O operation fails, such
as when an attempt is made to open a
nonexistent file in read mode.

IndexError Raised when a sequence is indexed with
a number of a nonexistent element.

KeyError Raised when a dictionary key is not
found.

NameError Raised when a name (of a variable or
function, for example) is not found.

SyntaxError Raised when a syntax error is
encountered.

TypeError
Raised when a built-in operation or
function is applied to an object of
inappropriate type.

Exception Type Description

ValueError
Raised when a built-in operation or
function receives an argument that has
the right type but an inappropriate value.

ZeroDivisionError Raised when the second argument of a
division or modulo operation is zero.

The except clause lets you specify exactly which type of exceptions
it will handle. You just list the specific type of exceptions in
parentheses after except.

I again ask the user for a number, but this time I specifically trap for a
ValueError:
specifying exception type
try:
 num = float(raw_input("\nEnter a number: "))
except(ValueError):
 print "That was not a number!"

Now, the print statement will only execute if a ValueError is
raised. As a result, I can be even more specific and display the
message That was not a number! However, if any other
exception is raised inside the try statement, the except clause will
not catch it and the program will come to a halt.

It's good programming practice to specify exception types so that
you handle each individual case. In fact, it's dangerous to catch all
exceptions the way I did in the first except clause of the program.
Generally, you should avoid that type of catchall.

HINT When should you trap for exceptions? Any point of
external interaction with your program is a good place to
think about exceptions. It's a good idea to trap for
exceptions when opening a file for reading, even if you

believe the file already exists. You can also trap for
exceptions when you attempt to convert data from an
outside source, like the user.

TRICK So, let's say you know you want to trap for an exception,
but you're not exactly sure what the exception type is
called. Well, here's a shortcut for finding out: just create
the exception. For example, if you know you want to trap
for a division-by-zero exception, but can't remember
exactly what the exception type is called, jump into the
interpreter and divide a number by zero:
>>> 1/0
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in ?
 1/0
ZeroDivisionError: integer division or
modulo by zero

From this interactive session, I can see that the
exception is called ZeroDivisionError. Fortunately,
the interpreter isn't shy about telling you exactly which
type of exception you raise.

Handling Multiple Exception Types

A single piece of code can result in different types of exceptions.
Fortunately, you can trap for multiple exception types. One way to
trap for multiple exception types is to list them in a single except
clause:
handle multiple exceptions
print
for value in (None, "Hi!"):
 try:
 print "Attempting to convert", value, "—
>",
 print float(value)

 except(TypeError, ValueError):
 print "Something went wrong!"

This code tries to convert two different values to a floating-point
number. Both fail, but each raises a different exception type.
float(None) raises a TypeError because the function can only
convert strings and numbers. float("Hi!") raises a ValueError
because, while "Hi!" is a string, the characters in the string are of
the wrong value (they're not digits). As a result of the except
clause, each type of exception is handled.

Another way to catch multiple exceptions is with multiple except
clauses. You can list as many as you'd like, following a single try
statement:
print
for value in (None, "Hi!"):
 try:
 print "Attempting to convert", value, "—
>",
 print float(value)
 except(TypeError):
 print "I can only convert a string or a
number!"
 except(ValueError):
 print "I can only convert a string of
digits!"

Now, each exception type has its own block. So when value is
None, a TypeError is raised and the string "I can only
convert a string or a number!" is printed. When value is
"Hi!", a ValueError is raised and the string "I can only
convert a string of digits!" is printed.

Using multiple except clauses allows you to define unique reactions
to different types of exceptions from the same try block. In this

case, I offer a more specific error message by trapping each
exception type individually.

Getting an Exception's Argument

When an exception occurs, it may have an associated value, the
exception's argument. The argument is usually an official message
from Python describing the exception. You can receive the argument
if you list a variable before the colon in the except statement.

Here, I receive the exception's argument in variable e and print it out
along with my regular error message:
get an exception's argument
try:
 num = float(raw_input("\nEnter a number: "))
except(ValueError), e:
 print "That was not a number! Or as Python
would say:\n", e

Adding an else Clause

You can add a single else clause after all the except clauses in a
try statement. The else block executes only if no exception is
raised in the try block.
try/except/else
try:
 num = float(raw_input("\nEnter a number: "))
except(ValueError):
 print "That was not a number!"
else:
 print "You entered the number", num

raw_input("\n\nPress the enter key to exit.")

In this code, num is printed in the else block only if the assignment
statement in the try block doesn't raise an exception. This is perfect
because that means num will be printed only if the assignment
statement was successful and the variable exists.

Back to the Trivia Challenge Game
With the basics of files and exceptions under your belt, it's time to
tackle the Trivia Challenge game presented at the beginning of the
chapter. One of the cool things about the program is that it reads a
plain text file, so you can create your own trivia game episodes with
a text editor and a dash of creativity. As you'll see in the code, the
text file the program reads, trivia.txt, needs to be in the
same directory as the program file. To create your own episode full
of questions, all you need to do is replace this file with one
containing your own work.

Understanding the Data File Layout

Before I go over actual code from the game, you should understand
exactly how the trivia.txt file is structured. The very first line
in the file is the title of the episode. The rest of the file consists of
blocks of seven lines for each question. You can have as many
blocks (and thus questions) as you like. Here's a generic
representation of a block:
<category>
<question>
<answer 1>
<answer 2>
<answer 3>
<answer 4>
<correct answer>
<explanation>

And here's the beginning of the file I created for the game:
An Episode You Can't Refuse
On the Run With a Mammal
Let's say you turn state's evidence and need to
"get on the lamb." If you wait /too long, what
will happen?

You'll end up on the sheep
You'll end up on the cow
You'll end up on the goat
You'll end up on the emu
1
A lamb is just a young sheep.
The Godfather Will Get Down With You Now
Let's say you have an audience with the Godfather
of Soul. How would it be /smart to address
him?
Mr. Richard
Mr. Domino
Mr. Brown
Mr. Checker
3
James Brown is the Godfather of Soul.

To save space, I only show the first 15 lines of the file—two
questions' worth. You can take a look at the complete file,
 trivia.txt, on the CD-ROM that's included with this book.

Remember, the very first line in the file, An Episode You Can't
Refuse, is the episode title for this game. The next seven lines are
for the first question. And the next seven lines are for the second
question. So, the line On the Run With a Mammal is the
category of the first question. The category is just a clever way to
introduce the next question. The next line, Let's say you turn
state's evidence and need to "get on the lamb." If
you wait /too long, what will happen?, is the first
question in the game. The next four lines, You'll end up on
the sheep, You'll end up on the cow, You'll end up on
the goat, and You'll end up on the emu, are the four
possible answers from which the player will choose. The next line, 1,
is the number of the correct answer. So in this case, the correct

answer to the question is the first answer, You'll end up on
the sheep. The next line, A lamb is just a young sheep.,
explains why the correct answer is correct. The rest of the questions
follow the same pattern.

An important thing to note is that I included a forward slash (/) in two
of the lines. I did this to represent a newline since Python does not
automatically wrap text when it prints it. When the program reads a
line from the text file, it replaces all of the forward slashes with the
newline character. You'll see exactly how the program does this
when I go over the code.

The open_file() Function

The first thing I do in the program is define the function
open_file(), which receives a file name and mode (both strings)
and returns a corresponding file object. I use try and except to
trap for an IOError exception for input-output errors, which would
occur if the file doesn't exist, for example.

If I trap an exception, that means there was a problem opening the
trivia file. If this happens, there's no point in continuing the program,
so I print an appropriate message and call the sys.exit()
function. This function raises an exception that results in the
termination of the program. You should only use sys.exit() as a
last resort, when you must end a program. Notice that I didn't have
to import the sys module to call sys.exit(). That's because the
sys module is always available.
Trivia Challenge
Trivia game that reads a plain text file
Michael Dawson - 5/3/03

def open_file(file_name, mode):
 """Open a file."""
 try:

 the_file = open(file_name, mode)
 except(IOError), e:
 print "Unable to open the file",
file_name, "Ending program.\n", e
 raw_input("\n\nPress the enter key to
exit.")
 sys.exit()
 else:
 return the_file

The next_line() Function

Next, I define the next_line() function, which receives a file
object and returns the next line of text from it:
def next_line(the_file):
 """Return next line from the trivia file,
formatted."""
 line = the_file.readline()
 line = line.replace("/", "\n")
 return line

However, I do one small bit of formatting to the line before I return it.
I replace all forward slashes with newline characters. I do this
because Python does not automatically word wrap printed text. My
procedure gives the creator of a trivia text file some formatting
control. He or she can indicate where newlines should go so that
words don't get split across lines. Take a look at the triva.txt file
and the output of the Trivia Challenge game to see this in action. Try
removing the forward slashes from the text file and check out the
results.

The next_block() Function

The next_block() function reads the next block of lines for one
question. It takes a file object and returns four strings and a list of

strings. It returns a string for the category, question, correct answer,
and explanation. It returns a list of four strings for the possible
answers to the question.
def next_block(the_file):
 """Return the next block of data from the
trivia file."""
 category = next_line(the_file)

 question = next_line(the_file)

 answers = []
 for i in range(4):
 answers.append(next_line(the_file))

 correct = next_line(the_file)
 if correct:
 correct = correct[0]

 explanation = next_line(the_file)

 return category, question, answers, correct,
explanation

If the end of the file is reached, reading a line returns the empty
string. So, when the program comes to the end of trivia.txt,
category gets the empty string. I check category in the main()
function of the program. When it becomes the empty string, the
game is over.

The welcome() Function

The welcome() function welcomes the player to the game and
announces the episode's title. The function gets the episode title as
a string and prints it along with a welcome message.

def welcome(title):
 """Welcome the player and get his/her name."""
 print "\t\tWelcome to Trivia Challenge!\n"
 print "\t\t", title, "\n"

Setting Up the Game

Next, I create the main() function, which houses the main game
loop. In the first part of the function, I set up the game by opening the
trivia file, getting the title of the episode (the first line of the file),
welcoming the player, and setting the player's score to 0.
def main():
 trivia_file = open_file("trivia.txt", "r")
 title = next_line(trivia_file)
 welcome(title)
 score = 0

Asking a Question

Next, I read the first block of lines for the first question into variables.
Then, I start the while loop, which will continue to ask questions as
long as category is not the empty string. If category is the empty
string, that means the end of the trivia file has been reached and the
loop won't be entered. I ask a question by printing the category of
the question, the question itself, and the four possible answers.
 # get first block
 category, question, answers, correct,
explanation = next_block(trivia_file)
 while category:
 # ask a question
 print category
 print question
 for i in range(4):
 print "\t", i + 1, "-", answers[i]

Getting an Answer

Next, I get the player's answer:
 # get answer
 answer = raw_input("What's your answer?: ")

Checking an Answer

Then, I compare the player's answer to the correct answer. If they
match, the player is congratulated and his or her score is increased
by one. If they don't match, the player is told he or she is wrong. In
either case, I then display the explanation, which describes why the
correct answer is correct. Lastly, I display the player's current score.
 # check answer
 if answer == correct:
 print "\nRight!",
 score += 1
 else:
 print "\nWrong.",
 print explanation
 print "Score:", score, "\n\n"

Getting the Next Question

Then, I call the next_block() function and get the block of strings
for the next question. If there are no more questions, category will
get the empty string and the loop won't continue.
 # get next block
 category, question, answers, correct,
explanation = next_block(trivia_file)

Ending the Game

After the loop, I close the trivia file and display the player's score:

 trivia_file.close()

 print "That was the last question!"
 print "You're final score is:", score

Starting the main() Function

The last lines of code start main() and kick off the game:
main()
raw_input("\n\nPress the enter key to exit.")

Summary
In this chapter, you learned about files and exceptions. You learned
how to read from text files. You saw how to read a single character
or an entire file at once. You learned several different ways to read
one full line at a time, probably the most common way to read a text
file. You also learned how to write to text files—everything from a
single character to a list of strings. Next, you learned how to save
more complex data to files through pickling and how to manage a
group of pickled objects in a single file using a shelf. Then, you saw
how to handle exceptions raised during the execution of a program.
You saw how to trap for specific exceptions and how to write code to
work around them. Finally, you saw how to put files and exceptions
together through the construction of a trivia game program that
allows anyone with a text editor to create their very own trivia
episodes.

Challenges
1. Improve the Trivia Challenge game so that each question

has a unique point value associated with it. The player's
score should be the total of all the point values of the
questions he or she answers correctly.

2. Improve the Trivia Challenge game so that it maintains a
high-scores list in a file. The program should record the
player's name and score if the player makes the list. Store
the high scores using a pickled object.

3. Change the way the high-scores functionality you created
in the last challenge is implemented. This time, use a plain
text file to store the list.

4. Create a trivia game episode that tests a player's
knowledge of Python files and exceptions.

Chapter 8: Software Objects: The Critter
Caretaker Program

 Download CD Content

Overview
Object-oriented programming (OOP) is a different way of thinking
about programming. It's a modern methodology that's been
embraced by the software industry and is used in the creation of the
majority of new, commercial software. The basic building block in
OOP is the software object—often just called an object. In this
chapter, you'll take your first steps toward understanding OOP as
you learn about objects. Specifically, you'll learn to do the following:

Create classes to define objects

Write methods and create attributes for objects

Instantiate objects from classes

Restrict access to an object's attributes

Work with both new-style and old-style classes

Introducing the Critter Caretaker Program
The Critter Caretaker program charges the user with the care of his
or her own virtual pet. The user names the critter and is completely
responsible for keeping it happy, which is no small task. The user
must feed and play with the critter to keep it in a good mood. The
user can listen to the critter to learn how the critter is feeling, which
can range from happy to mad. Figures 8.1 through 8.3 show off the
Critter program.

Figure 8.1: You get to name your very own
critter.

Figure 8.2: If you fail to feed or entertain your critter, it will have a
mood change for the worse.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig256_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig256_02_0.jpg

Figure 8.3: But with the proper care, your critter will come back to
its original, sunny mood.

Though you could create this program without software objects, I
created the critter as an object. Ultimately, this makes the program
easier to work with and modify. Plus, it allows for painless scaling.
Once you've created one critter, it's no sweat to create and manage
a dozen. Could a critter farm be far off? (Not if you check the chapter
challenges.)

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig257_01_0.jpg

Understanding Object-Oriented Basics
OOP has a reputation for being complicated, but I think it's actually
simpler than some of the concepts you've already learned. In fact,
OOP allows you to represent things in your programs in a way that's
more like the real world.

What you often want to represent in your programs—anything from a
checking account to an alien spacecraft—are real-life objects. OOP
lets you represent these real-life objects as software objects. Like
real-life objects, software objects combine characteristics (called
attributes in OOP-speak) and behaviors (called methods in OOP-
speak). For example, if you were to create an alien spacecraft
object, its attributes could include its location and energy level, while
its methods could include its ability to move or fire its weapons.

Objects are created (or instantiated in OOP-speak) from a definition
called a class—programming code that can define attributes and
methods. Classes are like blue-prints. A class isn't an object, it's a
design for one. And just as a foreman can create many houses from
the same blueprint, a programmer can create many objects from the
same class. As a result, each object (also called an instance)
instantiated from the same class will have a similar structure. So, if
you have a checking account class, you could use it to create
multiple checking account objects. And those different objects would
each have the same basic structure. Each might have a balance
attribute, for example.

But just as you can take two houses built from the same blueprint
and decorate them differently, you can have two objects of the same
class and give each its own, unique set of attribute values. So, you
could have one checking account object with a balance attribute of
100 and another with a balance attribute of 1,000,000.

HINT Don't worry if all this OOP talk isn't crystal clear yet. I just
wanted to give you an overview of what objects are all

about. Like all new programming concepts, reading about
them isn't enough. But after seeing some real Python code
that defines classes and creates objects (and coding
some on your own), you'll soon "get" OOP.

Creating Classes, Methods, and Objects
To build an object, you first need a blueprint, or a class. Classes
almost always include methods, things that an object can do. You
can create a class without any methods, but that wouldn't be much
fun.

Introducing the Simple Critter Program

The Simple Critter program includes your first example of a class
written in Python. In it, I define an extremely simple type of critter
that can only do one thing: say hi. While this kind of critter might be
simple, at least it's polite. The results of the program are pictured in
Figure 8.4

Figure 8.4: When the program invokes the Critter object's
talk() method, the critter greets the world.

The program is quite short. Here's the code in its entirety:
Simple Critter
Demonstrates a basic class and object
Michael Dawson - 3/23/03

class Critter(object):
 """A virtual pet"""
 def talk(self):
 print "Hi. I'm an instance of class

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig258_01_0.jpg

Critter."

main
crit = Critter()
crit.talk()

raw_input("\n\nPress the enter key to exit.")

Defining a Class

The program starts with a class definition, the blueprint of my first
critter. The first line of the definition is the class header:
class Critter(object):

I used the keyword class followed by the class name I chose,
Critter. You'll notice that my class name begins with a capital
letter. Python doesn't require this, but it's the standard convention, so
you should begin all your class names with a capital letter.

Next, I told Python to base my class on object, a fundamental,
built-in type. You can base a new class on object or any previously
defined class, but that's a topic for Chapter 9, "Object-Oriented
Programming: The Blackjack Game." In this chapter, I base all of my
classes on object.

TRAP If you're using a version of Python before 2.2, you can't
base your classes on object. So, to get the programs in
this chapter to run, you'll need to remove (object) from
the class headers. My advice though is to use Python 2.2
or later, if at all possible. Toward the end of this chapter,
I'll explain exactly what's going on in the evolution of
Python classes and objects.

The next line is a docstring, which documents the class. A good
docstring describes the kind of objects a class can be used to create.
My docstring is pretty straightforward:

 """A virtual pet"""

Defining a Method

The last part of the class defines a method. It looks very much like a
function:
 def talk(self):
 print "Hi. I'm an instance of class
Critter."

In fact, you can think of methods as functions associated with an
object. (You've already seen this with string and list methods, for
example.) The talk() method prints the string "Hi. I'm an
instance of class Critter."

You'll notice that talk() has one parameter, self (which it doesn't
happen to use). Every method must have a special first parameter,
called self by convention, in its parameter list. It provides a way for
a method to refer to the object itself. For now, don't worry about
self, you'll see it in action a little later in this chapter.

TRAP If you create an instance method without any parameters,
you'll generate an error when you invoke it. Remember,
all instance methods must have a special first parameter,
called self by convention.

Instantiating an Object

After I wrote my class, instantiating a new object took just one line:
crit = Critter()

This line creates a brand-new object of the Critter class and
assigns it to the variable crit. Notice the parentheses after the
class name Critter in the assignment statement. It's critical to use
them if you want to create a new object.

You can assign a newly instantiated object to a variable with any
name. The name doesn't have to be based on the class name.
However, you should avoid using the same name in lowercase
letters as the class name because it could lead to confusion.

Invoking a Method

My new object has a method called talk(). The method is like any
other method you've already seen. It's basically a function that
belongs to the object. I can invoke this method just like any other,
using dot notation:
crit.talk()

The line invokes the talk() method of the Critter object
assigned to crit. The method simply prints the string "Hi. I'm
an instance of class Critter."

Using Constructors
You've seen how you can create methods, like talk(), but there's a
special method you can write, called a constructor, that is
automatically invoked right after a new object is created. A
constructor method is extremely useful. In fact, you'll almost always
write one for each class you create. The constructor method is
usually used to set up the initial attribute values of an object, though
I won't use it for that in this program.

Introducing the Constructor Critter Program

The Constructor Critter program defines a new Critter class that
includes a simple constructor method. The program also shows how
easy it is to create multiple objects from the same class. Figure 8.5
shows a sample run of the program.

Figure 8.5: Two separate critters are created. Each says
hi.

Here's the Constructor Critter program code:
Constructor Critter
Demonstrates constructors
Michael Dawson - 3/23/03

class Critter(object):
 """A virtual pet"""

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig261_01_0.jpg

 def __init__(self):
 print "A new critter has been born!"

 def talk(self):
 print "\nHi. I'm an instance of class
Critter."

main
crit1 = Critter()
crit2 = Critter()

crit1.talk()
crit2.talk()

raw_input("\n\nPress the enter key to exit.")

Creating a Constructor

The first new piece of code in the class definition is the constructor
method (also called the initialization method):
 def __init__(self, name):
 print "A new critter has been born!"

Normally, you make up your own method names, but here I used a
specific one recognized by Python. By naming the method
__init__, I told Python that this is my constructor method. As a
constructor method, __init__() is automatically called by any
newly created Critter object right after the object springs to life.
As you can see from the second line in the method, that means any
newly created Critter object automatically announces itself to the
world by printing the string "A new critter has been born!".

HINT Python has a collection of built-in "special methods"
whose names begin and end with two underscores, like

__init__, the constructor method.

Creating Multiple Objects

Once you've written a class, creating multiple objects is a snap. In
the main part of the program, I create two:
main
crit1 = Critter()
crit2 = Critter()

As a result, two objects are created. Just after each is instantiated, it
prints "A new critter has been born!" through its
constructor method.

Each object is its very own, full-fledged critter. To prove the point, I
invoke their talk() methods:
crit1.talk()
crit2.talk()

Even though these two lines of code print the exact same string,
each is the result of a different object.

Using Attributes
You can have an object's attributes automatically created and
initialized just after it's instantiated through its constructor method.
This is a big convenience and something you'll do a lot.

Introducing the Attribute Critter Program

The Attribute Critter program creates a new type of object with an
attribute, name. The Critter class has a constructor method that
creates and initializes name. The program uses the new attribute so
that the critter can offer a more personalized greeting. Figure 8.6
shows the program in action.

Figure 8.6: This time, each Critter object has an attribute
name that it uses when it says hi.

The following is the code for the program:
Attribute Critter
Demonstrates creating and accessing object
attributes
Michael Dawson - 3/23/03

class Critter(object):
 """A virtual pet"""
 def __init__(self, name):
 print "A new critter has been born!"

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig264_01_0.jpg

 self.name = name

 def __str__(self):
 rep = "Critter object\n"
 rep += "name: "+ self.name + "\n"
 return rep

 def talk(self):
 print "Hi. I'm", self.name, "\n"

main
crit1 = Critter("Poochie")
crit1.talk()

crit2 = Critter("Randolph")
crit2.talk()

print "Printing crit1:"
print crit1

print "Directly accessing crit1.name:"
print crit1.name

raw_input("\n\nPress the enter key to exit.")

Initializing Attributes

The constructor in this program prints the message "A new
critter has been born!" just like the constructor in the
Constructor Critter program, but the next line of the method does
something new. It creates the attribute name for the new object and
sets it to the value of the parameter name. So, in the main part of the
program, the line:
crit = Critter("Poochie")

results in the creation of a new Critter object with an attribute
name set to "Poochie". Finally, the object is assigned to crit.

So that you can understand exactly how this works, I'll reveal what
the mysterious self parameter is all about. As the first parameter in
every method, self automatically receives a reference to the object
invoking the method. This means that, through self, a method can
get at the object invoking it and access the object's attributes or
methods (or even create new attributes for the object).

HINT You can name the first parameter in a method header
something other than self, but you shouldn't. It's the
"Pythonic" way to do things and other programmers will
expect it.

So, back in the constructor method, the parameter self
automatically receives a reference to the new Critter object while
the parameter name receives "Poochie". Then, the line:
 self.name = name

creates the attribute name for the object and sets it to the value of
name, which is "Poochie".

Back in the main part of the program, the assignment statement
assigns this new object to crit. This means that crit refers to a
new object with its own attribute called name set to "Poochie". So,
a critter has been created with its own name!

The line in the main program:
crit2 = Critter("Randolph")

kicks off the same basic chain of events. But this time, a new
Critter object is created with its own attribute name set to
"Randolph". And the object is assigned to crit2.

Accessing Attributes

Attributes aren't any good unless you can use them, so I wrote a
more personal talk() method that uses a Critter object's name
attribute. Now, when a critter says hi, it introduces itself with its
name.

I got my first critter to say hi by invoking its talk() method with
crit1.talk()

The talk() method receives the automatically sent reference to the
object into its self parameter:
 def talk(self):

Then, the print statement displays the text Hi. I'm Poochie by
accessing the attribute name of the object through self.name:
 print "Hi. I'm", self.name, "\n"

The same basic events occur when I then call the method for my
second object:
crit2.talk()

But this time, the talk() method displays the text Hi. I'm
Randolph since the name attribute of crit2 is equal to
"Randolph".

By default, you can access and modify an object's attributes outside
of its class. In the main part of the program, I directly accessed the
name attribute of crit1:
print crit1.name

The line prints the string "Poochie". In general, to access an
attribute of an object outside the object's class, you can use dot
notation. Type the variable name, followed by a dot, followed by the
attribute name.

Printing an Object

Normally, if I were to print an object, with the code print crit1,
Python would come back with something like the cryptic:
<__main__.Critter object at 0x00A0BA90>

This tells me that I've printed a Critter object in the main part of
my program, but doesn't give me any useful information about the
object. However, there is a way to change this. By including the
special method __str__() in a class definition, you can create a
string representation for your objects that will be displayed whenever
one is printed. Whatever string you return from the method will be
the string that's printed for the object.

The __str__() method I wrote returns a string that includes the
value of the object's name attribute. So, when the following line is
executed:
print crit1

this, more useful, text appears:
Critter object
name: Poochie

TRICK Even if you never plan to print an object in your program,
creating a __str__() method is still not a bad idea.
You may find that being able to see the values of an
object's attributes helps you understand how a program
is working (or not working).

Using Class Attributes and Static Methods
Through attributes, different objects of the same class can each
have their own, unique values. You could, for example, have 10
different critters running around, each with its own name. But you
may have some information that relates not to individual objects, but
the entire class. You might want to, say, keep track of the total
number of critters you've created. You could give each Critter
object an attribute called total. But then, whenever a new object is
instantiated, you'd have to update every existing object's total
attribute. This would be a real pain. Fortunately, Python offers a way
to create a single value that's associated with a class itself, called a
class attribute. If a class is like a blueprint, then a class attribute is
like a Post-it note stuck to the blueprint. There's only one copy of it,
no matter how many things you make from the blueprint.

You might also find that you want a method that's associated with the
class; for this, Python offers the static method. Since static methods
are associated with a class, they're often used to work with class
attributes.

Introducing the Classy Critter Program

No, the Classy Critter program doesn't involve a critter that went to
finishing school and scoffs at other critters who don't know which fork
to use. Instead, the program involves attributes and methods that
belong to a class rather than a specific object. The program defines
a class attribute that keeps track of the total number of Critter
objects instantiated. The class also has a static method that displays
this number. Figure 8.7 shows the results of the program.

Figure 8.7: Critters are being born left and right! The program
keeps track of all of them through a single, class attribute, which it
displays through a static method.

Here's the program listing for Classy Critter:
Classy Critter
Demonstrates class attributes and static methods
Michael Dawson - 3/24/03

class Critter(object):
 """A virtual pet"""
 total = 0

 def status():
 print "\nThe total number of critters is",
Critter.total

 status = staticmethod(status)
 def __init__(self, name):
 print "A critter has been born!"
 self.name = name
 Critter.total += 1

#main
print "Accessing the class attribute
Critter.total:",
print Critter.total

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig268_01_0.jpg

print "\nCreating critters."
crit1 = Critter("critter 1")
crit2 = Critter("critter 2")
crit3 = Critter("critter 3")

Critter.status()

print "\nAccessing the class attribute through an
object:",
print crit1.total

raw_input("\n\nPress the enter key to exit.")

Creating a Class Attribute

The second line in my class definition:
 total = 0

creates a class attribute total and assigns 0 to it. Any assignment
statement like this—a new variable assigned a value outside of a
method—creates a class attribute. The assignment statement is
executed only once, when Python first sees the class definition. This
means that the class attribute exists even before a single object is
created. So, you can use a class attribute without any objects of the
class in existence.

Accessing a Class Attribute

Accessing a class attribute is simple. I access the new class attribute
in several different places in the program. In the main part of the
program, I print it with
print Critter.total

In the static method status(), I print the value of the Critter
class attribute total with the line:
 print "\nThe total number of critters is",
Critter.total

In the constructor method, I increment the value of this class
attribute through the line:
 Critter.total += 1

As a result of this line, every time a new object is instantiated, the
value of the attribute is incremented by 1.

In general, to access a class attribute, use dot notation. Type the
class name, followed by a dot, followed by the attribute name.

Finally, you can access a class attribute through an object of that
class. That's just what I did in the main part of the program with the
following line:
print crit1.total

This line prints the value of the class attribute total (and not an
attribute of the object itself). You can read the value of a class
attribute through any object that belongs to that class. So, I could
have used print crit2.total or print crit3.total and
gotten the same results in this case.

TRAP Although you can use an object of a class to access a
class attribute, you can't assign a new value to a class
attribute through an object. If you want to change the
value of a class attribute, access it through its class
name.

Creating a Static Method

The first method in the class, status(), is a method I wrote to be
static. Notice that it doesn't have self in its parameter list. That's
because, like all static methods, it's designed to be invoked through
a class and not an object. So, the method won't be passed a
reference to an object and therefore won't need a parameter, like
self, to receive such a reference. Static methods can certainly list
parameters, but I just didn't need any for this one.

The method definition creates a method called status(), but to
actually declare it static, I wrote one more line of code:
 status = staticmethod(status)

I passed the staticmethod() function the name of the method I
want to be static, status in this case. I assigned the result to
status. The name on the left side of the assignment operator is the
name that the final, static method will have. After this line executes,
the class has a static method, status(), which displays the total
number of objects created by printing the class attribute total.

TRAP Static methods were introduced in Python 2.2. You can't
use them in an earlier version of the language. If you try,
you'll get a nasty error message.

Invoking a Static Method

Invoking a static method is simple. With the first line of the main part
of the program, I invoke the static method:
Critter.status()

As you would guess, this displays 0 since no objects have been
instantiated. But notice that I'm able to invoke the method without a
single object in existence. Since static methods are invoked through
a class, no objects of the class need to exist before you can invoke
them.

Next, I create three objects. Then, I invoke status() again, which
prints a message stating that three critters exist. This works
because, during the execution of the constructor method for each
object, the class attribute total is increased by 1.

Understanding Object Encapsulation
You first learned about the concept of encapsulation with functions in
the "Understanding Encapsulation" section of in Chapter 6. You saw
that functions are encapsulated and hide the details of their inner
workings from the part of your program that calls it (called the client
of the function). You learned that the client of a well-defined function
communicates with the function only through its parameters and
return values. In general, objects should be treated the same way.
Clients should communicate with objects through method
parameters and return values. In general, client code should avoid
directly altering the value of an object's attribute.

As always, a concrete example helps. Say, for example, that you had
a Checking_Account object with a balance attribute. Let's say
your program needs to handle withdrawals from accounts, where a
withdrawal decreases an object's balance attribute by some
amount. To make a withdrawal, client code could simply subtract a
number from the value of balance. This direct access is easy for
the client, but can cause problems. The client code may subtract a
number so that balance becomes negative, which might be
considered unacceptable (especially by the bank). It's much better to
have a method called withdraw() that allows a client to request a
withdrawal by passing an amount to the method. Then, the object
itself can handle the request. If the amount is too large, the object
can deal with it, possibly rejecting the transaction. The object keeps
itself safe by providing indirect access to its attributes through
methods.

Using Private Attributes and Private Methods
By default, all of an object's attributes and methods are public,
meaning that they can be directly accessed or invoked by a client. To
encourage encapsulation, you can define an attribute or method as
private, meaning that only other methods of the object itself can
easily access or invoke them.

Introducing the Private Critter Program

The Private Critter program instantiates an object with both private
and public attributes and methods. Figure 8.8 shows a sample run.

Figure 8.8: The object's private attribute and private method are
indirectly accessed.

Creating Private Attributes

To limit the direct access of object attributes by clients, you can use
private attributes. In the constructor method, I create two attributes,
one public and one private:
Private Critter
Demonstrates private variables and methods
Michael Dawson - 3/25/03

class Critter(object):
 """A virtual pet"""

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig272_01_0.jpg

 def __init__(self, name, mood):
 print "A new critter has been born!"
 self.name = name # public
attribute
 self.__mood = mood # private
attribute

The two underscore characters that begin the second attribute name
tell Python that this is a private attribute. To create a private attribute
of your own, just begin the attribute name with two underscores.

Accessing Private Attributes

It's perfectly fine to access an object's private attribute inside the
class definition of the object. (Remember, private attributes are
meant to discourage client code from directly accessing the
attribute.) I access a private attribute in the talk() method:
 def talk(self):
 print "\nI'm", self.name
 print "Right now I feel", self.__mood,
"\n"

This method prints the value of the object's private attribute, which
represents a critter's mood.

If I tried to access this attribute outside of the Critter class
definition, I'd have trouble. Here's an interactive session to show you
what I mean:
>>> crit = Critter(name = "Poochie", mood =
"happy")
A new critter has been born!
>>> print crit.mood
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in ?
 print crit.mood

AttributeError: 'Critter' object has no attribute
'mood'

By raising an AttributeError exception, Python is saying that
crit has no attribute mood. If you think you can outsmart Python by
adding the two leading underscores, you'd be wrong. That's just
what I tried in the next part of my interactive session:
>>> print crit.__mood
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 print crit.__mood
AttributeError: 'Critter' object has no attribute
'__mood'

This also raises an AttributeError exception. Python is again
saying that the attribute doesn't exist. So does this mean that the
value of a private attribute is completely inaccessible outside of its
class definition? Well, no. Python hides the attribute through a
special naming convention, though it's still technically possible to
access the attribute. That's what I did in the next part of my
interactive session:
>>> print crit._Critter__mood
happy

This line prints the value of the elusive private attribute, which in this
case is the string "happy".

Since it's possible to access private attributes, you may be thinking:
What good are they? Well, defining an attribute or method as private
is not about completely preventing access. Rather, it's about
preventing inadvertent access. It says that a particular attribute or
method is meant only for an object's internal use. So, you should
never try to directly access the private attributes or methods of an
object from outside of its class definition.

Creating Private Methods

You can create a private method in the same, simple way you create
a private attribute: by adding two leading underscores to its name.
That's just what I do in the next method definition in the class:
 def __private_method(self):
 print "This is a private method."

This is a private method but can easily be accessed by any other
method in the class. Like private attributes, private methods are
meant only to be accessed by an object's own methods.

Accessing Private Methods

Just as with private attributes, accessing an object's private methods
within its class definition is simple. In the public_method()
method, I access the class' private method:
 def public_method(self):
 print "This is a public method."
 self.__private_method()

This method prints the string "This is a public method." and
then invokes the object's private method.

Like private attributes, private methods aren't meant to be directly
accessed by clients. Back in my interactive session, I try to access
crit's private method:
>>> crit.private_method()
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in ?
 crit.private_method()
AttributeError: 'Critter' object has no attribute
'private_method'

This attempt raises the familiar AttributeError exception. Python
is saying that crit has no method with this name. Python hides the
method through the same, special naming convention. If I try again
by adding the two leading underscores to the method name, I run
into the same error message:
>>> crit.__private_method()
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in ?
 crit.__private_method()
AttributeError: 'Critter' object has no attribute
'__private_method'

However, just as with private attributes, it is technically possible to
access private methods from anywhere in a program. Here's the final
part of my interactive session as proof:
>>> crit._Critter__private_method()
This is a private method.

But, as you probably know by now, a client should never attempt to
directly access an object's private methods.

Respecting an Object's Privacy

In the main part of the program, I behave myself and don't go
prodding into an object's private attributes or methods. Instead, I
create an object and invoke its two public methods:
main
crit = Critter(name = "Poochie", mood = "happy")
crit.talk()
crit.public_method()

raw_input("\n\nPress the enter key to exit.")

crit's talk() method announces to the world how the critter is
feeling. crit's public_method() method prints the string "This
is a public method." and then invokes crit's private method,
which prints the string "This is a private method." Finally,
the program ends.

Understanding When to Implement Privacy

So now that you know how to use privacy, should you make every
attribute in every class private to protect them from the evil, outside
world? Well, no. Privacy is like a fine spice: used sparingly, it can
greatly improve what you're making. Make private any method you
don't want a client to invoke. If it's critical that an attribute never be
directly accessed by a client, you can make it private. But keep this
to a minimum, as creating private attributes is rare in Python. The
philosophy among programmers is to trust that clients will use an
object's methods and not directly alter its attributes.

HINT When you write a class:
Create methods so that clients won't need to
directly access an object's attributes.

Use privacy sparingly and only for those few
attributes and methods that are completely internal
to the operation of objects.

When you use an object:
Minimize the direct reading of an object's
attributes.

Avoid directly altering an object's attributes.

Never directly access an object's private attributes
or methods.

Understanding New-Style and Old-Style
Classes
Earlier in this chapter, in "Defining a Class," you got a hint that
something was afoot in the evolution of classes and objects in the
Python language. Beginning in Python 2.2, a new type of class was
introduced, called new-style classes. A new-style class is a class
that is directly or indirectly based on the new, built-in object
introduced in Python 2.2. All of the classes you've seen in this
chapter are based on object and are therefore new-style classes.
An old-style class is a class that is not based on object, directly or
indirectly. If you removed the (object) from any of the Critter
class headers in this chapter, you'd have an old-style class. To drive
the point home, here's an example of a new-style class header:
class Critter(object):

This is the header of an old-style class:
class Critter:

Every program you've seen so far in this chapter will work equally
well with either new-style or old-style classes. However, new-style
classes offer significant improvements over old-style classes. In fact,
you'll see one of those improvements at work in the next chapter
program, the Property Critter.

HINT Create new-style classes instead of old-style classes
whenever possible. New-style classes can do everything
old-style classes can, plus more. Besides, old style
classes will cease to exist beginning in Python 3.0.

Controlling Attribute Access
Sometimes, instead of denying access to an attribute, you may want
only to limit access to it. For example, you might have an attribute
that you want client code to be able to read, but not change. Python
provides a few tools to accomplish this kind of thing, including
properties. Properties allow you to manage exactly how an attribute
is accessed or changed.

Introducing the Property Critter

The Property Critter program allows client code to read a Critter
object's attribute that refers to its name, but imposes restrictions
when client code attempts to change the attribute's value. If client
code tries to assign the attribute the empty string, the program
complains and does not allow the change. Figure 8.9 shows the
results of the program.

Figure 8.9: A property controls access to the Critter object's
attribute for its name.

Using Get Methods

One way to control access to an attribute is to create access
methods—methods that allow indirect access to attributes and often
impose some sort of restriction on that access. One type of access
method is a get method, which gets the value of an attribute. By

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig278_01_0.jpg

convention, a get method's name always starts with the word "get." I
wrote the simplest form of a get method for the private attribute
__name, called get_name(). The method simply returns the value
of the private attribute, which represents a critter's name.
Property Critter
Demonstrates get and set methods and properties
Michael Dawson - 3/26/03

class Critter(object):
 """A virtual pet"""
 def __init__(self, name):
 print "A new critter has been born!"
 self.__name = name

 def get_name(self):
 return self.__name

Now, it's easy to get the value of the private attribute through the get
method as you can see in this interactive session:
>>> crit = Critter("Poochie")
>>> print crit.get_name()
Poochie

By creating a get method, you can provide read access to a private
attribute.

Using Set Methods

Since I want to allow controlled changes to the name of a critter, I
created another type of access method, called a set method, which
sets an attribute to a value. By convention, a set method's name
always starts with the word "set." This new method, set_name(),
allows a value to be assigned to the private variable __name;
however, it imposes the restriction that the value cannot be the
empty string.

 def set_name(self, new_name):
 if new_name == "":
 print "A critter's name can't be the
empty string."
 else:
 self.__name = new_name
 print "Name change successful."

If I try to change the name of my critter to the empty string,
set_name() won't let me:
>>> crit.set_name("")
A critter's name can't be the empty string.

However, the method will allow me to set the name to anything else:
>>> crit.set_name("Randolph")
Name change successful.
>>> print crit.get_name()
Randolph

Using Properties

Properties allow you to harness the power of access methods while
hiding the implementation from the client. A property essentially
wraps access methods around the consistent and familiar dot
notation.

TRAP Properties only work as intended with new-style classes.
If you must work with old-style classes, you can control
attribute access with the special methods
__getattr__() and __setattr__(). You can find out
about these methods through the online Python
documentation at http://www.python.org/doc.

I use the property() function to create a property in the next line
of the program:

http://www.python.org/doc

 name = property(get_name, set_name)

This code creates a property called name that allows indirect access
to the private attribute __name through the get_name() and
set_name() methods. Notice that the arguments of the
property() function are the names of the methods, not calls to the
methods, so they don't include parentheses.

To create a property, follow my example. Supply the property()
function with get and set methods to allow controlled access to a
private attribute. (You can supply just a get method to create a read-
only property.) Finally, make sure to assign the resulting property to
an attribute name which client code will use to access the property.

By using the new name property, I can get the name of my critter
through the familiar dot notation as you can see in the beginning of
this interactive session:
>>> print crit.name
Randolph

This line of code invokes the get_name() method. It has the same
effect as the line print get_name(), but it maintains the
consistent dot notation format.

I can also set the name of my critter through dot notation:
>>> crit.name = "Sammy"
Name change successful.
>>> print crit.name
Sammy

This first line of code indirectly invokes the set_name() method. It
has the same effect as the line set_name("Sammy"), but it
maintains the consistent dot notation format.

As before, if I try to make my critter's name the empty string, I can't:

>>> crit.name = ""
A critter's name can't be the empty string.

The rest of the Property Critter program uses the name property to
indirectly access the private __name attribute:
 def talk(self):
 print "\nHi, I'm", self.name

main
crit = Critter("Poochie")
crit.talk()
print "\nMy critter's name is:",
print crit.name
print "\nAttempting to change my critter's name."
crit.name = ""
print "\nAttempting to change my critter's name
again."
crit.name = "Randolph"

crit.talk()

raw_input("\n\nPress the enter key to exit.")

As you can see, I access the name property in the talk() method
of the Critter class the same way I access it in the main part of
the program, through dot notation. You access a property the same
way, whether you're in the class definition of the property or in some
other part of the program.

Back to the Critter Caretaker Program
The final Critter Caretaker program combines parts of classes you've
seen throughout this chapter. It also includes the menu system
you've worked with that allows the user to interact with his or her
very own critter.

The Critter Class

The Critter class is the blueprint for the object that represents the
user's critter. The class isn't complicated, and most of it should look
quite familiar, but it's a long a enough piece of code that attacking it
in pieces makes sense.

The Constructor Method

The constructor method of the class initializes the three public
attributes of a Critter object: name, hunger, and boredom.
Notice that hunger and boredom both have default values of 0,
allowing a critter to start off in a very good mood.
Critter Caretaker
A virtual pet to care for
Michael Dawson - 3/28/03
class Critter(object):
 """A virtual pet"""
 def __init__(self, name, hunger = 0, boredom =
0):
 self.name = name
 self.hunger = hunger
 self.boredom = boredom

I take the more relaxed posture of a Python programmer with this
method and leave the attributes at their default public status. I plan
to provide all the methods I suspect a client will need, which should

encourage the client to interact with a Critter object only through
those methods.

The __pass_time() Method

The __pass_time() method is a private method that increases a
critter's hunger and boredom levels. It's invoked at the end of each
method where the critter does something (eats, plays, or talks) to
simulate the passage of time. I made this method private because it
should only be invoked by another method of the class. I only see
time passing for a critter when it does something (like eat, play, or
talk).
 def __pass_time(self):
 self.hunger += 1
 self.boredom += 1

The mood Property

The mood property represents a critter's mood. The property is
created from a single get method, __get_mood(), making it a read-
only attribute. __get_mood() adds the values of a Critter
object's hunger and boredom attributes. Based on the total, the
method returns a string, either "happy", "okay", "frustrated",
or "mad".

The interesting thing about the mood property is that it doesn't simply
provide access to a private attribute. That's because the string that
represents a critter's mood is not stored as part of the Critter
object, it's calculated on the fly by __get_mood(). The mood
property just passes on the string returned by __get_mood(). To
client code, however, mood looks like any other read-only attribute of
a Critter object created with a property.
 def __get_mood(self):
 unhappiness = self.hunger + self.boredom

 if unhappiness < 5:
 mood = "happy"
 elif 5 <= unhappiness <= 10:
 mood = "okay"
 elif 11 <= unhappiness <= 15:
 mood = "frustrated"
 else:
 mood = "mad"
 return mood

 mood = property(__get_mood)

The talk() Method

The talk() method announces the critter's mood to the world by
accessing the Critter object's mood property. Then, the method
invokes __pass_time().
 def talk(self):
 print "I'm", self.name, "and I feel",
self.mood, "now.\n"
 self.__pass_time()

The eat() Method

The eat() method reduces the critter's hunger level by an amount
passed to the parameter food. If no value is passed, food gets the
default value of 4. The critter's hunger level is kept in check and not
allowed to go below 0. Finally, the method invokes
__pass_time().
 def eat(self, food = 4):
 print "Brruppp. Thank you."
 self.hunger -= food
 if self.hunger < 0:
 self.hunger = 0
 self.__pass_time()

The play() Method

The play() method reduces the critter's boredom level by an
amount passed to the parameter fun. If no value is passed, fun
gets the default value of 4. The critter's boredom level is kept in
check and not allowed to go below 0. Finally, the method invokes
__pass_time().
 def play(self, fun = 4):
 print "Wheee!"
 self.boredom -= fun
 if self.boredom < 0:
 self.boredom = 0
 self.__pass_time()

Creating the Critter

I put the main part of the program into its own function, main(). At
the start of the program, I get the name of the critter from the user.
Next, I instantiate a new Critter object. Since I don't supply values
for hunger or boredom, the attributes start out at 0, and the critter
begins life happy and content.
def main():
 crit_name = raw_input("What do you want to
name your critter?: ")
 crit = Critter(crit_name)

Creating a Menu System

Next, I created the familiar menu system. If the user enters 0, the
program ends. If the user enters 1, the object's talk() method is
invoked. If the user enters 2, the object's eat() method is invoked.
If the user enters 3, the object's play() method is invoked. If the
user enters anything else, he or she is told the choice is invalid.

 choice = None
 while choice != "0":
 print \
 """
 Critter Caretaker

 0 - Quit
 1 - Listen to your critter
 2 - Feed your critter
 3 - Play with your critter
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."
 # listen to your critter
 elif choice == "1":
 crit.talk()

 # feed your critter
 elif choice == "2":
 crit.eat()

 # play with your critter
 elif choice == "3":
 crit.play()

 # some unknown choice
 else:
 print "\nSorry, but", choice, "isn't a
valid choice."

Starting the Program

The next line of code calls the main() function and begins the
program. The last line waits for the user before ending.
main()
("\n\nPress the enter key to exit.")

Summary
This chapter introduced you to a different way of programming by
using the software object. You learned that software objects can
combine functions and data (methods and attributes in OOP-speak)
and in many ways mimic real-world objects. You saw how to write
classes, the blueprints of objects. You learned about a special
method called the constructor that is automatically invoked when a
new object is instantiated. You saw how to create and initialize object
attributes through a constructor. You learned how to create class-
wide elements such as class attributes and static methods. Next, you
learned about object encapsulation. You saw ways to help ensure
encapsulation, including the use of private attributes. But you
learned that, more than anything, good object design is the best way
to help ensure encapsulation. Finally, you saw all of these ideas put
to work to create a demanding virtual pet that requires constant
attention.

Challenges
1. Improve the Critter Caretaker program by allowing the user

to specify how much food he or she feeds the critter and
how long he or she plays with the critter. Have these values
affect how quickly the critter's hunger and boredom levels
drop.

2. Write a program that simulates a television by creating it as
an object. The user should be able to enter a channel
number and raise or lower the volume. Make sure that the
channel number and volume level stay within valid ranges.

3. Create a "back door" in the Critter Caretaker program that
shows the exact values of the object's attributes.
Accomplish this by printing the object when a secret
selection, not listed in the menu, is entered as the user's
choice. (Hint: add the special method __str__() to the
Critter class.)

4. Create a Critter Farm program by instantiating several
Critter objects and keeping track of them through a list.
Mimic the Critter Caretaker program, but instead of
requiring the user to care for a single critter, require them to
care for an entire farm. Each menu choice should allow the
user to perform some action for all of the critters (feed all of
the critters, play with all of the critters, or listen to all of the
critters). To make the program interesting, give each critter
random starting hunger and boredom levels.

Chapter 9: Object-Oriented Programming:
The Blackjack Game

 Download CD Content

Overview
In the last chapter, you learned about the software object. Almost
every program you saw involved a single object. That's a great way
to begin to understand how objects work, but the true power of OOP
can only be appreciated by seeing a group of objects work together.
In this chapter, you'll learn to create multiple objects and define
relationships among them so that they can interact. Specifically,
you'll learn to do the following:

Create objects of different classes in the same program

Allow objects to communicate with each other

Create more complex objects by combining simpler ones

Derive new classes from existing ones

Extend the definition of existing classes

Override method definitions of existing classes

Introducing the Blackjack Game
The final project for this chapter is a simplified version of the card
game, black-jack. The game works like this: Players are dealt cards
with point values. Each player tries to reach a total of 21 without
going over. Numbered cards count as their face value. An ace
counts as either 1 or 11 (whichever is best for the player) and any
jack, queen, or king counts as 10.

The computer is the dealer and competes against one to seven
players. At the opening of the round, the computer deals all
participants (including itself) two cards. Players can see all of their
cards, and the computer even displays their total. However, one of
the dealer's cards is hidden for the time being.

Next, each player gets a chance to take additional cards. Each
player can take one card at a time for as long as the player likes. But
if the player's total goes over 21 (known as "busting"), the player
loses. If all players bust, the computer reveals its first card and the
round is over. Otherwise, play continues. The computer must take
additional cards as long as its total is less than 17. If the computer
busts, all players who have not themselves busted, win. Otherwise,
each remaining player's total is compared with the computer's. If the
player's total is greater, the player wins. If the player's total is less,
the player loses. If the two totals are the same, the player ties the
computer (also known as "pushing"). Figure 9.1 shows off the game.

Figure 9.1: One player wins, the other is not so

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig288_01_0.jpg

lucky.

Sending and Receiving Messages
In a way, an object-oriented program is like an ecosystem and
objects are like organisms. To maintain a thriving ecosystem,
organisms must interact. The same is true in OOP. To have a useful
program, objects must interact in well-defined ways. In OOP-speak,
objects interact by sending messages to each other. What they do
on a practical level is invoke each other's methods. That may sound
a little impolite, but it's actually much more courteous than if an
object were to access another object's attributes directly.

Introducing the Alien Blaster Program

The Alien Blaster program simulates an action game where a player
blasts an alien. In the program, a hero blasts an invader and the
invader dies (but not before giving a grand farewell speech). The
program accomplishes this when one object sends another a
message. Figure 9.2 shows the results of the program.

Figure 9.2: The battle description is the result of objects
exchanging a message.

Technically what happens is that the program instantiates a Player
object, hero, and an Alien object, invader. When hero's
blast() method is invoked with invader as its argument, hero
invokes invader's die() method. In English, this means that when
a player blasts an alien, the player sends a message to the alien

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig289_01_0.jpg

telling it to die. Figure 9.3 provides a visual representation of the
message exchange.

Figure 9.3: hero, a Player object, sends invader, an Alien
object, a message.

IN THE REAL WORLD

The diagram I created to show two objects exchanging a
message is a pretty simple one. But with many objects and many
relationships among them, diagrams like this can become
complex. In fact, there are a variety of formal methods for
mapping software projects. One of the most popular is the Unified
Modeling Language (UML), a notational language that is
especially useful for visualizing object-oriented systems.

Here's the program listing for Alien Blaster:
Alien Blaster
Demonstrates object interaction
Michael Dawson - 4/10/03

class Player(object):
 """ A player in a shooter game. """
 def blast(self, enemy):
 print "The player blasts an enemy.\n"
 enemy.die()

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig290_01_0.jpg

class Alien(object):
 """ An alien in a shooter game. """
 def die(self):
 print "The alien gasps and says, 'Oh, this
is it. This is the big one. \n" \
 "Yes, it's getting dark now. Tell
my 1.6 million larvae that I loved them...
\n" \

 "Good-bye, cruel universe.'"

main
print "\t\tDeath of an Alien\n"

hero = Player()
invader = Alien()
hero.blast(invader)

raw_input("\n\nPress the enter key to exit.")

Sending a Message

Before you can have one object send another object a message, you
need two objects! So, I create two in the main part of the program
through the following lines:
hero = Player()
invader = Alien()

The first line creates a Player object and assigns it to hero. The
second line creates an Alien object and assigns it to invader.

The next line of code invokes hero's blast() method:
hero.blast(invader)

There's something new going on in this line. In the method call, I list
invader as an argument. By examining the definition of blast(),
you can see that it accepts this value into its parameter enemy:
 def blast(self, enemy):

This just means that, in this method, the Alien object is called
enemy. While this method executes, enemy refers to the same
object as invader does in the main part of the program.

After displaying a message, blast() invokes the Alien object's
die() method through the following line:
 enemy.die()

The Player object is sending the Alien object a message, telling it
to die.

Receiving a Message

The Alien object receives the message from the Player object in
the form of its die() method being invoked. The die() method is
pretty simple. All it does is display a melodramatic good-bye, which
appears as follows:
The alien gasps and says, 'Oh, this is it. This is
the big one.
Yes, it's getting dark now. Tell my 1.6 million
larvae that I loved them...
Good-bye, cruel universe.'

Combining Objects
In the real world, interesting objects are usually made up of other,
independent objects. For example, a drag racer can be seen as a
single object that's composed of individual objects such as a body,
tires, and an engine. Other times, you may see an object as a
collection of other objects. For example, a zoo can be seen as a
collection of animals. Well, you can mimic these kinds of
relationships among objects in OOP. You could write a Drag_Racer
class that has an attribute engine which references an Engine
object. Or, you could write a Zoo class that has an attribute
animals which is a list of different Animal objects. Combining
objects like this allows you to create more complex objects from
simpler ones.

Introducing the Playing Cards Program

The Playing Cards program uses objects to represent individual
playing cards that you might use in a game of Blackjack or Go Fish
(depending upon your tastes . . . and your tolerance for losing
money). The program goes on to represent a hand of cards through
an object that is a collection of card objects. Figure 9.4 shows the
results of the program.

Figure 9.4: Each Hand object is a collection of Card
objects.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig292_01_0.jpg

Creating the Card Class

The first thing I do in the program is create a Card class for objects
that represent playing cards. Here's the code for the Card class:
Playing Cards
Demonstrates combining objects
Michael Dawson - 4/9/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

Each Card object has a rank attribute, which represents the rank of
the card. The possible values are listed in the class attribute RANKS.
"A" represents an ace, "2" through "10" represent their
corresponding numeric values, "J" represents a jack, "Q"
represents a queen, and "K" represents a king.

Each card also has a suit attribute, which represents the suit of the
card. The possible values for this attribute are listed in the class
attribute SUITS. "c" represents clubs, "d" means diamonds, "h"
stands for hearts, and "s" represents spades. So, an object with the
rank attribute of "A" and a suit attribute of "d" represents the ace
of diamonds.

The special method __str__() simply returns the concatenation of
the rank and suit attributes so that an object can be printed.

Creating the Hand Class

The next thing I do in the program is create a Hand class for objects,
which is a collection of Card objects:
class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + " "
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

A new Hand object has an attribute cards that is intended to be a
list of Card objects. So each single Hand object has an attribute that
is a list of possibly many other objects.

The special method __str__() returns a string that represents the
entire hand. The method loops through each Card object in the
Hand object and concatenates the Card object's string
representation. If the Hand object has no Card objects, the string "
<empty>" is returned.

The clear() method clears the list of cards by assigning an empty
list to an object's cards attribute.

The add() method adds an object to the cards attribute.

The give() method removes an object from the Hand object and
appends it to another Hand object by invoking the other Hand
object's add() method. Another way to say this is that the first Hand
object sends the second Hand object a message to add a Card
object.

Using Card Objects

In the main part of the program, I create and print five Card objects:
main
card1 = Card(rank = "A", suit = "c")
print "Printing a Card object:"
print card1

card2 = Card(rank = "2", suit = "c")
card3 = Card(rank = "3", suit = "c")
card4 = Card(rank = "4", suit = "c")
card5 = Card(rank = "5", suit = "c")
print "\nPrinting the rest of the objects
individually:"
print card2
print card3
print card4
print card5

The first Card object created has a rank attribute equal to "A" and
a suit attribute of "c". When I print the object, it's displayed on the
screen as Ac. The remaining objects follow the same pattern.

Combining Card Objects Using a Hand Object

Next, I create a Hand object, assign it to my_hand, and print it:
my_hand = Hand()
print "\nPrinting my hand before I add any cards:"
print my_hand

Since the object's cards attribute is an empty list, printing the object
displays the text <empty>.

Next, I add the five Card objects to my_hand and print it again:
my_hand.add(card1)
my_hand.add(card2)
my_hand.add(card3)
my_hand.add(card4)
my_hand.add(card5)
print "\nPrinting my hand after adding 5 cards:"
print my_hand

This time, the text Ac 2c 3c 4c 5c is displayed.

Then, I create another Hand object, your_hand. Using my_hand's
give() method, I transfer the first two cards from my_hand to
your_hand. Then, I print both hands:
your_hand = Hand()
my_hand.give(card1, your_hand)
my_hand.give(card2, your_hand)
print "\nGave the first two cards from my hand to
your hand."
print "Your hand:"
print your_hand

print "My hand:"
print my_hand

As you'd expect, your_hand is displayed as Ac 2c while my_hand
appears as 3c 4c 5c.

Finally, I invoke my_hand's clear() method and print it one last
time:
my_hand.clear()
print "\nMy hand after clearing it:"
print my_hand

raw_input("\n\nPress the enter key to exit.")

As it should, the text <empty> is displayed.

Using Inheritance to Create New Classes
One of the key elements of OOP is inheritance, which allows you to
base a new class on an existing one. By doing so, the new class
automatically gets (or inherits) all of the methods and attributes of
the existing class—it's like getting all of the work that went into
writing the existing class for free!

TRAP In Python, it's possible to create a new class that directly
inherits from more than one class. This is called multiple
inheritance. But multiple inheritance is a thorny subject
and can get confusing fast. In fact, several of the most
popular modern languages, such as C# and Java, have
eliminated multiple inheritance and opted for the simpler,
yet still powerful, single inheritance—where an object can
inherit from only one class. As a beginning programmer,
it's best to steer clear of multiple inheritance since it can
be more heartache than help.

Extending a Class through Inheritance
Inheritance is especially useful when you want to create a more
specialized version of an existing class. As you just learned, by
inheriting from an existing class, a new class gets all of the methods
and attributes of the existing class. But you can also add methods
and attributes to the new class to extend what objects of the new
class can do.

For example, imagine that your Drag_Racer defines a drag racer
with methods stop() and go(). You could create a new class for a
specialized type of drag racer that can clean its windshield (you get a
lot of squashed bugs at 250 miles per hour) by basing it on the
existing Drag_Racer class. Your new class would automatically
inherit stop() and go() from Drag_Racer. So, all you'd have to
do is define one new method for cleaning the windshield and the
new class would be done.

Introducing the Playing Cards 2.0 Program

The Playing Cards 2.0 program is based on the Playing Cards
program. The new version introduces the Deck class to describe a
deck of playing cards. However, unlike any other class you've seen,
Deck is based on an existing class, Hand. As a result, Deck
automatically inherits all of Hand's methods. I create Deck this way
because a deck of cards is really like a specialized hand of cards. It's
a hand, but with extra behaviors. A deck can do anything that a hand
can. It's a collection of cards. It can give a card to another hand, and
so on. On top of that, a deck can do a few things that a hand can't. A
deck can be shuffled and it can deal cards to multiple hands. The
Playing Cards 2.0 program creates a deck that deals cards to two
different hands. Figure 9.5 illustrates the results of the program.

Figure 9.5: The Deck object inherits all of the methods of the
Hand class.

Creating a Base Class

I begin the new program like the old version. The first two classes,
Card and Hand, are the same as before:
Playing Cards 2.0
Demonstrates inheritance - object extension
Michael Dawson 4/9/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep
class Hand(object):

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig298_01_0.jpg

 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + "\t"
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

Inheriting from a Base Class

The next thing I do is create the Deck class. You can see from the
class header that Deck is based on Hand:
class Deck(Hand):

Hand is called a base class because Deck is based on it. Deck is
considered a derived class because it derives part of its definition
from Hand. As a result of this relationship, Deck inherits all of Hand's
methods. So, even if I didn't define a single new method in this class,
Deck objects would still have all of the methods defined in Hand:

__init__()

__str__()

clear()

add()

give()

If it helps, for this simple example, you can even imagine that you've
copied and pasted all of Hand's methods right into Deck because of
inheritance.

Extending a Derived Class

You can extend a derived class by defining additional methods in it.
That's what I do in the class definition of Deck:
 """ A deck of playing cards. """
 def populate(self):
 for suit in Card.SUITS:
 for rank in Card.RANKS:
 self.add(Card(rank, suit))

 def shuffle(self):
 import random
 random.shuffle(self.cards)

 def deal(self, hands, per_hand = 1):
 for rounds in range(per_hand):
 for hand in hands:
 if self.cards:
 top_card = self.cards[0]
 self.give(top_card, hand)
 else:

 print "Can't continue deal.
Out of cards!"

So, in addition to all of the methods that Deck inherits, it has the
following new methods:

populate()

shuffle()

deal()

As far as client code is concerned, any Deck method is as valid as
any other—whether it's inherited from Hand or defined in Deck. And
all of a Deck object's methods are invoked the same way, through
dot notation.

Using the Derived Class

The first thing I do in the main part of the program is instantiate a
new Deck object:
main
deck1 = Deck()

Looking at the class, you'll notice that I don't define a constructor
method in Deck. But Deck inherits the Hand constructor, so that
method is automatically invoked with the newly created Deck object.
As a result, the new Deck object gets a cards attribute which is
initialized to an empty list, just as any newly created Hand object
would get a similar cards attribute. Finally, the assignment
statement assigns the new object to deck1.

Now armed with a new (but empty) deck, I print it:
print "\nNew deck:"
print deck1

I didn't define the special __str__() method in Deck either, but
again, Deck inherits the method from Hand. Since the deck is empty,
the code displays the text <empty>. So far, a deck seems just like a
hand. That's because a deck is a specialized type of hand.
Remember, a deck can do anything a hand can, plus more.

An empty deck is no fun, so I invoke the object's populate()
method, which populates the deck with the traditional 52 cards:
deck1.populate()

Now the deck has finally done something a hand can't. That's
because the populate() method is a new method that I define in
the Deck class. The populate() method loops through all of the
52 possible combinations of values of Card.SUITS and
Card.RANKS (one for each card in a real deck). For each
combination, the method creates a new Card object that it adds to
the deck.

Next, I print the deck:
print "\nPopulated deck:"
print deck1

This time, all 52 cards are displayed! But if you look closely, you'll
see that they're in an obvious order. To make things interesting, I
shuffle the deck:
deck1.shuffle()

I define the shuffle() method in Deck. It imports the random
module and then calls the random.shuffle() function with the
object's cards attribute. As you might guess, the
random.shuffle() method shuffles a list's elements into a
random order. So, all of the elements of cards get shuffled. Perfect.

Now, with the cards in random order, I display the deck again:

print "\nShuffled deck:"
print deck1

Next, I create two Hand objects and put them in a list that I assign to
hands:
my_hand = Hand()
your_hand = Hand()
hands = [my_hand, your_hand]

Then, I deal each hand five cards:
deck1.deal(hands, per_hand = 5)

The deal() method is a new method I define in Deck. It takes two
arguments: a list of hands and the number of cards to deal each
hand. The method gives a card from the deck to each hand. If the
deck is out of cards, the method prints the message "Can't
continue deal. Out of cards!" The method repeats this
process for the number of cards to be dealt each hand. So, this line
deals five cards from deck1 to each hand (my_hand and
your_hand).

To see the results of the deal, I print each hand and the deck once
more:
print "\nDealt 5 cards to my hand and your hand."
print "My hand:"
print my_hand
print "Your hand:"
print your_hand
print "Deck:"
print deck1

By looking at the output, you can see that each hand has 5 cards
and the deck now has only 42.

Finally, I put the deck back to its initial state by clearing it:

deck1.clear()
print "\nCleared the deck."

And then I print the deck one last time:
print "Deck:", deck1

Altering the Behavior of Inherited Methods
You've seen how you can extend a class by adding new methods to
a derived class. But you can also redefine how an inherited method
of a base class works in a derived class. This is known as overriding
the method. When you override a base class method, you have two
choices. You can create a method with completely new functionality,
or you can incorporate the functionality of the base class method that
you're overriding.

As an example, take your Drag_Racer class again. Let's say that
its stop() method simply applies the racer's brakes. If you want to
create a new drag racer class that can stop even more quickly (by
releasing a parachute behind the racer), you could derive a new,
Parachute_Racer class from Drag_Racer and override its
stop() method. You could write the new stop() method so that it
invokes the stop() method of the original Drag_Racer class
(which applies the racer's brakes) and then defines the action of the
racer releasing a parachute.

Introducing the Playing Cards 3.0 Program

The Playing Cards 3.0 program derives two new classes of playing
cards from the Card class you've been working with. The first new
class defines cards that can't be printed. More precisely, when you
print an object of this class, the text <unprintable> is displayed.
The next class defines cards that can be either face up or face down.
When you print an object of this class, there are two possible results.
If the card is face up, it prints out just like an object of the Card
class. But if the card is face down, the text XX is displayed. Figure
9.6 shows a sample run of the program.

Figure 9.6: By overriding the inherited __str__() method,
objects of different derived classes are printed out
differently.

Creating a Base Class

To derive a new class, you need to start with a base class. For this
program, I use the same Card class you've come to know and love:
Playing Cards 3.0
Demonstrates inheritance - overriding methods
Michael Dawson 4/16/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

Overriding Base Class Methods

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig303_01_0.jpg

Next, I derive a new class for unprintable cards based on Card. The
class header looks pretty standard:
class Unprintable_Card(Card):

From this header, you know that Unprintable_Card inherits all of
the methods of Card. But I can change the behavior of an inherited
method by defining it in a derived class. And that's just what I did in
the remainder of the method definition:
 """ A Card that won't reveal its rank or suit
when printed. """
 def __str__(self):
 return "<unprintable>"

The Unprintable_Card class inherits the __str__() method
from Card. But I also define a new __str__() method in
Unprintable_Card that overrides (or replaces) the inherited one.
Any time you create a method in a derived class with the same name
as an inherited method, you override the inherited method in the new
class. So, when you print an Unprintable_Card object, the text
<unprintable> is displayed.

A derived class has no effect on a base class. A base class doesn't
care if you derive a new class from it, or if you override an inherited
method in the new class. The base class still functions as it always
has. This means that when you print a Card object, it will appear as
it always does.

Invoking Base Class Methods

Sometimes when you override the method of a base class, you want
to incorporate the inherited method's functionality. For example, I
want to create a new type of playing card class based on Card. I
want an object of this new class to have an attribute that indicates
whether or not the card is face up. This means I need to override the
inherited constructor method from Card with a new constructor that

creates a face up attribute. However, I also want my new constructor
to create and set rank and suit attributes, just like the Card
constructor already does. Instead of retyping the code from the Card
constructor, I could invoke it from inside my new constructor. Then, it
would take care of creating and initializing rank and suit attributes
for an object of my new class. Back in the constructor method of my
new class, I could add the attribute that indicates whether or not the
card is face up. Well, that's exactly the approach I take in the
Positionable_Card class:
class Positionable_Card(Card):
 """ A Card that can be face up or face down.
"""
 def __init__(self, rank, suit, face_up =
True):
 super(Positionable_Card,
self).__init__(rank, suit)
 self.is_face_up = face_up

The new function in the constructor, super(), lets you invoke the
method of a base class (also called a superclass). The line
super(Positionable_Card, self).__init__(rank,
suit) invokes the __init__() method of Card (the superclass of
Positionable_Card). The first argument in this function call,
Positionable_Card, says that I want to invoke a method of the
superclass (or base class) of Positionable_Card, which is Card.
The next argument, self, passes a reference to the object so that
Card can get at the object to add the rank and suit attributes to it.
The next part of the statement, __init__(rank, suit), tells
Python that I want to invoke the constructor method of Card and I
want to pass it the values of rank and suit.

TRAP The super() function was introduced in Python 2.2 and
only works with new-style classes. If you're using old-
style classes, you can still invoke a base class method,
you just have to explicitly specify the name of the class.

For example, if I want to explicitly invoke the constructor
of the Card class in Positionable_Card, I could use
this line:
 Card.__init__(self, rank, suit)

But the super() function is much better in more complex
situations, so use super() whenever possible over this
explicit way of calling a base class method.

The next method in Positionable_Card also overrides a method
inherited from Card and invokes the overridden method:
 def __str__(self):
 if self.is_face_up:
 rep = super(Positionable_Card,
self).__str__()
 else:
 rep = "XX"
 return rep

This __str__() method first checks to see if an object's face_up
attribute is True (which means that the card is face up). If so, the
string representation for the card is set to the string returned from
Card's __str__() method called with the Positionable_Card
object. In other words, if the card is face up, the card prints out like
any object of the Card class. However, if the card is not face up, the
string representation returned is "XX".

The last method in the class doesn't override an inherited method. It
simply extends the definition of this new class:
 def flip(self):
 self.is_face_up = not self.is_face_up

The method flips a card over by toggling the value of an object's
face_up attribute. If an object's face_up attribute is True, then
invoking the object's flip() method sets the attribute to False. If

an object's face_up attribute is False, then invoking the object's
flip() method sets the attribute to True.

Using the Derived Classes

In the main part of the program, I create three objects: one from
Card, another from Unprintable_Card, and the last from
Positionable_Card:
#main
card1 = Card("A", "c")
card2 = Unprintable_Card("A", "d")
card3 = Positionable_Card("A", "h")

Next, I print the Card object:
print "Printing a Card object:"
print card1

This works just like in previous programs, and the text Ac is
displayed.

The next thing I do is print an Unprintable_Card object:
print "\nPrinting an Unprintable_Card object:"
print card2

Even though the object has a rank attribute set to "A" and a suit
attribute set to "d", printing the object displays the text
<unprintable> because the Unprintable_Card class overrides
its inherited __str__() method with one that always returns the
string "<unprintable>".

The next two lines print a Positionable_Card object:
print "\nPrinting a Positionable_Card object:"
print card3

Since the object's face_up attribute is True, the object's
__str__() method invokes Card's __str__() method and the
text Ah is displayed.

Next, I invoke the Positionable_Card object's flip() method:
print "Flipping the Positionable_Card object."
card3.flip()

As a result, the object's face_up attribute is set to False.

The next two lines print the Positionable_Card object again:
print "Printing the Positionable_Card object:"
print card3

raw_input("\n\nPress the enter key to exit.")

This time the second line displays the text XX because the object's
face_up attribute is False.

Understanding Polymorphism
Polymorphism is the quality of being able to treat different types of
things in the same way. Polymorphism is usually associated with
OOP, but you've seen it in action before. The len() function is
polymorphic because it works with different types, such as strings,
tuples, or lists. For example, the following calls to len() all produce
valid results even though each argument is of a different type:
>>> len("How long am I?")
14
>>> len((1, 2, 3, 4, 5))
5
>>> len(["a", "b", "c"])
3

Used in the context of OOP, polymorphism means that you can send
the same message to objects of different classes related by
inheritance and achieve different results. For example, the
Unprintable_Card is derived from Card, but when you invoke the
__str__() method of an Unprintable_Card object, you get a
different result than when you invoke the __str__() method of a
Card object. This means that you can print an object even if you
don't know if it's an Unprintable_Card or a Card object.
Regardless of the class of the object, when printed, its __str__()
method is invoked and a string representation of it is displayed.

Creating Modules
You first learned about modules in Chapter 3, in the section "Using
the import Statement," where you met the random module. But a
powerful aspect of Python programming is that you can create, use,
and even share your own modules. Creating your own modules
provides important benefits.

First, by creating your own modules, you can reuse code, which can
save you time and effort. For example, you could reuse the Card,
Hand, and Deck classes you've seen so far to create many different
types of card games without having to reinvent basic card, deck, and
hand functionality every time.

Second, by breaking up a program into logical modules, large
programs become easier to manage. So far, the programs you've
been working with have been contained in one file. Since they've
been pretty short, this is no big deal. But imagine a program that's
thousands (or even tens of thousands) of lines long. Working with a
program of this size, in one, massive file, would be a real nightmare
(professional projects, by the way, can easily get this large).

Third, by creating modules, you can share your genius. If you create
a useful module, you can e-mail it to a friend, who then can use it
much like any built-in Python module.

Introducing the Simple Game Program

The Simple Game program, as the name suggests, is simple. The
program first asks how many players wish to participate and then
proceeds to get each player's name. Finally, the program assigns a
random score to each player and displays the results. Not very
thrilling, but the point of the program is not the game, but rather how
the game works. The program uses a brand-new module with
functions and a class that I created. Figure 9.7 displays the results of
the program.

Figure 9.7: Several functions and a class used in the program are
from a programmer-created module.

Writing Modules

Normally, I'd show you the code for the next program, Simple Game,
but in this section, I go over the module I've written that Simple
Game uses.

You create a module the same way you write any other Python
program. When you create a module, though, you should build a
collection of related programming components, such as functions
and classes, and store them in a single file to be imported into a new
program.

I created a basic module, called games, that contains two functions
and a class that might be useful in creating a game. Here's the code:
Games
Demonstrates module creation
Michael Dawson 4/10/03

class Player(object):
 """ A player for a game. """
 def __init__(self, name, score = 0):
 self.name = name
 self.score = score

 def __str__(self):

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig309_01_0.jpg

 rep = self.name + ":\t" + str(self.score)
 return rep

def ask_yes_no(question):
 """ Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()
 return response

def ask_number(question, low, high):
 """ Ask for a number within a range."""
 response = None
 while response not in range(low, high):
 response = int(raw_input(question))
 return response

if __name__ == "__main__":
 print "You ran this module directly (and did
not 'import' it)."
 raw_input("\n\nPress the enter key to exit.")

This module is named games because I saved the file with the name
 games.py. Programmer-created modules are named (and

imported) based on their file names.

The bulk of the module is straightforward. The Player class defines
an object with two attributes, name and score, which are set in the
constructor method. There's only one other method, __str__(),
which returns a string representation so that objects can be printed.

You've seen the next two functions, ask_yes_no() and
ask_number(), before in Chapter 6, in the "The ask_yes_no()
Function" and the "The ask_number() Function" sections.

The next part of the program introduces a new idea, related to
modules. The condition of the if statement, __name__ ==
"__main__", is true if the program is run directly. It's false if the file
is imported as a module. So, if the games.py file is run directly, a
message is displayed telling the user that the file is meant to be
imported and not directly run.

Importing Modules

Now that you've seen the games module, I'll introduce the code of
the Simple Game program. The following are the first few lines:
Simple Game
Demonstrates importing modules
Michael Dawson 4/10/03

import games, random

You import a programmer-created module the same way you import
a built-in module, with the import statement. In fact, I import the
games module along with the familiar random module in the same
import statement.

TRAP If a programmer-created module isn't in the same
directory as the program that imports it, Python won't be
able to find the module. There are ways around this. It's
even possible to install a programmer-created module so
that it's available system-wide, just like built-in modules,
but this requires a special installation procedure that's
beyond the scope of this book. So for now, make sure
that any module you want to import is in the same
directory as the programs that import it.

Using Imported Functions and Classes

I use the imported modules in the remainder of the Simple Game
program. After welcoming the players and setting up a simple loop, I
ask how many players there will be in the game:
print "Welcome to the world's simplest game!\n"

again = None
while again != "n":
 players = []
 num = games.ask_number(question = "How many
players? (2 - 5): ",
 low = 2, high = 5)

I get the number of players by calling the ask_number() function
from the games module. Just as with other imported modules, to call
a function, I use dot notation, specifying first the module name,
followed by the function name.

Next, for each player, I get the player's name and generate a random
score between 1 and 100 by calling the randrange() function from
the random module. Then, I create a player object using this name
and score. Since the Player class is defined in the games module,
again I use dot notation and include the module name before the
class name. Then, I append this new player object to a list of
players.
 for i in range(num):
 name = raw_input("Player name: ")
 score = random.randrange(100) + 1
 player = games.Player(name, score)
 players.append(player)

Next, I print each player in the game:
 print "\nHere are the game results:"
 for player in players:
 print player

Finally, I ask if the players want to play another game. I use the
ask_yes_no() function from the games module to obtain my
answer:
 again = games.ask_yes_no("\nDo you want to
play again? (y/n): ")

raw_input("\n\nPress the enter key to exit.")

Back to the Blackjack Game
At this point, you're an expert in using Python classes to create
playing cards, hands, and decks. So now it's time to build on that
expertise and see how to combine these classes in a larger program
to create a complete, casino-style, card game (tacky green felt not
included).

The Cards Module

To write the Blackjack game, I created a final cards module based
on the Playing Cards programs. The Hand and Deck classes are
exactly the same as those in the Playing Cards 2.0 program. The
new Card class represents the same functionality as the
Positionable_Card from the Playing Cards 3.0 program. Here's
the code for this module, stored in the file cards.py:
Cards Module
Basic classes for a game with playing cards
Michael Dawson 4/18/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit, face_up =
True):
 self.rank = rank
 self.suit = suit
 self.is_face_up = face_up

 def __str__(self):
 if self.is_face_up:
 rep = self.rank + self.suit

 else:
 rep = "XX"
 return rep

 def flip(self):
 self.is_face_up = not self.is_face_up
class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + "\t"
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

class Deck(Hand):
 """ A deck of playing cards. """
 def populate(self):
 for suit in Card.SUITS:
 for rank in Card.RANKS:

 self.add(Card(rank, suit))

 def shuffle(self):
 import random
 random.shuffle(self.cards)

 def deal(self, hands, per_hand = 1):
 for rounds in range(per_hand):
 for hand in hands:
 if self.cards:
 top_card = self.cards[0]
 self.give(top_card, hand)
 else:
 print "Can't continue deal. Out of
cards!"

if __name__ == "__main__":
 print "This is a module with classes for
playing cards."
 raw_input("\n\nPress the enter key to exit.")

Designing the Classes

Before you start coding a project with multiple classes, it can help to
map them out on paper. You might make a list and include a brief
description of each class. Table 9.1 shows my first pass at such a
listing for the Blackjack game.

Table 9.1: BLACKJACK CLASSES

Class Base Class Description

Class Base Class Description

BJ_Card cards.Card
A blackjack playing card. Define an
attribute value to represent the point
value of a card.

BJ_Deck cards.Deck A blackjack deck. A collection of
BJ_Card objects.

BJ_Hand cards.Hand

A blackjack hand. Define an attribute
total to represent the point total of a
hand. Define an attribute name to
represent the owner of the hand.

BJ_Player BJ_Hand A blackjack player.
BJ_Dealer BJ_Hand A blackjack dealer.

BJ_Game object

A blackjack game. Define an attribute
deck to reference a BJ_Deck object.
Define an attribute dealer to
reference a BJ_Dealer object.
Define an attribute players to
reference a list of BJ_Player
objects.

You should try to include all of the classes you think you'll need, but
don't worry about making your class descriptions complete, because
invariably they won't be (mine aren't). But making such a list should
help you get a good overview of the types of objects you'll be
working with in your project.

In addition to describing your classes in words, you might want to
draw a family tree of sorts to visualize how your classes are related.
That's what I did in Figure 9.8.

Figure 9.8: Inheritance hierarchy of classes for the Blackjack
game.

A class hierarchy diagram, like the one in Figure 9.8, can give you a
summary view of how you're using inheritance.

Writing Pseudocode for the Game Loop

The next thing I did in planning the game was write some
pseudocode for the play of one round. I thought this would help me
see how objects will interact. Here's the pseudocode I came up with:
Deal each player and dealer initial 2 cards
For each player
 While the player asks for a hit and the player is not busted
 Deal the player an additional card
If there are no players still playing
 Show the dealer's 2 cards
Otherwise
 While the dealer must hit and the dealer is not busted
 Deal the dealer an additional card
 If the dealer is busted
 For each player who is still playing
 The player wins
 Otherwise
 For each player who is still playing
 If the player's total is greater than the dealer's total
 The player wins
 Otherwise, if the player's total is less than the dealer's total

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig316_01_0.jpg

 The player loses
 Otherwise
 The player pushes

Importing the cards and games Modules

Now that you've seen the planning, it's time to check out the code. In
the first part of the Blackjack program, I import the two modules
cards and games:
Blackjack
From 1 to 7 players compete against a dealer
Michael Dawson 4/18/03

import cards, games

I created the games module, you'll remember, in the Simple Game
program, earlier in this chapter.

The BJ_Card Class

The BJ_Card class extends the definition of what a card is by
inheriting from cards.Card. In BJ_Card, I create a new property,
value, for the point value of a card:
class BJ_Card(cards.Card):
 """ A Blackjack Card. """
 ACE_VALUE = 1

 def get_value(self):
 if self.is_face_up:
 value = BJ_Card.RANKS.index(self.rank)
+ 1
 if value > 10:
 value = 10
 else:
 value = None

 return value

 value = property(get_value)

The get_value() method returns a number between 1 and 10,
which represents the value of a blackjack card. The first part of the
calculation is computed through the expression
BJ_Card.RANKS.index(self.rank) + 1. This expression
takes the rank attribute of an object (say "6") and finds its
corresponding index number in BJ_Card.RANKS through the list
method index() (for "6" this would be 5). Finally, 1 is added to the
result since the computer starts counting at 0 (this makes the value
calculated from "6" the correct 6). However, since rank attributes
of "J", "Q", and "K" result in numbers larger than 10, any value
greater than 10 is set to 10. If an object's face_up attribute is
False, this whole process is avoided and a value of None is
returned. Finally, I use the property() function with the
get_value() method to create the property value.

The BJ_Deck Class

The BJ_Deck class is used to create a deck of blackjack cards. The
class is almost exactly the same as its base class, cards.Deck.
The only difference is that I override cards.Deck's populate()
method so that a new BJ_Deck object gets populated with BJ_Card
objects:
class BJ_Deck(cards.Deck):
 """ A Blackjack Deck. """
 def populate(self):
 for suit in BJ_Card.SUITS:
 for rank in BJ_Card.RANKS:
 self.cards.append(BJ_Card(rank, suit))

The BJ_Hand Class

The BJ_Hand class, based on cards.Hand, is used for blackjack
hands. I override the cards.Hand constructor and add a name
attribute to represent the name of the hand owner:
class BJ_Hand(cards.Hand):
 """ A Blackjack Hand. """
 def __init__(self, name):
 super(BJ_Hand, self).__init__()
 self.name = name

Next, I override the inherited __str__() method to display the total
point value of the hand:
 def __str__(self):
 rep = self.name + ":\t" + super(BJ_Hand,
self).__str__()
 if self.total:
 rep += "("+ str(self.total) + ")"
 return rep

I concatenate the object's name attribute with the string returned
from the cards.Hand __str__() method for the object. Then, if
the object's total property isn't None, I concatenate the string
representation of the value of total. Finally, I return that string.

Next, I create a property called total, which represents the total
point value of a blackjack hand. If a blackjack hand has a face-down
card in it, then its total property is None. Otherwise, total is
calculated by adding the point values of all the cards in the hand.
 def get_total(self):
 # if a card in the hand has value of None,
then total is None
 for card in self.cards:
 if not card.value:
 return None
 # add up card values, treat each Ace as 1
 total = 0

 for card in self.cards:
 total += card.value

 # determine if hand contains an Ace
 contains_ace = False
 for card in self.cards:
 if card.value == BJ_Card.ACE_VALUE:
 contains_ace = True

 # if hand contains Ace and total is low
enough, treat Ace as 11
 if contains_ace and total <= 11:
 # add only 10 since we've already
added 1 for the Ace
 total += 10

 return total

 total = property(get_total)

The first part of this method checks to see if any card in the
blackjack hand has a value attribute equal to None (which would
mean that the card is face down). If so, the method returns None.
The next part of the method simply sums the point values of all the
cards in the hand. The next part determines if the hand contains an
ace. If so, the last part of the method determines if the card's point
value should be 11 or 1. The last line of this section creates the
property total.

The last method in BJ_Hand is_busted(). It returns True if the
object's total property is greater than 21. Otherwise, it returns
False.
 def is_busted(self):
 return self.total > 21

Notice that in this method, I return the result of the condition
self.total > 21 instead of assigning the result to a variable and
then returning that variable. You can create this kind of return
statement with any condition (any expression actually) and it often
results in a more elegant method.

This kind of method, which returns either True or False, is pretty
common. It's often used (like here) to represent a condition of an
object with two possibilities, such as "on" or "off," for example. This
type of method almost always has a name that starts with the word
"is," as in is_on().

The BJ_Player Class

The BJ_Player class, derived from BJ_Hand, is used for blackjack
players:
class BJ_Player(BJ_Hand):
 """ A Blackjack Player. """
 def is_hitting(self):
 response = games.ask_yes_no("\n" +
self.name + ", do you want a hit? (Y/N): ")
 return response == "y"

 def bust(self):
 print self.name, "busts."
 self.lose()

 def lose(self):
 print self.name, "loses."

 def win(self):
 print self.name, "wins."

 def push(self):
 print self.name, "pushes."

The first method, is_hitting(), returns True if the player wants
another hit and returns False if the player doesn't. The bust()
method announces that a player busts and invokes the object's
lose() method. The lose() method announces that a player
loses. The win() method announces that a player wins. And the
push() method announces that a player pushes. The bust(),
lose(), win(), and push() methods are so simple that you may
wonder why they exist. I put them in the class because they form a
great skeleton structure to handle the more complex issues that
arise when players are allowed to bet (which they will, when you
complete one of the chapter challenges at the end of the chapter).

The BJ_Dealer Class

The BJ_Dealer class, derived from BJ_Hand, is used for the
game's blackjack dealer:
class BJ_Dealer(BJ_Hand):
 """ A Blackjack Dealer. """
 def is_hitting(self):
 return self.total < 17
 def bust(self):
 print self.name, "busts."

 def flip_first_card(self):
 first_card = self.cards[0]
 first_card.flip()

The first method, is_hitting(), represents whether or not the
dealer is taking additional cards. Since a dealer must hit on any hand
totaling 17 or less, the method returns True if the object's total
property is less than 17, otherwise it returns False. The bust()
method announces that the dealer busts. The
flip_first_card() method turns over the dealer's first card.

The BJ_Game Class

The BJ_Game class is used to create a single object that represents
a blackjack game. The class contains the code for the main game
loop in its play() method. However, the mechanics of the game are
complex enough that I create a few elements outside the method,
including an __additional_cards() method that takes care of
dealing additional cards to a player and a still_playing property
that returns a list of all players still playing in the round.

The __init__() Method

The constructor receives a list of names and creates a player for
each name. The method also creates a dealer and a deck.
class BJ_Game(object):
 """ A Blackjack Game. """
 def __init__(self, names):
 self.players = []
 for name in names:
 player = BJ_Player(name)
 self.players.append(player)

 self.dealer = BJ_Dealer("Dealer")

 self.deck = BJ_Deck()
 self.deck.populate()
 self.deck.shuffle()

The still_playing Property

The still_playing property returns a list of all the players that
are still playing (those that haven't busted this round):
 def get_still_playing(self):
 remaining = []

 for player in self.players:
 if not player.is_busted():
 remaining.append(player)
 return remaining

 # list of players still playing (not busted)
this round
 still_playing = property(get_still_playing)

The __additional_cards() Method

The __additional_cards() method deals additional cards to
either a player or the dealer. The method receives an object into its
player parameter, which can be either a BJ_Player or
BJ_Dealer object. The method continues while the object's
is_busted() method returns False and its is_hitting()
method returns True. If the object's is_busted() method returns
True, then the object's bust() method is invoked.
 def __additional_cards(self, player):
 while not player.is_busted() and
player.is_hitting():
 self.deck.deal([player])
 print player
 if player.is_busted():
 player.bust()

Polymorphism is at work here in two method calls. The
player.is_hitting() method call works equally well whether
player refers to a BJ_Player object or a BJ_Dealer object. The
__additional_cards() method never has to know which type of
object it's working with. The same is true in the line
player.bust(). Since both classes, BJ_Player and
BJ_Dealer, each defines its own bust() method, the line creates
the desired result in either case.

The play() Method

The play() method is where the game loop is defined and bares a
striking resemblance to the pseudocode I introduced earlier:
 def play(self):
 # deal initial 2 cards to everyone
 self.deck.deal(self.players +
[self.dealer], per_hand = 2)
 self.dealer.flip_first_card() # hide
dealer's first card
 for player in self.players:
 print player
 print self.dealer

 # deal additional cards to players
 for player in self.players:
 self.__additional_cards(player)

 self.dealer.flip_first_card() # reveal
dealer's first

 if not self.still_playing:
 # since all players have busted, just
show the dealer's hand
 print self.dealer
 else:
 # deal additional cards to dealer
 print self.dealer
 self.__additional_cards(self.dealer)

 if self.dealer.is_busted():
 # everyone still playing wins
 for player in self.still_playing:
 player.win()
 else:

 # compare each player still
playing to dealer
 for player in self.still_playing:
 if player.total >
self.dealer.total:
 player.win()
 elif player.total <
self.dealer.total:
 player.lose()
 else:
 player.push()
 # remove everyone's cards
 for player in self.players:
 player.clear()
 self.dealer.clear()

Each player and dealer is dealt the initial two cards. The dealer's first
card is flipped to hide its value. Next, all of the hands are displayed.
Then, each player is given cards as long as the player requests
additional cards and hasn't busted. If all players have busted, the
dealer's first card is flipped and the dealer's hand is printed.
Otherwise, play continues. The dealer gets cards as long as the
dealer's hand total is less than 17. If the dealer busts, all remaining
players win. Otherwise, each remaining player's hand is compared
with the dealer's. If the player's total is greater than the dealer's, the
player wins. If the player's total is less, the player loses. If the two
totals are equal, the player pushes.

The main() Function

The main() function gets the names of all the players, puts them in
a list, and creates a BJ_Game object, using the list as an argument.
Next, the function invokes the object's play() method and will
continue to do so until the players no longer want to play.

def main():
 print "\t\tWelcome to Blackjack!\n"

 names = []
 number = games.ask_number("How many players?
(1 - 7): ", low = 1, high = 8)
 for i in range(number):
 name = raw_input("Enter player name: ")
 names.append(name)
 print

 game = BJ_Game(names)

 again = None
 while again != "n":
 game.play()
 again = games.ask_yes_no("\nDo you want to
play again?: ")

main()
raw_input("\n\nPress the enter key to exit.")

Summary
This chapter introduced you to the world of OOP. You saw how to
send messages between objects. You learned how to combine
objects together to form more complex objects. You were introduced
to inheritance, the process of creating new classes based on existing
ones. You saw how to extend a derived class by adding new
methods. You also saw how to override inherited methods. You
learned how to write and import your own modules. You were shown
an example of how to sketch out your classes before you begin a
project. And finally, you saw all of these concepts come together in
the creation of a multiplayer, casino-style card game.

Challenges
1. Add some much-needed error checking to the Blackjack

game. Before a new round begins, make sure that the deck
has enough cards. If not, repopulate and reshuffle it. Find
other places where you could add error checking and
create the necessary safeguards.

2. Write a one-card version of the game war, where each
player gets a single card and the player with the highest
card wins.

3. Improve the Blackjack project by allowing players to bet.
Keep track of each player's bankroll and remove any player
who runs out of money.

4. Create a simple adventure game, using objects, where a
player can travel between various, connected locations.

Chapter 10: GUI Development: The Mad Lib
Program

 Download CD Content

Overview
So far, all the programs you've seen have used plain old text to
interact with the user. But there are more sophisticated ways to
present and accept information. A graphical user interface (GUI)
provides a visual way for a user to interact with the computer. The
most popular home operating systems all employ a GUI, making
user interactions simpler and more consistent. In this chapter, you'll
learn to create GUIs. Specifically, you'll learn to do the following:

Work with a GUI toolkit

Create and fill frames

Create and use buttons

Create and use text entries and text boxes

Create and use check buttons

Create and use radio buttons

Introducing the Mad Lib Program
The chapter project, the Mad Lib program, asks for the user's help in
creating a story. The user supplies the name of a person, a plural
noun, and a verb. The user can also choose from several adjectives
and may select one body part. The program takes all of this
information and uses it to create a story. Figures 10.1 through 10.3
show off the program. As you can see, the Mad Lib program uses a
GUI to interact with the user.

Figure 10.1: A nicely laid-out GUI awaits the user's
creativity.

Figure 10.2: The user has entered all of the necessary

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig328_01_0.jpg
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig329_01_0.jpg

information.

Figure 10.3: After clicking the Click for story button, the text box
displays the literary masterpiece.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig329_02_0.jpg

Examining a GUI
Before I describe how to program a GUI, I want to define all of the
GUI elements you'll meet in this chapter. Figure 10.4 shows off the
Mad Lib program, though this time the various elements are labeled.

Figure 10.4: You'll learn to create all of these GUI
elements.

To create a GUI with Python, you need to use a GUI toolkit. There
are many to pick from, but I use the Tkinter toolkit in this chapter.
Tkinter is cross-platform and the most popular Python GUI toolkit
around.

HINT If you're running an operating system other than Windows,
you may need to download and install additional software
to use the Tkinter toolkit. To find out more, visit the Python
Web site's Tkinter page at
http://www.python.org/topics/tkinter.

You create GUI elements by instantiating objects from classes of the
Tkinter module, which is part of the Tkinter toolkit. Table 10.1
describes each GUI element from Figure 10.4 and lists its
corresponding Tkinter class.

Table 10.1: SELECTED GUI ELEMENTS

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig330_01_0.jpg
http://www.python.org/topics/tkinter

Element TkinterClass DescriptionElement TkinterClass Description

Frame Frame Holds other GUI elements

Label Label Displays uneditable text or icons

Button Button Performs an action when the user
activates it

Text
entry

Entry Accepts and displays one line of text

Text box Text Accepts and displays multiple lines of
text

Check
button

Checkbutton Allows the user to select or not select
an option

Radio
button

Radiobutton Allows, as a group, the user to select
one option from several

HINT There's no need to memorize all of these Tkinter
classes. I just want to give you an overview of the classes
that you learn about in this chapter.

Understanding Event-Driven Programming
GUI programs are traditionally event-driven, meaning they respond
to actions regardless of the order in which they occur. Event-driven
programming is a somewhat different way of thinking about coding.
But don't worry, because if you've ever used a GUI before (like a
Web browser), then you've already worked within an event-driven
system.

To better understand the event-driven way, think about the Mad Lib
final project from this chapter. If you were to write a similar program
with your current Python skills, you'd probably ask the user a series
of questions with the raw_input() function. You might ask for the
name of a person, followed by a plural noun, followed by a verb, and
so on. As a result, the user would have to provide each piece of
information, in order. But, if you were to write the program in an
event-driven way, say with a GUI, the user could enter the
information in any order. Also, the timing of when the program
actually generates the story would be up to the user as well.

When you write an event-driven program, you bind (associate)
events (things that can happen involving the program's objects) with
event handlers (code that runs when the events occur). As a
concrete example, think about the Mad Lib chapter project again.
When the user clicks the Click for story button (the event), the
program invokes a method that displays the story (the event
handler). In order for this to happen, I have to associate the button
click with the story-telling method (I bind the two with each other).

By defining all of your objects, events, and event handlers, you
establish how your program works. Then, you kick off the program
by entering an event loop, where the program waits for the events
that you've described to occur. When any of those events do occur,
the program handles them, just as you've laid out.

Don't worry if this somewhat different way of thinking about
programming isn't completely clear yet. After seeing a few working
examples, you'll understand how to devise event-driven programs of
your own.

Using a Root Window
The foundation of your GUI program is its root window, upon which
you add all other GUI elements. If you think of your GUI as a tree,
then the root window is, well, the root. Your tree can branch out in all
directions, but every part of it is, directly or indirectly, anchored by
the root.

Introducing the Simple GUI Program

The Simple GUI program creates about the simplest GUI possible: a
single window. Figure 10.5 shows the results of the program.

Figure 10.5: The program creates only a lone window. Hey, you
have to start somewhere.

TRAP Running a Tkinter program directly from IDLE will cause
either your program or IDLE to lock up. The problem
stems from the fact that IDLE is written using the Tkinter
toolkit too. The simplest solution is to run your Tkinter
program directly. In Windows, you can do this simply by
double-clicking your program's icon.

In addition to the window pictured in Figure 10.5, Simple GUI may
generate another window (depending upon your operating system):
the familiar console window, pictured in Figure 10.6.

Figure 10.6: A GUI program can generate a console window
too.

Although you may think that this console window is just an eyesore,
marring your otherwise perfect GUI, don't be so quick to dismiss it.
The console window can provide valuable feedback if (and when)
your Tkinter program produces errors. Also, don't close the console
window, because that will close your GUI program along with it.

TRICK Once you get your GUI programming running perfectly,
you may want to suppress its accompanying console
window. On a Windows machine, the easiest way to do
this is to change the extension of your program from py
to pyw.

Importing the Tkinter Module

Finally, it's time to get your hands dirty with some code! The first
thing I do in the Simple GUI program is import the Tkinter module:
Simple GUI
Demonstrates creating a window
Michael Dawson - 6/5/03

from Tkinter import *

The previous code imports all of Tkinter directly into the program's
global name-space. Normally, you want to avoid doing something
like this; however, a few modules, like Tkinter, are designed to be

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig333_01_0.jpg

imported in this way. You'll see just how this helps in the next line of
code.

Creating a Root Window

To create a root window, I instantiate an object of the Tkinter class
Tk:
create the root window
root = Tk()

Notice, though, that I didn't have to prefix the module name,
Tkinter, to the class name, Tk. In fact, I can now directly access
any part of the Tkinter module, without having to use the module
name. Since most Tkinter programs involve many references to
classes and constants in the module, this saves a lot of typing and
makes code easier to read.

TRAP You can have only one root window in a Tkinter program.
If you create more than one, you're bound to freeze up
your program as both root windows fight for control.

Modifying a Root Window

Next, I modify the root window using a few of its methods:
modify the window
root.title("Simple GUI")
root.geometry("200x100")

The title() method sets the title of the root window. All you have
to do is pass the title you want displayed as a string. I set the title so
that the text Simple GUI appears in the window's title bar.

The geometry() method sets the size of the root window. The
method takes a string (and not integers) that represents the

window's width and height, separated by the "x" character. I set the
window's width to 200 and its height to 100.

Entering a Root Window's Event Loop

Finally, I start up the window's event loop by invoking root's
mainloop() method:
kick off the window's event loop
root.mainloop()

As a result, the window stays open, waiting to handle events. Since I
haven't defined any events, the window doesn't do much. But it is a
full-fledged window that you can resize, minimize, and close. Feel
free to give it a test drive.

Using Labels
GUI elements are called widgets (short for "window gadgets").
Probably the simplest widget is the Label widget, which is
uneditable text or icons (or both). A label widget labels part of a GUI.
It's often used to label other widgets. Unlike most other widgets,
labels aren't interactive. A user can't click on a label (alright, a user
can, but the label won't do anything). Still, labels are important and
you'll probably use at least one every time you create a GUI.

Introducing the Labeler Program

The Labeler program creates a root window and adds a label to it.
The label widget simply declares that it is a label. Figure 10.7
illustrates the program.

Figure 10.7: A label can provide information about a
GUI.

Setting Up the Program

First, I set up the Labeler program by importing Tkinter and
creating a root window:
Labeler
Demonstrates a label
Michael Dawson - 6/5/03

from Tkinter import *

create the root window

root = Tk()
root.title("Labeler")
root.geometry("200x50")

Creating a Frame

A Frame is a widget that can hold other widgets (such as Label
widgets). A frame is like the cork in a corkboard; you use it as a base
on which to place other things. So, I create a new frame:
create a frame in the window to hold other
widgets
app = Frame(root)

Any time you create a new widget, you must pass its master (the
thing that will contain the widget) to the constructor of the new
object. Here, I pass root to the Frame constructor. As a result, the
new frame is placed inside the root window.

Next, I invoke the grid() method of the new object:
app.grid()

grid() is a method that all widgets have. It's associated with a
layout manager, which lets you arrange widgets. To keep things
simple, I save the discussion of layout managers for a bit later in this
chapter.

Creating a Label

I create a Label widget by instantiating an object of the Label
class:
create a label in the frame
lbl = Label(app, text = "I'm a label!")

By passing app to the Label object's constructor, I make the frame
that app refers to the master of the Label widget. As a result, the
label is placed in the frame.

Widgets have options that you can set. Many of these options affect
how the widget appears. By passing the string "I'm a label!" to
the text parameter, I set the widget's text option to that string. As
a result, the text I'm a label! appears when the label is
displayed.

Next, I invoke the object's grid() method:
lbl.grid()

This ensures that the label will be visible.

Entering the Root Window's Event Loop

Last, but not least, I invoke the root window's event loop to start up
the GUI:
kick off the window's event loop
root.mainloop()

Using Buttons
A Button widget can be activated by the user to perform some
action. Since you already know how to create labels, learning how to
create buttons will be pretty easy.

Introducing the Lazy Buttons Program

In the Lazy Buttons program, I create several buttons that don't do
anything when activated. This is sort of like installing a new light
fixture before wiring it. The fixture is put into place, but not yet
functional. Figure 10.8 illustrates the program.

Figure 10.8: You can click these lazy buttons all you want; they
won't do a thing.

Setting Up the Program

First, I set up the program by importing Tkinter and creating a root
window and a frame:
Lazy Buttons
Demonstrates creating buttons
Michael Dawson - 6/5/03

from Tkinter import *

create a root window
root = Tk()

root.title("Lazy Buttons")
root.geometry("200x85")
create a frame in the window to hold other
widgets
app = Frame(root)
app.grid()

Creating Buttons

You create a Button widget by instantiating an object of the
Button class. That's what I did in the next lines:
create a button in the frame
bttn1 = Button(app, text = "I do nothing!")
bttn1.grid()

These lines create a new button with the text I do nothing! The
button's master is the frame I created earlier, which means that the
button is placed in the frame.

The Tkinter module offers flexibility when it comes to creating,
defining, and altering widgets. You can create a widget and set all of
its options in one line (like I've been doing), or you can create a
widget and set or alter its options later. I'll show you what I mean
with the next button. First, I create a new button:
create a second button in the frame
bttn2 = Button(app)
bttn2.grid()

Notice though that the only value I pass to the object's constructor is
app, the button's master. So, all I've done is add a blank button to
the frame. However, I can fix that. I can modify a widget after I create
it, using the object's configure() method:
bttn2.configure(text = "Me too!")

This line sets the text option of the button to the string "Me too!",
which puts the text Me too! on the button.

You can use a widget's configure() method for any widget option
(and any type of widget). You can even use the method to change an
option that you've already set.

Next, I create a third button:
create a third button in the frame
bttn3 = Button(app)
bttn3.grid()

Then, I set the button's text option, using a different interface:
bttn3["text"] = "Same here!"

I access the button's text option through a dictionary-like interface.
I set the text option to the string "Same here!", which puts the
text Same here! on the button. When you set the value of an option
using this type of dictionary-style access, the key for the option is the
name of the option as a string.

Entering the Root Window's Event Loop

As always, I invoke the root window's event loop to start up the GUI:
kick off the window's event loop
root.mainloop()

Creating a GUI Using a Class
As you've learned in other chapters, organizing your code into
classes can make your programming life a lot easier. It's often
beneficial to write larger GUI programs by defining your own classes.
So next, I show you how to write a GUI program by organizing the
code with a class.

Introducing the Lazy Buttons 2 Program

The Lazy Buttons 2 program is simply the Lazy Buttons program
rewritten using a class. The program appears exactly the same to
the user, but behind the scenes I've done some restructuring. Figure
10.9 shows the ever-so familiar program in action.

Figure 10.9: It's déjà vu all over again. The program looks the
same as its predecessor even though there are significant
changes under the hood.

Importing the Tkinter Module

Though there are significant structural changes to the program,
importing the GUI module is still the same:
Lazy Buttons 2
Demonstrates using a class with Tkinter
Michael Dawson - 6/5/03

from Tkinter import *

Defining the Application Class

Next, I create a new class, Application, based on Frame:
class Application(Frame):
 """ A GUI application with three buttons. """

Instead of instantiating a Frame object, I'll end up instantiating an
Application object to hold all of the buttons. This works since an
Application object is just a specialized type of Frame object.

Defining a Constructor Method

Next, I define Application's constructor:
 def __init__(self, master):
 """ Initialize the Frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

Since an Application object is just a specialized kind of Frame
object, I initialize it through Frame's constructor. I pass along the
Application object's master, so it gets properly set as the master.
Finally, I invoke the Application object's create_widgets()
method, which I define next.

Defining a Method to Create the Widgets

I define a method that creates all three buttons,
create_widgets():
 def create_widgets(self):
 """ Create three buttons that do nothing.
"""
 # create first button
 self.bttn1 = Button(self, text = "I do

nothing!")
 self.bttn1.grid()

 # create second button
 self.bttn2 = Button(self)
 self.bttn2.grid()
 self.bttn2.configure(text = "Me too!")

 # create third button
 self.bttn3 = Button(self)
 self.bttn3.grid()
 self.bttn3["text"] = "Same here!"

The code looks pretty similar to the code that creates the buttons in
the original Lazy Buttons program. An important difference is that
bttn1, bttn2, and bttn3 are attributes of the Application
object. Another important difference is that I use self as the master
for the buttons so that the Application object is their master.

Creating the Application Object

In the main section of code, I create a root window and give it a title
and a proper size:
main
root = Tk()
root.title("Lazy Buttons 2")
root.geometry("200x85")

Then, I instantiate an Application object with the root window as
its master:
app = Application(root)

This code creates a Application object with the root window as its
master. The Application object's constructor invokes the object's

create_widgets() method. This method then creates the three
buttons, with the Application object as their master.

Finally, I invoke the root window's event loop to kick off the GUI and
keep it running:
root.mainloop()

Binding Widgets and Event Handlers
So far, the GUI programs you've seen don't do a whole lot. That's
because there's no code associated with the activation of their
widgets. Again, these widgets are like light fixtures that have been
installed, but not connected to electrical wiring. Well, now it's time to
get the electricity flowing; or in the case of GUI programming, it's
time to write event handlers and bind them with events.

Introducing the Click Counter Program

The Click Counter program has a button that does something: it
displays the number of times the user has clicked it. Technically, the
button's event handler takes care of updating the click count and
changing the text on the button. Figure 10.10 shows off the program.

Figure 10.10: The button's event handler updates the number of
times the button is clicked.

Setting Up the Program

As my traditional first step, I import the GUI module:
Click Counter
Demonstrates binding an event with an event
handler
Michael Dawson - 6/6/03

from Tkinter import *

Next, I start the Application class definition:

class Application(Frame):
 """ GUI application which counts button
clicks. """
 def __init__(self, master):
 """ Initialize the frame. """
 Frame.__init__(self, master)
 self.grid()
 self.bttn_clicks = 0 # the number of
button clicks
 self.create_widget()

You've seen most of this code before. The new line is
self.bttn_clicks = 0, which creates an object attribute to keep
track of the number of times the user clicks the button.

Binding the Event Handler

In the create_widget() method, I create a single button:
 def create_widget(self):
 """ Create button which displays number of
clicks. """
 self.bttn = Button(self)
 self.bttn["text"]= "Total Clicks: 0"
 self.bttn["command"] = self.update_count
 self.bttn.grid()

I set the Button widget's command option to the update_count()
method. As a result, when the user clicks the button, the method
gets invoked. Technically, what I've done is bind an event (the
clicking of Button widget) to an event handler (the
update_count() method).

In general, you set a widget's command option to bind the activation
of the widget with an event handler.

Creating the Event Handler

Next, I write the update_count() method, which handles the event
of the button being clicked:
 def update_count(self):
 """ Increase click count and display new
total. """
 self.bttn_clicks += 1
 self.bttn["text"] = "Total Clicks: "+
str(self.bttn_clicks)

This method increments the total number of button clicks and then
changes the text of the button to reflect the new total. That's all it
takes to get a button to do something useful (or almost useful).

Wrapping Up the Program

The main part of the code should be pretty familiar to you by now:
main
root = Tk()
root.title("Click Counter")
root.geometry("200x50")

app = Application(root)

root.mainloop()

I create a root window and set its title and dimensions. Then I
instantiate a new Application object with the root window as its
master. Lastly, I start up the root window's event loop to bring the
GUI to life on the screen.

Using Text and Entry Widgets and the Grid
Layout Manager
In GUI programming, there will be times where you'll want a user to
enter some text. Other times, you may want to display text to the
user. For both of these occasions, you can use text-based widgets. I
introduce you to two kinds. The Entry widget is good for one line of
text, while the Text widget is great for multiline blocks of text. You
can read the contents of either of these widget types to get user
input. You can also insert text into them to provide the user with
feedback.

Once you start throwing a bunch of widgets into a frame, you need a
way to organize them. So far, I've used the Grid layout manager,
but in only the most limited way. The Grid layout manager offers
you a lot more control over the way your GUI looks. The manager
lets you place widgets at specific locations by treating a frame as a
grid.

Introducing the Longevity Program

The Longevity program reveals the secret to living to the ripe old age
of 100, if the user enters the secret password (the highly secure
"secret"). The user enters the password in the text entry and then
clicks the Submit button. If the password is correct, the program
displays the key to longevity in the text box. Figures 10.11 and 10.12
show off the program.

Figure 10.11: If the user fails to enter the correct password, the
program politely refuses to divulge its secret.

Figure 10.12: Given the correct password, the program shares its
invaluable knowledge to long life.

Setting Up the Program

I set up the program just like the last few:
Longevity
Demonstrates text and entry widgets, and the
Grid layout manager
Michael Dawson - 6/7/03

from Tkinter import *

class Application(Frame):
 """ GUI application which can reveal the
secret of longevity. """
 def __init__(self, master):
 """ Initialize the frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

I import the Tkinter module and start to define the Application
class. In the constructor method, I initialize the new Application
object, make sure it will be visible, and invoke the object's
create_widgets() method.

Placing a Widget with the Grid Layout Manager

Next, I start the create_widgets() method and create a label that
provides instructions to the user:
 def create_widgets(self):
 """ Create button, text, and entry
widgets. """
 # create instruction label
 self.inst_lbl = Label(self, text = "Enter
password for the secret of longevity")

So far, nothing new. But in the next line, I use the Grid layout
manager to be specific about the placement of this label:
 self.inst_lbl.grid(row = 0, column = 0,
columnspan = 2, sticky = W)

A widget object's grid() method can take values for many different
parameters, but I only use four of them: row, column, columnspan,
and sticky.

The row and column parameters take integers and define where an
object is placed within its master widget. In this program, you can
imagine the frame in the root window as a grid, divided into rows and
columns. At each row and column inter-section is a cell, where you
can place a widget. Figure 10.13 illustrates the placement of nine
Button widgets, in nine different cells, using row and column
numbers.

Figure 10.13: Each button is located in a unique cell, based on a
row and a column number.

For my Label widget, I pass 0 to row and 0 to column, which puts
the label in the upper-left corner of the frame.

If a widget is very wide (like the long instruction Label widget I have
in this program), you may want to allow the widget to span more than
one cell so that your other widgets are correctly spaced. The
columnspan parameter lets you span a widget over more than one
column. I pass 2 to this parameter to allow the long label to span two
columns. This means that the label takes up two cells, the one at row
0, column 0, and the other at row 0, column 1. (You can also use the
rowspan parameter to allow a widget to span more than one row.)

Even after you've established which cell (or cells) a widget occupies,
you have the flexibility to justify the widget within the cell (or cells) by
using the parameter sticky, which takes directions as values,
including N, S, E, and W. A widget is moved to the quadrant of the cell

(or cells) that corresponds to the direction. Since I pass W to sticky
for the Label object, the label is forced to the west (left). Another
way to say this is that the label is left-justified in its cells.

Next, I create a label that appears in the next row, left-justified:
 # create label for password
 self.pw_lbl = Label(self, text = "Password:
")
 self.pw_lbl.grid(row = 1, column = 0, sticky
= W)

Creating an Entry Widget

Next, I create a new type of widget, an Entry widget:
 # create entry widget to accept password
 self.pw_ent = Entry(self)

This code creates a text entry where the user can enter a password.

I position the Entry widget so that it's in the cell next to the
password label:
 self.pw_ent.grid(row = 1, column = 1, sticky
= W)

Then, I create a button that lets the user submit his or her password:
 # create submit button
 self.submit_bttn = Button(self, text =
"Submit", command = self.reveal)

I bind the activation of the button with the reveal() method, which
reveals the longevity secret, if the user has entered the correct
password.

I place the button in the next row, all the way to the left:

 self.submit_bttn.grid(row = 2, column = 0,
sticky = W)

Creating a Text Widget

Next, I create a new type of widget, a Text widget:
 # create text widget to display message
 self.secret_txt = Text(self, width = 35,
height = 5, wrap = WORD)

I pass values to width and height to set the dimensions of the text
box. Then I pass a value to the parameter wrap, which determines
how text in the box is wrapped. Possible values for the parameter
are WORD, CHAR, and NONE. WORD, the value I use for this Text
widget, wraps entire words when you reach the right edge of the text
box. CHAR wraps characters, meaning that when you get to the right
edge of the text box, the next characters simply appears on the
following line. NONE means no wrapping. As a result, you can only
write text on the first line of the text box.

Next, I set the text box so that it's on the next row and spans two
columns:
 self.secret_txt.grid(row = 3, column = 0,
columnspan = 2, sticky = W)

Getting and Inserting Text with Text-Based Widgets

Next, I write the reveal() method, which tests to see if the user
has entered the correct password. If so, the method displays the
secret to a long life. Otherwise, the user is told that the password is
incorrect.

The first thing I do is get the text in the Entry widget by invoking its
get() method:

 def reveal(self):
 """ Display message based on password. """
 contents = self.pw_ent.get()

The get() method returns the text in the widget. Both Entry and
Text objects have a get() method.

I check to see if the text is equal to "secret". If so, I set message
to the string describing the secret to living to 100. Otherwise, I set
message to the string that tells the user that he or she entered the
wrong password.
 if contents == "secret":
 message = "Here's the secret to living
to 100: live to 99 "\
 "and then be VERY careful."
 else:
 message = "That's not the correct
password, so I can't share "\
 "the secret with you."

Now that I've got the string that I want to show to the user, I need to
insert it into the Text widget. First, I delete any text already in the
Text widget by invoking its delete() method:
 self.secret_txt.delete(0.0, END)

The delete() method can delete text from text-based widgets. The
method can take a single index, or a beginning and an ending point.
You pass floating-point numbers to represent a row and column
number pair where the digits to the left of the decimal point is the row
number and the digits to the right of the decimal point is the column
number. For example, in the previous line of code, I pass 0.0 as the
starting point, meaning that the method should delete text starting at
row 0, column 0 (the absolute beginning) of the text box.

Tkinter provides several constants to help out with this type of
method, such as END, which means the end of the text. So, this
previous line of code deletes every-thing from the first position in the
text box to the end. Both Text and Entry widgets have a
delete() method.

Next, I insert the string I want to display into the Text widget:
 self.secret_txt.insert(0.0, message)

The insert() method can insert a string into a text-based widget.
The method takes an insertion position and a string. In the previous
line of code, I pass 0.0 as the insertion position, meaning the
method should start inserting at row 0, column 0. I pass message as
the second value, so that the appropriate message shows up in the
text box. Both Text and Entry widgets have an insert() method.

Wrapping Up the Program

To wrap up the program, I create a root window and set its title and
dimensions. Then I create a new Application object with the root
window as its master. Finally, I begin the application by starting the
window's event loop.
main
root = Tk()
root.title("Longevity")
root.geometry("250x150")

app = Application(root)

root.mainloop()

Using Check Buttons
Check buttons allow a user to select any number of choices from a
group. While this gives the user a lot of flexibility, it actually gives the
programmer greater control by limiting to a specific list what the user
can choose.

Introducing the Movie Chooser Program

The Movie Chooser program lets the user choose his or her favorite
movie types from a list of three: comedy, drama, and romance. Since
the program uses check buttons, the user can select as many (or as
few) as he or she wants. The program displays the results of the
user's selections in a text box. Figure 10.14 shows off the program.

Figure 10.14: The results of the user's selections show up in the
text box.

Setting Up the Program

I set up the Movie Chooser program by importing Tkinter and
starting my Application class definition:

Movie Chooser
Demonstrates check buttons
Michael Dawson - 6/8/03

from Tkinter import *
class Application(Frame):
 """ GUI Application for favorite movie types.
"""
 def __init__(self, master):
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

Allowing a Widget's Master to Be Its Only Reference

Next, I create a label that describes the program:
 def create_widgets(self):
 """ Create widgets for movie type choices.
"""
 # create description label
 Label(self,
 text = "Choose your favorite movie
types"
).grid(row = 0, column = 0, sticky =
W)

There's one important difference between this label and others I've
created: I don't assign the resulting Label object to a variable.
Normally, this would be a big mistake, rendering the object useless
because it wouldn't be connected to the program in any way. But
with Tkinter, a Label object is connected to the program, like all
GUI elements, by its master. What this means is that if I know I won't
need to directly access a widget, then I don't need to assign the
object to a variable. The main benefit of this approach is shorter,
cleaner code.

So far, I've been pretty conservative, always assigning each new
widget to a variable. But in this case, I know that I'm not going to
need to access this label, so I don't assign the Label object to a
variable. Instead, I let its master maintain the only reference to it.

Next, I create another label in much the same way:
 # create instruction label
 Label(self,
 text = "Select all that apply:"
).grid(row = 1, column = 0, sticky
= W)

This label provides instructions, telling the user that he or she can
select as many movie types as apply.

Creating Check Buttons

Next, I create the check buttons, one for each movie type. I first
tackle the Comedy check button.

Every check button needs a special object associated with it that
automatically reflects the check button's status. The special object
must be an instance of the BooleanVar class from the Tkinter
module. So, before I create the Comedy check button, I instantiate a
BooleanVar object and assign it to a new object attribute,
likes_comedy:
 # create Comedy check button
 self.likes_comedy = BooleanVar()

IN THE REAL WORLD

A Boolean variable is a special kind of variable that can be only
true or false. Programmers often call such a variable simply a

"Boolean." The term is always capitalized because it's derived
from the name of the English mathematician George Boole.

Next, I create the check button itself:
 Checkbutton(self,
 text = "Comedy",
 variable = self.likes_comedy,
 command = self.update_text
).grid(row = 2, column = 0,
sticky = W)

This code creates a new check button with the text Comedy. By
passing self.likes_comedy to the parameter variable, I
associate the check button's status (selected or unchecked) with the
likes_comedy attribute. By passing self.update_text() to the
parameter command, I bind the activation of the check button with
the update_text() method. This means that whenever the user
selects or clears the check button, the update_text() method is
invoked. Finally, I place the check button on the next row, all the way
to the left.

Notice that I don't assign the resulting Checkbutton object to a
variable. This is fine, because what I really care about is the status of
the button, which I can access from the likes_comedy attribute.

I create the next two check buttons in the same way:
 # create Drama check button
 self.likes_drama = BooleanVar()
 Checkbutton(self,
 text = "Drama",
 variable = self.likes_drama,
 command = self.update_text
).grid(row = 3, column = 0,

sticky = W)

 # create Romance check button
 self.likes_romance = BooleanVar()
 Checkbutton(self,
 text = "Romance",
 variable =
self.likes_romance,
 command = self.update_text
).grid(row = 4, column = 0,
sticky = W)

So, whenever the user selects or clears the Drama or Romance
check buttons, the update_text() method is invoked. And even
though I don't assign the resulting Checkbutton objects to any
variables, I can always see the status of the Drama check button
through the likes_drama attribute, and I can always see the status
of the Romance check button through the likes_romance
attribute.

Finally, I create the text box that I use to show the results of the
user's selections:
 # create text field to display results
 self.results_txt = Text(self, width = 40,
height = 5, wrap = WORD)
 self.results_txt.grid(row = 5, column = 0,
columnspan = 3)

Getting the Status of a Check Button

Next, I write the update_text() method, which updates the text
box to reflect the check buttons the user has selected:
 def update_text(self):
 """ Update text widget and display user's
favorite movie types. """

 likes = ""

 if self.likes_comedy.get():
 likes += "You like comedic movies.\n"

 if self.likes_drama.get():
 likes += "You like dramatic movies.\n"

 if self.likes_romance.get():
 likes += "You like romantic movies."
 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, likes)

You can't access the value of a BooleanVar object directly. Instead,
you must invoke the object's get() method. In the previous code, I
use the get() method of the BooleanVar object referenced by
likes_comedy to get the object's value. If the value evaluates to
true, that means the Comedy check button is selected, and I add the
string "You like comedic movies.\n" to the string I'm building
to display in the text box. I perform similar operations based on the
status of the Drama and Romance check buttons. Finally, I delete all
of the text in the text box and then insert the new string, likes,
which I just built.

Wrapping Up the Program

I finish the program with the familiar main section. I create a root
window and a new Application object with the root window as its
master. Then, I start the window's event loop.
main
root = Tk()
root.title("Movie Chooser")
app = Application(root)
root.mainloop()

Using Radio Buttons
Radio buttons are a lot like check buttons, except that radio buttons
only allow one button in a group to be selected at once. This is great
if you want the user to make a single selection from a group of
choices. Since radio buttons have so much in common with check
buttons, learning to use them is pretty straight-forward.

Introducing the Movie Chooser 2 Program

The Movie Chooser 2 program is like the Movie Chooser program.
The user is presented with three different movie types from which to
select. The difference is that the Movie Chooser 2 program uses
radio buttons instead of check buttons so the user can select only
one movie type. This is perfect since the program asks the user for
his or her favorite type of movie. Figure 10.15 shows off the
program.

Figure 10.15: The user can select only a single movie
type.

Setting Up the Program

I start the program by importing the Tkinter module:
Movie Chooser 2
Demonstrates radio buttons
Michael Dawson - 6/9/03

from Tkinter import *

Next, I write the Application class. I define its constructor, which
initializes a new Application object:
class Application(Frame):
 """ GUI Application for favorite movie type.
"""
 def __init__(self, master):
 """ Initialize Frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

Then, I create labels that give the user instructions:
 def create_widgets(self):
 """ Create widgets for movie type choices.
"""
 # create description label
 Label(self,
 text = "Choose your favorite type
of movie"
).grid(row = 0, column = 0, sticky
= W)
 # create instruction label
 Label(self,
 text = "Select one:"
).grid(row = 1, column = 0, sticky =
W)

Creating Radio Buttons

Since only one radio button in a group can be selected at one time,
there's no need for each radio button to have its own status variable,
as required for check buttons. Instead, a group of radio buttons
share one, special object that reflects which of the radio buttons is
selected. This object must be an instance of the StringVar class
from the Tkinter module, which allows a string to be stored and
retrieved. So, before I create the radio buttons themselves, I create a
single String-Var object for all of the radio buttons to share and
then I assign it to the attribute favorite:
 # create variable for single, favorite
type of movie
 self.favorite = StringVar()

Next, I create the Comedy radio button:
 # create Comedy radio button
 Radiobutton(self,
 text = "Comedy",
 variable = self.favorite,
 value = "comedy.",
 command = self.update_text
).grid(row = 2, column = 0,
sticky = W)

A radio button's variable option defines the StringVar
associated with the radio button, while a radio button's value option
defines the string to be stored by the StringVar when the radio
button is selected. So, by setting this radio button's variable
option to self.favorite and its value option to "comedy.", I'm
saying that when the Comedy radio button is selected, the
StringVar referenced by self.favorite should store the string
"comedy."

Next, I create the other two radio buttons:

 # create Drama radio button
 Radiobutton(self,
 text = "Drama",
 variable = self.favorite,
 value = "drama.",
 command = self.update_text
).grid(row = 3, column = 0,
sticky = W)

 # create Romance radio button
 Radiobutton(self,
 text = "Romance",
 variable = self.favorite,
 value = "romance.",
 command = self.update_text
).grid(row = 4, column = 0,
sticky = W)

By setting the Drama radio button's variable option to
self.favorite and its value option to "drama.", I'm saying that
when the Drama radio button is selected, the StringVar
referenced by self.favorite should store the string "drama."

And by setting the Romance radio button's variable option to
self.favorite and its value option to "romance.", I'm saying
that when the Romance radio button is selected, the StringVar
referenced by self.favorite should store the string "romance."

Next, I create the text box to display the results of the user's
selection:
 # create text field to display result
 self.results_txt = Text(self, width = 40,
height = 5, wrap = WORD)
 self.results_txt.grid(row = 5, column = 0,
columnspan = 3)

Getting a Value from a Group of Radio Buttons

Getting a value from a group of radio buttons is as simple as
invoking the get() method of the StringVar object that they all
share:
 def update_text(self):
 """ Update text area and display user's
favorite movie type. """
 message = "Your favorite type of movie is
"
 message += self.favorite.get()

When the Comedy radio button is selected,
self.favorite.get() returns "comedy."; when the Drama
radio button is selected, self.favorite.get() returns
"drama."; and when the Romance radio button is selected,
self.favorite.get() returns "romance."

Next, I delete any text that may be in the text box and insert the
string I just created, which declares the user's favorite movie type:
 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, message)

Wrapping Up the Program

I wrap up the program by creating a root window and a new
Application object. Then, I begin the root window's event loop to
start up the GUI.
main
root = Tk()
root.title("Movie Chooser 2")
app = Application(root)
root.mainloop()

Back to the Mad Lib Program
Now that you've seen a nice variety of widgets used in isolation, it's
time to combine them in one, larger GUI. I don't introduce any new
concepts in the Mad Lib program, so I don't comment too much on
the code.

Importing the Tkinter Module

As you probably know by now, you have to import the Tkinter
module before you can use it:
Mad Lib
Create a story based on user input
Michael Dawson 6/10/03

from Tkinter import *

The Application Class's Constructor Method

Like all other Application class constructors before it, this one
initializes the newly created Application object and invokes its
create_widgets() method:
class Application(Frame):
 """ GUI application that creates a story based
on user input. """
 def __init__(self, master):
 """ Initialize Frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

The Application Class's create_widgets() Method

This class creates all of the widgets in the GUI. The only new thing I
do is create all three radio buttons in a loop, by moving through a list
of strings for each radio button's text and value options:
 def create_widgets(self):
 """ Create widgets to get story information
and to display story. """
 # create instruction label
 Label(self,
 text = "Enter information for a new
story"
).grid(row = 0, column = 0,
columnspan = 2, sticky = W)

 # create a label and text entry for the
name of a person
 Label(self,
 text = "Person: "
).grid(row = 1, column = 0, sticky =
W)
 self.person_ent = Entry(self)
 self.person_ent.grid(row = 1, column = 1,
sticky = W)

 # create a label and text entry for a
plural noun
 Label(self,
 text = "Plural Noun:"
).grid(row = 2, column = 0, sticky =
W)
 self.noun_ent = Entry(self)
 self.noun_ent.grid(row = 2, column = 1,
sticky = W)

 # create a label and text entry for a verb
 Label(self,

 text = "Verb:"
).grid(row = 3, column = 0, sticky =
W)
 self.verb_ent = Entry(self)
 self.verb_ent.grid(row = 3, column = 1,
sticky = W)

 # create a label for adjectives check
buttons
 Label(self,
 text = "Adjective(s):"
).grid(row = 4, column = 0, sticky =
W)
 # create itchy check button
 self.is_itchy = BooleanVar()
 Checkbutton(self,
 text = "itchy",
 variable = self.is_itchy
).grid(row = 4, column = 1,
sticky = W)

 # create joyous check button
 self.is_joyous = BooleanVar()
 Checkbutton(self,
 text = "joyous",
 variable = self.is_joyous
).grid(row = 4, column = 2,
sticky = W)

 # create electric check button
 self.is_electric = BooleanVar()
 Checkbutton(self,
 text = "electric",
 variable = self.is_electric
).grid(row = 4, column = 3,
sticky = W)

 # create a label for body parts radio
buttons
 Label(self,
 text = "Body Part:"
).grid(row = 5, column = 0, sticky =
W)

 # create variable for single body part
 self.body_part = StringVar()

 # create body part radio buttons
 body_parts = ["bellybutton", "big toe",
"medulla oblongata"]
 column = 1
 for part in body_parts:
 Radiobutton(self,
 text = part,
 variable = self.body_part,
 value = part
).grid(row = 5, column =
column, sticky = W)
 column += 1
 # create a submit button
 Button(self,
 text = "Click for story",
 command = self.tell_story
).grid(row = 6, column = 0, sticky
= W)

 self.story_txt = Text(self, width = 75,
height = 10, wrap = WORD)
 self.story_txt.grid(row = 7, column = 0,
columnspan = 4)

The Application Class's tell_story() Method

In this method, I get the values the user has entered and use them to
create the one, long string for the story. Then, I delete any text in the
text box and insert the new string to show the user the story he or
she created.
 def tell_story(self):
 """ Fill text box with new story based on
user input. """
 # get values from the GUI
 person = self.person_ent.get()
 noun = self.noun_ent.get()
 verb = self.verb_ent.get()
 adjectives = ""
 if self.is_itchy.get():
 adjectives += "itchy, "
 if self.is_joyous.get():
 adjectives += "joyous, "
 if self.is_electric.get():
 adjectives += "electric, "
 body_part = self.body_part.get()

 # create the story
 story = "The famous explorer "
 story += person
 story += "had nearly given up a life-long
quest to find The Lost City of "
 story += noun.title()
 story += "when one day, the "
 story += noun
 story += "found "
 story += person + ". "
 story += "A strong, "
 story += adjectives
 story += "peculiar feeling overwhelmed the

explorer. "
 story += "After all this time, the quest
was finally over. A tear came to "
 story += person + "'s "
 story += body_part + ". "
 story += "And then, the "
 story += noun
 story += "promptly devoured "
 story += person + ". "
 story += "The moral of the story? Be
careful what you "
 story += verb
 story += "for."

 # display the story
 self.story_txt.delete(0.0, END)
 self.story_txt.insert(0.0, story)

The Main Part of the Program

You've seen this code more than a few times before. I create a root
window and an Application instance. Then, I start the whole GUI
up by invoking root's mainloop() method.
main
root = Tk()
root.title("Mad Lib")
app = Application(root)
root.mainloop()

Summary
In this chapter, you learned about creating GUIs. First, you learned
about event-driven programming, a new way to think about writing
code. Then, you learned about a number of GUI widgets, including
frames, buttons, text entries, text boxes, check buttons, and radio
buttons. You saw how to customize widgets. You also saw how to
organize them in a frame, using the Grid layout manager. You
learned how to bind events to event handlers, so that widgets do
something when activated. Finally, you saw how to put together a
fairly complex GUI to create a fun Mad Lib program.

Challenges
1. Write your own version of the Mad Lib program using a

different arrangement of widgets.

2. Write a version of the Guess My Number game, the
Chapter 3 project, using a GUI.

3. Create a GUI program, Order Up!, that presents the user
with a simple restaurant menu, which lists items and prices.
Let the user select different items and then show the user
the total bill.

Chapter 11: Graphics: The Pizza Panic Game
 Download CD Content

Overview
The majority of programs you've seen so far have focused on
presenting text. But today, people expect rich, visual content from
their programs, regardless of the application. So in this chapter,
you'll learn how to use graphics with the help of a few multimedia
modules designed for writing games in Python. Specifically, you'll
learn to do the following:

Create a graphics window

Display text in a graphics window

Create and manipulate sprites

Test for collisions between graphics objects

Handle mouse input

Control a computer opponent

Introducing the Pizza Panic Game
The project for this chapter, the Pizza Panic game, involves a crazy
chef, a deep-dish pan, and a bunch of flying pizzas. Here's the
scenario: After being pushed over the edge by one-too-many finicky
diners, the chef at the local pizza parlor has taken to the rooftop and
is madly flinging pizzas to their doom. Of course, the pizzas must be
saved. Using the mouse, the player controls a pan that he or she
maneuvers to catch the falling pizzas. The player's score increases
with every pizza caught. But once a pie hits the ground, the game is
over. Figures 11.1 and 11.2 show the game in action.

Figure 11.1: The player must catch the falling
pizzas.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig366_01_0.jpg

Figure 11.2: Once a pizza gets by the player, the game is
over.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig367_01_0.jpg

Introducing the Pygame and LiveWires
Packages
pygame and livewires are sets of modules (called packages)
that give Python programmers access to a wide range of multimedia
classes. With these classes, you can create programs with graphics,
sound effects, music, and animation. You can even play back MPEG
movies. The packages also allow input from a variety of devices,
including mice, keyboards, joysticks, and trackballs.

pygame is the secret weapon in your media arsenal. Written by Pete
Shinners, the package allows you to write impressive, multimedia
programs in Python. But because the package is so powerful, it can
be a bit overwhelming for the new programmer.

 livewires was designed specifically to take advantage of the
power of pygame, while reducing the complexity for the programmer.
Written by a group of educators in the United Kingdom,
 livewires is a pygame wrapper (code that provides a simpler
interface to other programming code). And even though I won't
directly access pygame, it will be there, working hard behind the
scenes.

IN THE REAL WORLD

Software wrappers are an important tool in the world of
professional programming and can dramatically cut down on the
amount of development time for a project. Wrappers exist for
different programming areas, including graphics, database
management, and networking, to name just a few.

You need to install both pygame and livewires before you can
run the programs presented in this chapter. Fortunately, Windows

versions of both are included on the CD-ROM that came with this
book. Just follow the installation instructions that accompany the
packages.

Over the next two chapters, you'll gain a good understanding of the
 livewires package. In addition, its documentation is included in

Appendix A. If you want to learn more about pygame, visit its web
site at http://www.pygame.org.

TRAP Although you're welcome to visit the web site of the
LiveWires organization at
http://www.livewires.org.uk, be aware that the
 livewires package used in this book is a modified
version of the package that LiveWires created.

http://www.pygame.org/
http://www.livewires.org.uk/

Creating a Graphics Window
Before you can display any graphics, you have to first create a
graphics window. Once you've created the window, you have your
blank canvas on which to display text and images.

Introducing the New Graphics Window Program

Creating a graphics window with the livewires package is a
snap. The New Graphics Window program creates an empty
graphics window in just a few lines of code. Figure 11.3 shows the
results of the program.

Figure 11.3: My first graphics window. Not much, but it's
mine.

Importing the games Module

The livewires package contains several important modules,
including games, which contains a group of key classes for game
programming. You can import a specific module of a package by
using the from statement. To import a module, use from, followed

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig369_01_0.jpg

by a package name, followed by import, followed by a module
name (or a list of module names separated by commas).

The first thing I do in the program is import the games module of the
 livewires package:

New Graphics Window
Demonstrates creating a graphics window
Michael Dawson 5/9/03

from livewires import games

As a result of this code, I can use games like any other module I
import. To get an overview of what the games module is all about,
check out Table 11.1, which lists the most commonly used games
classes.

Table 11.1: COMMONLY USED games MODULE CLASSES

Class Description of Class Object

Screen Provides a region on which graphics objects may exist,
move, and interact.

Text A graphics object for text displayed on a Screen
object.

Message A graphics object that is a special kind of Text object
that disappears after a set period of time.

Sprite A graphics object for images that can be displayed on
a Screen object.

Defining Global Constants

Next, I define two global constants:
SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

These represent the width and height of the new graphics window in
pixels—a single point in a graphics area.

Creating a Screen Object

Next, I start a main section and create the graphics screen:
main
my_screen = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

This causes a graphics window, 640 pixels wide by 480 pixels high,
to spring into existence and be displayed. The new Screen object is
assigned to my_screen.

When you create a Screen object, you may pass values of width
and height; otherwise, their respective default values of 640 and 480
are used. In this case, I could have written my_screen =
games.screen() and achieved exactly the same results. It's also
important to note that you can have only one active Screen object
at a time. If you try to create a second, you'll raise an exception.

Though not an exhaustive list, Table 11.2 describes some of the
most useful Screen methods.

Table 11.2: USEFUL Screen METHODS

Method Description

set_background(image)
Sets the background of a Screen
object to image object image.

mouse_pos() Returns the position of the mouse
pointer on a Screen object.

mouse_visible(on) Sets the mouse pointer to visible or
invisible. on can be True or False.

Method Description

mainlooop([fps])

Starts a loop that draws all of the
graphics objects associated with the
Screen object. Takes an optional
argument, fps, the number of
frames per second to update the
Screen object. The default value is
50.

all_objects() Returns a list of all objects
associated with the Screen object.

clear() Destroys all objects associated with
the Screen object.

quit()
Stops mainloop() and destroys
the Screen object and all objects
associated with it.

HINT All of these methods are important, but don't bother trying
to memorize them. The table is just meant to give you an
overview of what you can do with a Screen object.

Invoking a Screen Object's mainloop() Method

The final line in the program is
my_screen.mainloop()

This kicks off the Screen object's event loop, which updates the
graphics window, redrawing every graphics object 50 times per
second.

TRAP Just as with a program that use Tkinter to create a new
window, you shouldn't run a livewires program from

IDLE. Instead, run the program directly, by double-
clicking the program's icon in Windows, for example.

Setting a Background Image
A blank screen is all well and good, if your goal is to create the
world's most boring program. Fortunately, the Screen class has a
method to set a background image.

Introducing the Background Image Program

The Background Image program is just a modification of the New
Graphics Window program. I add only two lines of code to create a
graphics window with a background image. By taking advantage of
Screen's background-setting method the program produces the
window shown in Figure 11.4.

Figure 11.4: By using the set_background() method, a
background image can be applied to a Screen
object.

To create the Background Image program, I add two lines to the New
Graphics Window program, just before invoking mainloop().

Loading an Image

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig372_01_0.jpg

Before you can do anything with an image, like set it as the
background of a graphics screen, you have to load the image into
memory to create an image object. I load an image by adding the
following line after right after I create the graphics screen:
wall_image = games.load_image("wall.jpg",
transparent = False)

This calls the games load_image() function, loads the image
stored in the file wall.jpg into memory, and assigns the
resulting image object to wall_image.

TRAP Make sure that any file you want your Python program to
access is associated with the correct path information, as
you learned in Chapter 7, in the section "Opening and
Closing a Text File." The simplest file management
solution, and the one I use here, is to store image files in
the same folder with the program that loads them. If you
follow this method, you won't need to worry about path
information at all.

The load_image() function takes two arguments: a string for the
file name of the image and True or False for transparent. I'll go
over exactly what transparent means a bit later in this chapter.
For now, just remember this rule: Always load a background image
with transparent = False.

You'll notice that I load a JPEG image for the background in this
program. However, you're not restricted to JPEGs when using the
load_image() function. It works just as well with many other image
file types, including: BMP, GIF, PNG, PCX, and TGA.

Setting the Background

In order to set an image object as the background of a Screen
object, you need to invoke the Screen object's

set_background() method, so I add the following line right after I
load the image:
my_screen.set_background(wall_image)

This sets the background of my_screen to the image object
referenced by wall_image. You can use this method with any
Screen object and image object.

When the program encounters mainloop(), it keeps the graphics
window open, with its new background image, for all to see.

Understanding the Graphics Coordinate
System
So far, I've created several graphics screens, each time with a width
of 640 and a height of 480, but I haven't said much about them
beyond that. So I want to take a closer look at the screen and its
coordinate system.

You can think of a graphics screen as a grid, 640 columns across by
480 rows down. Each intersection of a column and a row is a
location on the screen, a single point or pixel. When you talk about a
specific point on the screen, you give two coordinates, an x, which
represents the column, and a y, which represents the row. You start
counting coordinates from the upper-left corner of the screen, so the
upper-leftmost point is where the x-coordinate is 0 and the y-
coordinate is 0, which you write as the pair (0,0). As you move to the
right, the x values increase. As you move down the screen, the y
values increase. That makes the point in the lower-right corner
(639,479). Figure 11.5 gives a visual representation of the graphics
screen coordinate system.

Figure 11.5: You specify points on a graphics screen with x- and
y-coordinate pairs.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig374_01_0.jpg

You can place graphics objects, like the image of a pizza or the red-
colored text "Game Over," on the screen using the coordinate
system. The center of a graphics object is placed at the specified
coordinates. You'll see exactly how this works in the next chapter
program.

Displaying Text
Whether you need to show off the numbers for a sales presentation
or the number of aliens obliterated, there are times where you'll want
to display text on a graphics screen. The games module contains a
class that allows you to do just that, aptly named Text.

Introducing the Big Score Program

Displaying text on a graphics window is just a matter of creating an
object of the Text class. In the Big Score program, I add some text
to the graphics window to display a score in the upper-right corner of
the screen, just like in many classic arcade games. Figure 11.6
shows the results.

Figure 11.6: The impressively high score is displayed after a
Text object is instantiated.

This Big Score program builds on the Background Image program. I
add just one line of code and modify another.

Importing the color Module

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig375_01_0.jpg

The livewires package contains another module, color,
which has a set of constants that represent different colors. These
colors can be applied to certain graphics objects, including any Text
or Message object. For a complete list of predefined colors, see the
 livewires documentation in Appendix A.

To choose from a group of possible colors, I import the color
module by modifying the import line like so:
from livewires import games, color

Now, both the color and games modules are loaded from the
 livewires package.

Creating a Text Object

A Text object represents text on a Screen object. A Text object
has attributes for x- and y-coordinates, a font size, a color, and some
text too, of course.

In the Big Score program, I use a Text object to represent a game
score. Just before I invoke the Screen object's mainloop()
method, I create a Text object through the following code:
games.Text(screen = my_screen, x = 500, y = 30,
 text = :Score: 1756521",
 size = 50, color = color.black)

The constructor method for a Text object requires the following
values: a Screen object, x- and y-coordinates, a string, a font size,
and a color, as shown. I pass my_screen to screen since that's the
active graphics window. Next I pass 500 to x and 30 to y, placing
the center of the object at the coordinates (500,30). This puts the
text in the upper-right corner of the graphics window. I pass the
string "Score: 1756521" to text so that those characters will be
displayed. Then I pass 50 to size so the font is nice and big, to

match the score. Finally, I pass color the constant color.black
from the color module to make the text, you guessed it, black.

You may have noticed that I don't assign the new Text object to a
variable. That's okay since the the Screen object, my_screen, is
designed to keep track of all of the graphics objects (just as a root
window in a Tkinter program holds references to all of its widgets).

Once my_screen's mainloop() method is invoked, the graphics
window is displayed along with the new Text object.

Displaying a Message
There may be times when you'll want to display some text on the
screen for only a brief period of time. You may want to show a
message saying "All records have been updated" or "Attack Wave
Seven Complete!" The games class Message is perfect for creating
temporary messages just like these.

Introducing the You Won Program

The You Won program is a modified version of the Big Score
program. In fact, I instantiate just one Message object right before
invoking the Screen object's main-loop() method to display the
text "You won!" in big, red letters. The message is displayed for
about five seconds and then the program ends. Figure 11.7
illustrates the program.

Figure 11.7: Ah, the thrill of victory.

Creating a Message Object

Messages are created from the games class Message. A message
is a special kind of Text object that destroys itself after a set period

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig377_01_0.jpg

of time. A message can also specify a method or a function to be
executed after the object destroys itself.

The constructor method for Message takes all of the values you saw
with Text, but adds two more: lifetime and after_death.
lifetime takes an integer value that represents how long the
message should be displayed, measured in mainloop() cycles.
after_death can be passed a method or function to be executed
after the Message object destroys itself. The default value for
after_death is None, so a value isn't required.

I create this Message object right before I invoke my_screen's
mainloop() method with the following code:
games.Message(screen = my_screen, x =
SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 text = "You won!", size = 100,
color = color.red,
 lifetime = 250, after_death =
my_screen.quit)

This creates the message "You Won!" in big, red letters at the center
of the screen for about five seconds, after which the program ends.

This code instantiates a new Message object with a lifetime
attribute set to 250. This means that the object will live for about five
seconds, because mainloop() runs at 50 frames per second. After
the five seconds, my_screen.quit() is called, since that's what I
pass after_death. At that point, the Screen object and all of its
associated objects are destroyed and the program ends.

Understanding the Games_Object Class
The games module has a foundational class called Games_Object
upon which all classes that represent graphics objects are based.
The classes Text, Message, and Sprite are all (directly or
indirectly) derived from Games_Object. This means that those
three classes all inherit a long list of important methods for
manipulating graphics objects and extracting information about an
object's location on a graphics screen. Table 11.3 lists some useful
Games_Object methods that all three classes inherit.

Table 11.3: USEFUL Games_Object METHODS

Method Description

get_pos() Returns the object's x-coordinate
and y-coordinate.

get_xpos() Returns the object's x-coordinate.
get_ypos() Returns the object's y-coordinate.

get_left() Returns the x-coordinate of the
object's left edge.

get_right() Returns the x-coordinate of the
object's right edge.

get_top() Returns the y-coordinate of the
object's top edge.

get_bottom() Returns the y-coordinate of the
object's bottom edge.

get_velocity()
Returns the object's x and y velocity
components as a two-element
tuple.

Method Description

move_to(x,y) Moves the object to the new
coordinates (x,y).

set_left(x)
Moves the object horizontally so
that its left edge is at the new
coordinate x.

set_right(x)
Moves the object horizontally so
that its right edge is at the new
coordinate x.

set_top(y)
Moves the object vertically so that
its top edge is at the new coordinate
y.

set_bottom(y)
Moves the object vertically so that
its bottom edge is at the new
coordinate y.

set_velocity(dx, dy) Sets the object's x velocity to dx
and its y velocity to dy.

overlapping_objects() Returns a list of objects that overlap
the object.

destroy()
Removes all of the associated
Screen object's references to an
object.

HINT In the course of writing a game, you'll never directly
instantiate an object of Games_Object. The class is
meant only as a base for other classes. This type of class
is called an abstract class.

Again, there's no need to try to remember all of the methods
described in Table 11.3. Just know they're available through all

Text, Message, and Sprite objects.

Displaying a Sprite
Background images and text can spruce up a plain graphics window.
But even a stunning background is still just a static image. A
graphics screen with only a background image is like an empty
stage. What you need are some actors. Enter the sprite.

A sprite is a special, graphics object with a graphics image that can
make programs really come alive. Sprites are used in games,
entertainment software, presentations, and all over the Web. In fact,
you've already seen examples of sprites in the Pizza Panic game.
The crazy chef, pan, and pizzas are all sprites.

While it would be cool to see a bunch of sprites flying around and
crashing into each other, I start with the first step: displaying a single,
nonmoving sprite.

IN THE REAL WORLD

Sprites aren't just for games. There are plenty of places in non-
entertainment software where they're used . . . or misused. In fact,
you probably know the most infamous sprite in application
software history, Clippy the Office Assistant, the animated
paperclip meant to give helpful suggestions in Microsoft Office.
However, many people found Clippy obtrusive and irritating. One
major online publication even ran an article entitled "Kill Clippy!"
Well, Microsoft finally saw the light. Starting in Office XP, Clippy is
no longer installed by default. A user must request him (and if a
user requests him, he or she deserves him). So, while graphics
can make a program more interesting, remember: Use your sprite
powers for good instead of evil.

Introducing the Pizza Sprite Program

In the Pizza Sprite program, I create a graphics window and set a
background image. This time, I use the background image from the
Pizza Panic game. Then I create a new class based on Sprite and
instantiate an object of this new class using the image of a pizza.
Figure 11.8 shows the results of the program.

Figure 11.8: The pizza image is not part of the background, but
an independent object based on the Sprite
class.

Setting Up the Program

I start the program just as before, by importing the games module
and setting global constants for the graphics screen's height and
width:
Pizza Sprite
Demonstrates creating a sprite
Michael Dawson 5/9/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig380_01_0.jpg

Creating the Pizza Class

Next, I create a new class, Pizza, based on Sprite:
class Pizza(games.Sprite):
 """ A pizza sprite. """
 def __init__(self, screen, x, y, image):
 """ Initialize pizza object. """
 self.init_sprite(screen = screen, x = x, y
= y, image = image)

The only thing I do in the constructor method is invoke the Pizza
object's init_sprite() method to initialize the sprite. You must
invoke a sprite object's init_sprite() method every time you
create one. You must supply init_sprite() with the Screen
object the sprite will be associated with, x- and y-coordinates, and an
image object for the graphics image of the sprite.

Setting Up the Screen

Next, I set up the graphics screen, just as before:
main
my_screen = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

wall_image = games.load_image("wall.jpg",
transparent = False)
my_screen.set_background(wall_image)

First, I create a Screen object. Then I load the image of the brick
wall and set it as the background.

Loading an Image for a Sprite

In order to create a sprite, you first need to load an image into
memory to create an image object, like so:

pizza_image = games.load_image("pizza.bmp")

However, you'll notice one small difference from the way I load a
background image. This time, when loading an image for a sprite, I
did not include a value for transparent. The default value is True,
so the image is loaded with transparency on.

When an image is loaded with transparency on, it's displayed on a
graphics screen so that the background image shows through its
transparent parts. This is great for irregular sprites that aren't perfect
rectangles and sprites with "holes" in them, like, say, a Swiss cheese
sprite. The parts of an image that are transparent are defined by
their color.

If an image is loaded with transparency on, then the color of the
point at the upper-left corner of the image, its (0,0) coordinate, is set
as its transparent color. What this means is that all parts of the
image that are this transparent color will allow the background image
of the screen to show through. Figure 11.9 shows a Swiss cheese
sprite on a solid, white background, ready to take advantage of
transparency.

Figure 11.9: A cheesy sprite, drawn on a solid-color background
to take advantage of transparency.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig382_01_0.jpg

If I load this Swiss cheese image with transparency on, every part
that is pure white (the color taken from the pixel at the sprite's (0,0)
coordinate) will be transparent when the sprite is displayed on a
graphics window. The background image will show through these
transparent parts. Figure 11.10 shows how the image looks when
loaded with transparency on and off.

Figure 11.10: On the left, the image is loaded with transparency
on. On the right, the same image is loaded with transparency
off.

As a general rule, you'll want to create your sprite image files on a
solid color that is not used in any other part of the image. This
transparent color must of course appear at the upper-left corner of
the image, its (0,0) coordinate. Then, when the image is loaded with
transparency on, it will allow the background to show through in all
the right places.

TRAP Make sure your sprite image doesn't also contain the
color you're using for transparency. Otherwise, those
parts of the sprite will become transparent too, making
your sprite look like it has small holes or tears in it as the
background image of the graphics window shows
through.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig383_01_0.jpg

Creating a Sprite

Next, I create a pizza sprite:
Pizza(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pizza_image)

A new instance of the Pizza class is created, with x- and y-
coordinates that put the sprite right in the middle of the screen.
That's all it takes.

Wrapping Up

Finally, I end the program by invoking mainloop():
my_screen.mainloop()

In addition to keeping the graphics window open, mainloop() now
draws the sprite onto the background.

TRICK You don't need to be an artist to create graphics for your
games. As you see in this chapter, I make up for my utter
lack of artistic ability with a modern piece of technology:
my digital camera. If you have access to a digital
camera, you can create some great images for your
projects. In fact, that's how I created all of the graphics
for the Pizza Panic game. The brick wall is the back of a
friend's house. For the pizza, I ordered delivery one
night. And the chef is my brave, brave friend Dave.

While this is a great technique, an important thing to
remember is that if you take a picture of a person or
object, you don't necessarily own the image. Obviously
some things are trademarked or copyrighted. But using a
digital camera is a great way to capture generic images
while infusing your programs with a unique,
photorealistic style.

Moving Sprites
Moving images are the essence of most games, and most forms of
entertainment for that matter. With sprites, going from stationary to
moving is easy. Sprite objects have additional attributes and
methods that allow them to move around a graphics screen.

Introducing the Falling Pizza Program

According to the latest research, pizza doesn't float, it falls. So I
wrote the Falling Pizza program. This new program is a modification
of the Pizza Sprite program. In this program, the pizza falls down the
screen. All I need to do is change a few lines of code to get the pizza
to move. That's the power of sprites. Figure 11.11 illustrates the
program.

Figure 11.11: The pizza falls down the screen in the direction of
the arrow.

Modifying the Pizza Class

First, I modify the Pizza class from the Pizza Sprite program:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig385_01_0.jpg

class Pizza(games.Sprite):
 """ A falling pizza. """
 def __init__(self, screen, x, y, image, dx,
dy):
 """ Initialize pizza object. """
 self.init_sprite(screen = screen, x = x, y
= y,
 image = image, dx = dx,
dy = dy)

The class doesn't look all that different. When I invoke the
init_sprite() method for a newly created Pizza object, I pass
optional values to the parameters dx and dy. Every object based on
Games_Object has dx and dy attributes that represent the object's
velocity along the x and y axes respectively. ("d," by the way, stands
for "delta," which means a change.) So, dx is the change in the
object's x attribute and dy is the change in the object's y value each
time the Screen object is updated by mainloop(). A positive value
for dx moves the object to the right, while a negative value moves it
to the left. A positive value for dy moves the object down, while a
negative value moves it up.

Back in the Pizza Sprite program, I didn't pass any values to the
init_sprite() method for the dx or dy. Although the sprite in
that program did have these dx and dy attributes, they were both
assigned their default value of 0 by the init_sprite() method.

Passing Values to dx and dy

Next, I modify the code that creates a new Pizza object in the main
part of the program by providing additional values for dx and dy to
the constructor method:
Pizza(screen = my_screen, x = SCREEN_WIDTH/2, y =
SCREEN_HEIGHT/2,
 image = pizza_image, dx = 0, dy =1)

I want the pizza to fall down the screen so I pass 1 to dy. Since I
don't want any vertical movement, I pass 0 to dx. As a result, every
time the graphics window is updated by mainloop(), the Pizza
object's y value is increased by 1, moving it down the screen. It's
falling!

Dealing with Screen Boundaries
If you watch the Falling Pizza program run for any length of time, you
may notice that once the pizza hits the ground, it keeps going. In
fact, it keeps falling, appearing to go below the graphics window and
out of sight.

Whenever you set a sprite in motion, you need to create a
mechanism to deal with the graphics window's boundaries. That is,
you need to tell your class what to do when one of its objects
reaches the edge of the screen. You have a few choices. A moving
sprite could simply stop when it reaches the edge of the screen. It
could die in, say, a fiery explosion. It could bounce, like a giant
rubber ball. It could even wrap around the screen so that just as it
disappears off one edge, it reappears on the opposite. What seems
to make the most sense for a falling pizza? Bouncing of course.

The Bouncing Pizza Program

When I say that a sprite "bounces" off the edges of the graphics
window, I mean that when it reaches a screen boundary, it should
reverse the velocity component that was moving it toward that
boundary. So, if the bouncing pizza sprite reaches the top or bottom
screen edge, it should reverse its dy attribute. When it reaches the
sides of the screen, it should reverse its dx. Figure 11.12 illustrates
the Bouncing Pizza program.

Figure 11.12: Though you can't tell from the screen shot, the
pizza bounces around, following the path of the
arrow.

To create the Bouncing Pizza program, I modify the Falling Pizza
program by adding one method to the Pizza class.

Writing the moved() Method

I need to add just a single method to the Pizza class to turn a falling
pizza into a bouncing one. Every time the graphics window is
updated by a Screen object's mainloop() method, a
Games_Object's moved() method is automatically invoked. So,
by creating a moved() method in Pizza, I get the perfect place to
put code to handle screen boundary checking.
 def moved(self):
 """ Reverse a velocity component if edge
of screen reached. """
 dx, dy = self.get_velocity()
 if self.get_right() > SCREEN_WIDTH or
self.get_left() < 0:
 self.set_velocity(-dx, dy)
 if self.get_bottom() > SCREEN_HEIGHT or

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig387_01_0.jpg

self.get_top() < 0:
 self.set_velocity(dx, -dy)

First, I retrieve the current velocity of the Pizza object by invoking
its get_velocity() method, which returns the values of an
object's dx and dy attributes. Next, I check to see if the sprite is
about to go beyond the screen limits in any direction. If so, I reverse
the responsible velocity by invoking the object's set_velocity()
method, which takes two arguments and sets an object's dx and dy
attributes.

If the x-coordinate of the sprite's right edge is greater than the
screen width, then the pizza is about to go off the right edge into
oblivion. If the x-coordinate of the sprite's left edge is less than 0,
then the pizza is headed off the screen to the left. In either case, I
simply reverse dx, the pizza's horizontal velocity.

If the y-coordinate of the sprite's bottom edge is greater than the
screen height, then the pizza is about to fall through the bottom of
the screen. If the y-coordinate of the sprite's top edge is less than 0,
then the pizza is about to float through the top of the screen. In either
case, I reverse dy, the pizza's vertical velocity.

Creating the Bouncing Pizza Object

I don't need to do anything else to the program for this bouncing
behavior to work. But to make things more interesting, I give the
sprite some velocity in the x direction, so that it will bounce all over
the screen. I pass dx a value of 1 when I create the sprite, like so:
Pizza(screen = my_screen, x = SCREEN_WIDTH/2, y =
SCREEN_HEIGHT/2,
 image = pizza_image, dx = 1, dy =1)

And that's it. I now have a bouncing pizza!

Handling Mouse Input
Although you've seen a lot of what the livewires package has
to offer, you haven't seen the main ingredient of interactivity: user
input. One of the most common ways to get input from a user is
through the mouse. livewires offers a simple Screen method
to do just that.

Introducing the Moving Pan Program

The Screen class has a method that makes reading the mouse
position on the graphics screen a piece of cake. With this method, I
create the Moving Pan program that allows a user to drag a pan
sprite across the screen as he or she moves the mouse. The results
of the program are displayed in Figure 11.13.

Figure 11.13: The pan sprite follows the mouse around the
graphics screen.

Setting Up the Program

The following code should look familiar:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig389_01_0.jpg

Moving Pan
Demonstrates mouse input
Michael Dawson 5/11/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

As before, I import games and establish global constants for the
screen's width and height.

Creating the Pan Class

Next, I create Pan for the pan sprite:
class Pan(games.Sprite):
 """ A pan. Controlled by the mouse. """
 def __init__(self, screen, x, y, image):
 """ Initialize pan object. """
 self.init_sprite(screen = screen, x = x, y
= y, image = image)

 def moved(self):
 """" Move pan to mouse position. """
 x, y = self.screen.mouse_pos()
 self.move_to(x,y)

Notice that I omit dx and dy when I invoke the object's
init_sprite() method. Since the pan sprite won't have any sort
of velocity, I'll let the two attributes each get their default value of 0.

In the moved() method, I invoke the Screen object's
mouse_pos() method. The method returns the x- and y-coordinates
of the mouse pointer on the graphics screen, which I assign to x and
y. Then, I invoke the Pan object's move_to() method with x and y

as arguments, which moves the pan to the location of the mouse
pointer.

Writing the Main Program

The rest of the program is the familiar main section:
main
my_screen = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

wall_image = games.load_image("wall.jpg",
transparent = False)
my_screen.set_background(wall_image)

pan_image = games.load_image("pan.bmp")
Pan(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pan_image)

my_screen.mouse_visible(False)

my_screen.mainloop()

Setting up the screen and loading the brick wall background is
exactly as before. Next, I load a pan image and create the Pan
object. Then I invoke the Screen method mouse_visible() and
set the mouse pointer to invisible. As always, I kick everything off by
invoking the Screen object's mainloop() method.

Detecting Collisions
In most games, when two things collide, there's a clear result. It can
be as simple as a 2-D character running into a boundary that won't
let him pass, or as spectacular as a 3-D scene where an asteroid
tears through the hull of a massive mother ship. Either way, there's a
need to detect when objects collide.

Introducing the Slippery Pizza Program

The Slippery Pizza program is an extension of the Moving Pan
program. In the Slippery Pizza program, the user controls a pan with
the mouse, just like in the Moving Pan program. But this time, there's
a pizza sprite on the screen. The user can move the pan toward the
pizza, but as soon as he or she reaches it, the slippery pizza moves
to a new, random screen location. Figures 11.14 and 11.15 show the
program in action.

Figure 11.14: The player almost reaches the
pizza.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig391_01_0.jpg

Figure 11.15: The slippery pizza gets away
again.

Setting Up the Program

The initial code is taken from the Moving Pan program, with one
minor addition:
Slippery Pizza Program
Demonstrates testing for sprite collisions
Michael Dawson 5/12/03

import random
from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

The one new thing I do is import our old friend the random module.
This allows me to generate a new, random location for the pizza
sprite after the collision.

Creating the Pan Class

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig392_01_0.jpg

I create a new Pan class by adding some code for the collision
detection:
class Pan(games.Sprite):
 """ A pan. Controlled by the mouse. """
 def __init__(self, screen, x, y, image):
 self.init_sprite(screen = screen, x = x, y
= y, image = image)
 def moved(self):
 """ Move to mouse position. """
 x, y = self.screen.mouse_pos()
 self.move_to(x,y)
 self.check_collide()

 def check_collide(self):
 """ Check for collision with pizza. """
 if self.overlapping_objects():
 pizza = self.overlapping_objects()[0]
 pizza.handle_collide()

In the last line of moved(), I invoke the Pan method
check_collide(). The check_collide() method invokes the
Pan object's overlapping_objects() method, which returns a
list of all of the objects that overlap with it. If there are any objects in
the list, the first element of the list (which will be the Pizza object,
since it's the only other object on the graphics screen) is assigned to
pizza. Finally, the Pizza object's handle_collide() method is
invoked so the object can react to the collision.

Creating the Pizza Class

Next, I create a new Pizza class:
class Pizza(games.Sprite):
 """ A slippery pizza. """
 def __init__(self, screen, x, y, image):

 self.init_sprite(screen = screen, x = x, y
= y, image = image)

 def handle_collide(self):
 """ Move to a random screen location. """
 x = random.randrange(SCREEN_WIDTH)
 y = random.randrange(SCREEN_HEIGHT)
 self.move_to(x,y)

The Pizza class constructor method is the same as in the Pizza
Sprite program. However, I add the handle_collide() method,
which generates random screen coordinates, (x,y), and moves the
Pizza object to this new location. This method is invoked by the
Pan object when it collides with the Pizza object.

Writing the Main Program

Here's the main section of the program:
main
my_screen = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

wall_image = games.load_image("wall.jpg",
transparent = False)
my_screen.set_background(wall_image)

x = random.randrange(SCREEN_WIDTH)
y = random.randrange(SCREEN_HEIGHT)
pizza_image = games.load_image("pizza.bmp")
Pizza(screen = my_screen, x = x, y = y, image =
pizza_image)

pan_image = games.load_image("pan.bmp")
Pan(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,

 image = pan_image)

my_screen.mouse_visible(False)

my_screen.mainloop()

First, I initialize the Screen object and load a background, like
always. Next, I create two objects, a Pizza object and a Pan object.
I generate a random set of screen coordinates for the Pizza object
and place the Pan object in the middle of the screen. Then, I set the
mouse pointer to invisible. Finally, I kick everything off with
my_screen.mainloop().

Back to the Pizza Panic Game
Now that you've gotten a taste of what the livewires
multimedia package can do, it's time to create the Pizza Panic game
introduced at the beginning of the chapter. Much of the program for
the game can be taken directly from the example programs.
However, I'll also introduce a few new concepts as I put the game
together.

Setting Up the Program

As in all of the programs in this chapter, I begin by importing the
modules and setting some global constants:
Pizza Panic
Player must catch falling pizzas before they hit
the ground
Michael Dawson 5/12/03

import random
from livewires import games, color

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
THE_SCREEN = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

To do any graphics work, I need to import games, while color gives
me access to the set of predefined colors to use in creating screen
text. I import random so that the crazy chef seems more life-like
when he makes his choices. Next, I create global constants for the
width and height of the graphics screen. Then I do something new. I
create the graphics screen and assign it to the global constant
THE_SCREEN. I do this because I need the screen object in
existence before I can load an image object, which I do in several
class definitions in this program, as you'll soon see.

The Pan Class

The Pan class is a blueprint for the pan sprite that the player controls
through the mouse. However, the pan will only move left and right. I'll
go through the class, one section at a time.

Loading the Pan Image

I do something a little different in the beginning of this class; I load a
sprite image and assign it to a class variable, image. I do this
because Pizza Panic has several classes, and loading an image in
its corresponding class definition is clearer than loading all of the
images in the program's main() function.
class Pan(games.Sprite):
 """
 A pan controlled by player to catch falling
pizzas.
 """
 image = games.load_image("pan.bmp")

The __init__() Method

Next, I write the constructor, which creates a new Pan object with the
given coordinates. I define an attribute, score_value, for the
player's score, which I set to 0. I also define another attribute,
score_text, for a Text object that displays the score on the
graphics screen.
 def __init__ (self, screen, x, y):
 """ Initialize pan object. Create a Text
object for player's score. """
 self.init_sprite(screen = screen, x = x, y
= y, image = Pan.image)
 self.score_value = 0
 self.score_text = games.Text(screen =

self.screen, x = 550, y = 20,
 text =
"Score: 0", size = 25, color = color.black)

The moved() Method

This method moves the player's pan:
 def moved(self):
 """ Move pan to mouse x position. """
 x, y = self.screen.mouse_pos()
 self.move_to(x, self.get_ypos())
 if self.get_left() < 0:
 self.set_left(0)
 if self.get_right() > SCREEN_WIDTH:
 self.set_right(SCREEN_WIDTH)
 self.check_for_catch()

The method gets the coordinates of the mouse, then moves the
player's pan to the mouse's x-coordinate and the pan's current y-
coordinate. By using the pan's current y-coordinate, the pan stays
locked at the same height. As a result, the pan can move left and
right but not up and down.

Next, I use the object's get_left() method to check if the left
edge of the pan is less than 0, meaning that it's beyond the left edge
of the graphics window. If so, I set the left edge to 0 with the object's
set_left() method. This way, the pan will never be drawn beyond
the left edge of the graphics window.

Then, I use the object's get_right() method to check if the right
edge of the pan is greater than SCREEN_WIDTH, meaning that it is
beyond the right edge of the graphics window. If so, I set the right
edge to SCREEN_WIDTH with the object's set_right() method.
This way, the pan will never be drawn beyond the right edge of the
graphics window.

Finally, I invoke the object's check_for_catch() method.

The check_for_catch() Method

This method checks if the player has caught one of the falling pizzas:
 def check_for_catch(self):
 """ Check if pan catches a pizza. """
 for pizza in self.overlapping_objects():
 self.handle_caught()
 pizza.handle_caught()

The method goes through the list of objects that overlap the player's
pan. For each object that overlaps the Pan object, the method
invokes the Pan object's own handle_caught() method and then
invokes the overlapping object's handle_caught() method.

The handle_caught() Method

This method is called whenever the player's pan and a falling pizza
collide:
 def handle_caught(self):
 """ Increase and display score. """
 self.score_value += 10
 self.score_text.set_text("Score: "+
str(self.score_value))

This method increases the Pan object's score_value attribute
score by 10 each time a pizza is caught. In order to reflect the
change in the player's score on the graphics screen, the Text object
for the score must be updated. So next, this method invokes the
set_text() method of the score_text attribute of the Pan
object. set_text() assigns a new string to the object's text
attribute to reflect the player's new score.

The Pizza Class

This class is for the falling pizzas that the player must catch:
class Pizza(games.Sprite):
 """
 A pizza which falls to the ground.
 """
 image = games.load_image("pizza.bmp")
 START_Y = 90 # start any pizza
at chef's chest-level
 speed = 1

I define three class variables: image for the pizza image, START_Y,
a constant for all pizzas' starting y-coordinate, and speed, a class
variable for all pizzas' falling speed. START_Y is set to 90 so that
any newly created pizza will appear at the chef's chest level on the
graphics screen. I set speed to 1 so that the pizzas fall at a fairly
slow speed. I use all three class variables in the Pizza constructor
method, as you'll soon see.

I didn't make speed a constant because I thought I might want to
change the speed at which the pizzas fall as the game progresses in
a future version of the program (or you might want to, if you accept
the chapter challenges).

The __init__() Method

This method initializes a new Pizza object:
 def __init__(self, screen, x):
 """ Initialize a pizza object. """
 self.init_sprite(screen = screen, x = x, y
= Pizza.START_Y,
 dx = 0, dy =
Pizza.speed, image = Pizza.image)

When the constructor method of a newly created Pizza object is
invoked, the object's init_sprite() method is invoked to initialize
the sprite.

The moved() Method

This method handles screen boundary checking:
 def moved(self):
 """ Check if a pizza's bottom edge has
reached screen bottom. """
 if self.get_bottom() > SCREEN_HEIGHT:
 self.game_over()

All this method does is check if a pizza has reached the bottom of
the screen. If it has, the method invokes the object's game_over()
method.

The handle_caught() Method

Remember, this method is invoked by the player's Pan object when
the Pizza object collides with it:
 def handle_caught(self):
 """ Destroy self if caught. """
 self.destroy()

When a pizza collides with a pan, the pizza is considered "caught"
and simply ceases to exist. So, the Pizza object invokes its own
destroy() method and the pizza literally disappears.

The game_over() Method

This method is invoked by moved() when a pizza reaches the
bottom of the screen. The method ends the game.

 def game_over(self):
 """ End the game. """
 # destroy all game objects except the Text
object (player's score)
 for game_object in
self.screen.all_objects():
 if not isinstance(game_object,
games.Text):
 game_object.destroy()

 # show 'Game Over' for 250 mainloop()
cycles (at 50 fps that's 5 seconds)
 games.Message(screen = self.screen,
 x = SCREEN_WIDTH/2, y =
SCREEN_HEIGHT/2,
 text = "Game Over", size =
90, color = color.red,
 lifetime = 250, after_death
= self.screen.quit)

When this method is invoked, the player's pan, the crazy chef, and
all of the pizzas disappear from the screen. Then, the message
"Game Over" is displayed in big, red letters. About five seconds later,
the program ends.

The for loop moves through all of the objects on the screen and
destroys each one, except the Text object, which represents the
player's score. The method checks if each object is a Text object
with the isinstance() Python function, which takes an object and
a class as arguments. isinstance() is True if the object is an
instance of the class, and is False otherwise.

Next, the game_over() method creates a Message object that
declares that the game is over. Since the lifetime attribute is 250
and mainloop() is running at 50 cycles per second, the message
stays on the screen for about five seconds. At that point, the method

specified in the after_death attribute of the Message object is
invoked. The specified method is the Screen object's quit()
method, so the graphics window disappears and the program ends.

The Chef Class

The Chef class is used to create the crazy chef who throws the
pizzas off the restaurant rooftop. The class has a constructor
method, a moved() method, and a drop_pizza() method, which,
you guessed it, allows the chef to drop a new pizza.
class Chef(games.Sprite):
 """
 A chef which moves left and right, dropping
pizzas.
 """
 image = games.load_image("chef.bmp")
 Y = 55 # put the chef
right on the top of the brick wall

I define two class variables. image is for the chef image and Y is for
the starting y-coordinate of the Chef object. I set Y to 55, which will
put the image of the chef right at the rooftop.

The __init__() Method

This method creates a new chef:
 def __init__ (self, screen, x, speed,
odds_change):
 """ Initialize the Chef object. """
 self.init_sprite(screen = screen, x = x, y
= Chef.Y,
 dx = speed, dy = 0,
image = Chef.image)
 self.odds_change = odds_change
 self.time_til_drop = 0

First, I invoke the newly created Chef object's init_sprite()
method to initialize the sprite. I pass the class constant Y for the y-
coordinate. dx is passed speed, which determines the chef's
horizontal velocity as he moves along the rooftop.

The method also creates two attributes, odds_change and
time_til_drop. odds_change is an integer that represents the
odds that the chef will change his direction. For example, if
odds_change is 250, then there's a 1 in 250 chance that every time
the chef moves, he'll reverse direction. You'll see how this works in
the moved() method of the class.

time_til_drop is an integer that represents the amount of time, in
mainloop() cycles, until the next time the chef drops his next
pizza. I set it to 0 initially, meaning that when a Chef object springs
to life, it should immediately drop a pizza. You'll see how
time_til_drop works in the drop_pizza() method.

Lastly, since I've used OOP to build Pizza Panic, it becomes a trivial
task to have multiple chefs in the same game. With one additional
line of code to instantiate another Chef object, I can have two crazy,
hat-wearing men tossing pizzas down at the player's pan. Though I'll
be using only one chef in this version of the game, this knowledge
might come in handy (say, for a chapter challenge).

The moved() Method

This method defines the rules for how the chef decides to slide back
and forth along the rooftop:
 def moved(self):
 """ Determine if direction needs to be
reversed. """
 if self.get_left() < 0 or self.get_right()
> SCREEN_WIDTH:
 self.reverse()

 else:
 same_direction =
random.randrange(self.odds_change)
 if not same_direction:
 self.reverse()
 self.drop_pizza()

A chef slides along the rooftop in one direction until he either
reaches the edge of the screen or "decides," at random, to switch
directions. The beginning of this method checks to see if the chef
has moved beyond the left or right edge of the graphics window. If he
has, then the reverse() method is invoked. Otherwise, the chef
has a 1 in odds_change chance of changing direction.

Regardless of whether or not the chef changes direction, the last
thing the method does is invoke the Chef object's drop_pizza()
method.

The reverse() Method

This method is invoked by moved() and reverses the chef's
direction:
 def reverse(self):
 """ Reverse direction. """
 dx, dy = self.get_velocity()
 self.set_velocity((-dx, dy))

This method is quite simple. It reverses the horizontal velocity of the
chef, changing his direction.

The drop_pizza() Method

This method is invoked every time moved() is invoked, but that
doesn't mean a new pizza is dropped each time:
 def drop_pizza(self):
 """ Decrease countdown or drop pizza and

reset countdown. """
 if self.time_til_drop:
 self.time_til_drop -= 1
 else:
 # set so buffer will be 15 pixels,
regardless of pizza speed
 self.time_til_drop = int(65 /
Pizza.speed)
 Pizza(self.screen, self.get_xpos())

time_til_drop represents a countdown for our chef. If
time_til_drop is not 0, then 1 is subtracted from it. Otherwise,
time_til_drop is reset and a new Pizza object is created. The
value of time_til_drop is determined by the height of the pizza
sprite image and the speed at which the pizzas are falling. Since the
pizza image is 50 pixels high, the formula provides a nice 15 pixel-
sized gap between each pie, independent of the falling speed.

The main() Function

The main() function creates a graphics screen, creates graphics
objects and then kicks off the Screen object's mainloop() to run
the show:
def main():
 my_screen = THE_SCREEN
 my_screen.mouse_visible(False)
 wall_image = games.load_image("wall.jpg",
transparent = False)
 my_screen.set_background(wall_image)

 Chef(screen = my_screen, x = SCREEN_WIDTH/2,
speed = 1, odds_change = 250)
 Pan(screen = my_screen, x = SCREEN_WIDTH/2, y
= 435)

 my_screen.mainloop()

start program
main()

First, I assign the graphics screen to my_screen and set the mouse
pointer to invisible. Then, I set the brick wall as the background.

Next, I create a chef with a speed of 1 and a 1 in 250 chance of
changing directions each move. Then, I create the player's pan with
a y-coordinate of 435, putting it at the bottom of the screen.

Finally, I invoke my_screen's mainloop() and the game begins.

Summary
In this chapter, you saw how to use the livewires multimedia
package to add graphics to your programs. You learned how to
create a new graphics window and how to set a background image
for it. You saw how to display text on a graphics window. You learned
about the sprite, a special graphics object with an image.
Specifically, you saw how to place and move a sprite on a graphics
screen. You also saw how to test for collisions between graphics
objects. You learned how to get input from the mouse. Finally, you
saw how to put everything together in a fast-paced, video game,
complete with a computer-controlled opponent.

Challenges
1. Improve the Pizza Panic game by increasing its difficulty as

the game progresses. Think of different ways to accomplish
this. You could increase the speed of the pizzas and the
speed of the chef. You could raise the player's pan to a
higher position on the screen. You could even increase the
number of crazy chefs flinging pizzas.

2. Create a simple, one-player game of pong, where a player
controls a paddle, and the ball bounces off three walls. If
the ball gets by the player's paddle, the game is over.

3. Write a game where the player controls a character that
must avoid falling debris. The player controls the character
with the mouse, and objects fall from the sky.

Chapter 12: Sound, Animation, and Program
Development: The Astrocrash Game

 Download CD Content

Overview
In this chapter, you'll expand your multimedia programming skills to
include sound and animation. You'll also see how to write a large
program in stages. Specifically, you'll learn to do the following:

Read the keyboard

Play sound files

Play music files

Create animations

Develop a program by writing progressively more complete
versions of it

Introducing the Astrocrash Game
The project for this chapter, the Astrocrash game, is my version of
the classic arcade game Asteroids. In Astrocrash, the player controls
a ship in a moving field of deadly asteroids. The ship can rotate and
thrust forward—most importantly, though, it can fire missiles at the
asteroids to destroy them. But the player has some work cut out for
him or her as large and medium-sized asteroids break apart into two
smaller asteroids when destroyed. And just when the player
manages to obliterate all of the asteroids, a new, larger wave
appears. The player's score increases with every asteroid he or she
destroys, but once the player's ship collides with a floating space
rock, the game is over. Figures 12.1 and 12.2 show the game in
action.

Figure 12.1: The player controls a spaceship and blasts asteroids
to increase his or her score. (Nebula image is in the public
domain. Credit— NASA, The Hubble Heritage Team -
AURA/STScI)

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig406_01_0.jpg

Figure 12.2: If an asteroid hits the player's ship, the game is
over.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig407_01_0.jpg

Reading the Keyboard
You already know how to get keyboard input from the user as a
string through the raw_input() function. But reading the keyboard
for individual keystrokes is another matter. Fortunately, there's a
simple Screen method that lets you do just this.

Introducing the Read Key Program

The Read Key program displays the ship on the nebula background.
The user can move the ship around on the background with a few,
different keystrokes. When the user presses the W key, the ship
moves up. When the user presses the S key, the ship moves down.
When the user presses the A key, the ship moves left. When the
user presses the D key, the ship moves right. The user can also
press multiple keys simultaneously for a combined effect. For
example, when the user presses the W and D keys simultaneously,
the ship moves diagonally, up and to the right. The program is
illustrated in Figure 12.3.

Figure 12.3: The ship moves around the screen based on key
presses.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig408_01_0.jpg

Setting Up the Program

As I do with all programs that use the livewires package, I start
by importing the modules I need and setting up some global
constants for the screen dimensions:
Read Key
Demonstrates reading the keyboard
Michael Dawson 5/18/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

Creating the Ship Class

Next, I write a class for the ship. I start with the constructor method,
which accepts a screen, x-and y-coordinates, and an image. I
initialize the sprite with these values.
class Ship(games.Sprite):
 """ A moving ship. """
 def __init__(self, screen, x, y, image):
 """ Initialize ship sprite. """
 self.init_sprite(screen = screen, x = x, y
= y, image = image)

Testing for Keystrokes

Next, I define a moved() method. First, I get the current position of
the ship and assign the coordinates to x and y. Next, I check for
various keystrokes and change the values associated with x and y
accordingly. If the W key is pressed, I decrease the value of y by 1,
moving the sprite up the screen by one pixel. If the S key is pressed,

I increase the value of y by 1, moving the sprite down the screen. If
the A key is pressed, I decrease the value of x by 1, moving the
sprite left. If the D key is pressed, I increase the value of x by 1,
moving the sprite right.
 def moved(self):
 """ Move ship based on keys pressed. """
 x, y = self.get_pos()
 if self.screen.is_pressed(games.K_w):
 y -= 1
 if self.screen.is_pressed(games.K_s):
 y += 1
 if self.screen.is_pressed(games.K_a):
 x -=1
 if self.screen.is_pressed(games.K_d):
 x +=1
 self.move_to(x, y)

I use the Screen method is_pressed() to test for specific
keystrokes. The method returns a value that can be treated as a
condition. If the key being tested for is pressed, then the value
returned by is_pressed() can be treated as True; if the key is not
pressed, the value can be treated as False. I use the method in a
series of structures to test if any of the four keys—W, S, A, or D—is
being pressed.

The games module has a set of constants that represent keys that
you can use as an argument in is_pressed(). In this method, I
use the games.K_w constant for the W key; games.K_s for the S
key; games.K_a for the A key; and games.K_d for the D key. The
naming of these constants is pretty intuitive. Here's a quick way to
figure out the name of most key constants:

All keyboard constants begin with games.K_.

For alphabetic keys, add the key letter, in lowercase, to the
end of the constant. For example, the constant for the A key
is games.K_a.

For numeric keys, add the key number to the end of the
constant. For example, the constant for the 1 key is
games.K_1.

For other keys, you can often add their name, in all capital
letters, to the end of the constant name. For example, the
constant for the spacebar is games.K_SPACE.

For a complete list of keyboard constants, see the livewires
documentation in Appendix A.

The is_pressed() method has a couple of nice features. First, it
allows you to detect if a key is pressed even if the user is pressing
multiple keys. As a result, keystrokes can have a combined effect.
For example, if the user holds down the W and D keys
simultaneously in the Read Key program, the ship moves both up
and to the right. Second, uppercase and lowercase keystrokes are
interpreted as the same key. So in the Read Key program, it doesn't
matter if the user accidentally has Caps Lock on—if the user presses
the W key, the ship will still move up the screen.

Wrapping Up the Program

Finally, I write the familiar main part of the program. I create the
screen, load the nebula background image, create a ship sprite in
the middle of the window, and kick everything off by invoking
my_screen's mainloop() method.
main
my_screen = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

nebula_image = games.load_image("nebula.jpg",

transparent = False)
my_screen.set_background(nebula_image)

ship_image = games.load_image("ship.bmp")
Ship(screen = my_screen,
 x = SCREEN_WIDTH / 2, y = SCREEN_HEIGHT / 2,
 image = ship_image)

my_screen.mainloop()

Rotating a Sprite
In Chapter 11, you learned how to move graphics objects around the
screen, but livewires lets you rotate them as well. You can
rotate any graphics objects, including sprites, through two rotation
methods. One method lets you rotate a graphics object by a certain
number of degrees, while the other method lets you rotate the
graphics object to an exact orientation.

Introducing the Rotate Sprite Program

The Rotate Sprite program is an extension of the Read Key program.
So, in addition to moving the ship, the user can rotate it. If the user
presses the Right Arrow key, the ship rotates clockwise. If the user
presses the Left Arrow key, the ship rotates counterclockwise. If the
user presses the 1 key, the ship rotates to 0 degrees. If the user
presses the 2 key, the ship rotates to 90 degrees. If the user presses
the 3 key, the ship rotates to 180 degrees. If the user presses the 4
key, the ship rotates to 270 degrees. Figure 12.4 shows off the
program.

Figure 12.4: The ship can rotate clockwise, rotate
counterclockwise, or jump to a predetermined
orientation.

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig411_01_0.jpg

Rotating a Sprite by a Number of Degrees

By adding the following code to the end of Ship's moved() method,
I allow the user to rotate the ship:
 # rotate the ship based on key presses
 if self.screen.is_pressed(games.K_RIGHT):
 self.rotate_by(1)
 if self.screen.is_pressed(games.K_LEFT):
 self.rotate_by(-1)

I first check if the Right Arrow key is pressed. If it is, I invoke the
Ship object's rotate_by() method, which rotates the sprite by the
number of degrees passed to the method. In this case, I pass 1, so
the sprite rotates by 1 degree clockwise. Next, I check if the Left
Arrow key is pressed. If it is, I rotate the sprite by -1 degree, rotating
the sprite 1 degree counterclockwise. You can rotate a sprite by any
number of degrees you like.

Rotating a Sprite to a Specific Orientation

You can also rotate a sprite directly to a certain orientation by
invoking the sprite's rotate_to() method. All you have to do is
pass a number of degrees, and the sprite will rotate to that
orientation. I add the following lines to illustrate the method:
 if self.screen.is_pressed(games.K_1):
 self.rotate_to(0)
 if self.screen.is_pressed(games.K_2):
 self.rotate_to(90)
 if self.screen.is_pressed(games.K_3):
 self.rotate_to(180)
 if self.screen.is_pressed(games.K_4):
 self.rotate_to(270)

So now, when the user presses the 1 key, the sprite rotates to 0
degrees (its starting orientation). When the user presses the 2 key,

the sprite rotates to 90 degrees. When the user presses the 3 key,
the sprite rotates to 180 degrees. And finally, when the user presses
the 4 key, the sprite rotates to 270 degrees.

Creating an Animation
Moving and rotating sprites adds excitement to a game, but
animation really makes a game come to life. Fortunately, the games
module contains a class for animations, aptly named Animation.

Introducing the Explosion Program

The Explosion program creates an animation of an explosion in the
middle of a graphics screen. The animation plays continuously so
that you can get a good look at it. When you're done appreciating the
cool effect, you can end the program by closing the graphics window.
Figure 12.5 shows a snapshot of the program.

Figure 12.5: Although it's hard to tell from a still image, an
explosion animates at the center of the graphics
window.

Examining the Explosion Images

An animation is a sequence of images (also called frames) displayed
in succession. I created a sequence of nine images that, when

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig413_01_0.jpg

displayed in succession, resembles a fiery explosion. Figure 12.6
shows off all nine images.

Figure 12.6: Shown in rapid succession, these nine frames of
animation look like an explosion.

Setting Up the Program

As always, the initial code imports the games module and defines
constants for the graphics screen's dimensions:
Explosion
Demonstrates creating an animation
Michael Dawson 5/19/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

In the main part of the program, I create a graphics screen with the
following lines:
main
my_screen = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig413_02_0.jpg

nebula_image = games.load_image("nebula.jpg",
transparent = 0)
my_screen.set_background(nebula_image)

Creating a List of Image Files

The constructor of the Animation class takes a list of image file
names or a list of image objects for the sequence of images to
display. So next, I create a list of image file names, which
correspond to the images shown in Figure 12.6:
explosion_files = ["explosion1.bmp",
 "explosion2.bmp",
 "explosion3.bmp",
 "explosion4.bmp",
 "explosion5.bmp",
 "explosion6.bmp",
 "explosion7.bmp",
 "explosion8.bmp",
 "explosion9.bmp"]

Creating an Animation Object

Finally, I create an Animation object in the following lines:
games.Animation(screen = my_screen,
 x = SCREEN_WIDTH/2, y =
SCREEN_HEIGHT/2,
 images = explosion_files,
 n_repeats = 0, repeat_interval =
5)

The Animation class is derived from Sprite, so it inherits all of
Sprite's methods and attributes. To create an animation, you must
supply a screen and x-and y-coordinates as arguments to define

where the object will be located, just as you do for a new sprite. In
the previous code, I supply coordinates so that the animation is
created at the center of the screen.

An animation requires images, so you must supply a list of image file
names or a list of image objects for the images to be displayed. I
supply a list of image file names, explosion_files.

Next, I supply the n_repeats parameter with the value 0.
n_repeats represents how many times the animation (as a
sequence of all of its images) is displayed. A value of 0 means that
the animation will loop forever. The default value of n_repeats is 0.

Then, I pass to the repeat_interval parameter the value 5.
repeat_interval represents the delay between successive
animation images. A higher number means a longer delay between
frames, resulting in a slower animation. A lower number represents a
shorter delay, producing a faster animation.

Finally, I kick off the program by invoking my_screen's
mainloop() method:
my_screen.mainloop()

Working with Sound and Music
Sound and music add another sensory dimension to your programs.
Loading, playing, looping, and stopping sound and music are easy to
do with the games module. And while people might argue about the
difference between sound and music, there's no such argument
when it comes to the games module, where there's a clear
distinction between the two.

Introducing the Sound and Music Program

The Sound and Music program allows the user to play, loop, and
stop the sound effect of a missile firing and the theme music from the
Astrocrash game. The user can even play both at the same time.
Figure 12.7 shows the program running (but unfortunately, doesn't
make a sound).

Figure 12.7: The program lets the user play a sound and some
music.

Working with Sounds

You can create a sound object for use in a program by loading a
WAV file. The WAV format is great for sound effects because it can
be used to encode whatever you can record with a microphone.

Loading a Sound

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig416_01_0.jpg

First, I set up the program as always by importing games:
Sound and Music
Demonstrates playing sound and music files
Michael Dawson 5/18/03

from livewires import games

Then, I load a WAV file by using the games function
load_sound(). The function takes a string for the name of the
sound file to be loaded. I load the file missile.wav and assign
the resulting sound object to missile.
load a sound file
missile = games.load_sound("missile.wav")

TRAP You can load only WAV files with the load_sound()
function.

Next, I load the music file:
#load the music file
games.load_music("theme.mid")

I'll save the discussion of music until after I finish demonstrating
sounds.

Playing a Sound

Next, I write the menu system that you've seen before in Chapter 5:
choice = None
while choice != "0":

 print \
 """
 Sound and Music

 0 - Quit
 1 - Play missile sound
 2 - Loop missile sound
 3 - Stop missile sound
 4 - Play theme music
 5 - Loop theme music
 6 - Stop theme music
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."

If the user enters 0, the program says good-bye.

The following code handles the case where a user enters 1:
 # play missile sound
 elif choice == "1":
 missile.play()
 print "Playing missile sound."

To play the sound once, I invoke the sound object's play() method.
When a sound plays, it takes up one of the eight available sound
channels. To play a sound, you need at least one open sound
channel. Once all eight sound channel are in use, invoking a sound
object's play() method has no effect.

If a sound is already playing, you can invoke that sound object's
play() method again. As a result, the sound will start playing on
another sound channel, if one is available.

Looping a Sound

You can loop a sound by passing to the object's play() method the
number of additional times you want the sound played. For example,
if you pass 3 to play(), the corresponding sound will play four
times (its initial playing plus an additional three times). You can loop
a sound forever by passing -1 to play().

The following code handles the case when a user enters 2:
 # loop missile sound
 elif choice == "2":
 loop = int(raw_input("Loop how many extra
times? (-1 = forever): "))
 missile.play(loop)
 print "Looping missile sound."

In this section of code, I get the number of additional times the user
wants to hear the missile sound and then I pass that value to the
sound object's play() method.

Stopping a Sound

You stop a sound object from playing by invoking its stop()
method. This stops that particular sound on all of the channels on
which it's playing. If you invoke the stop() method of a sound
object that's not currently playing, Python is forgiving and won't
complain with an error.

If the user enters 3, I stop the missile sound (if it's playing):
 # stop missile sound
 elif choice == "3":
 missile.stop()
 print "Stopping missile sound."

Working with Music

In livewires, music is handled somewhat differently than
sound. First, there is only one music channel, so only one file can be
designated as the current music file at any given time. However, the
music channel is more flexible than the sound channels. The music
channel accepts many different types of sound files, including WAV,
OGG, and MIDI. Finally, since there is only one music channel, you
don't create and work with an object like you do with sounds.
Instead, you access the single music channel through a group of
functions from the games module.

Loading Music

You saw the code for loading the music file in the section "Loading a
Sound." The code I used to load the music file,
games.load_music("theme.mid"), sets the current music to the
MIDI file theme.mid. You load a music file with the
games.load_music() function by passing the file name as a
string.

HINT MIDI files are often used for music (rather than WAV or
OGG files) because of their small size and their tendency
to place lower system demands on the computer playing
the music.

Playing Music

The following code handles the case where the user enters 4:
 # play theme music
 elif choice == "4":
 games.play_music()
 print "Playing theme music."

As a result, the computer plays the music file that I loaded,
 theme.mid. You can play the current music file with

games.play_music(). If you don't pass any values to the function,
the music plays once.

Looping Music

You can loop the music by passing to games.play_music() the
number of additional times you want the music played. For example,
if you pass 3 to games.play_music(), the music will play four
times (its initial playing plus an additional three times). You can loop
a music file forever by passing -1 to the function.

The following code handles the case when a user enters 5:
 # loop theme music
 elif choice == "5":
 loop = int(raw_input("Loop how many extra
times? (-1 = forever): "))
 games.play_music(loop)
 print "Looping theme music."

In this section of code, I get the number of additional times the user
wants to hear the theme music and then I pass that value to the
games.play_music() function.

Stopping Music

If the user enters 6, the following code stops the music (if it's
playing):
 # stop theme music
 elif choice == "6":
 games.stop_music()
 print "Stopping theme music."

You can stop the current music from playing by calling the
games.stop_music() function, which is what I do here. If you call

the games.stop_music() function while there is no music playing,
Python is forgiving and won't complain with an error.

Wrapping Up the Program

Finally, I wrap up the program by handling an invalid choice and
waiting for the user:
 # some unknown choice
 else:
 print "\nSorry, but", choice, "isn't a
valid choice."

raw_input("\n\nPress the enter key to exit.")

Planning the Astrocrash Game
It's time to return to the chapter project: the Astrocrash game. I plan
to write progressively more complete versions of the game until it's
done, but I still feel I need to list a few details of the program,
including: the game's major features, a few necessary classes, and
the multimedia assets the game requires.

Game Features

Although my game is based on a classic video game that I know well
(and learned about the hard way, one quarter at a time), it's still a
good idea that I write out a list of features:

The ship should rotate and thrust forward based on
keystrokes from the player.

The ship should fire missiles based on a keystroke from the
player.

Asteroids should float at different velocities on the screen.
Smaller asteroids should generally have higher velocities
than larger ones.

The ship, any missiles, and any asteroids should "wrap
around" the screen—if they move beyond a screen
boundary, they should appear at the opposite boundary.

If a missile hits another object on the screen, it should
destroy the other object and itself in a nice, fiery explosion.

If the ship hits any other object on the screen, it should
destroy the other object and itself in a nice, fiery explosion.

If the ship is destroyed, the game is over.

If a large asteroid is destroyed, two new, medium-sized
asteroids should be produced. If a medium-sized asteroid is
destroyed, two new, small asteroids should be produced. If a
small asteroid is destroyed, no new asteroids should be
produced.

Every time a player destroys an asteroid, his or her score
should increase. Smaller asteroids should be worth more
points than larger ones.

The player's score should be displayed in the upper-right
corner of the screen.

Once all of the asteroids have been destroyed, a new, larger
wave of asteroids should be created.

I decide to leave out a few features of the original to keep the game
simple.

Game Classes

Next, I make a list of the classes that I think I need:

Ship

Missile

Asteroid

Explosion

I know a few things about these classes already. Ship, Missile,
and Asteroid will be derived from games.Sprite, while
Explosion will be derived from games.Animation.

Game Assets

Since the game includes sound, music, sprites, and animation, I
know I need to create some multimedia files. Here's the list I came
up with:

An image file for the ship

An image file for the missiles

Three image files, one for each size of asteroid

A series of image files for an explosion

A sound file for the thrusting of the ship

A sound file for the firing of a missile

A sound file for the explosion of an object

A music file for the theme

Creating Asteroids
Since the game involves deadly asteroids, I thought I'd start with
them. Although this seems like the best first step to me, it may not to
another programmer—and that's fine. You could certainly start with a
different first step, such as getting the player's ship on the screen.
There's no one right first step. The important thing to do is define
and complete "bite-sized" programs that build on each other, working
your way toward the completed project.

The Astrocrash01 Program

The Astrocrash01 program creates a graphics window, sets the
nebula back-ground, and spawns eight randomly located asteroids.
The velocity of each asteroid is also randomly calculated, but smaller
asteroids have the potential to move faster than larger ones. Figure
12.8 shows the program in action.

Figure 12.8: A field of moving asteroids is the foundation of the
game.

Setting Up the Program

The program starts like most others:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig423_01_0.jpg

Astrocrash01
Get asteroids moving on the screen
Michael Dawson 5/20/03

import random
from livewires import games

global constants
SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
THE_SCREEN = games.Screen(SCREEN_WIDTH,
SCREEN_HEIGHT)

The Asteroid Class

The Asteroid class is used for creating moving asteroids. The first
thing I do in the class is load three images—one for each size of
asteroid—and assign them to class variables:
class Asteroid(games.Sprite):
 """ An asteroid which floats across the
screen. """
 image_big =
games.load_image("asteroid_big.bmp")
 image_med =
games.load_image("asteroid_med.bmp")
 image_small =
games.load_image("asteroid_small.bmp")

Next, I tackle the constructor method:
 def __init__(self, screen, x, y, size):
 """ Initialize asteroid sprite. """
 if size == 1:
 image = Asteroid.image_small
 elif size == 2:
 image = Asteroid.image_med

 elif size == 3:
 image = Asteroid.image_big
 else:
 print "Asteroid size must be 1, 2, or
3."
 sys.exit()

 # set velocity based on asteroid size
 dx = random.choice([2, -2]) *
random.random() / size
 dy = random.choice([2, -2]) *
random.random() / size

 self.init_sprite(screen = screen, x = x, y
= y,
 dx = dx, dy = dy, image
= image)
 self.size = size

The method's screen, x, and y parameter values determine where
the new asteroid will start life. The value of the parameter size
represents the size of the asteroid and can be 1 for small, 2 for
medium, or 3 for large. Based on size, the appropriate image is
used for the sprite. If size isn't passed either a 1, 2, or 3, the
program displays an error message and exits.

Next, the constructor generates random values for the new object's
velocity components based partly on its size attribute. Smaller
asteroids have the potential to move faster than larger ones. Finally,
the constructor initializes the sprite and sets the object's size
attribute.

The moved() method keeps an asteroid in play by wrapping it
around the screen:

 def moved(self):
 """ Wrap the asteroid around screen. """
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)
 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)

 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

The Main Section

Finally, the main section of code sets the nebula background and
creates eight randomly sized asteroids at random screen locations:
main
my_screen = THE_SCREEN
nebula_image = games.load_image("nebula.jpg")
my_screen.set_background(nebula_image)

create 8 asteroids
for i in range(8):
 x = random.randrange(SCREEN_WIDTH)
 y = random.randrange(SCREEN_HEIGHT)
 size = random.randrange (1, 4)
 Asteroid(screen = my_screen, x = x, y = y,
size = size)

my_screen.mainloop ()

Rotating the Ship
For my next task, I introduce the player's ship. My modest goal is to
allow a user to rotate the ship with the arrow keys. I plan to attack
the other ship functions later.

The Astrocrash02 Program

The Astrocrash02 program extends Astrocrash01. In the new
version, I create a ship at the center of the screen that the user can
rotate. If the user presses the Right Arrow key, the ship rotates
clockwise. If the user presses the Left Arrow key, the ship rotates
counterclockwise. Figure 12.9 shows the program in action.

Figure 12.9: The player's ship is now part of the
action.

The Ship Class

The main thing I have to do is write a Ship class for the player's
ship:
class Ship(games.Sprite):
 """ The player's ship. """

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig426_01_0.jpg

 image = games.load_image("ship.bmp")
 ROTATION_STEP = 3

 def __init__(self, screen, x, y):
 """ Initialize ship sprite. """
 self.init_sprite(screen = screen, x = x, y
= y, image = Ship.image)

 def moved(self):
 """ Rotate the ship based on key presses.
"""
 # rotate based on left and right arrow
keys
 if self.screen.is_pressed(games.K_LEFT):
 self.rotate_by(-Ship.ROTATION_STEP)

 if self.screen.is_pressed(games.K_RIGHT):
 self.rotate_by(Ship.ROTATION_STEP)

This class is taken almost directly from the Rotate Sprite program. In
fact, there are only two, small differences worth noting. First, I load
the image of the ship and assign the resulting image object to the
class variable image. Second, I use the class constant
ROTATION_STEP for the number of degrees by which the ship
rotates when the user presses the Left or Right Arrow keys.

Instantiating a Ship Object

The last thing I do is instantiate a Ship object. I create a new ship in
the middle of the screen in the main part of the program:
create the ship
Ship(screen = my_screen, x = SCREEN_WIDTH / 2, y =
SCREEN_HEIGHT / 2)

Moving the Ship
In the next version of the program, I get the ship moving. The player
can press the Up Arrow key to engage the ships engines. This
applies thrust to the ship in the direction the ship is facing. Since
there's no friction in this simple game, the ship keeps moving based
on all of the thrust the player applies to it.

The Astrocrash03 Program

When the player engages the ship's engines, the Astrocrash03
program changes the velocity of the ship based on its angle (and
produces an appropriate sound effect too). Figure 12.10 illustrates
the program.

Figure 12.10: The ship can now move around the
screen.

Importing the math Module

The first thing I do is import a new module at the top of the program:
import math

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig427_01_0.jpg

The math module contains a bunch of mathematical functions and
constants. But don't let that scare you. I use only a few in this
program.

Adding Ship Class Variables

I create a class constant, VELOCITY_STEP, for altering the ship's
velocity:
 VELOCITY_STEP = .03

A higher number would make the ship accelerate faster, a lower
number would make the ship accelerate more slowly.

I also add a new class variable, sound, for the thrusting sound of the
ship:
 sound = games.load_sound("thrust.wav")

Updating Ship's moved() Method

Next, I add code to the end of Ship's moved() method to get the
ship moving. I check to see if the player is pressing the Up Arrow
key. If so, I play the thrusting sound:
 # apply thrust based on up arrow key
 if self.screen.is_pressed(games.K_UP):
 Ship.sound.play()

Now, when the player presses the Up Arrow key, I need to alter the
ship's velocity components (the Ship object's dx and dy attributes)
based on the angle of the ship. For example, if the ship's angle is 0
degrees (it's facing straight up), then I need to decrease the object's
dy attribute. Conversely, if the ship's angle is 90 degrees (it's facing
to the right), then I need to increase the object's dx attribute. And if
the ship is at 45 degrees (it's facing diagonally up and to the right),
then I need to decrease the object's dy attribute and increase it's dx

attribute equally. Of course, every angle requires its own
adjustments. So, how can I figure out how much to change each
velocity component based on the angle of the ship? Well, the answer
is trigonometry. Wait, don't slam this book shut and run as fast as
your legs can carry you, screaming incoherently. As promised, I use
only two mathematical functions in a few lines of code to figure this
out.

To start the process, I get the angle of the ship, converted to radians:
 # get velocity component changes based
on ship's angle
 angle = self.get_angle() * math.pi /
180 # convert to radians

A radian is just a measure of rotation, like a degree. Python's math
module expects angles in radians (while livewires works with
degrees) so that's why I need to make the conversion. In the
calculation, I use the math module constant pi, which represents
the number pi.

Now that I've got the ship's angle in radians, I can figure out how
much to change each velocity component using the math module's
sin() and cos() functions, which calculate an angle's sine and
cosine. The following lines calculate how much the object's dx and
dy attribute values should change based on the ship's angle and
VELOCITY_STEP:
 add_dx = Ship.VELOCITY_STEP *
math.sin(angle)
 add_dy = -Ship.VELOCITY_STEP *
math.cos(angle)

Next, I calculate the object's new dx and dy values using add_dx
and add_dy:
 # add current velocity and velocity
change to get new velocity

 dx, dy = self.get_velocity()
 new_dx = dx + add_dx
 new_dy = dy + add_dy

Then, I set the object's velocity with these new values:
 # set new velocity
 self.set_velocity(new_dx, new_dy)

All that's left to do is handle the screen boundaries. I use the same
strategy as I did with the asteroids: the ship should wrap around the
screen. In fact, I copy and paste the code from Asteroid's
moved() method to the end of Ship's moved() method:
 # wrap the ship around screen
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)
 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

Although this works, copying and pasting large portions of code is
usually a sign of poor design. I'll revisit this code later and find a
more elegant solution.

TRAP Repeated chunks of code bloat programs and make them
harder to maintain. When you see repeated code, it's
often time for a new function or class. Think about how
you might consolidate the code into one place and call or
invoke it from the parts of your program where the
repeated code currently lives.

Firing Missiles
Next, I enable the ship to fire missiles. When the player presses the
spacebar, a missile fires from the ship's cannon and flies off in the
direction the ship faces. The missile should destroy anything it hits,
but to keep things simple, I save the fun of destruction for another
version of the program.

The Astrocrash04 Program

The Astrocrash04 program allows the player to fire missiles by
pressing the spacebar. But there's a problem. If the player holds
down the spacebar, a stream of missiles pours out of the ship, at a
rate of about 50 per second. I need to limit the missile fire rate, but I
leave that issue for the next version of the game. Figure 12.11 shows
off the Astrocrash04 program, warts and all.

Figure 12.11: The missile fire rate is too high.

Updating Ship's moved() Method

I update Ship's moved() method by adding code so that a ship can
fire missiles. If the player presses the spacebar, I create a new

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig431_01_0.jpg

missile:
 # fire missile if spacebar pressed
 if self.screen.is_pressed(games.K_SPACE):
 Missile(self.screen, self.get_xpos(),
self.get_ypos(), self.get_angle())

Of course, in order to instantiate a new object from the line
Missile(self.screen, self.get_xpos(),
self.get_ypos(), self.get_angle()), I need to write a little
something . . . like a Missile class.

The Missile Class

I write the Missile class for the missiles that the ship fires. I start
by creating class variables and class constants:
class Missile(games.Sprite):
 """ A missile launched by the player's ship.
"""
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

image is for the image of a missile—a solid, red circle. sound is for
the sound effect of a missile launching. BUFFER represents the
distance from the ship that a new missile is created (so that the
missile isn't created on top of the ship). VELOCITY_FACTOR affects
how fast the missile travels. And LIFETIME represents how long the
missile exists before it disappears (so that a missile won't float
around the screen forever).

I start the class constructor with the following lines:
 def __init__(self, screen, ship_x, ship_y,
ship_angle):

 """ Initialize missile sprite. """

It may surprise you that the constructor for a missile requires values
for the ship's x-and y-coordinates and the ship's angle, which are
accepted into the ship_x, ship_y, and ship_angle parameters.
The method needs these values so that it can determine two things:
exactly where the missile first appears and the velocity components
of the missile. Where the missile is created depends upon where the
ship is located. And how the missile travels depends upon the angle
of the ship.

Next, I play the missile-firing sound effect:
 Missile.sound.play()

Then, I perform some calculations to figure out the new missile's
location:
 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER *
math.sin(angle)
 buffer_y = -Missile.BUFFER *
math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

I get the angle of the ship, converted to radians. Then, I calculate the
missile's starting x-and y-coordinates, based on the angle of the ship
and the Missile class constant BUFFER. The resulting x and y
values place the missile right in front of the ship's cannon.

Next, I calculate the missile's velocity components. I use the same
type of calculations as I did in the Ship class:

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR *
math.sin(angle)
 dy = -Missile.VELOCITY_FACTOR *
math.cos(angle)

Finally, I initialize the new sprite. I also make sure to give the
Missile object a lifetime attribute so that the object won't be
around forever.
 # create the missile
 self.init_sprite(screen = screen, x = x, y
= y,
 dx = dx, dy = dy, image
= Missile.image)
 self.lifetime = Missile.LIFETIME

Then, I write a moved() method for the class. Here's the first part:
 def moved(self):
 """ Move the missile. """
 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if not self.lifetime:
 self.destroy()

This code just counts down the life of the missile. lifetime is
decremented. When it reaches 0, the Missile object destroys
itself.

In the second part of moved(), I include the familiar code to wrap
the missile around the screen:
 # wrap the missile around screen
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)

 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

I see that the preceding code is repeated three different times my
program. I'll definitely be consolidating it later.

Controlling the Missile Fire Rate
As you saw in the last program, the ship can fire about 50 missiles
per second. Even for a player who wants to win, this is a bit much.
So, I go about putting a limit on the missile fire rate.

The Astrocrash05 Program

The Astrocrash05 program limits the missile fire rate by creating a
countdown that forces a delay between missile firings. Once the
countdown ends, the player can fire another missile (but not until
then). Figure 12.12 illustrates the program.

Figure 12.12: Now the ship fires missiles at a more reasonable
rate.

Adding a Ship Class Constant

My first step in forcing a delay between missile firings is to add a
class constant to Ship:
 MISSILE_DELAY = 25

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig434_01_0.jpg

MISSILE_DELAY represents the total delay the player must wait
between missile firings.

Updating Ship's Constructor Method

I add a line to the Ship class constructor so that a newly created
ship object gets a new attribute named missile_wait:
 self.missile_wait = 0

I use missile_wait to count down the delay until the player can
fire the next missile. When missile_wait is 0, the player can fire a
new missile at will. If missile_wait is greater than 0, it means that
the player has fired a missile recently and I'm still counting down
before he or she can fire another. After the player fires a missile, I
reset missile_wait to MISSILE_DELAY and the countdown
begins again.

Updating Ship's moved() Method

I add some code to Ship's moved() method that decrements an
object's missile_wait attribute (if it's not already 0):
 # if waiting until the ship can fire next,
decrease wait
 if self.missile_wait:
 self.missile_wait -= 1

Then I change the missile firing code from the last version of the
game to the following lines:
 # fire missile if spacebar pressed and
enough time has elapsed
 if self.screen.is_pressed(games.K_SPACE)
and not self.missile_wait:
 Missile(self.screen, self.get_xpos(),

self.get_ypos(), self.get_angle())
 self.missile_wait = Ship.MISSILE_DELAY

Now, when the player presses the spacebar, the countdown must be
complete before the ship will fire a new missile. And once a new
missile is fired, I reset missile_wait to MISSILE_DELAY to begin
the countdown again.

Handling Collisions
So far, the player can move the ship around the field of asteroids and
even fire missiles, but none of the objects interact. I change all of
that in the next version of the game. When a missile collides with any
other object, it destroys that other object and itself. When the ship
collides with any other object, it destroys the other object and itself.
Asteroids will be passive in this system, since I don't want
overlapping asteroids to destroy each other.

The Astrocrash06 Program

The Astrocrash06 program achieves all of this collision detection
with the Sprite overlapping_objects() method. Also, I have
to handle the destruction of asteroids in a special way. Remember
that when a large asteroid is destroyed, two medium-sized asteroids
are created. When a medium-sized asteroid is destroyed, two small
asteroids are created. When a small asteroid is destroyed, nothing is
created.

TRAP Because all of the asteroids are generated at random
locations, it's possible for one to be created on top of the
player's ship, destroying the ship just as the program
begins. I can live with this inconvenience for now, but I'll
have to solve this issue in the final game.

Figure 12.13 shows the program in action.

Figure 12.13: The ship's missiles now destroy asteroids. But be
careful, as asteroids destroy the ship.

Updating Missile's moved() Method

I add the following code to the end of Missile's moved() method:
 # check if missile overlaps any other object
 for game_object in
self.overlapping_objects():
 game_object.die()
 self.die()

If a missile overlaps any other object, the other object and the
missile are both destroyed.

Adding Missile's die() Method

Missile, like any class in this version of the game, needs a die()
method. The method is about as simple as it gets:
 def die(self):
 """ Destroy the missile. """
 self.destroy()

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig436_01_0.jpg

When a Missile object's die() method is invoked, the object
destroys itself.

Updating Ship's moved() Method

I add the following code to the end of the Ship's moved() method:
 # check if ship overlaps any other object
 for game_object in
self.overlapping_objects():
 game_object.die()
 self.die()

If the ship overlaps any other object, the other object and the ship
are both destroyed. Notice that this method is exactly the same as
Missile's moved() method. Again, when you see duplicate code,
you should think about how to consolidate it. In the next version of
the game, I'll get rid of this and other redundant code.

Adding Ship's die() Method

This method is the same as Missile's die() method:
 def die(self):
 """ End the game. """
 self.destroy()

When a Ship object's die() method is invoked, the object destroys
itself.

Adding Asteroid's die() Method

Asteroid's die() method is more involved:
 def die(self):
 """ Destroy asteroid. """
 # if asteroid isn't small, replace with

two smaller asteroids
 new_size = self.size - 1
 if new_size:
 for i in range(2):
 Asteroid(screen = self.screen,
 x = self.get_xpos(),
y = self.get_ypos(),
 size = new_size)
 self.destroy()

The wrinkle I add is that the method has the potential to create two
new Asteroid objects. The method calculates the value of
new_size, the size of the potential new asteroids. If new_size is
either 1 or 2, then two new asteroids are created at the current
asteroid's location. Whether or not new asteroids are created, the
current asteroid destroys itself and the method ends.

Adding Explosions
In the last version of the game, the player can destroy asteroids by
firing missiles at them, but the destruction feels a bit hollow. So next,
I add explosions to the game.

The Astrocrash07 Program

In the Astrocrash07 program, I write a new class for animated
explosions based on games.Animation. But I also do some work
behind the scenes, consolidating redundant code. Even though the
player won't appreciate these additional changes, they're important
nonetheless. Figure 12.14 shows the new program in action.

Figure 12.14: All of the destruction in the game is now
accompanied by fiery explosions.

The Wrapper Class

I start with the behind-the-scenes work. I create a new class,
Wrapper, based on games.Sprite. Wrapper has a moved()
method that automatically wraps an object around the screen:

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig438_01_0.jpg

class Wrapper(games.Sprite):
 """ A sprite that wraps around the screen. """
 def moved(self):
 """ Wrap sprite around screen. """
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)

 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

You've seen this code several times already. It wraps a sprite around
the screen. Now, if I base the other classes in the game on
Wrapper, its moved() method will keep instances of those other
classes on the screen—and the code only has to exist in one place!

I finish the class up with a die() method that destroys the object:
 def die(self):
 """ Destroy self. """
 self.destroy()

The Collider Class

I take on more redundant code. I notice that both Ship and
Missile share the same collision handling instructions. So, I create
a new class, Collider, based on Wrapper, with a moved()
method that handles collisions:
class Collider(Wrapper):
 """ A Wrapper that can collide with any other
Wrapper. """

 def moved(self):
 """ Destroy self and overlapping object if
object is Wrapper. """
 Wrapper.moved(self)
 for game_object in
self.overlapping_objects():
 if isinstance(game_object, Wrapper):
 game_object.die()
 self.die()

The first thing I do in Collider's moved() method is invoke
Wrapper's moved() method to keep the object on the screen. But
notice that I invoke Wrapper's moved() method directly, with
Wrapper.moved(self) and not with the super() function. I do
this because the livewires classes are old-style, so I can't user
super().

I also make an addition to the collision detection loop. For each
overlapping object, I first check to see if the overlapping object is a
Wrapper object. I do this because some objects on the screen won't
be Wrapper objects and I want to ignore them, as far as collisions
go. For example, the player's score shouldn't count when it comes to
collisions. If a missile hits the player's score, the missile should
ignore the score (as opposed to causing the score to explode and
disappear!). And remember that all Collider objects are also
Wrapper objects, since Collider is based on Wrapper.

I next write a die() method for the class, since all Collider
objects will do the same thing when they die—create an explosion
and destroy themselves:
 def die(self):
 """ Destroy self and leave explosion
behind. """
 Explosion(self.screen, self.get_xpos(),

self.get_ypos())
 self.destroy()

In this method, I create an Explosion object. Explosion is a new
class whose objects are explosion animations. You'll see the class in
its full glory soon.

Updating the Asteroid Class

In updating the Asteroid class, I change its class header so that
the class is based on Wrapper:
class Asteroid(Wrapper):

Asteroid now inherits moved() from Wrapper, so I cut
Asteroid's own moved() method. The redundant code is starting
to disappear!

The only other thing I do in this class is change the last line of
Asteroid's die() method. I replace the current self.die() with
the line
Wrapper.die(self)

Now, if I ever change Wrapper's die() method, Asteroid will
automatically reap the benefits.

Updating the Ship Class

In updating the Ship class, I change its class header so that the
class is based on Collider:
class Ship(Collider):

At the end of Ship's moved() method, I add the line
 Collider.moved(self)

I can now cut several more pieces of redundant code. Since
Collider's moved() method handles collisions, I cut the collision
detection code from Ship's moved() method. Since Collider's
moved() method invokes Wrapper's moved() method, I cut the
screen wrapping code from Ship's moved() method too. I also cut
Ship's die() method and let the class inherit Collider's version.

Updating the Missile Class

In updating the Missile class, I change its class header so that the
class is based on Collider:
class Missile(Collider):

At the end of the Missile's moved() method, I add the line
 Collider.moved(self)

Just like with the Ship class, I can now cut redundant code from
Missile. Since Collider's moved() method handles collisions, I
cut the collision detection code from Missile's moved() method.
Since Collider's moved() method invokes Wrapper's moved()
method, I cut the screen wrapping code from Missile's moved()
method too. I also cut Missile's die() method and let the class
inherit Collider's version.

HINT To help you understand the code changes I describe, feel
free to check out the complete code for all versions of the
Astrocrash game on the CD-ROM that came with this
book.

The Explosion Class

Since I want to create animated explosions, I write an Explosion
class based on games.Animation. I define the class variable
sound, for the sound effect of an explosion. Next, I define a class

variable, explosion_images, for a list of image objects of the nine
frames of the explosion animation you saw in Figure 12.6. I load the
images from the nine files, explosion1.bmp through
 explosion9.bmp, using a loop.
class Explosion(games.Animation):
 """ Explosion animation. """
 sound = games.load_sound("explosion.wav")
 images = []
 for i in range(1, 10):
 file_name = "explosion" + str(i) + ".bmp"
 image = games.load_image(file_name)
 images.append(image)

In the Explosion constructor, I accept values into the screen, x,
and y parameters, which represent the screen and coordinates for
the explosion. I invoke the games.Animation constructor to create
a new animation, and then play the explosion sound effect.
 def __init__(self, screen, x, y):
 games.Animation.__init__(self, screen =
screen, x = x, y = y,
 images =
Explosion.images,
 n_repeats = 1,
repeat_interval = 4)
 Explosion.sound.play()

When I invoke the games.Animation constructor, I pass screen,
x, and y to their corresponding parameters. I pass to images the list
of image objects, Explosion.images. Next, I pass to n_repeats
the value of 1 so that the animation plays just once. Finally, I pass to
repeat_interval the value of 4 so that the speed of the
animation looks right.

TRICK Remember, you can pass to the games.Animation
constructor either a list of file names or a list of image

objects for the frames of animation.

Adding Levels, Scorekeeping, and Theme
Music
The game needs just a few more things to feel complete. For my
final pass, I add levels—meaning that when a player destroys all of
the asteroids on the screen, a new, more plentiful batch appears. I
also add scorekeeping functionality and tense theme music to round
out the game experience.

The Astrocrash08 Program

In addition to levels, scorekeeping, and theme music, I add some
code that may be less obvious to the player, but is still important to
complete the program. Figure 12.15 shows off my final version of the
game.

Figure 12.15: The final touches let the game continue as long as
the player's Astrocrash skills allow.

Adding an Asteroid Class Variable

I make a few changes in the Asteroid class, all related to adding
levels to the game. In order to change levels, the program needs to

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/fig443_01_0.jpg

know when all of the asteroids on the current level are destroyed.
So, I keep track of the total number of asteroids with a new class
variable, total, which I define at the beginning of the class:
 total = 0

Updating Asteroid's Constructor Method

In the constructor, I add a line to increment Asteroid.total:
 Asteroid.total += 1

Updating Asteroid's die() Method

I make a few additions to Asteroid's die() method. First, I
decrement Asteroid.total:
 Asteroid.total -= 1

Next, I invoke Game's static method increase_score(), which
increases the player's score based on the size of the asteroid
(smaller asteroids are worth more than larger ones):
 Game.increase_score(30 / self.size)

Game is a new class that contains a few class variables and static
methods for game-wide information and functionality. I explain this
new class later in the chapter.

Toward the end of Asteroid's die() method, I test
Asteroid.total to see if all the asteroids have been destroyed. If
so, I invoke Game's static method next_level(), which creates a
new group of asteroids.
 # if all asteroids are gone, create next
level
 if not Asteroid.total:
 Game.next_level(self.screen)

Adding a Ship Class Variable

I make several additions to the Ship class. I create a class constant,
VELOCITY_MAX, which I use to limit the maximum velocity of the
player's ship:
 VELOCITY_MAX = 3

Updating Ship's moved() Method

In Ship's moved() method, I cap the individual velocity components
of a Ship object, dx and dy, using the class constant
MAX_VELOCITY:
 # cap velocity in each direction
 if new_dx < -Ship.VELOCITY_MAX:
 new_dx = -Ship.VELOCITY_MAX
 if new_dx > Ship.VELOCITY_MAX:
 new_dx = Ship.VELOCITY_MAX
 if new_dy < -Ship.VELOCITY_MAX:
 new_dy = -Ship.VELOCITY_MAX
 if new_dy > Ship.VELOCITY_MAX:
 new_dy = Ship.VELOCITY_MAX

I cap the ship's speed to avoid several potential problems, including
the ship running into its own missiles.

Adding Ship's die() Method

When the player's ship is destroyed, the game is over. I add a
die() method to Ship that invokes Collider's die() method
and the new Ship game_over() method:
 def die(self):
 """ Destroy ship and end the game. """
 self.game_over()
 Collider.die(self)

Adding Ship's game_over() Method

I add the new game_over() method, which displays the message
"Game Over" in the middle of the screen in big, red letters for about
five seconds. After that, the game ends and the graphics screen
closes.
 def game_over(self):
 """ End the game. """
 # show 'ame Over' for 250 mainloop cycles
(at 50 fps that's 5 seconds)
 games.Message(screen = self.screen,
 x = SCREEN_WIDTH/2, y =
SCREEN_HEIGHT/2,
 text = "Game Over", size =
90, color = color.red,
 lifetime = 250, after_death
= self.screen.quit)

The Game Class

The Game class is a new class that handles certain game-wide
functionality such as creating the player's ship, creating the object for
the player's score, increasing the player's score, and creating new
levels of asteroids.

The first thing I do in the class is define two class variables:
class Game(object):
 """ The game itself. """
 level = 1
 sound = games.load_sound("level.wav")

level is the current game level. sound is for the sound effect that
indicates the player has reached a new level.

Next, I write the static method create_ship(), which creates a
Ship object on the screen passed to screen at the coordinates
passed to x and y:
 def create_ship(screen, x, y):
 Game.ship = Ship(screen = screen, x = x, y
= y)

 create_ship = staticmethod(create_ship)

Next, I define the static method create_score(), which creates
two Game class variables, score_value and score_text.
score_value represents the value of the player's score.
score_text is a Text object that is displayed on the graphics
screen to show the player's score.
 def create_score(screen):
 Game.score_value = 0
 Game.score_text = games.Text(screen =
screen, x = 550, y = 20,
 text = "Score:
"+ str(Game.score_value),
 size = 25, color
= color.white)

 create_score = staticmethod(create_score)

Hopefully, the player's score won't remain zero for too long. So, I
define another static method, increase score(), which updates
the player's score:
 def increase_score(points):
 """ Increase a player's score. """
 Game.score_value += points
 Game.score_text.set_text("Score: "+
str(Game.score_value))

 increase_score = staticmethod(increase_score)

I add to Game.score_value the number of points passed to the
method. Then, I update Game.score_text so that the new score is
displayed.

The last method I define in the class is the static method
next_level(), which creates the next level full of asteroids. To
begin the method, I define a constant, BUFFER, which represents the
amount of space I need to preserve around the player's ship when I
create new asteroids. By setting the constant to 200, I'm saying that
any new asteroid must be created at least 200 pixels away from the
player's ship. I do this so that a new asteroid isn't created right on
top of the player's ship.
 def next_level(screen):
 """ Create the next level. """
 # amount of space around ship to preserve
when creating asteroids
 BUFFER = 200

Next, I play the sound for advancing to the next level. I don't play the
sound for the first level, which is the start of the game.
 # play new level sound (except at first
level)
 if Game.level > 1:
 Game.sound.play()

Next, I create the asteroids for the new level. Each level starts with
the number of asteroids equal to the level number. So, the first level
starts with only one asteroid, the second with two, and so on.
 # create new asteroids
 for i in range(Game.level):
 # pick random x and y at least BUFFER
distance from ship's x and y

 while True:
 x = random.randrange(SCREEN_WIDTH)
 y =
random.randrange(SCREEN_HEIGHT)
 x_dist = abs(Game.ship.get_xpos()
- x)
 y_dist = abs(Game.ship.get_ypos()
- y)
 if x_dist + y_dist > BUFFER:
 break

 # create the asteroid
 Asteroid(screen = screen, x = x, y =
y, size = 3)

The real work of the method is to generate random x-and y-
coordinates that put a new asteroid at least BUFFER pixels from the
player's ship. I create an intentional infinite loop with while True.
In the loop, I generate random x- and y-coordinates for the next
asteroid. Then, I calculate the distance between the randomly
generated x-coordinate and the x-coordinate of the player's ship by
using the built-in abs() method, which returns the absolute value of
a number. I do the same for the y-coordinate. Then I add the two
distances together. If the result is greater than BUFFER, I've found a
safe location for a new asteroid and break out of the loop. Otherwise,
the loop continues and I try with another randomly generated point
on the graphics screen. Once I generate a new point that's far
enough away from the ship, I create a large asteroid at that location.

Finally, I display the level number the player has reached and
increment the game level:
 # display level number
 games.Message(screen = screen,
 x = SCREEN_WIDTH / 2, y = 50,
 text = "Level "+

str(Game.level),
 size = 40, color =
color.yellow, lifetime = 150)

 Game.level += 1

 next_level = staticmethod(next_level)

The main() Function

I replace the main part of the program with a new function, main(). I
begin the function by loading the nebula background image onto the
graphics screen:
main
def main():
 my_screen = THE_SCREEN
 nebula_image = games.load_image("nebula.jpg")
 my_screen.set_background(nebula_image)

Then, I load and loop the game's theme music:
 games.load_music("theme.mid")
 games.play_music(-1)

By passing -1 to games.play_music(), I ensure the theme will
loop forever, giving the game an never-ending soundtrack.

Then, I cut all of the code that created the asteroids and the player's
ship. I replace it with code that invokes Game's static methods to
create the player's ship, the player's score, and the first level of
asteroids:
 Game.create_ship(screen = my_screen, x =
SCREEN_WIDTH / 2, y = SCREEN_HEIGHT / 2)
 Game.create_score(screen = my_screen)
 Game.next_level(screen = my_screen)

Starting the Program

Last, but not least, I kick off the whole program by calling main():
start program
main()

Summary
In this chapter, you extended your knowledge of multimedia
programming to include sound, music, and animation. You learned
how to load, play, and stop both sound and music files. And you saw
how to create animations. You also learned a technique for creating
large programs by writing increasingly more complete, working
versions of the final product. You saw how to tackle one new
objective at a time, building your way to the full program. Finally, you
saw all of this new information and these new techniques put to use
in the creation of a fast-paced, action game with sound effects,
animation, and its own musical score.

Challenges
1. Improve the Astrocrash game by creating a new kind of

deadly space debris. Give this new type of debris some
quality that differentiates it from the asteroids. For example,
maybe the debris requires two missile strikes to be
destroyed.

2. Write a version of the Simon Says game where a player
has to repeat an ever-growing, random sequence of colors
and sounds, using the keyboard.

3. Write your own version of another classic video game such
as Space Invaders or Pac-Man.

4. Create your own programming challenge, but most
importantly, never stop challenging yourself to learn.

Appendix A: LiveWires Reference
This appendix includes almost everything you ever wanted to know
about the livewires package but were afraid to ask. I do leave
out a few details for simplicity. If you want the ultimate
"documentation," you can always check out the source code of the
modules themselves. On a Windows machine, you should find the
modules in the C:\Python22\Lib\site-packages\livewires
folder. And remember, as I said in Chapter 11, this book uses a
modified version of livewires.

games Module Classes
games is a module of the livewires package that contains a
group of classes for game programming: Screen, Games_Object,
Text, Message, Sprite, and Animation.

The Screen Class

A Screen object provides a region on which graphics objects can
exist. You create a new Screen object with
Screen([width][, height])

Table A.1 describes the attributes defined in Screen.

Table A.1: Screen ATTRIBUTES

Attribute Description

width Width of the graphics screen. The default value is 640.

height Height of the graphics screen. The default value is
480.

Table A.2 describes useful Screen methods.

Table A.2: Screen METHODS

Method Description

Method Description

init_screen ([width] [,
height])

Initializes a Screen object.
Automatically invoked in
Screen's constructor. You
would only directly invoke this
method if you subclassed
Screen, to initialize a new
object.

set_background(image)
Sets the background of a
Screen object to image object
image.

mouse_pos()

Returns the x- and y-
coordinates of the mouse
pointer on a Screen object as
a two-element tuple.

mouse_visible(on)
Sets the mouse pointer to
visible or invisible. on can be
True or False.

is_pressed(key)

Returns a value that can be
treated as True or False
based on whether the key key
is being pressed. You can use
one of the many key constants
for key that games provides.

Method Description

objects_overlapping(box)

Returns a list of all the objects
whose bounding boxes overlap
the bounding box box. A
bounding box is a rectangle,
which completely encloses an
image. A bounding box is
represented as a four-element
tuple. The first and second
elements are the x- and y-
coordinates of the box's upper-
left corner. The third and fourth
elements are the box's width
and height.

mainlooop([fps])

Starts the loop that draws all of
the graphics objects associated
with the Screen object. fps is
the number of frames per
second to update the Screen
object. The default value is 50.

tick()

Executes every mainloop()
cycle. It does nothing by
default. You might override this
method if you subclass
Screen.

all_objects()
Returns a list of all objects
associated with the Screen
object.

clear() Destroys all objects associated
with the Screen object.

Method Description

quit()
Stops mainloop() and
destroys the Screen object and
all objects associated with it.

The Games_Object Class

Games_Object is an abstract class for graphics objects, so you
shouldn't directly create instances of it. Instead, you should create
instances of its subclasses: Text, Message, Sprite, and
Animation. When you instantiate an object of one of these
subclasses, the subclass passes values (directly or indirectly) to the
Games_Object constructor, which uses the values to set attributes
for the new object. Table A.3 describes how these values are used.

Table A.3: Games_Object'S CONSTRUCTOR PARAMETERS

Parameter Description

screen
Determines the Screen object for the
Games_Object object.

x Determines the object's x-coordinate.
y Determines the object's y-coordinate.
image Determines the object's image.

a Determines the object's angle of rotation. The default
value is 0.

dx Determines the object's velocity in the x direction.
The default value is 0.

dy Determines the object's velocity in the y direction.
The default value is 0.

Parameter Description

da Determines the object's angular velocity. The default
value is 0.

interval
Determines the object's tick() interval. The default
value is 1.

Many of the attributes set by Games_Object's constructor are not
meant to be directly accessed. As a result, most Games_Object
methods facilitate getting and setting these values. Table A.4 lists
many of these important methods.

Table A.4: Games_Object METHODS

Method Description

get_pos() Returns the object's x- and y-
coordinates as a two-element tuple.

get_xpos() Returns the object's x-coordinate.
get_ypos() Returns the object's y-coordinate.

get_left() Returns the x-coordinate of the
object's left edge.

get_right() Returns the x-coordinate of the
object's right edge.

get_top() Returns the y-coordinate of the
object's top edge.

get_bottom() Returns the y-coordinate of the
object's bottom edge.

get_bbox() Returns the object's bounding box
as a four-element tuple.

Method Description

get_velocity() Returns the object's x velocity and y
velocity as a two-element tuple.

get_angular_speed() Returns the object's angular
velocity.

get_angle() Returns the object's current angle in
degrees.

set_left(x)
Moves the object horizontally so
that its left edge is at the new
coordinate x.

set_right(x)
Moves the object horizontally so
that its right edge is at the new
coordinate x.

set_top(y)
Moves the object vertically so that
its top edge is at the new coordinate
y.

set_bottom(y)
Moves the object vertically so that
its bottom edge is at the new
coordinate y.

set_velocity(dx,dy)
Sets the object's x velocity to dx
and its y velocity to dy.

set_angular_speed(da) Sets the object's angular velocity to
da.

move_to(x,y) Moves the object to the new
coordinates (x,y).

move_by(dx,dy)
Moves the object by dx pixels in the
x direction and dy pixels in the y
direction.

Method Description

rotate_by(angle) Rotates the object by angle
degrees.

rotate_to(angle) Rotates the object to the angle
angle.

overlaps(other)

Returns a value that can be treated
as True if the object overlaps
other. Otherwise, it returns a value
that can be treated as False.

overlapping_objects() Returns a list of objects that overlap
the object.

tick()

Executes every interval
mainloop() cycles. It does
nothing by default. You might
override this method in subclasses
of Games_Object.

destroy()
Removes all of the associated
Screen object's references to an
object.

The Text Class

The Text class is a subclass of Games_Object. A Text object
represents text on a Screen object. You create a new Text object
with
Text(screen, x, y, text, size, color [, a] [, dx]
[, dy][, da] [, interval])

Text defines additional attributes, which are listed in Table A5.

Table A.5: Text ATTRIBUTES

Attribute Description
text Text to be placed on the screen.
size Font size of the text.
color Color of the text.

The Text class uses text, size, and color to create an image
object for the text that is displayed.

Text defines additional methods, which are described in Table A.6

Table A.6: Text METHODS

Method Description
init_text(screen,
x, y,
text, size, color
[, a]
[, dx] [, dy][,
da]
[, interval])

Initializes a Text object. Automatically
invoked in Text's constructor. You would
only directly invoke this method if you
subclassed Text, to initialize a new
object.

set_text(text)
Sets the object's text attribute to the
string text.

get_text() Returns the object's text attribute.

The Message Class

The Message class is a subclass of Text. A Message object
represents a message on the graphics screen that disappears after a

set period of time. A Message object can also specify an event to
occur after it disappears. You create a new Message object with
Message(screen, x, y, text, size, color [, a] [,
dx] [, dy][, da] [, lifetime], [, afterdeath])

Message defines additional attributes, which I list in Table A.7.

Table A.7: Message ATTRIBUTES

Attribute Description

lifetime
Amount of time, in mainloop() cycles, the object
exists before it disappears. A value of 0 means the
object will never disappear. The default value is 0.

afterdeath
Callable code to execute after the object
disappears, such as a function or method. The
default value is None.

Message defines an important additional method,
init_message(screen, x, y, text, size, color [, a]
[, dx] [, dy][, da] [, lifetime], [, afterdeath]),
which initializes a Message object. This method is automatically
invoked in Message's constructor. You would only directly invoke this
method if you subclassed Message, to initialize a new object.

The Sprite Class

The Sprite class is a subclass of Games_Object, useful for
creating an object with an image from a graphics file. You create a
new Sprite object with
Sprite(screen, x, y, image [, a] [, dx] [, dy][,
da] [, interval])

Sprite doesn't define additional attributes, but it does define an
important additional method, init_sprite(screen, x, y, image [, a]
[, dx] [, dy][, da] [, interval]), which initializes a Sprite object. This
method is automatically invoked in Sprite's constructor. You
directly invoke this method when you subclass Sprite, to initialize a
new object.

The Animation Class

The Animation class is a subclass of Sprite. Animation objects
are animations—a series of images shown in succession. You create
a new Animation object with
Animation(screen, x, y, images, [, a] [, dx] [,
dy] [, da] [, n_repeats] [, repeat_interval])

Animation defines additional attributes, which are described in
Table A.8

Table A.8: Animation ATTRIBUTES

Attribute Description

images List of either image objects or file names as
strings from which to create image objects.

n_repeats
Number of times the complete animation
cycle should repeat. A value of 0 means
repeat forever. The default value is 0.

repeat_interval
Object's tick() interval. The default value
is 1.

Animation defines an important additional method,
init_animation(screen, x, y, images, [, a] [, dx]
[, dy] [, da] [, n_repeats] [, repeat_interval]),
which initializes an Animation object. This method is automatically

invoked in Animation's constructor. You directly invoke this method
when you subclass Animation, to initialize a new object.

games Module functions
The games module defines functions for working with images,
sound, and music, which I list in Table A.9.

Table A.9: games FUNCTIONS

Function Description

load_image(file_name [,
transparent])

Returns an image object loaded
from the file named in the string
file_name and sets
transparency if transparent
is equal to a value that can be
treated as True. The default
value of transparent is a
value that can be treated as
True.

scale_image(image,
x_scale [, y_scale])

Returns a new image object
scaled in the x direction by a
factor of x_scale and in the y
direction by a factor of
y_scale. If no value is passed
to y_scale, then the image is
scaled by a factor of x_scale
in both directions. The original
image image is unchanged.

load_sound(file_name)
Returns a sound object from a
WAV file named in the string
file_name.

load_music(file_name)
Loads music from the file
named in the string
file_name.

Function Description

play_music([loop])

Plays the current music loop
number of times in addition to
its initial playing. A value of -1
means loop forever. The default
value of loop is 0.

fade_out_music(millisec) Fades out the current music in
millisec milliseconds.

stop_music() Stops the current music.

The sound object returned by load_sound() has several methods
available to it, which are listed in Table A.10.

Table A.10: SOUND OBJECT METHODS

Method Description

play([loop])

Plays the sound loop number of times in
addition to its initial playing. A value of -1
means loop forever. The default value of
loop is 0.

fadeout(millisec) Fades out the sound in millisec
milliseconds.

stop() Stops the sound on all channels.

games Module Constants
The games module defines a group of constants for keyboard keys,
which I list in Table A.11.

Table A.11: games KEY CONSTANTS

Constant Key
K_BACKSPACE Backspace
K_TAB Tab
K_RETURN Return
K_PAUSE Pause
K_ESCAPE Escape
K_SPACE Spacebar
K_EXCLAIM Exclamation Point
K_QUOTEDBL Double Quote
K_HASH Hash Mark
K_DOLLAR Dollar Sign
K_AMPERSAND Ampersand
K_QUOTE Single Quote
K_LEFTPAREN Left Parenthesis
K_RIGHTPAREN Right Parenthesis
K_ASTERISK Asterisk
K_PLUS Plus Sign
K_COMMA Comma
K_MINUS Minus Sign

Constant Key

K_PERIOD Period
K_SLASH Forward Slash
K_0 0
K_1 1
K_2 2
K_3 3
K_4 4
K_5 5
K_6 6
K_7 7
K_8 8
K_9 9
K_COLON Colon
K_SEMICOLON Semicolon
K_LESS Less-than Sign
K_EQUALS Equals Sign
K_GREATER Greater-than Sign
K_QUESTION Question Mark
K_AT At Symbol
K_LEFTBRACKET Left Bracket
K_BACKSLASH Backslash
K_RIGHTBRACKET Right Bracket

Constant Key

K_CARET Caret
K_UNDERSCORE Underscore
K_a A
K_b B
K_c C
K_d D
K_e E
K_f F
K_g G
K_h H
K_i I
K_j J
K_k K
K_l L
K_m M
K_n N
K_o O
K_p P
K_q Q
K_r R
K_s S
K_t T

Constant Key

K_u U
K_v V
K_w W
K_x X
K_y Y
K_z Z
K_DELETE Delete
K_KP0 Keypad 0
K_KP1 Keypad 1
K_KP2 Keypad 2
K_KP3 Keypad 3
K_KP4 Keypad 4
K_KP5 Keypad 5
K_KP6 Keypad 6
K_KP7 Keypad 7
K_KP8 Keypad 8
K_KP9 Keypad 9
K_KP_PERIOD Keypad Period
K_KP_DIVIDE Keypad Divide
K_KP_MULTIPLY Keypad Multiply
K_KP_MINUS Keypad Minus
K_KP_PLUS Keypad Plus

Constant Key

K_KP_ENTER Keypad Enter
K_KP_EQUALS Keypad Equals
K_UP Up Arrow
K_DOWN Down Arrow
K_RIGHT Right Arrow
K_LEFT Left Arrow
K_INSERT Insert
K_HOME Home
K_END End
K_PAGEUP Page Up
K_PAGEDOWN Page Down
K_F1 F1
K_F2 F2
K_F3 F3
K_F4 F4
K_F5 F5
K_F6 F6
K_F7 F7
K_F8 F8
K_F9 F9
K_F10 F10
K_F11 F11

Constant Key

K_F12 F12
K_NUMLOCK Num Lock
K_CAPSLOCK Caps Lock
K_SCROLLOCK Scroll Lock
K_RSHIFT Right Shift
K_LSHIFT Left Shift
K_RCTRL Right Ctrl
K_LCTRL Left Ctrl
K_RALT Right Alt
K_LALT Left Alt
K_LSUPER Left Windows
K_RSUPER Right Windows
K_HELP Help
K_PRINT Print Screen
K_BREAK Break

color Module Constants
The color module provides some constants that you can use
anywhere the games module wants a color. The constants are

red

green

blue

black

white

dark_red

dark_green

dark_blue

dark_gray

gray

light_gray

yellow

brown

pink

purple

Index

Symbols
+ (addition) operator, 27, 31, 120
\ (backslash), 20, 23–24
/ (division) operator, 31
== (equal to) operator, 59
/ (forward slash), 220
> (greater than) operator, 59
< (less than) operator, 59
% (modulus) operator, 31
* (multiplication) operator, 31
!= (not equal to) operator, 59
(number sign symbol), 13
* (repetition) operator, 28
- (subtraction) operator, 31

Index

A
a file access mode, 202
a+ file access mode, 202
abs() method, 420
abstract classes, 350
abstraction, functions, 168
access

file access modes, 202
methods, 250
random, 100
sequential, 99
shelve access modes, 212

add() method, 267
addition (+) operator, 27, 31, 120
afterdeath attribute, Message class, 429
algorithms

defined, 84
pseudocode, 84
stepwise refinement, 84–85

Alien Blaster program example, 261–263
all_objects() method, 343, 425
alphabetic keystrokes, 381
and logical operator, 81–82
Animation class, 384–387, 429
append() function, 136, 138
Application class, 312–313

arguments
exception arguments, 218
keyword, 176
positional, 175–176

art, ASCII Art, 21
ASCII Art, 21
assignment operators, 46–47
assignment statement, 34
asteroids, Astrocrash game example, 394–397
Astrocrash game example, 378

asteroids, 394–397
collisions, handling, 407–410
explosions, 410–414
game assets, 394
game classes, 394
game features, 393
missiles, firing, 402–407
ship movement, 399–402
ship rotation, 397–399

Attribute Critter program example, 235–237
attributes

accessing, 238
afterdeath, Message class, 429
Attribute Critter program example, 235–237
class attributes, 239

accessing, 241–242
creating, 241

color, Text class, 428
defined, 229
height, Screen class, 424
images, Animation class, 430
initializing, 237–238
lifetime, Message class, 429

n_repeats, Animation class, 430
private, 248

accessing, 245–246
creating, 245
defined, 244

public, 244
repeat_interval, Animation class, 430
size, Text class, 428
text, Text class, 428
total, 239
width, Screen class, 424

augmented assignment operators, 46–47

Index

B
background images, 343–345
backslash (\), 20, 23–24
backspace (b), 25
bell character, 23
Big Score program example, 346–348
Birthday Wishes program example, 174–175
Blackjack program example

additional_cards() method, 295
BJ_Card class, 290
BJ_Dealer class, 293–294
BJ_Deck class, 290–291
BJ_Game class, 294
BJ_Hand class, 291–292
BJ_Player class, 293
bust() method, 295
cards module, 285–287, 289
classes, types of, 287
games module, 289
init() method, 294
instructions, 260
main() function, 297
play() method, 296–297
still_playing property, 295

blank lines, 14
blocks, 60–61
break statement, 77–78
BUFFER class, 403

buttons
check, 322–326
click count, 314–316
creating, 310
radio, 326–329

Index

C
c shelve access mode, 212
capitalize() method, 41
car value, 45–46
case-sensitivity

commands, 9
variables, 35

CHAR value, 320
characters, reading

from lines, 203–204
from text files, 202–203

check buttons, 322–326
check_collide() method, 365
class attributes, 239

accessing, 241–242
creating, 241

classes
abstract, 350
Animation, 384–387, 429
Application, 312–313
Astrocrash game example, 394
BUFFER, 403
creating GUI using, 311–314
defining, 231–232
derived, 271–274, 279
Game, 417–420
Games_Object, 350

constructor parameters, 426
methods, list of, 351, 426–427

imported, 284
Message, 342, 428–429
new-style, 249
old-style, 249
Screen, 342

attributes, 424
height, 424
methods, list of, 343, 425

Sprite, 342, 429
StringVar, 328
superclass, 277
Text, 342, 428
VELOCITY_MAX, 416

clause
else, 218
except, 214–215

clear() method, 266, 343, 425
Click Counter program example, 314–316
client functions, 243
close() function, 202, 212
closing text files, 201–202
code. See also programs

defined, 10
escape sequences, 22–23
logical errors, 42–43
quotes, with strings, 19
self-documenting, 35
string methods, 38–39
strings, Silly String programs, 26
triple-quoted strings, 21

collision detection, 363–366, 407–410
color attribute, Text class, 428

color coding, 10
color module, 347, 436
column parameter, grid() method, 318
columnspan parameter, grid() method, 318
combining objects, 264–268
commands. See also functions; methods

case-sensitivity, 9
del, 133–134
Edit menu, Run Script, 11
File menu

New Window, 11
Save As, 11

print, 9
comments

(number sign symbol), 13
color-coded, 13
defined, 13
initial, 48
overview, 13–14

comparison operators, 59–60
compound conditions, 78
concatenating

lists, 132
strings, 27
tuples, 120

conditions
compound, 78
defined, 59
false, 72–73
tuples as, 115
values as, 73–75

configure() method, 310

console windows, 2
constants

color module, 436
creating, 106–107, 156–159
defined, 107
global, 342
key, list of, 432–436

Constructor Critter program example, 233–234
constructors

creating, 234–235
defined, 233

continue statement, 77–78
coordinate systems, graphics, 345–346
count() function, 138
Counter program example, 94–95
counting

by fives, 96–97
forward, 96

cPickle.load() function, 211
Craps Roller program example, 55
create_score() method, 418
create_widgets() method, 312–313
Critter Caretaker program example

Constructor method, 253–254
Critter class, 253
eat() method, 255
main() function, 256
menu system, creating, 256–257
mood property, 254–255
overview, 228–229
_pass_time() method, 254

play() method, 255–256
talk() method, 255

cryptography, 58

Index

D
data, storing in files, 208–213
database management system (DBMS), 80
DBMS (database management system), 80
default parameter values, 174, 176–178
del command, 133–134
delete() method, 321
deleting

items from dictionaries, 153–154
list elements, 133–134
slices from lists, 134

derived classes, 271–274, 279
destroy() method, 351
dialog boxes, Not Saved, 12
dictionaries

considerations for, 154–155
creating, 148
Geek Translator program example, 147
key-value pair

adding, 152
deleting, 153–154
replacing, 153

keys
retrieving values using, 149
testing for, 150

methods for, 155
new terms, adding, 152
real-life, 149

die() method, 408–409, 417
display() function, 170
division (/) operator, 31
docstring (document string), 167–168
document string (docstring), 167–168
documenting functions, 167–168

Index

E
Edit menu commands, Run Script, 11
elements

nested, 141–142
tuples with, 115

else clause, 218
else statement, 62–63
encapsulation, 171–172, 243–244
end points, slices, 111
equal to (==) operator, 59
errors

logical, 42–43
syntax, 10

escape sequences, 22–23, 25
event-driven programming, 302–304
event handlers, 303, 314–316
except clause, 214–215
exception handling, 213–218
Exclusive Network program example, 78–80
explosion images, animation, 384–386, 410–414
expressions, 9–10

Index

F
fadeout() method, 431
fade_out_music() function, 431
false conditions, 72–73
false values, 74, 76–77
Fancy Credits program, 22
File menu commands

New Window, 11
Save As, 11

files
access modes, 202
methods, list of, 208
storing data in, 208–213
text files

looping through, 205
opening and closing, 201–202
plain text files, 198
Read It program example, 199–201
reading characters from, 202–203
writing to, 205–208

Finicky Counter program example, 75–76
flip() method, 278
float() function, 46
floating-point numbers, 30–31, 50
for loops, 92–94
forward slash (/), 220
frames, creating, 308

from statement, 341
functions. See also methods

abstraction, 168
append(), 136, 138
client of, 243
close(), 202, 212
count(), 138
cPickle.load(), 211
defining, 167
display(), 170
documenting, 167–168
encapsulation, 171–172
fade_out_music(), 431
float(), 46
function definition, 167
imported, 284
index(), 138
Instructions program example, 165–167
int(), 45–46, 87
len(), 98

lists, 131
tuples, 118

load_image(), 344–345, 431
load_music(), 431
load_sound(), 388–389, 431
main(), 222–224, 420–421
mainloop(), 306, 425
nesting, 45
next_block(), 221–222, 224
next_line(), 221
open(), 201, 211
open_file(), 220–221
play_music(), 431
pop(), 138
programmer-created, 168

property(), 251–252
random.choice(), 159
random.randrange(), 103
randrange(), 56–57, 284
range(), 94, 96–97
raw_input(), 36–37, 46, 48
read(), 202–204, 208
readline(), 203–204, 208
readlines(), 204–205, 207–208
receiving and returning values in, 171–172
remove(), 137–138
reverse(), 138, 373
scale_image(), 431
sequence operators as, 97
software reuse, 176
sort(), 137–138
staticmethod(), 243
stop_music(), 431
str(), 46, 239, 265–266, 280
sync(), 212
sys.exit(), 220
welcome(), 222
write(), 206–208
writelines(), 207–208

Index

G
Game class, 417–420
game examples. See programs
Game Over 2.0 program example, 18–19
Game Over program example, 2
game_over() method, 371, 417
Games_Object class, 350

constructor parameters, 426
methods, list of, 351, 426–427

get() method, 150–151, 250
dictionaries, 155
radio buttons, 329
text values, 320

get_angle() method, 427
get_angular_speed() method, 427
get_bbox() method, 426
get_bottom() method, 351, 426
get_left() method, 351, 368, 426
get_pos() method, 351, 426
get_right() method, 351, 368, 426
get_text() method, 428
get_top() method, 351, 426
get_value() method, 290
get_velocity() method, 351, 426
get_xpos() method, 351, 426
get_ypos() method, 351, 426

global constants, 342
Global Reach program example, 179–180
global variables, 181–182
Granted or Denied program example, 61–62
graphical user interface. See GUI
graphics

background images, 343–345
coordinate systems, 345–346
graphics window, creating, 340–343
messages, displaying, 348–350
pixels, 342
text, displaying, 346–348

greater than operator, 59
greater than or equal to operator, 59
Geek Translator program example, 147
Greeter program, 33, 36
grid() method, 308

column parameter, 318
columnspan parameter, 318
row parameter, 318
sticky parameter, 319

Guess My Number game example
congratulating players, 88
description of, 54
game exit, 88
game explanation, 87
guessing loop, creating, 87–88
initial comment block, creating, 86–87
initial values, setting, 87
program plan, 85–86
random numbers, 54–57, 87

GUI (graphical user interface), 307–308

buttons, 309–311
check, 322–326
click count, 314–316
creating, 310
radio, 326–329

collision detection, 363–366
creating, using classes, 311–314
event-driven programming, 302–304
event handlers, 314–316
mouse input, 360–363
overview, 301–302
root window, 304–306
screen boundaries, 358–360
sprites

creating, 356
init_sprite() method, 353
loading images from, 354–355
moving, 356–358
overview, 350–351
uses for, 352

text-based widgets, 316–321
Tkinter toolkit, 302

Index

H
Handle It program example, 214
handle_collide() method, 365
handling exceptions, 213–218
Hangman example, 128–129

constants, creating, 156–159
end of game, 161
player's guesses, 160
program setup, 155–156
variables, initializing, 159
wrong letters guessed, 160

has_key() method, 155
height attribute, Screen class, 424
height parameter, 320
Hero's Inventory program example, 113–114
high-level languages, 3
High Scores program example, 134–135

Index

I
IDLE (integrated development environment)

interactive mode, 8–10
Not Saved dialog box, 12
script mode, 11–12

if-elif-else statement, 63–66
if-else statement, 61–62
if statement, 57–59, 61
images

background, 343–345
load_image() function, 344–345
loading from sprites, 354–355

images attribute, Animation class, 430
immutable sequences, 104–105
immutable tuples, 120
import statement, random numbers, 55–56
imported classes, 284
imported functions, 284
importing modules, 283
in operator, 99

lists, 131
tuples with, 118

indentation, 60–61
index() function, 138
IndexError exception type, 215
indexing

lists, 131

tuples, 118–119
infinite loops, 69–71
inheritance, 268–269
init() method, 234–235, 294
initialization methods, 234
initializing attributes, 237–238
init_screen() method, 425
init_sprite() method, 353
init_text() method, 428
input, raw_input() function, 36–37, 48
installing Python, 6
instances, 229
instantiated objects, 229, 232
Instructions program example, 165–167
int() function, 45–46, 87
integers

converting strings to, 45–46
defined, 30
mathematical operators as, 31

interactive mode, IDLE, 8–10
invoking methods, 233
invoking static methods, 243
IOError exception type, 215
is_pressed() method

keystrokes, 381–382
Screen class, 425

items() method, 155

Index

K
key-value pair, dictionaries

adding, 152
deleting, 153–154
replacing, 153

keyboards
key constants, list of, 432–436
reading

alphabetic keys, 381
is_pressed() method, 381–382
keystrokes, testing for, 381–382
numeric keys, 381
Read Key program example, 379–382

KeyError exception type, 215
keys, dictionaries, 149
keys() method, 155
keystrokes, reading, 381–382
keyword arguments, positional parameters and, 176

Index

L
labels, 307–308
languages, high-level, 3
len() function, 98

lists with, 131
tuples, 118

less than operator, 59
less than or equal to operator, 59
levels, adding, 415–416
lifetime attribute, Message class, 429
line-continuation character, 20
lines

blank, 14
new, suppressing, 27–28
reading characters from, 203–204
reading into lists, 204–205

lists
append() function, 136
concatenating, 132
creating, 130
defined, 129
deleting slices from, 134
elements, deleting, 133–134
High Scores program example, 134–135
indexing, 131
len() function with, 131
methods for, 138
mutable, 132
new list slice, 133

in operator with, 131
reading lines into, 204–205
remove() function, 137
reverse() function, 138
shared references, 144–147
slicing, 131
sort() function, 137

livewires modules, 338–339
load_images() function, 344–345, 431
loading

music, 391
sound, 388–389

load_music() function, 431
load_sound() function, 388–389, 431
logical errors, 42–43
logical operators

and, 81–82
not, 81
or, 83

Longevity program example, 316–317
looping

music, 392
sound, 390

loops
infinite, 69–71
for loops, 92–94
Loopy String program example, 93
while, 67–69, 92

Loopy String program example, 93
Losing Battle program, 70–71
lower() method, 40–41

Index

M
Mad Lib program example, 300–301

create_widgets() method, 330–332
tell_story() method, 333–334
Tkinter module, 330

mailing lists, Python Tutor, 5
main() function, 222–224, 420–421
mainloop() function, 306, 343, 425
Maitre D' program example, 73–74
mathematical operators, 31–32
menus, displaying, 135–136
Message Analyzer program example, 98
Message class, 342, 428–429
messages

displaying, 348–350
receiving, 264
sending, 263

methods. See also functions
abs(), 420
access methods, 250
add(), 267
all_objects(), 343, 425
capitalize(), 41
check_collide(), 365
clear(), 266, 343, 425
configure(), 310
create_score(), 418
create_widgets(), 312–313
defined, 229

defining, 232
delete(), 321
destroy(), 351
for dictionaries, 155
die(), 408–409, 417
fadeout(), 431
flip(), 278
game_over(), 371, 417
get(), 150–151, 250

dictionaries, 155
radio buttons, 329
text values, 320

get_bbox(), 426
get_bottom(), 351, 426
get_left(), 351, 368, 426
get_pos(), 351, 426
get_right(), 351, 368, 426
get_text(), 428
get_top(), 351, 426
get_value(), 290
get_velocity(), 351, 426
get_xpos(), 351, 426
get_ypos(), 351, 426
grid(), 308

column parameter, 318
columnspan parameter, 318
row parameter, 318
sticky parameter, 319

handle_collide(), 365
has_key(), 155
init(), 234–235, 294
initialization, 234
init_screen(), 425
init_sprite(), 353
init_text(), 428
invoking, 233

ispressed(), 381, 425
items(), 155
keys(), 155
for lists, 138
lower(), 40–41
mainloop(), 343
mouse_pos(), 343, 425
mouse_visible(), 343, 363, 425
moved(), 359–360, 368
move_to(), 351
next_level(), 419
objects_overlapping(), 425
overlapping_objects(), 351, 365
overriding, 275–279
play(), 390, 431
populate(), 290
private

accessing, 247–248
creating, 246–247
defined, 244

public, 244
quit(), 343, 425
replace(), 40–41
reveal(), 319
rotate_by(), 383
set(), 251
set_background(), 343, 425
set_bottom(), 351
set_left(), 351, 368
set_right(), 351
set_text(), 428
set_top(), 351
set_velocity(), 351, 360
static methods, 240

creating, 242–243
invoking, 243

status(), 242–243
stop(), 390–391, 431
strip(), 41
swapcase(), 41
tick(), 425
title(), 40–41
update_count(), 315
update_text(), 324
upper(), 39, 41
values(), 155

missiles, Astrocrash game example, 402–405
modules

color, 347, 432–436
creating, 280–281
defined, 56
importing, 283

 livewires, 338–339
pygame, 338–339
random, 364
writing, 281–283

modulus (%) operator, 31
Mood Computer program example, 63–66
mouse input, 360–363
mouse_pos() method, 343, 425
mouse_visible() method, 343, 363, 425
moved() method, 359–360, 368
movement

Astrocrash game example, 399–402
sprites, 356–358

move_to() method, 351
Movie Chooser program example, 322–324
Moving Pan program example, 361–363

multiple inheritance, 269
multiplication (*) operator, 31
music. See also sound

loading, 391
looping, 392
playing, 391
stopping, 392

mutable lists, 132
mutable sequences, 104–105

Index

N
n shelve access mode, 212
namespaces, 178
naming variables, 34–35
negative position numbers, 102–103
nested sequences

accessing elements in, 141–142
creating, 140–141
defined, 139

nested tuples, 143–144
nesting functions, 45
new lines, suppressing, 27–28
new-style classes, 249
New Window command (File menu), 11
newline character (n), 24–25, 204
next_block() function, 221–222, 224
next_level() method, 419
next_line() function, 221
No Vowels program example, 105–106
NONE value, 110, 320
not equal to (!=) operator, 59
not logical operator, 81
Not Saved dialog box, 12
n_repeats attribute, Animation class, 430
number sign symbol (#), 13

numbers
floating-point, 30–31, 50
integers, 30–31
mathematical operators, 31–32
negative position, 102–103
positive position, 101
random generation, 103–104
true division, 31
Word Problems program, 28–30

numeric keystrokes, 381

Index

O
object-oriented programming (OOP)

attributes, 229
inheritance, 268–269
overview, 4, 229

objects
combining, 264–268
encapsulation, 243–244
instantiated, 229, 232
multiple, creating, 235
printing, 239

objects_overlapping() method, 425
old-style classes, 249
OOP (object-oriented programming)

attributes, 229
inheritance, 268–269
overview, 4, 229

open() function, 201, 211
open_file() function, 220–221
opening text files, 201–202
operator overloading, 43
operators

in, 99
lists, 131
tuples with, 118

addition (+), 27, 120
augmented assignment, 46–47
comparison, 59–60
logical, 81–83

mathematical, 31–32
repetition (*), 28

or logical operator, 83
overlapping_objects() method, 351, 365
overriding methods, 275–279

Index

P
packages, defined, 338
parameters

column, grid() method, 318
columnspan, grid() method, 318
default parameter values, 174, 176–178
height, 320
positional

defined, 174
keyword arguments and, 176
positional arguments and, 175–176

receiving information through, 170
row, grid() method, 318
sticky, grid() method, 319
width, 320
wrap, 320

Password program example, 57–59
passwords, reveal() method, 319
pickling, 209–213
pixels, 342
Pizza Panic program example, 338–339
Pizza Slicer program example, 109–110
planned programs, 83–84
platform independence, 5
play() method, 390, 431
playing

music, 391
sound, 389–390

Playing Cards program example, 264–268
play_music() function, 431
polymorphism, 280
pop() function, 138
populate() method, 290
positional parameters

defined, 174
keyword arguments and, 176
positional arguments and, 175–176

positive position numbers, 101
print command, 9
printing

objects, 239
tuples, 115–116

private attributes, 248
accessing, 245–246
creating, 245
defined, 244

Private Critter program example, 244
private methods, 248

accessing, 247–248
creating, 246–247
defined, 244

programmer-defined functions, 168
programming, event-driven, 302–304
programs. See also code, 19

Alien Blaster, 261–263
Astrocrash game, 378

asteroids, 394–397
collisions, handling, 407–410
explosions, 410–414

game assets, 394
game classes, 394
game features, 393
missiles, firing, 402–407
ship movement, 399–402
ship rotation, 397–399

Attribute Critter, 235–237
Background Image, 344–345
Big Score, 346–348
Birthday Wishes, 174–175
Blackjack

additional_cards() method, 295
BJ_Card class, 290
BJ_Dealer class, 293–294
BJ_Deck class, 290–291
BJ_Game class, 294
BJ_Hand class, 291–292
BJ_Player class, 293
bust() method, 295
cards module, 285–287
classes, types of, 287
games module, 289
init() method, 294
instructions, 260
main() function, 297
play() method, 296–297
still_playing property, 295

Click Counter, 314–316
Constructor Critter, 233–234
Counter program example, 94–95
Craps Roller program, 55
Critter Caretaker

Constructor method, 253–254
Critter class, 253
eat() method, 255
main() function, 256

menu system, creating, 256–257
mood property, 254–255
overview, 228–229
_pass_time() method, 254
play() method, 255–256
talk() method, 255

Exclusive Network, 78–80
Fancy Credits, 22
Finicky Counter, 75–76
Game Over, 2
Game Over 2.0, 18–19
Geek Translator, 147
Global Reach, 179–180
Granted or Denied, 61–62
Greeter program, 33, 36
Guess My Number game

congratulating players, 88
description of, 54
game exit, 88
game explanation, 87
guessing loop, creating, 87–88
initial comment block, creating, 86–87
initial values, setting, 87
program plan, 85–86
random numbers, 87

GUI program, 304–306
Handle It, 214
Hangman, 128–129

constants, creating, 156–159
end of game, 161
player's guesses, 160
program setup, 155–156
variables, initializing, 159
wrong letters guessed, 160

Hero's Inventory, 113–114
High Scores, 134–135

Instructions, 165–167
Labeler, 307–308
Lazy Buttons, 309–310
Longevity, 316–317
Loopy String, 93
Losing Battle, 70–71
Mad Lib, 300–301

create_widgets() method, 330–332
tell_story() method, 333–334
Tkinter module, 330

Maitre D', 73–74
Message Analyzer, 98
Mood Computer, 63–66
Movie Chooser, 322–324
Moving Pan, 361–363
No Vowels, 105–106
Password, 57–59
Pizza Panic, 338–339
Pizza Slicer, 109–110
planning, 83–84
Playing Cards, 264–268
Private Critter, 244
Quotation Manipulation, 38–39
Random Access, 100–101
Read It, 199–201
Read Key, 379–382
Receive and Return, 169–170
Rotate Sprite, 383
saving, 11
Silly Strings, 26
Simple Game, 281
Three-Year-Old Simulator, 67–68
Tic-Tac-Toe

ask_number() function, 187
ask_yes_no() function, 187
computer_move() function, 191–193

congrat_winner() function, 194
data representation, 184
display_board() function, 188
display_instruct() function, 186–187
functions, creating list of, 184
human_move() function, 190–191
legal_moves() function, 189
main() function, 194
new_board() function, 188
next_turn() function, 194
overview, 164
pieces() function, 187–188
program setup, 186
pseudocode, writing, 183
winner() function, 189–190

tracing, 71–72
Trivia Challenge

answers, checking and retrieving, 223–224
data file layout, 219–220
game ending, 224
game setup, 222–223
next_block() function, 221–222
next_line() function, 221
open_file() function, 220–221
overview, 198
questions, asking, 223

Useless Trivia, 18
Word Jumble game, 92

congratulations, 124
empty jumble string, 122
end of game, 124
loops, setting up, 122
player's guesses, 124
program setup, 121
welcoming players, 123

Word Problems, 28–30

properties, defined, 249
property() function, 251–252
pseudocode

algorithms, 84
Tic-Tac-Toe game example, 183

pseudorandom numbers, 54
public attributes, 244
public methods, 244
pygame modules, 338–339
Python

installing, 6
overview, 3–5
Tutor mailing list, 5
Web site, 6–7

Index

Q
quit() method, 343, 425
Quotation Manipulation program, 38–39
quotes

inserting, 24
inside strings, 20
with strings, 18–19
triple-quoted strings, 21

Index

R
r file access mode, 202
r+ file access mode, 202
r shelve access mode, 212
radio buttons, 326–329
random access, 100
Random Access program example, 100–101
random module, 364
random numbers, 56

generating, 103–104
Guess My Number game example, 87
import statement, 55–56
pseudorandom, 54
randrange() function, 56–57

random.choice() function, 159
random.randrange() function, 103
randrange() function, 56–57, 284
range() function, 94, 96–97
raw_input() function, 36–37, 46, 48
read() function, 202–204, 208
Read It program example, 199–201
Read Key program example, 379–382
reading

characters
from lines, 203–204
from text files, 202–203

lines into lists, 204–205

readline() function, 203–204, 208
readlines() function, 204–205, 207–208
Receive and Return program example, 169–170
receiving messages, 264
remove() function, 137–138
repeating strings, 28, 50
repeat_interval attribute, Animation class, 430
repetition (*) operator, 28
replace() method, 40–41
return statements, 171
reveal() method, 319
reverse() function, 138, 373
root window, GUI elements

creating, 306
editing, 306
event loops, entering, 306
overview, 304–305

Rotate Sprite program, 383
rotate_by() method, 383
rotating sprites, 382–384, 397–399
row parameter, grid() method, 318
Run Script command (Edit menu), 11

Index

S
Save As command (File menu), 11
saving programs, 11
scale_image() function, 431
scopes, 178
scorekeeping, 416, 418
screen boundaries, 358–360
Screen class, 342

attributes, 424
height attribute, 424
methods, list of, 343, 425

screen parameter, Games_Object class, 426
script mode, IDLE, 11–12
self-documenting code, 35
sending messages, 263
sentry variables, 68–69
sequences

defined, 92
immutable, 104–105
mutable, 104–105
nested

accessing elements in, 141–142
creating, 140–141
defined, 139

unpacking, 142
sequential access, 99
set() method, 251

set_background() method, 343, 425
set_bottom() method, 351
set_left() method, 351, 368
set_right() method, 351
set_text() method, 428
set_top() method, 351
set_velocity() method, 351, 360
shared references, 144–147
shelving, 211–213
Shinners, Pete, 339
shortcuts, to slices, 112
Silly Strings program, 26
Simple Game program example, 281
single inheritance, 269
size attribute, Text class, 428
slices

creating, 112
defined, 108
deleting from lists, 134
end points, 111
lists, 131, 133
Pizza Slicer program example, 109–110
shortcuts to, 112
tuples, 119

software reuse, 176
sort() function, 137–138
sound. See also music

loading, 388–389
looping, 390
methods for, 431

playing, 389–390
stopping, 390–391

Special Topics, Python Web site, 7
Sprite class, 342, 429
sprites

creating, 356
init_sprite() method, 353
loading images from, 354–355
moving, 356–358
overview, 350–351
rotating, 382–384
uses for, 352

statements
from, 341
assignment, 34
break, 77–78
continue, 77–78
continuing on next line, 20
defined, 9
else, 62–63
if, 57–59, 61
if-elif-else, 63–66
if-else, 61–62
import, 55–56
return, 171
try, 214–215

static methods, 240
creating, 242–243
invoking, 243

staticmethod() function, 243
status() method, 242–243
stepwise refinement, 84–85
sticky parameter, grid() method, 319

stop() method, sound, 390–391, 431
stop_music() function, 431
stopping

music, 392
sound, 390–391

storing data in files, 208–213
str() function, 46, 239, 265–266, 280
string expression, 10
string methods, 38–41
strings

concatenating, 27
converting to integers, 45–46
creating new from old, 107–108
escape sequences with, 22–23
immutable, 104–105
mutable, 104–105
quotes inside, 20
quotes with, 18–19
repeating, 28, 50
sequence operators as, 97
Silly Strings program, 26
triple-quoted, 21
writing to text files, 206–207

StringVar class, 328
strip() method, 41
subtraction (-) operator, 31
superclasses, 277
swapcase() method, 41
sync() function, 212
syntax errors, 10
SyntaxError exception type, 215

sys.exit() function, 220
system bell, 23

Index

T
tab character (t), 23, 25
text, displaying, 346–348
text attribute, Text class, 428
text-based widgets, 316–321
Text class, 342, 428
text files

access modes, 202
looping through, 205
opening and closing, 201–202
plain text files, 198
Read It program example, 199–201
reading characters from, 202–203
writing to, 205–208

Three-Year-Old Simulator program example, 67–68
Tic-Tac-Toe game example

ask_number() function, 187
ask_yes_no() function, 187
computer_move() function, 191–193
congrat_winner() function, 194
data representation, 184
display_board() function, 188
display_instruct() function, 186–187
functions, creating list of, 184
human_move() function, 190–191
legal_moves() function, 189
main() function, 194
new_board() function, 188
next_turn() function, 194
overview, 164

pieces() function, 187–188
program setup, 186
pseudocode, writing, 183
winner() function, 189–190

tick() method, 425
title() method, 40–41
Tkinter toolkit, 302
total attribute, 239
tracing programs, 71–72
transparent value, 354–355
Trivia Challenge game example

answers, checking and retrieving, 223–224
data file layout, 219–220
game ending, 224
game setup, 222–223
next_block() function, 221–222
next_line() function, 221
open_file() function, 220–221
overview, 198
questions, asking, 223

true values, 74, 76–77
try statement, 214–215
tuples

concatenating, 120
as conditions, 115
defined, 113
with elements, 115
empty, 114
immutable, 120
indexing, 118–119
len() function with, 118
nested, 143–144

in operator with, 118
printing, 115–116
slicing, 119
when to use, 139

TypeError exception type, 215

Index

U
UML (Unified Modeling Language), 262
unpacking sequences, 142
update_count() method, 315
update_text() method, 324
upper() method, 39, 41
Useless Trivia program, 18

Index

V
ValueError exception type, 215
values

CHAR, 320
as conditions, 73–75
default parameter, 174, 176–178
false, 74, 76–77
NONE, 320
transparent, 354–355
true, 74, 76–77
WORD, 320

values() method, 155
van Rossum, Guido, 3
variables

assigning string values to, 101
case-sensitivity, 35
creating, 34
global, 181–182
Greeter Program example, 33
naming, 34–35
sentry, 68–69

VELOCITY_MAX class, 416

Index

W
w file access mode, 202
w+ file access mode, 202
w shelve access mode, 212
Web site, Python, 6–7
welcome() function, 222
while loops, 67–69, 92
widgets (window gadgets), 307, 316–321
width attribute, Screen class, 424
width parameter, 320
window gadgets (widgets), 307, 316–321
Windows, installing Python on, 6
windows console, 2
Word Jumble game, 92

congratulations, 124
empty jumble string, 122
end of game, 124
loops, setting up, 122
player's guesses, 124
program setup, 121
welcoming players, 123

Word Problems program, 28–30
WORD value, 320
wrap parameter, 320
write() function, 206–208
writelines() function, 207–208

writing
modules, 281–283
to text files, 205–208

Index

X
x coordinate, graphics coordinate system, 345–346

Index

Y
y coordinate, graphics coordinate system, 345–346

Index

Z
ZeroDivisionError exception type, 215

List of Figures

Chapter 1: Getting Started: The Game over
Program

Figure 1.1: The all-too familiar words from a computer game.

Figure 1.2: Your computer is soon to be home to Python.

Figure 1.3: Visit Python's home page to download the latest
version of Python and read loads of information about the
language.

Figure 1.4: Python in an interactive session, awaiting your
command.

Figure 1.5: Your blank canvas awaits. Python is ready for you to
write a program in script mode.

Figure 1.6: The results of running the Game Over program
through IDLE.

Chapter 2: Types, Variables, and Simple I/O:
The Useless Trivia Program

Figure 2.1: Whoa! Steve might think about a diet before he visits
the sun.

Figure 2.2: Now I get it, the game is over.

Figure 2.3: Please, contain your applause.

Figure 2.4: The strings on the screen appear differently than in the
program code.

Figure 2.5: With Python, you can add, subtract, multiply, divide,
and keep track of a pregnant hippo's weight.

Figure 2.6: A shout-out to all the Larry's of the world.

Figure 2.7: Now, name is assigned a string based on whatever the
user enters, including "Rupert".

Figure 2.8: This slightly low guess is printed several ways with the
help of string methods.

Figure 2.9: The monthly total should be high, but not that high.
Something is wrong.

Figure 2.10: Ah, 61,300 dollars a month is much more
reasonable.

Chapter 3: Branching, while Loops, and
Program Planning: The Guess My Number
Game

Figure 3.1: Got it in only three guesses! Try to beat that.

Figure 3.2: Ack! I got a total of 7 on my first roll, which means I
lose.

Figure 3.3: Ha, you'll never crack the code.

Figure 3.4: Guess I should have picked a better password than
"secret".

Figure 3.5: The correct password grants the user access, just like
before.

Figure 3.6: Now, an incorrect password generates the stinging
"Denied" message.

Figure 3.7: Looks like I was in a great mood while writing the
Mood Computer program.

Figure 3.8: If you've ever been in charge of a three-year-old, this
should bring back warm memories.

Figure 3.9: It seems you have an immortal hero. The only way to
end the program was to stop the process.

Figure 3.10: Now, the program runs correctly, avoiding an infinite
loop. Your hero's fate, however, is not as bright.

Figure 3.11: When you don't tip the maitre d', there are no tables
to be found.

Figure 3.12: This time, my money has helped cure the maitre d' of
his amnesia.

Figure 3.13: The number 5 is skipped with a continue statement
and the loop ends through a break statement.

Figure 3.14: If you're not a member or a guest, you can't get in.

Figure 3.15: A guest can log in, but their security level is set quite
low.

Figure 3.16: Looks like one of the guys logged in today.

Chapter 4: for Loops, Strings, and Tuples:
The Word Jumble Game

Figure 4.1: The Word Jumble game. This jumble looks "difficult."

Figure 4.2: A for loop goes through a word the user enters, one
character at a time.

Figure 4.3: The range() function and for loop allow you to
count forwards, by fives, and backwards.

Figure 4.4: This program uses the len() function and the in
operator to produce some information about your message.

Figure 4.5: You can directly access any character in a string
through indexing.

Figure 4.6: You can access any letter of "index" with a positive
or negative position number.

Figure 4.7: First, name gets the string "Chris", then it gets a
different string, "Jackson". But no string values ever change.

Figure 4.8: Using a for loop, new strings are created. The
program skips the concatenation operation for any vowels.

Figure 4.9: Fresh, hot slices of "pizza", made just the way you
asked. The program also offers a "cheat sheet" so you can
visualize how a slice will be created.

Figure 4.10: An example of slicing end point numbers for the
string "pizza". You can use any combination of positive and
negative end points for your slice.

Figure 4.11: At first, the hero has no items in his inventory. Then,
the program creates a new tuple with string elements and our
hero is stocked.

Figure 4.12: The hero's inventory is a tuple, which means it can
be counted, indexed, sliced, and even concatenated with another
tuple.

Figure 4.13: Each string is a single element in the tuple.

Figure 4.14: Slicing positions for tuples are defined between
elements, just as they are for strings.

Chapter 5: Lists and Dictionaries: The
Hangman Game

Figure 5.1: The "Hangman" game in action. Hmm . . . I wonder
what the word could be.

Figure 5.2: I won this game!

Figure 5.3: This game ended badly, especially for the little guy
made of text.

Figure 5.4: The hero's inventory is now represented by a list. The
results look almost exactly the same as when the inventory was
represented by a tuple in Hero's Inventory 2.0.

Figure 5.5: Since the hero's inventory is represented by a list,
items can be added, modified, and deleted.

Figure 5.6: The user chooses from a menu to maintain the high
scores list. Behind the scenes, list methods do the bulk of the
work.

Figure 5.7: The new and improved version of High Scores stores
a name with a score through nested sequences.

Figure 5.8: The variable language refers to a place in memory
where the string value "Python" is stored.

Figure 5.9: The variables mike, mr_dawson, and honey all refer
to the same list.

Figure 5.10: So "uninstalled" means fired. I was totally 404 on
that.

Chapter 6: Functions: The Tic-Tac-Toe Game
Figure 6.1: The computer is full of ... confidence.

Figure 6.2: I did not see that coming. Even with simple
programming techniques, the computer makes some pretty good
moves.

Figure 6.3: I found the computer's weakness and won this time.

Figure 6.4: The instructions are displayed each time with just a
single line of code— a call to a function I created.

Figure 6.5: Each function uses a parameter, a return value, or
both to communicate with the main part of the program.

Figure 6.6: Functions can be called in different ways with the
flexibility of keyword arguments and default parameter values.

Figure 6.7: This simple program has three different namespaces
— one for each function, plus one for the global namespace.

Figure 6.8: You can read, shadow, or even change the value of a
global variable from inside a function.

Figure 6.9: Each square number corresponds to a position in a list
that represents the board.

Chapter 7: Files and Exceptions: The Trivia
Challenge Game

Figure 7.1: The player is always presented with four inviting
choices. But only one is correct.

Figure 7.2: The file is read using a few different techniques.

Figure 7.3: The same file is created twice, each time with a
different file method.

Figure 7.4: Each list is written to and read from a file in its entirety.

Figure 7.5: Although the program can't convert "Hi!" to a
number, it doesn't halt when exceptions are raised.

Chapter 8: Software Objects: The Critter
Caretaker Program

Figure 8.1: You get to name your very own critter.

Figure 8.2: If you fail to feed or entertain your critter, it will have a
mood change for the worse.

Figure 8.3: But with the proper care, your critter will come back to
its original, sunny mood.

Figure 8.4: When the program invokes the Critter object's
talk() method, the critter greets the world.

Figure 8.5: Two separate critters are created. Each says hi.

Figure 8.6: This time, each Critter object has an attribute name
that it uses when it says hi.

Figure 8.7: Critters are being born left and right! The program
keeps track of all of them through a single, class attribute, which it
displays through a static method.

Figure 8.8: The object's private attribute and private method are
indirectly accessed.

Figure 8.9: A property controls access to the Critter object's
attribute for its name.

Chapter 9: Object-Oriented Programming:
The Blackjack Game

Figure 9.1: One player wins, the other is not so lucky.

Figure 9.2: The battle description is the result of objects
exchanging a message.

Figure 9.3: hero, a Player object, sends invader, an Alien
object, a message.

Figure 9.4: Each Hand object is a collection of Card objects.

Figure 9.5: The Deck object inherits all of the methods of the
Hand class.

Figure 9.6: By overriding the inherited __str__() method,
objects of different derived classes are printed out differently.

Figure 9.7: Several functions and a class used in the program are
from a programmer-created module.

Figure 9.8: Inheritance hierarchy of classes for the Blackjack
game.

Chapter 10: GUI Development: The Mad Lib
Program

Figure 10.1: A nicely laid-out GUI awaits the user's creativity.

Figure 10.2: The user has entered all of the necessary
information.

Figure 10.3: After clicking the Click for story button, the text box
displays the literary masterpiece.

Figure 10.4: You'll learn to create all of these GUI elements.

Figure 10.5: The program creates only a lone window. Hey, you
have to start somewhere.

Figure 10.6: A GUI program can generate a console window too.

Figure 10.7: A label can provide information about a GUI.

Figure 10.8: You can click these lazy buttons all you want; they
won't do a thing.

Figure 10.9: It's déjà vu all over again. The program looks the
same as its predecessor even though there are significant
changes under the hood.

Figure 10.10: The button's event handler updates the number of
times the button is clicked.

Figure 10.11: If the user fails to enter the correct password, the
program politely refuses to divulge its secret.

Figure 10.12: Given the correct password, the program shares its
invaluable knowledge to long life.

Figure 10.13: Each button is located in a unique cell, based on a
row and a column number.

Figure 10.14: The results of the user's selections show up in the
text box.

Figure 10.15: The user can select only a single movie type.

Chapter 11: Graphics: The Pizza Panic Game
Figure 11.1: The player must catch the falling pizzas.

Figure 11.2: Once a pizza gets by the player, the game is over.

Figure 11.3: My first graphics window. Not much, but it's mine.

Figure 11.4: By using the set_background() method, a
background image can be applied to a Screen object.

Figure 11.5: You specify points on a graphics screen with x- and
y-coordinate pairs.

Figure 11.6: The impressively high score is displayed after a Text
object is instantiated.

Figure 11.7: Ah, the thrill of victory.

Figure 11.8: The pizza image is not part of the background, but an
independent object based on the Sprite class.

Figure 11.9: A cheesy sprite, drawn on a solid-color background to
take advantage of transparency.

Figure 11.10: On the left, the image is loaded with transparency
on. On the right, the same image is loaded with transparency off.

Figure 11.11: The pizza falls down the screen in the direction of
the arrow.

Figure 11.12: Though you can't tell from the screen shot, the pizza
bounces around, following the path of the arrow.

Figure 11.13: The pan sprite follows the mouse around the
graphics screen.

Figure 11.14: The player almost reaches the pizza.

Figure 11.15: The slippery pizza gets away again.

Chapter 12: Sound, Animation, and Program
Development: The Astrocrash Game

Figure 12.1: The player controls a spaceship and blasts asteroids
to increase his or her score. (Nebula image is in the public
domain. Credit— NASA, The Hubble Heritage Team -
AURA/STScI)

Figure 12.2: If an asteroid hits the player's ship, the game is over.

Figure 12.3: The ship moves around the screen based on key
presses.

Figure 12.4: The ship can rotate clockwise, rotate
counterclockwise, or jump to a predetermined orientation.

Figure 12.5: Although it's hard to tell from a still image, an
explosion animates at the center of the graphics window.

Figure 12.6: Shown in rapid succession, these nine frames of
animation look like an explosion.

Figure 12.7: The program lets the user play a sound and some
music.

Figure 12.8: A field of moving asteroids is the foundation of the
game.

Figure 12.9: The player's ship is now part of the action.

Figure 12.10: The ship can now move around the screen.

Figure 12.11: The missile fire rate is too high.

Figure 12.12: Now the ship fires missiles at a more reasonable
rate.

Figure 12.13: The ship's missiles now destroy asteroids. But be
careful, as asteroids destroy the ship.

Figure 12.14: All of the destruction in the game is now
accompanied by fiery explosions.

Figure 12.15: The final touches let the game continue as long as
the player's Astrocrash skills allow.

List of Tables

Chapter 2: Types, Variables, and Simple I/O:
The Useless Trivia Program

Table 2.1: SELECTED ESCAPE SEQUENCES

Table 2.2: MATHEMATICAL OPERATORS WITH INTEGERS

Table 2.3: MATHEMATICAL OPERATORS WITH FLOATING-
POINT NUMBERS

Table 2.4: USEFUL STRING METHODS

Table 2.5: SELECTED TYPE CONVERSION FUNCTIONS

Table 2.6: USEFUL AUGMENT ASSIGNMENT OPERATORS

Chapter 3: Branching, while Loops, and
Program Planning: The Guess My Number
Game

Table 3.1: COMPARISON OPERATORS

Table 3.2: B RANCHING STRUCTURES SUMMARY

Chapter 5: Lists and Dictionaries: The
Hangman Game

Table 5.1: SELECTED LIST METHODS

Table 5.2: SELECTED DICTIONARY METHODS

Chapter 6: Functions: The Tic-Tac-Toe Game
Table 6.1: TIC-TAC-TOE FUNCTIONS

Chapter 7: Files and Exceptions: The Trivia
Challenge Game

Table 7.1: SELECTED FILE ACCESS MODES

Table 7.2: SELECTED FILE METHODS

Table 7.3: shelve ACCESS MODES

Table 7.4: SELECTED EXCEPTION TYPES

Chapter 9: Object-Oriented Programming:
The Blackjack Game

Table 9.1: BLACKJACK CLASSES

Chapter 10: GUI Development: The Mad Lib
Program

Table 10.1: SELECTED GUI ELEMENTS

Chapter 11: Graphics: The Pizza Panic Game
Table 11.1: COMMONLY USED games MODULE CLASSES

Table 11.2: USEFUL Screen METHODS

Table 11.3: USEFUL Games_Object METHODS

Appendix A: LiveWires Reference
Table A.1: Screen ATTRIBUTES

Table A.2: Screen METHODS

Table A.3: Games_Object'S CONSTRUCTOR PARAMETERS

Table A.4: Games_Object METHODS

Table A.5: Text ATTRIBUTES

Table A.6: Text METHODS

Table A.7: Message ATTRIBUTES

Table A.8: Animation ATTRIBUTES

Table A.9: games FUNCTIONS

Table A.10: SOUND OBJECT METHODS

Table A.11: games KEY CONSTANTS

List of Sidebars

Introduction
IN THE REAL WORLD

Chapter 1: Getting Started: The Game over
Program

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 2: Types, Variables, and Simple I/O:
The Useless Trivia Program

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 3: Branching, while Loops, and
Program Planning: The Guess My Number
Game

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 4: for Loops, Strings, and Tuples:
The Word Jumble Game

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 6: Functions: The Tic-Tac-Toe Game
IN THE REAL WORLD

IN THE REAL WORLD

Chapter 7: Files and Exceptions: The Trivia
Challenge Game

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 9: Object-Oriented Programming:
The Blackjack Game

IN THE REAL WORLD

Chapter 10: GUI Development: The Mad Lib
Program

IN THE REAL WORLD

Chapter 11: Graphics: The Pizza Panic Game
IN THE REAL WORLD

IN THE REAL WORLD

file:///C:/Users/Administrator/AppData/Local/Temp/calibre_hy_y6t0x/lpwif1_2_pdf_out/viewer.asp?bookid=8080&chunkid=703953721

 CD Content
Following are select files from this book's Companion CD-ROM.
These files are copyright protected by the publisher, author, and/or
other third parties. Unauthorized use, reproduction, or distribution is
strictly prohibited.

File Description Size

 All CD Content
Python Programming for the Absolute
Beginner 1,247,608

 Chapter 1: Getting Started: The Game over
Program 423

 Chapter 2: Types, Variables, and Simple I/O: The
Useless Trivia Program 5,563

 Chapter 3: Branching, while Loops, and Program
Planning: The Guess My Number Game 4,811

 Chapter 4: for Loops, Strings, and Tuples: The
Word Jumble Game 4,457

 Chapter 5: Lists and Dictionaries: The Hangman
Game 4,379

 Chapter 6: Functions: The Tic-Tac-Toe Game 4,314

 Chapter 7: Files and Exceptions: The Trivia
Challenge Game 4,266

 Chapter 8: Software Objects: The Critter Caretaker
Program 4,019

 Chapter 9: Object-Oriented Programming: The
Blackjack Game 6,900

 Chapter 10: GUI Development: The Mad Lib
Program 6,493

File Description Size
 Chapter 11: Graphics: The Pizza Panic Game 98,465

 Chapter 12: Sound, Animation, and Program
Development: The Astrocrash Game 158,569

 Html 831,559
 Livewires 86,745
 Livewires-

build
 17,482

	Table of Contents
	BackCover
	Python Programming for the Absolute Beginner
	Introduction
	Chapter 1: Getting Started: The Game over Program
	Examining the Game Over Program
	Introducing Python
	Setting Up Python on Windows
	Setting Up Python on Other Operating Systems
	Introducing the Python IDLE
	Back to the Game Over Program
	Summary
	Challenges

	Chapter 2: Types, Variables, and Simple I/O: The Useless Trivia Program
	Introducing the Useless Trivia Program
	Using Quotes with Strings
	Using Escape Sequences with Strings
	Concatenating and Repeating Strings
	Working with Numbers
	Understanding Variables
	Getting User Input
	Using String Methods
	Using the Right Types
	Converting Values
	Back to the Useless Trivia Program
	Summary
	Challenges

	Chapter 3: Branching, while Loops, and Program Planning: The Guess My Number Game
	Introducing the Guess My Number Game
	Generating Random Numbers
	Using the if Structure
	Using the if-else Structure
	Using the if-elif-else Structure
	Creating while Loops
	Avoiding Infinite Loops
	Treating Values as Conditions
	Creating Intentional Infinite Loops
	Using Compound Conditions
	Planning Your Programs
	Returning to the Guess My Number Game
	Summary
	Challenges

	Chapter 4: for Loops, Strings, and Tuples: The Word Jumble Game
	Introducing the Word Jumble Game
	Counting with a for Loop
	Using Sequence Operators and Functions with Strings
	Indexing Strings
	Understanding String Immutability
	Building a New String
	Slicing Strings
	Creating Tuples
	Using Tuples
	Back to the Word Jumble Game
	Summary
	Challenges

	Chapter 5: Lists and Dictionaries: The Hangman Game
	Introducing the Hangman Game
	Using Lists
	Using List Methods
	Understanding When to Use Tuples Instead of Lists
	Using Nested Sequences
	Understanding Shared References
	Using Dictionaries
	Back to the Hangman Game
	Summary
	Challenges

	Chapter 6: Functions: The Tic-Tac-Toe Game
	Introducing the Tic-Tac-Toe Game
	Creating Functions
	Using Parameters and Return Values
	Using Keyword Arguments and Default Parameter Values
	Using Global Variables and Constants
	Back to the Tic-Tac-Toe Game
	Summary
	Challenges

	Chapter 7: Files and Exceptions: The Trivia Challenge Game
	Introducing the Trivia Challenge Game
	Reading from Text Files
	Writing to a Text File
	Storing Complex Data in Files
	Handling Exceptions
	Back to the Trivia Challenge Game
	Summary
	Challenges

	Chapter 8: Software Objects: The Critter Caretaker Program
	Introducing the Critter Caretaker Program
	Understanding Object-Oriented Basics
	Creating Classes, Methods, and Objects
	Using Constructors
	Using Attributes
	Using Class Attributes and Static Methods
	Understanding Object Encapsulation
	Using Private Attributes and Private Methods
	Understanding New-Style and Old-Style Classes
	Controlling Attribute Access
	Back to the Critter Caretaker Program
	Summary
	Challenges

	Chapter 9: Object-Oriented Programming: The Blackjack Game
	Introducing the Blackjack Game
	Sending and Receiving Messages
	Combining Objects
	Using Inheritance to Create New Classes
	Extending a Class through Inheritance
	Altering the Behavior of Inherited Methods
	Understanding Polymorphism
	Creating Modules
	Back to the Blackjack Game
	Summary
	Challenges

	Chapter 10: GUI Development: The Mad Lib Program
	Introducing the Mad Lib Program
	Examining a GUI
	Understanding Event-Driven Programming
	Using a Root Window
	Using Labels
	Using Buttons
	Creating a GUI Using a Class
	Binding Widgets and Event Handlers
	Using Text and Entry Widgets and the Grid Layout Manager
	Using Check Buttons
	Using Radio Buttons
	Back to the Mad Lib Program
	Summary
	Challenges

	Chapter 11: Graphics: The Pizza Panic Game
	Introducing the Pizza Panic Game
	Introducing the Pygame and LiveWires Packages
	Creating a Graphics Window
	Setting a Background Image
	Understanding the Graphics Coordinate System
	Displaying Text
	Displaying a Message
	Understanding the Games_Object Class
	Displaying a Sprite
	Moving Sprites
	Dealing with Screen Boundaries
	Handling Mouse Input
	Detecting Collisions
	Back to the Pizza Panic Game
	Summary
	Challenges

	Chapter 12: Sound, Animation, and Program Development: The Astrocrash Game
	Introducing the Astrocrash Game
	Reading the Keyboard
	Rotating a Sprite
	Creating an Animation
	Working with Sound and Music
	Planning the Astrocrash Game
	Creating Asteroids
	Rotating the Ship
	Moving the Ship
	Firing Missiles
	Controlling the Missile Fire Rate
	Handling Collisions
	Adding Explosions
	Adding Levels, Scorekeeping, and Theme Music
	Summary
	Challenges

	Appendix A: LiveWires Reference
	games Module functions
	games Module Constants
	color Module Constants

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X
	Index_Y
	Index_Z

	List of Figures
	List of Tables
	List of Sidebars
	CD Content

