
Implementing presentation in Web
GIS application with emphasis on

user experience

Cecilie Tunsli Lorentzen Andersen

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,

Bergen University College

Department of Informatics,

University of Bergen

June 2015

Acknowledgements

I would like to thank my supervisor Torill Hamre for your cooperation with guidance

and constructive feedback along the work on this thesis. Thank you for reading and

commenting all the drafts during this process.

Then I would like the thank the test users, system developer Aleksander Vines, leading

scientist Lasse Petterson and research scientist Kjetil Lygre. This work could not have

been done without your participation and contribution.

I would also like to thank the open source community for the important work in providing

the software technology including the documentation, help and guidance online.

ii

Contents

Acknowledgements ii

Contents iii

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1

1.1 Background . 1

1.1.1 Geographic Information System domain 1

1.1.2 Oceanographic DataBase (ODB) 2

1.1.3 Web GIS for marine research . 2

1.2 Goals . 3

1.2.1 Sub-goals . 3

1.3 Research question . 4

1.4 Thesis structure and outline . 4

2 Background 7

2.1 Geographic technology . 7

2.1.1 Geographic data . 7

2.1.2 Geographic information system on the Web 7

2.2 The Web GIS . 8

2.2.1 Geographic data store . 8

2.2.2 Geographic data accessor . 9

2.2.3 Web GIS client . 9

2.3 Web GIS technologies . 10

2.4 Usability engineering . 11

2.4.1 Usability engineering for GIS . 11

3 Problem analysis and requirements 13

3.1 Problem description . 13

3.1.1 Problem decomposition . 13

3.1.2 Problem definition . 15

3.2 Requirements . 15

3.2.1 Web GIS client . 15

iii

Contents

3.2.2 Scope of Web GIS client . 17

3.3 Methodology and considerations . 18

3.3.1 Usability methodology . 18

3.3.2 Development methodology . 18

3.3.3 Development considerations . 19

4 Software stack 21

4.1 Software stack . 21

4.2 GIS standards . 21

4.2.1 Open Geospatial Consortium (OGC) 22

4.3 Geographic data store . 22

4.3.1 Data store standards and compliance 22

4.4 Geographic data accessors . 23

4.4.1 OGC web services (OWS) . 23

4.4.2 Web Map Service . 23

4.4.3 Web Feature Service . 25

4.4.4 Other relevant OGC concepts . 25

4.5 The Web GIS client application . 26

4.5.1 Selection criteria . 26

4.5.2 Client technologies . 27

4.5.3 JavaScript unit testing framework 29

4.5.4 Web mapping technologies . 31

4.5.5 Additional technologies and libraries 32

4.5.6 JavaScript IDE . 33

4.5.7 Build tool and code generators . 33

4.5.8 The complete software stack . 34

5 Usability engineering 35

5.1 Usability methodology and standards . 35

5.1.1 ISO/IEC 25010 standard for system quality and measurement . . . 36

5.1.2 Nielsen heuristics . 36

5.1.3 5Es usabilty attributes . 37

5.2 User-centred design process . 39

5.2.1 Domain research . 40

5.2.2 Conceptual development . 41

5.3 Prototyping and implementation . 42

5.4 Usability study and evaluation . 43

5.4.1 Usability testing and evaluation methods 43

5.4.2 Usability testers . 46

5.4.3 Planning usability testing . 47

5.4.4 Iterative usability testing . 47

5.4.5 Usability evaluation . 50

6 Data store and data accessor configuration 51

6.1 Geographic data store . 51

6.1.1 Create and populate PostGIS database 52

1. Create new geometry column 54

iv

Contents

2. Populate lon/lat data 54

6.1.2 Complete geographic data store . 55

6.2 Data accessor . 55

6.2.1 Import data to GeoServer . 55

6.2.2 Providing geographic data through GeoServer 57

6.2.3 Providing non geographic data through GeoServer 57

7 Design and implementation of prototype 61

7.1 Architecture . 61

7.2 User interface design . 63

7.3 AngularJS components . 64

7.3.1 View . 64

7.3.2 Model . 65

7.3.3 Directive . 65

7.3.4 Controller . 66

7.3.5 Service . 66

7.4 AngularJS principles and design patterns 66

7.4.1 AngularJS design patterns . 67

7.4.2 AngularJS Service . 68

7.5 Front-end frameworks and libraries . 68

7.5.1 AngularJS . 68

7.5.2 Openlayers . 69

7.6 Development challenges . 70

7.6.1 OpenLayers 3 . 70

7.6.2 Same origin Policy (SOP) . 70

7.7 Client prototype components . 71

7.7.1 Directives . 71

7.7.2 Controllers . 72

7.7.3 Services . 73

7.8 Testing and quality assurance . 78

7.8.1 W3C standard compliance . 78

7.8.2 Unit testing . 79

7.9 Prototype development . 80

7.9.1 Rewriting Web GIS application . 80

7.10 Front-end development environment . 81

7.10.1 Continuous Integration . 82

8 System demonstration 85

8.1 Web GIS client front page . 85

8.2 Display map and its controllers . 85

8.3 Query data, search in data . 86

8.4 Display query response in map . 90

8.5 Display response data in tabular form . 90

8.6 Display dataset in chart . 90

8.6.1 Display temperature and salinity 92

8.6.2 Display density chart . 92

8.6.3 Calculations for density chart . 93

v

Contents

8.7 Display temperature contour and contour grid 94

8.7.1 Calculate and display contour layer 95

8.7.2 Calculate and display contour grid 96

8.8 Export functionalities . 96

8.8.1 Export dataset . 96

8.8.2 Export graph . 99

8.9 Other non functional requirements . 100

8.9.1 Prevent user from making errors 100

8.9.2 Information and guidance . 101

9 Evaluation 105

9.1 Sub-goals evaluation . 105

9.1.1 Conduct usability research in GIS and non GIS applications to
determine use of usability methods and principles 105

9.1.2 Develop an iterative user-centred design approach to achieve soft-
ware quality in terms of usability and UX 107

9.1.3 Perform analysis and selections for software stack which best com-
plies to GIS technology and interactive web applications 108

9.1.4 Install, configure and populate GIS backend technologies 108

9.1.5 Develop, design and implement the Web GIS client 109

9.1.6 Evaluate the usability engineering and usability outcome of the
new Web GIS client. 111

9.2 Overall objective . 114

9.3 Research questions . 115

9.4 Evaluation summary . 117

10 Discussion and conclusion 119

10.1 Outcome . 119

10.2 Further work . 120

10.2.1 UE guideline for further work . 120

10.2.2 Design, implementation guideline for further development 121

10.3 Lessons learned . 123

10.4 Conclusion . 124

A Personas 125

B Usability test schema 129

C Filtering in OpenLayers 2 verses OpenLayers 3 135

Bibliography 139

vi

List of Figures

2.1 The conceptual model of the Web GIS. 9

2.2 Database schema, ER diagram of Web GIS. 10

4.1 Updated conceptual model including client technologies. 34

5.1 Product Quality of ISO/IEC 25010 . 37

5.2 Quality In Use of ISO/IEC 25010. 38

5.3 5Es usability attributes. 39

5.4 User-centred design process model. 40

5.5 Example of a persona. 42

5.6 Personas for the Web GIS application. 43

5.7 User story aimed for the persona named Keri. 44

5.8 User centred design model. 45

5.9 Usability test procedure. 49

6.1 Import data into GeoServer. 56

6.2 SQL View in Geoserver. 59

6.3 SQL View in Geoserver. 60

7.1 Web GIS client architecture. 62

7.2 Interaction between the MVC components. 62

7.3 Client prototype conceptual model. 63

7.4 Overview of interaction between the AngularJS components. 64

7.5 UML class diagram. 71

7.6 Grunt test GUI in WebStorm. 81

7.7 Software technology in the presentation layer 82

8.1 Map controller interface. 86

8.2 Map controller interface with menu. 87

8.3 Sequence diagram of requesting filtered data. 88

8.4 First GUI design of the bounding box controller interface. 89

8.5 Final GUI design bounding box controller. 89

8.6 View data result set in tabular form. 91

8.7 Zooming and data point label in temperature chart. 92

8.8 Density chart for a set of temperature and salinity data. 93

8.9 Sequence diagram illustrating the density calculation procedure. 95

8.10 Early contour menu before design change. 97

8.11 Display contour layer with latest design changes. 98

8.12 Contour layer with yellow data points in the map widget. 99

vii

List of Figures

8.13 Export data result to text (JSON) formate. 100

8.14 Export functionality in data table. 101

8.15 Example of input validation. 102

8.16 Give system information and guidance. 103

9.1 Usability evaluation statistics Iteration I. 114

9.2 Usability evaluation statistics iteration II. 115

9.3 Usability evaluation statistics iteration III. 116

9.4 Usability evaluation statistics, mean rating for user testing. 117

A.1 Example of a persona, Natalia. 126

A.2 Example of a persona, Mikka. 127

B.1 Example of usability introduction schema. 130

B.2 Example of usability introduction schema. 131

B.3 Example of usability test task schema. 132

B.4 Example of usability test task schema. 133

B.5 Example of questionnaires schema. 134

viii

List of Tables

3.1 Functional requirements of the new Web GIS client. 16

3.2 Usability requirements of the new Web GIS client. 17

5.1 ISO 9241 6 principles of UCD process . 39

7.1 Development tools used in implementation 82

9.1 Questionnaire asked during test sessions. 113

ix

Abbreviations

EWG The extended Web GIS

GIS Geographic Information System

GUI Graphic User Interface

IWG The initial Web GIS

ISO International Organization for Standardization

ODB Oceanographic DataBase

OGC Open Geospatial Consortium

OWS OGC Web Service

SFA Simple Feature Access

SDLC Software Development Life Cycle

SRS Spatial Reference System

UCD User-Centred Design

UE Usability Engineering

UX User Experience

WFS Web Feature Service

WMS Web Map Service

XML eXtensible Markup Language

xi

Chapter 1

Introduction

1.1 Background

1.1.1 Geographic Information System domain

Geographic data identifies a geographical location on Earth and are used within a wide

variety of informations systems e.g for environmental monitoring. A Geographic Infor-

mation System (GIS) is a desktop application where the user can store, view, manipulate

and analyse geographic data. GIS is a large domain in the academic science of Geo in-

formatics. Scientists use a desktop application, the customized GIS to explore, visualize

and analyse geographic data.

By the evolution of the Internet, Web GIS applications has been introduced as a naturally

expansion of GIS. The transformation has made GIS available for everyone. A Web GIS

is a GIS application available in a Web browser using data retrieved from a geographic

web server on the Internet. Web GIS applications are used for e.g information service

for government purposes, customer service in business and environmental monitoring

such as this Web GIS.

The evolutionary Internet, where web pages have turned into web services which creates

a platform for Web GIS to grow. The Web GIS application can provide the functionality

of GIS in addition to adapt modern web principles for intuitive, dynamic and accessible

GIS applications. The main functionality is the same but from a software developers

point of view, new issues arise when it comes to fulfilling requirements, performance and

1

Chapter 1. Introduction

security. With all feature complexity in mind Web GIS has become a full-fledged GIS

application for Internet users.

Increased application accessibility provide more users from new types of user groups.

Users with different experience level with GIS domain applications and usability re-

quirements become more important.

1.1.2 Oceanographic DataBase (ODB)

Nansen Environmental and Remote Sensing Center (NERSC) has a GIS called Oceano-

graphic DataBase (ODB). The ODB GIS was developed [1] as part of a research project.

The dataset in the ODB is extensive it contains approx 755 000 stations, 4.6 million tem-

perature and 2.36 million salinity measurements between the 16th of August 1855 to 29th

of September 2010 [1].

The ODB application does not cover the expectations of the users. It is a single-user

application locked to proprietary software. NERSC wanted to update the ODB. During

a master thesis from 2013 [2] a Web GIS application was developed to cover the lack of

functionality and mobility of the ODB.

1.1.3 Web GIS for marine research

The Web GIS developed in 2013 [2] replaced the desktop ODB GIS and implemented

functionality for a subset of the data in the ODB. The software infrastructure was redone

following best practices and standards of Open Geospatial Consortium (OGC). The Web

GIS application is a prototype; it has a front-end client available through a web browser

and covers the basic needs of querying and analysing data from the ODB.

In this thesis the client side of the Web GIS is extended. The Web GIS is rendering

a number of plots, maps and charts to visualize a subset of the ODB dataset. The

assignment is to develop a user interface were the users can complete their tasks within

reasonable expectation. This work should in term of Web GIS development benefit

experienced Web GIS users, scientists at NERSC as well as other users without any

extensive training in how to use a Web GIS application. The new Web GIS client should

be user-friendly and have available functionality to meet the demand of the users.

2

Chapter 1. Introduction

1.2 Goals

The overall goal is to develop a Web GIS client, a prototype designed to let simplicity,

usability and user experience (UX) [3] be equally important as the functionality of the

client application. A challenge developing GIS applications is when geographic data is

turned into information which often effect the UX [4].

In parallel with developing and implementing the prototype, will research in the domain

of developing a user-friendly Web GIS client be conducted. We believe a Web GIS client

should be designed by the same principles as world wide web (WWW) applications with

emphasis on usability and UX.

The prototype should be built on trusted open source software, which includes good

community contribution, support and documentation. This will assure future support

of the software and further application maintenance. The client should meet the goals of

being testable, maintainable and scalable by following software development principles

and best practises.

The client must support the formal requirements of using standardised formats and

compliance in GIS technology as discussed in section 4.2. The requirements is derived

from the old Web GIS software stack. Functional and non-functional requirements will

be further discussed in chapter 3.

1.2.1 Sub-goals

The list of sub-goals underneath form the basis for the overall goal as described above.

Every sub-goal is important to achieve for the success of the overall goal.

Sub-goals

• Conduct usability research in GIS and non GIS applications to determine use of

usability methods and principles.

• Develop an iterative user-centred design approach to achieve software quality in

terms of usability and UX

• Perform analysis and selections for software stack which best complies to GIS

technology and interactive web applications

3

Chapter 1. Introduction

• Install, configure and populate GIS backend technologies

• Develop, design and implement the Web GIS client

• Evaluate the usability engineering and usability outcome of the new Web GIS

client

1.3 Research question

We have a Web GIS prototype with a software stack following the standards of OGC

and a client serving the end users of the application. The users request data which the

client provides by data tables and visualization. The visualization is mainly maps, graph

plots or charts visualizing temperature and/or salinity data. The request is fairly simple

by a few parameters covering time, bounding box of request and parameter attributes

as origin country, name of source and name of vessel. The client has a simple graphic

user interface.

A new client will be built using JavaScript libraries. The development of the client will

be done by making every effort to meet the demand of the users and by implementing

design principles regarding usability and UX.

Based on the background data written in this chapter has several research questions

emerged.

• Is it feasible to develop a user-centred Web GIS client by converging user interface

design and UX using open source software?

• Is it feasible to develop a user interface providing UX and still offer the functionality

of a Web GIS?

1.4 Thesis structure and outline

• Chapter 1: Introduction to the thesis domain.

• Chapter 2: Background information and theory on domain specific technologies.

4

Chapter 1. Introduction

• Chapter 3: Problem analysis and requirements, including problem decomposition,

problem definition, scope of work and methods and methodology for usability and

development.

• Chapter 4: Software stack, GIS technology software standards and compliance,

Web GIS client technologies analysis and other software technologies used in the

new complete software stack.

• Chapter 5: Usability engineering, usability standards and principles, usability

methodology and the user-centred design process.

• Chapter 6: Data store and data accessor configuration, including PostGIS and

GeoServer installation, configuration and population.

• Chapter 7: Design and implementation of the new Web GIS prototype, implemen-

tation details on development environment, implementation challengers, design

and architecture of the Web GIS client code.

• Chapter 8: System demonstration, the system functionality is demonstrated with

implementation details.

• Chapter 9: Evaluation, sub-goals evaluation for usability and other application

requirements, answering research questions and a complete thesis evaluation sum-

mary.

• Chapter 10: Discussion and conclusion, discussion on further work and end con-

clusion.

5

Chapter 2

Background

This chapter introduces the GIS technology and the conceptual model of the old Web

GIS application [2]. Next some web mapping applications are presented to introduce

similar GIS applications and in the end some research on usability engineering (UE) is

presented to capture the challenge in UE for GIS.

2.1 Geographic technology

2.1.1 Geographic data

Geographic data is also known as spatial data or spatial data. The geographic data

identifies a geographical location on planet Earth and are used within a wide variety

of informations systems on the Internet. Such data are represented as e.g lines, points

and raster. Data inside the ODB are represented as points and have x, y variables in

addition to a z variable for the depth of the measurement. Geographic data is gathered

and saved in geographic databases for the purpose of being manipulated and analysed

in GIS.

2.1.2 Geographic information system on the Web

A GIS is a desktop application where the user can store, view, manipulate and anal-

yse geographic data as described in subsection 1.1.1. The complexity of desktop GIS

applications is high and requires training and knowledge to manage.

7

Chapter 2. Background

With Internet, GIS has evolved into a a powerful technology available to a wide variety

of users. User groups other than just domain experts can access Web GIS applications,

an increase in such applications are occurring on the Internet. Regular users browsing

the Internet for destinations, whether it would be hotels, restaurants or the dentist are

browsing Web GIS applications online.

There are many fields of industry that benefit from using Web GIS. For instance ap-

plications for government such as public information service like traffic, businesses such

as customer service like where to find the nearest bank and Google Maps. Web GIS

gathers the geographic data into a map a human can read.

2.2 The Web GIS

As described in subsection 1.1.2, ODB is the predecessor to the Web GIS application.

The software stack of the Web GIS system is illustrated in Figure 2.1. The geographic

data store provides geographic and non geographic data to the client application through

the data assessor. Detailed description is defined in [2]. For further reading on GIS

standards and compliance see section 4.2.

2.2.1 Geographic data store

The PostGIS data store is a geographic extension to a PostgreSQL database [5]. The

Entity relationship (ER) diagram 2.2 illustrates the database tables inside the PostGIS

data store. The entity station has parameters describing the measurement provider

while p salinity and p temperature contains the data values provided by one instance

of the station table. These tables are linked by the absnum parameter.

The data tables spatial ref sys and geometry columns are meta data tables con-

taining the geographic components of the database. They meet the compliance of GIS

domain standardization and are automatic operated by the geographic data store.

8

Chapter 2. Background

Users

GeoServer

Internet

Client

Application

PostGIS

Database

WMS protocol

WFS protocol

Figure 2.1: The conceptual model of the Web GIS.

2.2.2 Geographic data accessor

The Web GIS geographic web service, Geoserver [6] has a set of services for managing

geographic data. Figure 2.1 illustrates the Web Map Service (WMS) and Web Feature

Service (WFS) protocols for requesting geographic data from the server. GeoServer has

native support for PostGIS and communicates through Simple Feature Access (SFA).

SFA is an standardised interface for geographic data management. See section 4.2 on

GIS standards and compliance.

2.2.3 Web GIS client

The Web GIS client is developed with Java Server Pages (JSP) as a single page ap-

plication with asynchronous calls to the geographic data accessor. The client is simple

including features for exploring, analysing and visualizing geographic data by a set of

parameters. See [2] for more details.

9

Chapter 2. Background

Figure 2.2: Database schema, ER diagram of Web GIS.

2.3 Web GIS technologies

The development of Web GIS technologies has expanded the GIS domain. Web-based

GIS applications has become more dynamic, interactive and accessible [7] in contrast to

single client desktop GIS applications. We think the HTML give GIS applications the

opportunity to merge into the convention of developing web applications present on the

Web today.

The outcome of the conversion from desktop GIS into the web domain is the capability

to interact with distributed multiple and heterogeneous systems and services [7]. GIS

applications in the Web domain has evolved into more simplified and user friendly user

interface (UI) which meet the demand of a broader set of users than the old GIS desktop

applications.

Map.geo.admin [8], Surging seas [9] and Marinexplore [10] are user friendly Web GIS

examples with simplified UI. The listed example applications are easy to understand

10

Chapter 2. Background

and scoped to a purpose of use, which we think is a good starting point for developing

new web based GIS applications.

Other commercial software have taken the usability concept to a high level. ESRI

[11] is continuously improving their UX by employing UX experts, performing usability

studies and developing guidelines for usability development [12]. ESRI products have

been explored in usability research such as [13] and [14].

2.4 Usability engineering

Usability is a quality attribute which to one extent questions if the system is satisfying

the needs of its users. Usability is defined by five attributes, learnability, efficiency,

memorability, errors and satisfaction [15]. Each of them can be systemically measured

for improvement and evaluation [16]. Usability has been a big domain within product

design [17] and web design [18] and still is.

Usability Engineering (UE) is a set of practises on how to perform usability thorough the

software development life cycle (SDLC) [16]. UE is a user-centred approach, a process

in which techniques and practises are integrated into the SDLC. This process include

the users from the beginning of the SDLC to understand their perceptual and cognitive

thinking, mental modelling and their tasks in the application [19].

2.4.1 Usability engineering for GIS

Already in 2001 [20] MacEachren and Kraak stated the lack of Human Computer Inter-

action (HCI) methods for conducting usability studies within interactive visual applica-

tions. There are also lack of UE methods within mapping applications [21]. In research

within the field of GIS technologies, a list of studies on Usability Engineering for GIS

exists, but still no UE knowledge for GIS has yet been stated [13].

There are a lot of individual research of geographical visualization studies ([14],[13],

[19]) all of them stating that usability research within the GIS domain are insufficient.

Research of UE through the life cycle of development (user requirements, design and

evaluation) is rare [22].

11

Chapter 2. Background

To achieve satisfied users we think it is important to have knowledge of the domain, how

the geographic data are managed and the needs of the users. This will prevent simple

usability issues and misconception of user tasks early in the development.

UE is more important than ever with the increasing development of GIS. The HTML ap-

plies to more users demands better usability. We think the challengers in designing user

friendly GIS applications requires good UE techniques and methods thriving towards

acceptable usability attributes and UX.

GIS related usability practises which can be used during iterative development is investi-

gated during this thesis. The desired solution is to gain knowledge on how to effectively

and seamlessly use UE in developing Web GIS client applications. This include assisting

in the design of user interaction and the characteristics of geographic data manipulation

[13].

The need of establish a user-centred approach for developing geographical visualisation

applications is needed [22]. [22] states that the developers of GIS applications have

problems including UE techniques into the design process. They do not know how to

include UE into GIS domain applications and further research is needed. The challenge

is to package a complex application into a user friendly interface.

12

Chapter 3

Problem analysis and

requirements

This chapter describes the overall goals of this thesis. The goals of the thesis are dis-

cussed in section 1.2 and will be further investigated to describe the problem objective

and state a set of requirements based on the sub-goals in subsection 1.2.1. At first the

problem decomposition is discussed, then the requirements and the scope of the client

applications is stated.

3.1 Problem description

3.1.1 Problem decomposition

The problem statement has two assignments. One part is to research how to develop a

Web GIS client application with emphasis of the users. The second part is to implement

a Web GIS client on top of the Web GIS architecture described in section 2.2. The

client will be based on the existing functionality, some will be extended and additional

functionality will be developed in cooperation with the users. The problem objectives

are elaborated underneath.

13

Chapter 3. Problem analysis

Web GIS domain research

The elaboration on the research goal is to assemble a set of UE guidelines for Web GIS

client development.These guidelines should take into account the nature of web mapping,

geospatial visualization, cartography guidelines and other GIS domain specific areas.

The outcome will be a development process describing the client development, and a

roadmap for further development.

User-centred design

In developing with a user-centred approach the users must be involved during the design

and implementation steps. A user-centred design approach will contain usability princi-

ples and best practises involving usability methods and interface standards to meet the

needs of the users and work towards good UX.

Develop Web GIS client

Many web applications today is written in JavaScript. JavaScript frameworks which

structure JavaScript code into architectural patterns has gain a lot of popularity in web

application development. The Web GIS client is focused on the client code because

the server is hosted and managed by the geographic data accessor. The new client

implementation involves rewriting the old Web GIS client from JSP to a JavaScript

web technology. JSP is a elderly server side technology which also can generate HTML

pages. The installation, configuration and population of the geographic data store and

accessor must be fulfilled before the work on the new Web GIS client can begin.

The new Web GIS client should provide a user interface that novice and expert users

experience as intuitive and easy to use. The elaboration on this goal will include choos-

ing proper JavaScript frameworks and libraries for the client development.

Evaluation of client and development process

In evaluating the UX of the client, usability measures must be analysed to evaluate the

client usability and UX. In addition an assessment must be made to evaluate of the

influence the user-centred design process has triggered the usability and UX outcome.

14

Chapter 3. Problem analysis

The evaluation will include the experience during the work by addressing lessons learned

when formulating the final conclusion.

3.1.2 Problem definition

The problem decomposition listed above give an overview of the problem definition of

this thesis. The problem definition in addition to the overall goals in 1.2, sub-goals

listed in section 1.2.1 underpin the research question in section 1.3. The Web GIS client

application requirements are listed in the next section.

3.2 Requirements

Supplementary to the list of sub-goals in subsection 1.2.1, further requirements are

classified into functional requirements (FR) and non functional requirements (NFR).

Requirements regarding the geographic data base and geographic data accessors will

not be discussed in this thesis. Those requirements can be read in [2].

3.2.1 Web GIS client

The client should navigate and analyse a dataset provided by the geographic data store

through the geographic data accessor. The functionalities are the same as in [2], they

will be further extended during this thesis.

Web GIS client requirements are listed bellow.

• The client application should use open source software and not include any third

party software.

• The software technologies should follow the best practices and standardisations as

stated in [2].

Standardization of GIS domain services assure GIS operations can be published and

seamlessly interoperate with other web frameworks.

15

Chapter 3. Problem analysis

FR01 Query data by a set of parameters

FR02 Present queried data inside map in browser

FR03 Present queried data features in tabular form

FR04 Present a map widget with basic map functionality

FR05 Do query based on a specific point on the map

FR06 Offer export functionality of requested data

FR07 Present graphs to illustrate and compare multiple data parameter values

FR08 Calculate and present a graph of density for temperature and salinity features

FR09 Present a contour plot within a range of meters in sea depth

Table 3.1: Functional requirements of the new Web GIS client.

Functional requirements

The functional requirements in Table 3.1 are based on the old Web GIS application

described in section 2.2. FR01 to FR09 in Table 3.1 describes the requirements.

Personas, a representation of the user roles of the system [23] will be developed to get

a classification of the users. Personas will be used during the developing of user stories

to understand the needs of the users.

User stories, valuable functionality for the users of the system [23] will be developed as

a requirement of what functionality the user wants. User stories are consistent descrip-

tions of the requirements with an associated acceptance criteria.

Non-functional requirements

Non functional requirements (NFR) focus on usability and users interaction with the

application. All NFR are stated with the purpose of an outcome in improved UX. This

is reflected in the list of NFR in Table 3.2.

Quality models such as FURPS+ decompose quality into classifications which are more

measurable and then possible to evaluate [24]. NFR reflects some of the classifications

within usability in FURPS+, these regards Human factors, Astehics, Consistency and

Documentation [25].

16

Chapter 3. Problem analysis

NFR01 Easy to understand interface

NFR02 Easy to learn the Web GIS

NFR03 Consistent user interface

NFR04 Appealing and minimalist design GUI

NFR05 Web GIS should display meaningful error messages

NFR06 Web GIS should prevent the users from making errors

NFR07 Web GIS should be accessible for users little or no experience

NFR08 Give user information on system status

NFR09 Give user information and guidance when interacting with the user interface

NFR10 Use open source software components

Table 3.2: Usability requirements of the new Web GIS client.

These requirements states a goal for the application in terms of usability features, but

do not display the complete usability feature list.

These requirements will be measured by usability test sessions. Usability study and

evaluation of these sessions will determine the outcome of the Web GIS development

and answer if these requirements are met in the end.

3.2.2 Scope of Web GIS client

The overall Web GIS client scope is defined to implement a simple and functional Web

GIS client. The focus is to pursuit the needs of the users with the best possible UX.

Scope of functionality

• Query data from the database. No altering of data, read only functionality.

• In presentation of the data the scope is to develop a simple query tool for querying

data and map/graph plot visualizations to display the data. The visualisation is

to be interactive and informative to present data values on demand.

• What visualisation the users are demanding, and how the functionalities will be

best presented, is within the scope of developing the best possible UX.

17

Chapter 3. Problem analysis

3.3 Methodology and considerations

Agile methodologies and tools in the development process will be implemented to provide

structure in the project management and client implementation. Agile methodologies

support best practises with artifacts that organizes the development process from plan-

ning to delivery.

3.3.1 Usability methodology

UE, usability techniques and methodologies to include in the development process will be

assessed. UE will focus on usability assessment and evaluation in the SDLC to improve

and implement the best usability principles in the client application. These techniques

will be addressed to establish a formula for the client development process in the future.

In addition to develop a Web GIS client, the aim is to develop a UE development process.

This will include using known usability techniques. The usability study will be based

on known standards definitions for usability in quality standards.

Pragmatic goals including experience, results and consequences of use [26] will assess the

usability, and hedonistic goals, stimulation, identification and evocation [27] will assess

the users subjective UX. To evaluate the hedonistic and pragmatic goals, a empirical

research method [28] will be conducted to extract quantitative and qualitative data to

evaluate the usability and UX of the client application.

To assure the goals are met, the UE process will be continuously modified and updated

along the development iterations. Issues during the research and design process will be

assembled and discussed in the results of this thesis.

3.3.2 Development methodology

The development methodology should be a part of an iterative SDLC to create a user-

centred development process. The popular Agile methodology define iterations within

timeboxes for software development and can easily be reshaped to include every aspect

of a user-centred development process. The manifesto for Agile principles [29] describe

the essence of Agile development. Working software and responding to change are two

18

Chapter 3. Problem analysis

bullet point of the manifesto for Agile principles, which integrates well with developing

a user-centred application to assure valuable feedback from the users.

Other code standards and conventions such as use of standardised technologies, nam-

ing conventions, guidelines and other tools for quality assurance and automatic quality

checking and testing will be integrated into the development.

User tester contact

The testing and feedback through the development will be in cooperation with the usabil-

ity testers. Continuously feedback from users are important for the client development.

The contact between developer and user should be in person.

Development and implementation

The development cycle involving design, implementation and testing should be iterative

an iterative process. Continuous integration and version control are desired to assure

the quality and accessibility of a code base.

3.3.3 Development considerations

The development should be performed inside a framework which organises the client

code, make it readable, maintainable and scalable. JavaScript frameworks are popular

in web application development and a possible technology for the Web GIS client devel-

opment.

Testing

Testing is the artifact from Agile development with assurance that the code base is run-

ning as expected. Test suits should indicate if newly merged code break the current code

base. Unit tests should be implemented to assure and assist the quality of the code base.

19

Chapter 3. Problem analysis

Code best practises and principles

Use of software design principles and patterns [30] in software development assure good

code quality and will be assessed during implementation. Patterns as Model View Con-

troller and the Singleton pattern in addition to single responsibility and dependency-

inversion principles will be assessed during client implementation. This will assure mod-

ular code by keep it simple stupid philosophy.

20

Chapter 4

Software stack

This chapter reviews the software stack from data store, to data assessor and client.

Standards and compliance of the data store and data accessor are described. The client

technology selection criteria are presented, and an analysis of client technologies is con-

ducted. Finally a complete software stack is presented in the end of the chapter.

4.1 Software stack

The software stack is a layered structure that contain a PostGIS data store, a GeoServer

data accessor and a web client. This thesis focus on the web client which is built on top

of the old Web GIS application [2]. The requirements for the software stack technologies

are discussed in chapter 3.

The software stack from the previous Web GIS application [2] is part of the Boundless

initiative [31]. Boundless supports the development of the best open source geospatial

tools, where the architecture is built on flexibility, scalability and reliability. This mod-

ular architecture supports a reliable application where the individually parts easily can

be combined and extended.

4.2 GIS standards

The requirements of the software stack is compliance and support of GIS standards.

It includes making the geographic data store and web services accessible to the web

21

Chapter 4. Software stack

client application. Open Geospatial Consortium (OGC) is the main standardization for

technologies within the GIS domain.

4.2.1 Open Geospatial Consortium (OGC)

OGC [32] is an international industry consortium developing interface standards for GIS

technologies. OGC defines standards for storing and exchanging geospatial data. OGC

consists of companies, governments agencies and universities which together complies

standards to make complicated geospatial technologies, data and services accessible.

The standards are documents describing technical compliance of interfaces or encod-

ings [32]. The standards are specifications to describe interfaces for GIS application

development of access and manipulation of geographic data by different technologies

[33].

4.3 Geographic data store

PostGIS is the Geographic data store which is completely Simple feature access (SFA)

compliant [2]. PostGIS accommodates most geospatial database operations in addition

to PostgreSQL queries [2].

4.3.1 Data store standards and compliance

SFA is an OGC and International Organization for Standardization (ISO) standard for

geographic data stores. SFA specifies interfaces for GIS developers to implement in the

purpose of publishing, access and storage for simple features such as point, line, polygons

and more [33]. SFA consists of two parts: Common architecture and SQL Option.

Common architecture

The common architecture describes the simple features geometry. The base geometry

class have subclasses for points, curves, surfaces and geometry collections. All geometry

objects is referenced to a spatial reference system (SRS). The SRS gives the correct

22

Chapter 4. Software stack

coordinates for the geometric object in terms of its SRS [33].

SQL Option

The SQL Option specifies a SQL schema for storage, retrieval, update and query of

geographic and non geographic data. A collection of features are stored as a feature

table including a geometry attribute column. The geometry attribute is mapped to a

geometry table containing the geometric data type. The geometric data type is defined

by the SFA specifications [2]. The feature table is accessible by Standard SQL operations

in addition to supporting querying geographic data by SQL operations [33].

4.4 Geographic data accessors

GeoServer [6] implements several OGC web standards, OGC web services (OWS), Web

Map Service (WMS) and Web Feature Service (WFS). GeoServer is actively maintained

and updated, reliable, feature rich geospatial data server [2].

4.4.1 OGC web services (OWS)

OWS is the standard for web applications using the HTTP protocol. WMS and WFS

are OWS services which publishes layers provided by GeoServer. Each OWS contains a

subset of layers and can be configured by a workspace. The workspace constrains the

availability of the published layer on the server.

4.4.2 Web Map Service

WMS is the standard used to request map data from a GIS enabled database. The in-

terface standard specifies a set of features about the requested images. WMS supports a

list of output formates, including PNG, JPEG, TIFF, SVG and KML. The opertions of

WMS are GetCapabilities, GetMap, and GetFeatureInfo [34]. The operations in interest

for this thesis are listed underneath. All WMS operations offer exception reporting with

XML by default. See the WMS Implementation Specification [34] for more details.

23

Chapter 4. Software stack

GetCapabilities

The GetCapabilities provides general information request info about the WMS map

server. The mandatory parameters in a WMS request to GeoServer are SERVICE=wms

and REQUEST=getcapabilities as described in listing 4.1. The request retrieves infor-

mation about the layers available, what image types it can serve, list of coordinate

systems etc.

Listing 4.1: WMS request.

1 http :// localhost :8080/ geoserver/wms?service=wms&version =1.1.1&←↩

request=GetCapabilities

GetMap

GetMap request the map image. OGC specifies a list of WMS parameters in the GetMap

operation.

• VERSION The version of the request

• REQUEST The name of the request

• LAYERS The list of layers in the request

• STYLES The list of styles in the request

• CRS The coordinate system type

• BBOX The size of bounding box

• WIDTH

• HEIGHT

• FORMAT Output format of map

Other parameters include TRANSPARENT, BGCOLOR among others [34]. Figure 8.1

illustrates a map image response from a GetMap request.

24

Chapter 4. Software stack

GetFeatureInfo

The GetFeatureInfo request provide information about a map image returned by a

GetMap operation. Clicking a point on a map GetFeatureInfo queries feature infor-

mation about the current point(I,J) on the map. The operation parameters are all the

same as GetMap except VERSION and REQUEST, including parameter I and J. The

parameter I=pixel column and J=pixel row from the requested map. The server should

response the features within (I,J).

4.4.3 Web Feature Service

WFS is a standardization for managing vector format geographic data through HTTP.

The WFS request is written in Geography Markup Language (GML). WFS supports

output formats GML2, GML3, Shapefile, JSON, JSONP and CVS. They are specified

in OUTPUTFORMATE=json parameter [35].

GetFeature The request for features is instantiated by a query. The response is a set

of features. The Common Query Language (CQL) described in the next subsection-

can be used to constrain the GetFeature request. Parameters are what kind of SER-

VICE=WFS, what VERSION=2.0.0 (current service version), request REQUEST=getFeature

and return a response for the layer in the TYPENAMES=namespace:featuretype pa-

rameter [35]. Other parameters can be included too but these are not relevant in this

thesis.

4.4.4 Other relevant OGC concepts

Filters

GeoServer can narrow the response of a request by filters. Filters sets the condition

for the search in data store features. Filters are used in WMS to request features

presented in the map and in WFS to return the requested features. These are used

in the request to WMS GetMap and WFS GetFeature request as filter parameters.

GeoServer is compatible with CQL filters. CQL filters can use all the filter functions

available in GeoServer [36].

25

Chapter 4. Software stack

To constrain the response from GeoServer CQL filter parameters can be appended to

the request. The filter converts into a SQL query where the filtered parameters are

defining the query string. ”WHERE”, ”AND”, ”OR” are statements used to filter the

query. A CQL filter specifies the query is defined in Code Listing 4.2. This query filter

the request to select states that have between 100 000 and 150 000 inhabitants. CQL

filter by parameters in database, can compare entities in database or by filter functions

or geometric filters.

Listing 4.2: CQL filter.

1 http :// localhost :8080/ geoserver/wms/kml?layers=topp:states&←↩

CQL_FILTER=LAND_KM+BETWEEN +100000+ AND +150000

4.5 The Web GIS client application

The client application developed in this thesis is based on the requirements defined in

chapter 3. The client application should support high interactivity in a user friendly

manner to meet requirements of a satisfying UX. The main feature is a map widget

displaying geographic data. The client should contain map controllers as zooming/pan-

ning and a layer-switcher. All data should be stored in the geographic data store and

accessed through OWSs (OGC Web Service) from the data accessor.

4.5.1 Selection criteria

Several client technologies were investigated to meet the functional and non functional

requirements listed in chapter 3. The selected criteria underneath is stated to meet the

requirements in section 3.2.

Standard compliance

The client technology should implement the latest web standards by World Wide Web

Consortium (W3C) such as HTML5 [37] and CSS3 [38]. Web standards will assure the

content of the client application will be supported and displayed as desired.

26

Chapter 4. Software stack

OGC standards must be addressed to assure the application interoperability. OGC offers

a complete list, the most important in this client application are OWS, OGC standard

created for WWW applications. The main standards in this application are inherited

by the old Web GIS application. Such as WMA, WFA and SFA [2].

Open source

The technology has to be open source, with a license that allows the tools to be free to

use, modify and shared. Open source software (OSS) is a requirement 3.2 for reasons

that OSS is more secure, often quickly fixed and updated [39], to prevent vendor lock-in

and prevent costs.

Community and documentation

The choice of technology has to be widely supported by a community actively developing

the technology. The documentation has to be available and accessible both from the

community and from other sources such as books, videos, articles etc. Future support

of the technology is a key criteria. Active development and an established open source

community predicts good future support.

4.5.2 Client technologies

JavaScript language in web client applications enhances the UX with dynamic user

interface features. JavaScript is a widely used language with support for most web

technologies used today.

Using a JavaScript web framework will help systematise the code in a structure and give

some design choices to make the applications easier to understand, test, expand and

maintain [40]. JavaScript frameworks for web applications has gained a wide popularity

the last years. It may involve investing time and effort to learn new paradigms on writing

JavaScript to simplify and attach behaviours to the client code.

The web frameworks in this analysis are three of the most popular JavaScript frameworks

[41]. They provide many of the same features but have some differences from each other.

27

Chapter 4. Software stack

AngularJS

AngularJS [42] is a JavaScript framework for developing extendible web applications. It

is built to be easy to test and maintain as it scales. AngularJS is a open source framework

licensed under The MIT License [42]. AngularJS was released in 2009 and has become

one of the most popular JavaScript frameworks available. AngularJS is maintained by

Google, it has an active community and had in 2013 the forth largest contributions to

their repository [43]. AngularJS has a Model Viewer Controller (MVC) design pattern

using data binding, client side templates and dependency injection to build a structure

for developing web applications [40]. AngularJS decrease the complexity of JavaScript

code by directives which attach behaviours to the document object model (DOM).

BackboneJS

BackboneJS [44] is a lightweight JavaScript library which provides a minimal set of

structure offering an architectural structure extendible to fit your requirements. It de-

couples concerns and make code more maintainable [45]. BackboneJS is created by

Jeremy Ashkenas and released in 2010 [45]. BackboneJS has an active community with

tutorials and information about how getting started. BackboneJS is mature and popu-

lar, and have extensions available to build up upon.

EmberJS

EmberJS [46] is a JavaScript framework based on MVC pattern for developing web ap-

plications. EmberJS provide the patterns, components and tools to manage important

tasks like code modules, state and data flow [46]. EmberJS provides a best practises

and structural code templates for building ambitious and testable applications. It rely

on convention over configuration [47] to structure the application [46]. EmberJS is the

newest framework in this analysis, although released in 2012 [48] it has a large commu-

nity on GitHub [49].

Conclusion

AngularJS is a JavaScript framework providing support and structure for JavaScript

web applications. BackboneJS also offer structure to JavaScript code but provide a

28

Chapter 4. Software stack

looser convention of how to structure your code. BackboneJS is easy to get started

because of the lightweight library, AngularJS is a more extensive framework to get a

grip of considering the AngularJS jargon. EmberJS is the largest of the three and

built for ambitious web applications. In comparison with AngularJS both frameworks

have extensive libraries for building feature rich, navigations, testable, readable and

maintainable web applications. EmberJS and AngularJS are not as easy as BackboneJS

to learn, but have more support for more complex applications.

Because of the maturity, the extent of features and active community support is Angu-

larJS the choice of web framework developing Web GIS client in this thesis. AngularJS

and EmberJS are two of a kind, but AngularJS is built with testing in mind and have

a simplicity and structure in code which give cleaner code. It is also easy to learn in

terms of knowledge of MVC and is the most popular JavaScript framework for complex

web applications. AngularJS also has the biggest community, and good documentation

and tutorials to help getting started.

4.5.3 JavaScript unit testing framework

Unit tests are building blocks for automated testing of software. There are many

JavaScript testing frameworks available. This analysis evaluates three popular high

quality standalone test frameworks.

As described in the JavaScript analysis, AngularJS is developed to be testable. Angu-

larJS has developed it’s own test runner, Karma [50]. Karma is a fast, simple and stable

test runner which provide support for several JavaScript testing libraries, some of them

described in the analysis underneath.

QUnit

QUnit [51] is an easy to use framework first developed as part of jQuery before evolving

into its own name and API in 2009. QUnit is independent of any JavaScript library (it

runs completely standalone), and is used by jQuery projects as well as other JavaScript

projects [51]. QUnit is released under the Massachusetts Institute of Technology (MIT)

license [52]. QUnit runs in the browser and provide easy testing of DOM manipula-

tion. QUnit is simple to get started, attach two files to the HTML file, the test runner

29

Chapter 4. Software stack

qunit.js and a CSS file qunit.css [53].

Mocha

Mocha [54] is a feature rich flexible test framework. Any assertion libraries are sup-

ported among other third party as libraries for Behavioural Driven Development (BDD)

testing [55], TDD testing, interface including QUnit’s assertions and Jasmine assertion

library [56]. The flexibility provide complexity to configure it in a desired way. Mocha

is run through a commando line interface and built on top of node.js, which is specially

suited for node.js applications.

Jasmine

Jasmine [57] is a popular BDD testing framework. JSUnit [58] was the original JavaScript

unit testing framework until it became Jasmine. It does not rely on any JavaScript

frameworks, browsers or the DOM [57]. Jasmine is developed by Pivotal Labs and is

licensed under the MIT License. The syntax of Jasmine is easy to understand. Jasmine

has extensive documentation with description code examples and relevant books with

tutorials on Jasmine.

Conclusion

All test frameworks are standalone frameworks suited to write unit tests for the new

Web GIS client and all of them integrates great with Karma. QUnit do have extended

functionality for DOM testing but this is available as a plug-in with Jasmine. QUnit

has a smaller range of assertions and do not add third party assertions libraries as good

as Jasmine.

Mocha is the newer framework with some lack of documentation. Mocha is very flexible

with extensive set of features which make it less beginner friendly. A simpler framework

as Jasmine is more desirable to get fast up and running with tests without depending

on any browser to run as desired.

Jasmine is the preferred choice, it provide an easy to get started package which get

the testing environment up and running without much experience. Jasmine do provide

30

Chapter 4. Software stack

descriptive syntax for BDD testing, is easy to get started, popular and well as suited for

beginners.

4.5.4 Web mapping technologies

Two web mapping libraries were analysed in regard to implementing PostGIS as back

end and GeoServer as web server. The web mapping libraries should implement OGC

standards, WMS and WFS and a supportive contribution to the development. The web

mapping technologies bellow are supporting the services GeoServer can provide.

Leaflet

Leaflet [59] is an open source JavaScript library for displaying interactive maps in a web

browser. Leaflet are lightweight library for displaying simple interactive maps. Leaflet

take advantage on HTML5 and CSS3 and create a modern user interface with simplicity,

performance and usability in mind.

OpenLayers

OpenLayers [60] is a JavaScript library for interactive maps in web applications. It

enables displaying and editing geographical data from WMS and WFS sources. Open-

Layers is open source, FreeBSD licence and working towards a new release with highlights

as WebGL, HTML5 and CSS3 features. OpenLayers builds rich geographic web applica-

tions with no server side dependencies. PostGIS, GeoServer and OpenLayers are proved

to be a solid software stack in GIS development [61].

Conclusion

OpenLayers is feature rich and more complex than the lightweight Leaflet library. Leaflet

is designed to provide simple interactive maps while OpenLayers are more suited for GIS

applications as our Web GIS application. Leaflet do have a lot of plug-ins to make up

for OpenLayers features, but is designed to be a lightweight library with a simple and

stable code base.

31

Chapter 4. Software stack

OpenLayers wide support for OGC standards and GIS functionality make OpenLayers

the better option for the new Web GIS client. OpenLayers supports a wide range of

OGC standards compliant sources and data formats and is pluggable with AngularJS

[62] OpenLayers is the more mature library and has a lot of documentation to show for.

4.5.5 Additional technologies and libraries

Technologies and libraries supporting the client code with templates of user interface

design elements and presenting tables and charts was analysed. There were alternatives

but not comparable to the ones listen underneath. They are both popular and the most

used in their respective domains.

Bootstrap

Bootstrap [63] is a HTML, JavaScript and CSS framework for developing responsive

web client applications. Bootstrap has reusable HTML elements, CSS components and

templates, and jQuery plug-ins.

Angular UI-Grid

UI-Grid [64] is a native AngularJS implementation for displaying data in tables. It is

configurable and has a template for CSS, and behaviours such as filtering, export, sort-

ing and many more.

Highcharts

Highcharts [65] is a JavaScript library which supports a large set of different charts

which can dynamicly be added and removed. Its based on native browser technologies

and is fully compatible with modern browsers.

32

Chapter 4. Software stack

4.5.6 JavaScript IDE

WebStorm [66] is a popular JavaScript IDE and the desired choice. WebStorm is a

powerful lightweight IDE. WebStorm have coding assistance, error detection, refactor-

ing, code completion and seamless tool integration. WebStorm supports a productive

development environment with good support for JavaScript, HTML, CSS. [67] states

WebStorm has great advantages over the other tested JavaScript, HTML and CSS IDEs.

Other JavaScript IDEs was Netbeans [68] and Aptana [69]. WebStorm has good support

for AngularJS and a good choice for this web project.

4.5.7 Build tool and code generators

Yeoman

Yeoman is a code generator. When installed, Yeoman generates code on demand and

cover a hole range of projects [70]. The generator is ran by the yo command to scaffold

new code of the project. E.g when a new AngularJS controller is generated, test classes

with implemented tests are also generated.

Grunt

Grunt [71] is a build tool. A JavaScript task runner perform the build, deployment and

unit testing of the project. The workflow of the tasks are configured in the Gruntfile.

Grunt has a long list of tasks as plug-ins. Commands in project: serve, build, test.

Grunt run a watch task when project is launched into the browser. CSS, HTML and

JavaScript changes are continuously relaunched and displayed in the browser.

Bower

Bower [72] is a component installer. Bower manages every library and its dependen-

cies when installing through Bower. Bower keep track of the files in a manifest file

bower.json. When new JavaScript libraries are installed, Bower make sure they are

included in the necessary files in the project.

33

Chapter 4. Software stack

OpenLayers

Bootstrap

AngularJS

Highcharts

Jasmine

GeoServer

Client

Application

PostGIS

Database

Users

Internet

WMS protocol

WFS protocol

Figure 4.1: Updated conceptual model including client technologies.

Others

Git is a version control tool with GitHub as the major online provider. Travis is a

continuous integration (CI) tool for building the codebase whenever pushed to GitHub.

4.5.8 The complete software stack

The software stack described in chapter 3 include a PostGIS geographic database and

GeoServer web server which is serving the client geographic and non geographic data.

During this chapter the software stack is updated with client technologies by the selec-

tion criteria in subsection 4.5.1. Figure 4.1 illustrates the new complete software stack.

AngularJS is the HTML5 and CSS compliant JavaScript web framework for interactiv-

ity and presentation. Karma and Jasmine are the testing libraries for unit testing to

meet the requirement of a good enough test coverage. OpenLayers is implementing the

map widget and compliant OGC standards WMS, WFS. Highcharts assign charts for

geographical data exploration and analysis.

34

Chapter 5

Usability engineering

This chapter describe the UE and the User-centred design (UCD) process used imple-

menting the Web GIS client. It is introduced by the usability methodology and standards

used as base for the usability studies. Then the usability methodology is discussed. The

rest of this chapter discusses step by step the UCD process including conceptual devel-

opment, prototyping, implementation, usability studies, usability analyse and evaluation

in the end.

5.1 Usability methodology and standards

UE is implementing methods for interaction between humans and computers by get to

know the users goals, domain, tasks and work practices by focusing on how the users

actually work rather than change the way they work [73]. It is critical to implement

usability principles which are easy to use and get the usability tasks done [74].

Principles and practises of known HCI research has been used in the Web GIS client

development. HCI promotes interfaces based on principles combined from computer

science, philosophy and design. UCD is a set of practises originating from HCI [21].

UCD is implemented as a design process that focus on the users and their tasks. The

UCD process developed is influenced by a range of studies [75], [76] and [77],and embraces

the usability evaluation of the system [78].

The Web GIS client was designed based on conversation with usability testers during a

empirical usability evaluation method. To analyse the outcome of the empirical usability

35

Chapter 5. Usability engineering

testing a quantitative and qualitative analysis was conducted. The quantitative method

was based on the users perception interacting with the system, while the qualitative

analysis was based on the user comments during the usability testing. Both methods

accumulated the users’ accurate client interaction experiences, and was always performed

straight after a test session.

The usability attributes used in the UCD process is based on the heuristics from Nielsen,

ISO standard 25010 [79] and the 5Es from Quesenbery discussed in the next subsection.

5.1.1 ISO/IEC 25010 standard for system quality and measurement

ISO/IEC 25010 describes usability as a set of attributes, which help specific users achieve

a set of goals efficient and effective [79]. The bold text with darker background in

Figure 5.1 and Figure 5.2 specifies the entities used in this thesis. Figure 5.1 classifies

usability as an entity where the attributes are quality factors for good product quality,

which is an important in achieving good UX. The models are dependent on each other

by the definition of Learnability, ”degree to which a product or system can be used by

specified users to achieve specified goals of learning to use the product or system with

effectiveness, efficiency, freedom from risk and satisfaction in a specified context of use”

[79].

A UCD process has been developed to define, evaluate and measure usability classifi-

cations and attributes of ISO/IEC 25010. The attributes are picked to meet the Non

Functional Requirements (NFR) in subsection 3.2.1. [4] argues ISO 25010 is applicable

for evaluation of GIS applications by extending the model with new attributes specific

for the GIS domain. The usability attributes specified in the figures have been adapted

into the UCD process to accommodate usability and UX of the Web GIS client.

5.1.2 Nielsen heuristics

Heuristics are rules of thumb for usability developed by Jakob Nielsen [16]. [80] lists a set

of 10 heuristics used as a guideline for usability evaluation described in subsection 5.4.1.

A subset of the heuristics was used during the prototyping; Error prevention, Aesthetic

and minimalist design and Help and documentation. Error preventing was important to

help the users input and feedback on non valid input to improve the work-flow efficiency.

36

Chapter 5. Usability engineering

Product quality

Reliability

Performance

effiency

Usability

Maintainbility

Security

Compability

Portability

Functional

suitability

Maturity

Availibi lity

.

.

Capacity

Time behaviour

.

. Appropriateness

recognisability

Learnability

Operability

User error

protection

User interface

aesthetics

AccessibilityModularity

Reusability

.

.

Confidentiality

Integrity

.

.

Co-existence

Interoperability

Adapbility

Installability

.

Functional

correctness

.

.

Figure 5.1: Product Quality of ISO/IEC 25010

Product quality

Efficiency Satisfaction
Freedom from

risk

Context

coverage
Effectiveness

Efficiency

Usefulness

Trust

Pleasure

Comfort

Economic risk

mitigation

.

.

Context

completeness

.
Effectiveness

Figure 5.2: Quality In Use of ISO/IEC 25010.

37

Chapter 5. Usability engineering

Minimal design was implemented to eliminate all non necessary design elements which

may take attention from the purpose of the application. Help and documentation was

used to inform the users of the applications functionality and user tasks during the

work-flow. The remaining heuristics are equally important but not implemented due to

the scope of time developing the Web GIS client.

5.1.3 5Es usabilty attributes

5Es is a set of usability qualities attributes classified by Whitney Quesenbery [81]. Que-

senbery partition some of the usability attributes from ISO 25010 and are implemented

to fulfil the NFR of the client. Understanding the usability aspect is understanding what

the usability depends on [82]. Figure 5.3 illustrates the balance between the usability

quality attributes used. The attributes, easy to learn and error tolerant was the mostly

used, after engaging and effective (”how the users acchieve their goal accuratly” [82]).

Efficient, the amount of time in terms of number of clicks before a user task is achieved

was least used. The 5Es was used as a guideline for what make the client ”work for

the users” [82]. All of the 5Es attributes are applicable for Web GIS applications and

can be used to balance what the users think is the most important usability attribute

of the Web GIS application. The attributes are discussed further in the user interface

evaluating in subsection 5.4.

Efficient

EffectiveEngaging
Error Tolerant

Easy to Learn

Figure 5.3: 5Es usability attributes.

38

Chapter 5. Usability engineering

1 The design is based upon an explicit understanding of users, tasks and environments

2 Users are involved throughout design and development

3 The design is driven and refined by user-centered evaluation

4 The process is iterative

5 The design addresses the whole user experience

6 The design team includes multidisciplinary skills and perspectives

Table 5.1: ISO 9241 6 principles of UCD process

5.2 User-centred design process

UCD work towards usability quality in products by including the users in an iterative

development process, to meet the requirements, needs, wants and limitations of the users

[21]. UCD is based on ISO 9241-210 [83] standard Part 210: Human-centred design for

interactive systems. The standard describe 6 principles of user centred design illustrated

in Table 5.1.

Figure 5.4 illustrates the UCD process. The models starts with domain research then

continues with design, prototyping and implementation of the application. In the end

usability studies and evaluation are performed. The big arrows illustrates the main steps

while the thinner arrows indicates the iterative process where short-cuts can occur. The

activities in the UCD process are discussed during this chapter.

39

Chapter 5. Usability engineering

U
SE

R
-C

EN
T

R
E

D
 D

ES
IG

N
 P

R
O

C
ES

S

In
sp

ir
ed

 b
y:

 C
om

bi
ni

ng
 u

sa
bi

lit
y

te
ch

ni
qu

es
 t

o
de

si
gn

 g
eo

vi
su

al
iz

at
io

n
to

ol
s

fo
r

ep
id

em
io

lo
gy

 &
A

 u
se

r-
ce

nt
er

ed
 a

pp
ro

ac
h

fo
r

d
es

ig
n

in
g

an
d

de
ve

lo
pi

ng
 s

pa
ti

ot
em

p
or

al
 c

ri
m

e
an

al
ys

is
 t

oo
ls

 1
 .

In
tr

o
du

ct
io

n
to

 C
ri

m
e

A
na

ly
si

s
an

d
G

eo
V

IS
TA

 C
ri

m
eV

iz

C
o

n
s

e
p

tu
a

l

d
e

v
e
lo

p
m

e
n

t
P

ro
to

ty
p

in
g

Im
p

le
m

e
n

ta
ti

o
n

U
s
a

b
il

it
y

 s
tu

d
ie

s

P
e

rs
o

n
a

s

T
a

s
k
 a

n
a

ly
s
is

U
s
e
r

s
to

ri
e
s

E
s
ta

b
lis

h
 u

s
a
b
il
it
y
 g

o
a

ls

V
is

u
a

liz
e

 d
e

s
ig

n

T
a

s
k
 f

lo
w

H
e

u
ri

s
ti
c
s

Im
p
le

m
e

n
t
fu

n
c
tu

n
a
lit

ie
s

U
n

it
 t

e
s
ti
n
g

B
e

s
t

p
ra

c
ti
s
e
s
 a

n
d

p
ri

n
c
ip

le
s

P
re

p
a

re
 u

s
e

r
te

s
ti
n

g

E
m

p
ir

ic
a

l
te

s
ti
n

g

T
h

in
k
 a

lo
u
d

Q
u
e
s
ti
o
n

n
a
ir

e
s

D
o

m
a
in

 r
e

s
e

a
rc

h

E
x
p
lo

re
 G

IS
 c

o
n
te

x
t

R
e

s
e

a
c
h

 u
s
a
b
il
it
y
 s

tu
d

ie
s

C
o

m
p

e
ti
ta

ti
v
e
 s

tu
d

ie
s

E
v

a
lu

a
ti

o
n

W
ri
te

 t
e
s
t
re

p
o
rt

A
n

a
ly

s
e
 t

e
s
t

fi
n

d
in

g
s

A
p

p
ly

 g
u

id
e

lin
e

s

Figure 5.4: User-centred design process model.

40

Chapter 5. Usability engineering

5.2.1 Domain research

The first activity involved studying the GIS and Web GIS domain, study the software

technology, and look for similar web applications to understand the work process of these.

Next, UE methods, principles and practises were investigated to adapt development

activities which would be suitable for the Web GIS client development. UE domain

research concerned with both GIS and non GIS domain were studied. The goal was to

get to know both GIS and UE domain and converge both domains to the benefit of this

thesis.

5.2.2 Conceptual development

The goal of using a user-centred approach with usability evaluation was to confirm if

the Web GIS client objective is fulfilled i.e if the users can complete their tasks with sat-

isfaction [84]. The methods used should assure the use of technology and visualisation

methods of the dataset is appropriate for the set of users [21].

Design decisions

The first user interface design and features were based on the old Web GIS client [2] and

similar applications on the Internet listed in section 2.3. New user task were continuously

developed based on feedback from the usability testers through the UCD iterations.

Design decisions in terms of usability were based on standards and principles from sec-

tion 5.1, broken down to make the usability evaluation measurable.

Personas

A persona is ”an imaginary representation of a user role” [23]. The personas should

feel as real persons for the developer. Including the personas Web GIS experience, what

their user tasks, goal using the Web GIS and a portrait photo to give the ”person” a

face. Three personas were developed in early conceptual development. Each representing

different Web GIS expertise and purpose of using the application. A persona, Dr. Keri

Sofie Larsen is illustrated in Figure 5.5.

41

Chapter 5. Usability engineering

Personal

Dr. Keri Sofie Larsen

54 years old

Senior Researcher, oceanography

Meteorologisk institutt, Bergen

Expertise

Expert Web GIS user with expertise in this Web GIS and work a

lot with similar Web GIS applications. Her motivation to use the

Web GIS is to present and analyses research data to herself and

share her findings with other involved by exporting the data. Keri

uses the application regularly and is a great contributor in the

maintenance and evolution of the application. Her research work

is highly appreciated by the community. She has a list of articles

and is the research leader of many important research projects

regarding the north Atlantic sea.

Keri has a passion of the Arctic wildlife and changes in the Arctic

environment as well as her family and her two dogs.

Figure 5.5: Example of a persona.

The personas are classified as novice, regular and expert Web GIS users as illustrated

in Table ??. The developed personas is in Appendix A.

User role Web GIS expertise Name

Oseanographer Expert Keri Sofie Larsen

Environmental scientist Regular Mikka Heikenen

Student Novice Natalia Geyer

Figure 5.6: Personas for the Web GIS application.

Design user stories

Figure 5.7 illustrates a user story related to the specific persona illustrated above. User

stories is a brief description of a unique user task, focusing on the functionality of

the client. The user stories were developed through task analysis. Functionalities were

divided into smaller subtasks in cooperation with the users. The user stories are based on

the knowledge of the users, the domain, geographical data and presentation/visualization

of the specific user task. Discussion and agreement about proper user tasks arose from

the conversations during usability testing.

42

Chapter 5. Usability engineering

Acceptance criteria:
Test the queried temperature data
is visible and readable in tabular
format.

Query temperature data in database.
As a user I want to query the database for
temperature data so that I can read and

analyse different temperature values.

Note:
Dr. Keri Sofie Larsen want to view the result
data in tabular form.

Figure 5.7: User story aimed for the persona named Keri.

5.3 Prototyping and implementation

Prototyping was performed in iterations before it was implemented. Paper prototypes

was developed and evaluated in the first iteration. The paper prototypes was a sketch

tool to elicit visual design options and to evaluate the positioning of user interface

controllers before implementing them. The paper prototype evaluation were conducted

using Nielsen’s heuristics as listed in [80].

The next section discusses the methods used during the usability- study and evaluation

of the implemented prototype.

5.4 Usability study and evaluation

In UE, the main purpose is to examine the satisfaction of early design decisions [85],

while learning about the concrete user mental model, tasks and goals interacting with

the Web GIS client. Usability- study and evaluation of the prototype has been done in

three iterations. Figure 5.8 illustrates the usability studies step in the UCD process by

an enlarged orange circle.

5.4.1 Usability testing and evaluation methods

The usability evaluation methods were carefully chosen early in the project. The criteria

for picking a method were based on following; number of usability testers, time of scope

and effect. Usability study and evaluation were conducted on both paper prototype and

43

Chapter 5. Usability engineering

USER-CENTRED DESIGN PROCESS

Inspired by: Combining usability techniques to design geovisualization tools for epidemiology &
A user-centered approach for designing and developing spatiotemporal crime analysis tools 1 . Introduction to Crime Analysis and GeoVISTA CrimeViz

Conseptual

development
Prototyping Implementation Usability studies

Personas

Task analysis

User stories

Establish usability goals

Visualize design

Task flow

Heuristics

Implement functunalities

Unit testing

Best practises and

principles

Prepare user testing

Empirical testing

Think aloud

Questionnaires

Domain research

Explore GIS context

Reseach usability studies

Competitative studies

Evaluation

Write test report

Analyse test findings

Apply guidelines

Figure 5.8: User centred design model.

interactions with the implemented client prototype.

Assessment Methods

• The paper prototype was iteratively inspected by Nielsen’s heuristics [80], the user

interface was adjusted to meet the non functional requirements listed in table 3.2.

Heuristic evaluation is a effective way to eliminate usability issues early at least

cost possible [16].

• Empirical lab studies were performed at every test session. Lab studies is a very

popular method for usability testing and an important method to test UX in a

early phase of product development [86]. Observation revels real user tasks and

they suggests new functions and features [16]. Empirical testing gets closer to

the users to understand the users visual interpretation of tools and interaction

paradigm [85].

• Thinking aloud, properly the most valuable UE method [16] was used during the

lab studies. It is a method where instant feedback is received, which enables to

explore the cognitive thinking and perceived subjective thoughts and feelings about

the user interface. Thinking aloud enable us as developers to understand the user

perception and misconceptions interacting with the prototype [16] while thinking

aloud during problem solving. Heuristics and thinking aloud are a complementary

set of usability methods to reduce usability problems [16] .

• Questionnaires was completed by users after every usability test session. A set of

questions with multiple choice illustrated in Figure B.5 in Appendix B gathering

44

Chapter 5. Usability engineering

feedback from the users. Questionnaire is regarded as on of the most effective

methods to measure both pragmatic and hedonistic goals [27].

There exists a wide range of UE methods which also could be considered such as focus

groups [16], but that will require a large group of usability testers over a longer period

of time. Next subsection discusses the choice of usability testers, how many used and

why.

5.4.2 Usability testers

We had three usability testers during the development. Jakob Nielsen argue the a large

number of usability testers do not necessary find more usability issues than a smaller

set of testers. Three usability testers will reveal many of the same usability issues [87].

Approx 70% of the issues at first iteration and the remaining two iteration can improve

the usability issues with as much as 38 % each [16].

The domain of Web GIS applications, its geographical data and user tasks demand

a thorough selection of usability testers. The usability testers had different personal

background and domain expertise. The testers was both domain- and technical repre-

sentatives, in addition to having experience level in similar GIS applications from novice

to regular and expert.

The usability testers has not been available from the start of the project, they were first

introduced to the Web GIS client when prototype 1 was implemented. The new client

design and architecture had to be implemented before the first usability study could be

conducted.

[85] emphasises that close collaboration between developer and users give a better under-

standing of context in specific domain tasks. The users were cooperative and inspiring in

sharing their perception, subjective feelings and ideas of improvements. Conversations

with the users resulted in improved usability by several user interface changes. The

users role in improving the client application affected outcome of this thesis.

45

Chapter 5. Usability engineering

5.4.3 Planning usability testing

Every usability test session was carefully planned in advance. A usability test document

was designed and used throughout the three iterations of the UCD process. The doc-

ument contains basic information about the test process, the tools, methods used and

the purpose of the usability testing. The document is attached in Appendix B.

Evaluation measurements were implemented into the test plan, measurements to fulfil

the system requirements listed in section 3.2. Usability standardisation and 5Es dis-

cussed in section 5.1 classified the user tasks in the empirical testing and questions in

the empirical testing. Figure B.3 and Figure B.4 in Appendix B illustrates the user tasks

to meet the usability attributes in 5Es. Classifications of quality attributes in Figure 5.3

were designed to fulfil the usability attributes of ISO 25010. The empirical test sheet

with the questionnaire schema is shown in Figure B.5 in Appendix B.

5.4.4 Iterative usability testing

The first usability test was performed in iteration 1 of the UCD process. The old

system would preferably been usability tested to inherit functional design decisions but

it was not accessible. The first interaction with the users was performed by a Google

spreadsheet, asking general questions to get to know the users. The collected data was

used designing the first prototype.

The test sessions were performed in a ordinary office space familiar to the testers were

they could feel comfortable. One by one, each tester had enough time to conduct the

test procedure. All the test sessions were voice recorded.

User interface evaluation proceeded in an iterative design process. Interactive user test-

ing was constantly improving the user interface with feedback from the testers. Design

and implementation issues was encountered by discussions on how to improve and re-

design as the users desired. Feature implementations was inspected and tested to find

any design issues, some UI elements were redesigned or further tested in later user

testing.

46

Chapter 5. Usability engineering

Figure 5.9 illustrates step by step activities during the test process. The steps are de-

scribed further in this section.

Usability test procedure

1. Short introduction

The initial step introduced the test procedure for the tester, including the purpose of

the usability testing, the steps and information due to this current usability testing. See

Appendix B for a written version of information regarding the testing session.

2. Pre-test interview

A pre-test interview was then conducted to introduce the current test and answer any

questions the tester had. The introduction was aimed to gather the experiences from

any previous test sessions.

3. User-testing

Earlier design decisions in the user interface, map operations, search functions, chart

plots, density and contour features were assessed during the empirical testing sessions.

The empirical testing method, think aloud included testing tasks to investigate the user

interface. The test tasks was completed one by one until every task was conducted. The

tester could freely ask for guidance if misconception did occur. Appendix B Figure B.3

and Figure B.4 in Appendix B illustrates testing tasks for iteration 3.

The feedback from the users was used as a qualitative measurement to evaluate the

satisfaction with the client and its functionalities. User stories, functionality was build

of the user feedback during the think aloud session.

4. Post-test questionnaire

The post-test questionnaire define the user subjective preferences [16] after experienc-

ing the Web GIS client. The test user answered the questionnaire post-testing with

interaction experiences fresh in mind.

47

Chapter 5. Usability engineering

Questionnaires as a quantitative analysis expressed the UX on the system, and could be

systematically measured by computation average and comparison of the answers.

5. Debrief

The debrief was designed to capture experiences during the test session. Questions and

answers from both parties to evolve and adapt the process the best possible way.

Debrief User
testing

Short
introduction

Pre-test
interview

Post-test
questionnaire

Including post-test

interview of things

discussed during

the thinking aloud

session.

Find test subjective

preferences,

experiences and

feelings through

questinnaire in

paper.

Think aloud testing

to investigate users

preferences,

experiences and

misconceptions of

the user interface.

Discuss the

outcome and

experiences from

last test session.

Introduce the

testing procedure.

Figure 5.9: Usability test procedure.

5.4.5 Usability evaluation

Usability analysis and evaluation include methods where developers get to know what

the users are satisfied with and how to conduct further design decisions to meet the

satisfaction and goals of the users. All the test results were analysed in the end of each

iteration. The analysis was based on observation, oral feedback and questionnaires. The

recordings from each test session was analysed and feedback for each test session was

noted to the respective test schema. Usability issues, proposal in new or change for user

tasks were collected in a backlog. The backlog was analysed every iteration and added

to a prioritised list for future implementation. The usability evaluation in the end of

each iteration was directed towards a tool or a operation, interface or layout.

Quantitative and qualitative methods were used in the analysis and end evaluation of

every iteration. The qualitative evaluation gave a good indication of the usability testers

cognitive thinking, their experiences when interacting with the client in both pragmatic

and hedonistic goals. The quantitative evaluation based on the questionnaires validated

the UCD outcome iteration after iteration. Quantitative usability test data evaluated

the usability of the website, if the UCD did give the outcome of better usability. The

evaluation results are discussed in chapter 9.

48

Chapter 6

Data store and data accessor

configuration

This chapter describes step by step how the PostGIS data store and GeoServer data

accessor were installed, populated and configured. First the OpenGEO Suite [61], a

complete development platform for geographic data including installers, documentation

and code examples was installed. Then population and configuration starting with

PostGIS data store and then the GeoServer is described during this chapter.

6.1 Geographic data store

Even if the PostgreSQL database enabled with PostGIS extension was installed during

the installation of OpenGeo package some configuration was needed to make it com-

plete. First step was to create a PostGIS database using the PostGIS template [88]

inside the PostgreSQL graphical user interface (GUI) pgAdmin. This template spatially

enables the database by configure extensions for PostGIS functions and data types. It

includes the mandatory tables for managing PostGIS functionality, spatial ref sys

and geometry columns.

49

Chapter 6. Data store and data accessor configuration

6.1.1 Create and populate PostGIS database

Create database tables

The next step was to create the database tables. Code listing 6.1 describes how the sta-

tion table was created including column names and data types. The complete database

schema, station, p salinity and p temperature are illustrated in Figure 2.2. All

data tables have the field absnum, it is a primary key in station and foreign key in

p salinity and p temperature.

Listing 6.1: SQL syntax for creating the station table.

1 CREATE TABLE station

2 (

3 absnum integer ,

4 stflag smallint ,

5 stlat numeric (8 ,5) ,

6 stlon numeric (9 ,5) ,

7 stdate date ,

8 sttime time without time zone ,

9 stsource character varying (12) ,

10 stversion smallint ,

11 stcountryname character varying (40) ,

12 stvesselname character varying (40) ,

13 stdepthsource integer ,

14 stlastlevel smallint ,

15 stdepthgrid smallint ,

16 stdepthgridmin smallint ,

17 stdepthgridmax smallint

18)

Import data into database tables

The data were copied into the database tables from simple text files using the Post-

greSQL function copy. In order to use the copy function PostgreSQL needed the correct

file system permissions, given by the properties of the text file copy is reading from.

50

Chapter 6. Data store and data accessor configuration

The text files contained the subset of data, one file for each table. The text had a

delimiter ”—” (dash) to separate the parameter values. Code Listing 6.2 specifies the

SQL command copying the parameters from a text-file into the station table. Some

issues arose in the copy process, consisting mainly corrections of empty spaces indicate

tab-indentation. The copy operation was a success if no error message appeared running

the query.

Listing 6.2: SQL syntax COPY data.

1 COPY station FROM ’C:\\ DatabaseData2003\station2003.txt’ WITH ←↩

DELIMITER ’|’;

The dataset imported into the database were measurements of temperature and salin-

ity within the year of 2003. This subset contained sufficient data to perform Web GIS

operations within satisfactory performance and client requirements.

Add geometry column in station table

At this point the database is populated with required database tables. The station

table was populated with the SFA point type to represent the latitude and longitude

[2]. This step of the process was performed by instructions described in [2]. The steps

to create and populate the geometry columns in the station table is described next.

Listing 6.3: station table including the new point variable.

14 CREATE TABLE station

15 (

16 absnum integer ,

17 stflag smallint ,

18 stlat numeric (8 ,5) ,

19 stlon numeric (9 ,5) ,

20 stdate date ,

21 sttime time without time zone ,

22 stsource character varying (12) ,

23 stversion smallint ,

24 stcountryname character varying (40) ,

51

Chapter 6. Data store and data accessor configuration

25 stvesselname character varying (40) ,

26 stdepthsource integer ,

27 stlastlevel smallint ,

28 stdepthgrid smallint ,

29 stdepthgridmin smallint ,

30 stdepthgridmax smallint ,

31 stPoint POINT

32)

1. Create new geometry column This step created a new geometry column in

the station table. The data in this column were stored as the SFA type point.

Code Listing 6.4 illustrates the SQL syntax in this operation. The parameters include

schema name, table name, column name, type of srid, type and dimension of geometry.

The Srid parameter defines the SRS used for the station table. It is also a foreign key

to the spatial ref sys table [89]. This Web GIS srid, 4326 is a parameter value of the

European Petroleum Survey Group (EPSG). EPSG:4326 is the projection of the SRS

World Geodetic System 1984 (WGS84) [90]. WGS84s coordinate system is Cartesian

Coordinates (X, Y, Z), it’s widely used, e.g as the coordinate system for the Global

Position System (GPS) [91].

Listing 6.4: SQL syntax to add Geometry coloumn.

1 SELECT AddGeometryColumn (

2 ’public ’, ’station ’, ’stPoint ’, 4326 , ’POINT’, 2

3);

2. Populate lon/lat data When the station table was successfully populated,

lon/lat pairs were given geometry encodings. The steps are illustrated in Code List-

ing 6.5, where stPoint is initialised for every lon/lat pair in the station table. The

ST SetSRIS() function sets the Spatial Reference System Identifier (SRID) of the ge-

ometry columns containing lon/lat values. The SRID was defined as a geometry type in

step 1, ST Point to the EPSG:4326 projection.

52

Chapter 6. Data store and data accessor configuration

Listing 6.5: SQL syntax set Point for every lat/lon pair.

1 UPDATE public.station

2 SET "stPoint" = ST_SetSRID (ST_Point (stlon , stlat), 4326);

6.1.2 Complete geographic data store

Populating and configuring the database as described in the previous section finalized

the initial work on the PostgreSQL PostGIS database. The remaining part was to

run some test queries to confirm the database geographic functionalities. One example

query is listed Code Listing 6.6. Running some test scripts with success concluded the

PostGIS database to be correct configured as a geographical data store for the Web GIS

application.

Listing 6.6: SQL syntax to test PostGIS data store.

1 SELECT "stPoint"

2 FROM station

3 WHERE ST_Distance ("stPoint" , ST_GeomFromText (’POINT (100 200)←↩

’, 4326))

4 < 10

6.2 Data accessor

The installation of GeoServer web server was included in the OpenGEO suite. GeoServer

is the web server providing the OWS support between GeoServer and the Web GIS client.

Figure 2.1 illustrates the data flow between the PostGIS database, GeoServer and the

Web GIS client.

6.2.1 Import data to GeoServer

GeoServer has native support for importing PostGIS database tables, shapefiles, Geo-

TIFF files as well as other formats, and enables simple importing of geographic data.

53

Chapter 6. Data store and data accessor configuration

Geographic data are imported through the GeoServer Layer Importer interface or the

Layer Importer REST API.

The Layer Importer interface in Figure 6.1 was used to import the station table into

GeoServer. The table was stored as a layer and was given a set of properties necessary

to publish the layer.

Figure 6.1: Import data into GeoServer.

While choosing a data source to import from, a set of connection parameters is prompted

by GeoServer to connect to the data source. Then the Import Loader scans the data

source, the PostGIS database for available geographic enabled data tables and prepare

for import. GeoServer saves the PostGIS connection as a data store to use in future.

Figure 6.1 illustrates the Importer Layer interface while importing data to GeoServer.

The Layer Importer also supports other data formats as GeoTIFF and Shapefiles. Other

database supported are Oracle and Microsoft SQL Server.

54

Chapter 6. Data store and data accessor configuration

6.2.2 Providing geographic data through GeoServer

As Figure 2.1 illustrates, GeoServer provides geographic data to the Web GIS client

through WMS and WFS. WMS and WFS protocols are OGC standardisations for pro-

viding geographic data as described in subsection 4.4. The station table imported to

GeoServer had to be configured to include the right geographic parameters including

the SFA point. Geographic data layers in GeoServer are available by HTTP request, see

Code Listing 4.2.

6.2.3 Providing non geographic data through GeoServer

The solution presented in [2] leverage the WFS protocol with special GeoServer capa-

bilities, SQL Views. A SQL View is a virtual table based on the result of a SQL query

to existing tables. Using parameter substitution inside GeoServer, the WMS Vendor

parameter VIEWPARAMETERS can be used to replace part of the SQL View query

[2]. Non geographic data, measurement values of temperature and salinity is paired with

their station parameter which incorporate their respective geographic data.

Create SQL View

A SQL View is created in the GeoServer user interface. Figure 6.2 and Figure 6.3

illustrates a SQL View created in GeoServer. Code Listing 6.7 shows a SQL syntax

to create a new SQL View. This SQL view was used in the functionality described

in section 8.7. The parameters in line 7 describes the dynamic parameters within a

range between %low% and %high%. Figure 6.2 illustrates the regular expression which

validate the input parameter to allow only positive floating numbers. The parameters

are used in the implementation code to dynamically set parameters for the view. See

Code Listing 6.8 for implementation usage. Line 4 specifies parameter list for a contour

layer based on the parameters %low% and %high%.

Listing 6.7: SQL syntax to create SQL View in GeoServer.

1 SELECT p_temperature.level , p_temperature.value , station."←↩

stPoint", station.stcountryname , station.stvesselname , ←↩

station.stsource

55

Chapter 6. Data store and data accessor configuration

2 FROM p_temperature

3 JOIN station

4 ON p_temperature.absnum = station.absnum

5 WHERE p_temperature.level BETWEEN %low% AND %high%

Listing 6.8: SQL View used in implementation.

1 var contourParams = {

2 LAYERS: ’opengeo:stationTemperatureAtLevel ’,

3 TILED: false ,

4 VIEWPARAMS:’low:’ + low + ’;high:’ + high

5 };

6 var contour = new ol.layer.Image({

7 title: ’Contour at’ + low + ’ to ’ + high + ’m’,

8 source: new ol.source.ImageWMS ({

9 url: ’http :// localhost :8080/ geoserver/wms’, //url ←↩

Geoserver request

10 params: contourParams ,

11 serverType: ’geoserver ’,

12 visible: true ,

13 opacity: 0.2

14 })

15 });

This is a high level description of SQL Views. A more detailed description, some com-

ments about an alternative solution and the security aspect of using SQL Views can be

read in [2]. Several SQL Views was created and used for different purposes during this

client implementation.

56

Chapter 6. Data store and data accessor configuration

Figure 6.2: SQL View in Geoserver.

Figure 6.3: SQL View in Geoserver.

57

Chapter 7

Design and implementation of

prototype

This chapter describes the implementation steps of the Web GIS client. The Web GIS

software technologies are introduced in chapter 4. The geographical technologies with

installation, configuration and population of the data store and data accessor is presented

in chapter 6. This chapter starts by describing the architecture and design of the Web

GIS client. Then AngularJS components, principles and patterns are defined before the

client components are presented. In the end testing and quality assurance are discussed.

7.1 Architecture

Figure 7.1 highlight the three architectural layers in the Web GIS client. The prototype

components are divided by single responsibility principles. Each component should have

one responsibility to attain a modular applications as described in subsection 7.4. This

architecture decouple the components from each other, make it more testable and loosely

coupled.

The components are defined in a UML class diagram in Figure 7.5. It illustrate the

scope of the components, the view, controllers, services and its dependencies to each

other. The next sections describe the components and its purpose in more detail.

59

Chapter 7. Design and implementation of prototype

Data

Logic

Presentation

JSON/XML

SQL

HTTP

Figure 7.1: Web GIS client architecture.

Two-way
Data Binding

Model

View ControllerCalls

Manipulates

Figure 7.2: Interaction between the MVC components.

Each component is designed to be simple and modular implementing software design

patterns and principles described in subsection 7.4.1.

The design implements the MVC pattern which separate the application into model, view

and controller components such as described in 7.4.1. Figure 7.2 divides the components

of the application into the AngularJS MVC pattern.

60

Chapter 7. Design and implementation of prototype

Map
Map controller

NavigationMenu

Map
zoom,
layer
view

Form controller

Filter, query, table and chart features.

BBox controller

Date controller

Attribute controller

Figure 7.3: Client prototype conceptual model.

7.2 User interface design

The client prototype is designed as a simple web page application as specified in Fig-

ure 7.3. Each section representing the user interface components. The navigation menu

is in the top left of the page and whenever clicked the menu is opened/closed by the

AngularJS Bootstrap Accordion directive [92]. The map has an absolute position in the

center of the view and is accessible whenever needed.

7.3 AngularJS components

An AngularJS module is a container including the components for a specific part of

the application. Figure 7.4 illustrates the module in the architecture of the AngularJS

components. The module calls a config() method to set up the routes paths for the

application. The routes includes controller and HTML template.

The prototype is a one module application. In a larger more complex application it

would be proper to have a module for feature as a container for its components.

The Web GIS client Model, View and Controller components are introduced in the

next sections.

61

Chapter 7. Design and implementation of prototype

Module

Config

Routes

View Controller

Directive Service

UsesUses

$scope

Figure 7.4: Overview of interaction between the AngularJS components.

7.3.1 View

The view is a one page HTML document illustrated in Figure 8.2. Filtering and searching

is done through the view. DOM manipulation is mainly done in AngularJS directives and

services. Behaviours in the DOM are handled with AngularJS directives, which extend

the view with attributes and elements. Business logic is restricted to the controller

discussed in subsection 7.3.4.

7.3.2 Model

The model is maintained in the controllers and services through the $scope object.

The Model is a pure JavaScript object which by ”.” notation refers to properties of the

object. AngularJS implements two-way data-binding. Two-way data-binding changes

the model in the view and in the controller. By binding a model variable to the a HTML

element, the model variable is displayed and modified by the HTML element. It enables

62

Chapter 7. Design and implementation of prototype

the model to update the view and the view to update the model. It is illustrated in

Figure 7.2 and in line 1 in Code listing 7.1.

Listing 7.1: Example of two-way data-binding.

1 First name: {{ firstName }}

2 <label >Set the first name: <input type="text" ng -model="←↩

firstName"/></label >

7.3.3 Directive

Directives contains business logic for behaviours in the DOM such as displaying HTML,

validation, converting and arithmetic operations. Directives create behaviours by at-

taching a marker on the DOM. Code listing 7.2 illustrates a directive which write a text

to the DOM. Line 1-6 is the directive while line 8 and 9 describes two examples of how

to use the directive in the view.

Listing 7.2: Simple directive adding a text string to the view.

1 app.directive(’helloWorld ’, function () {

2 return {

3 restrict: ’AE’,

4 replace: ’true’,

5 template: ’<h3>Hello World !!</h3>’

6 };

7

8 <hello -world/>

9 <div hello -world ></div >

7.3.4 Controller

Attaching a controller to the view is done with the ng-controller directive. The

AngularJS controller instantiates the $scope object for the model and each controller

63

Chapter 7. Design and implementation of prototype

contains a $scope object for its purpose. It decomposes the DOM into testable com-

ponents where no DOM manipulation should be included. AngularJS controllers add

behaviour to the $scope object. Good practise implies not referring to any specified

DOM elements inside the controller, such as div ids or implement business logic as

discussed in section 7.4.

The controllers are not big classes, they depend on service and factory components of

the application to perform business logic such as change of state or performing $http

requests.

7.3.5 Service

Managing data through $scope is not easy in AngularJS. Scopes can be corrupted

and/or changed by controllers and directives. The model in services can be accessed

through every controller which has injected the service. The component can be reused,

have their own dependencies and be easily tested [40]. AngularJS dependency injection

make this achievable. A service is instantiated as a singleton whenever injected, which

is usable when one object need to be accessible over several components.

7.4 AngularJS principles and design patterns

AngularJS bootstraps the application and its dependencies automatically. When the

application is compiled a $rootscope is created. An AngularJS $scope is a plain

JavaScript object which can attach properties to it. $rootscope is available for ev-

ery code module within the application. Every parent scope can have child scopes,

which means that each child inherits from its parents scope. Every controller has a

$scope attached to it. Code Listing 7.3 describes how the $scope is defined by the

ng-controller in the view.

Listing 7.3: Adding a scope to the View in AngularJS.

1 <div ng -controller="MapCtrl">

2 <div id="map" class="map"></div >

3 </div >

64

Chapter 7. Design and implementation of prototype

AngularJS has one and two-way data-binding which can change the model value. Angu-

larJS removes all DOM manipulation from the view into directives. The controllers are

containers for the model, they instantiates variables and perform simple operations for

the current model in the DOM while directives performs the business logic. Services are

code modules for reusable code throughout the application. Services does not depend

on scope and can be injected to every component depending on it. Figure 7.2 illustrates

the AngularJS MVC pattern with the components described in subsection 7.3.

7.4.1 AngularJS design patterns

AngularJS follow design patterns which separate the JavaScript code into business and

presentation logic, independent modules which can be injected whenever needed.

Model Viewer Controller

MVC is an architectural pattern for implementing user interfaces [93]. Figure 7.2

presents the interaction between the MVC components of AngularJS. MVC separates

the components concerns Model represent the scope, View is the HTML and the Con-

troller contains the business logic [40].

Dependency injection

The code is modular by the principle of dependency injection [40]. This design pattern

divide the code into modules and explicitly defines what injected modules are present.

Every reusable module can easily be exchanged for another module. Dependency injec-

tion is important for unit testing, to isolate behaviour and substitute with e.g mocks.

It also increases the performance by injecting only dependent modules by the specific

operation.

Singleton pattern

The singleton pattern [94] is a design pattern, where a single instance of an object is

created. The singleton is maintaining state and properties of the model object through

the application. E.g the Map service instantiates a map object which is coordinated

65

Chapter 7. Design and implementation of prototype

through the application. See subsection 7.7.3 for the implementation concepts of the

Map service.

7.4.2 AngularJS Service

Promises

AngularJS promises $q [42] is an AngularJS service for handling asynchronous functions

and the return values. AngularJS $q library is implementing promises and deferred

objects. A service which run functions asynchronously which use the returning values

when the processing is done. The returning values has have a set of available functions e.g

then(), catch() and finally(). then() can create chained function calls to control

the handling of asynchronous function calls. Code listing 8.1 on page 94 illustrates the

chained function where some asynchronous calls has to be completed before the next

can proceed.

7.5 Front-end frameworks and libraries

7.5.1 AngularJS

AngularJS is a modular web framework. The modules define how the application is boot-

strapped, specifies the dependencies and to declare how the wiring and bootstrapping

happens. Every dependent module in the client was explicit added in the application

configuration file app.js specified in Code listing 7.4. ui.bootstrap is a module con-

taining native AngularJS directives for user interface elements used in the GUI. The

client implementation used AngularJS core ng components. Other modules are ngRoute

a service for linking URLs to controllers and views. Every dependencies as directives or

services was included directly as described in Code Listing 7.5.

Listing 7.4: Module dependencies in app.js.

1 angular

2 .module(’masterApp ’, [

3 ’ui.bootstrap ’

4])

66

Chapter 7. Design and implementation of prototype

Listing 7.5: Component dependency definition.

1 angular.module(’masterApp ’)

2 .controller(’MapCtrl ’, function ($scope , mapService) {

3 // some content ..

4 });

7.5.2 Openlayers

The old Web GIS client was written with OpenLayers 2. A new rewritten version Open-

Layers 3 was released autumn 2014. In the new version the API and syntax has been

changed and/or removed. OpenLayers 3 was used in this thesis to write the new client

even if OpenLayers 2 would satisfy this Web GIS client requirements. OpenLayers 3 has

little documentation in comparison to OpenLayers 2 which has a well documented API,

books and tutorials. OpenLayers 3 is an open source project with a good community

to support future development and it would become time-consuming in a later stage of

development to convert from OpenLayers 2 to OpenLayers 3.

7.6 Development challenges

7.6.1 OpenLayers 3

New concepts had to be written to implement the core functionalities of the new Web

GIS client. Implementing requests to GeoServer included to filter the request based

on the parameter input from the users of the application. The Filter Encoding which

creates and encode the filters before they are added to the request. In OpenLayers 3 the

filters had to be manually merged by contructing SQL strings before adding the it to the

request. Appendix C describes the development changes converting from OpenLayers 2

to OpenLayers 3.

67

Chapter 7. Design and implementation of prototype

7.6.2 Same origin Policy (SOP)

Requesting remote file (file on a different protocol, domain or port) from JavaScript

code demands a connection to the server. Security issues including malicious attacks

can occur, the Same origin Policy (SOP) prevents this from happen [95].

Cross-origin resource sharing (CORS), requesting data from the client code, hosted at

http://localhost:9000 to the independent server hosted at http://localhost:8080, is not

passing the SOP. The request is not granted access to the server because the client and

server are considered as different domains by most browsers except Internet Explorer

[2].

Implementing cross browser requests can be done by a web proxy as suggested in [2], or

using JSONP. JSONP is dynamically firing request call using the <script> tag which is

not subject of SOP. JSONP can easily be implemented but there are some shortcomings

and security. Cross Site Request Forgery (CSRF) attacks can occur, malicious pages

can download and alter the data [95].

The new Web GIS client implemented a work around SOP by configuring the Chrome

web browser with a CORS add-on which in a controlled development environment al-

lowing the browser to make a request which usually should not be allowed.

7.7 Client prototype components

All components listed in Figure 7.5 on page 71 is described in this section. The compo-

nents are defined with responsibility and purpose.

7.7.1 Directives

There are two date directives in the prototype implementation. DataPickerPopup

and DateConverter. They are both small directives responsible of creating the date

picker in the DOM and validating the date input. They are both directly used by the

DOM and have no other dependencies. They are general directives which are reusable

components.

68

Chapter 7. Design and implementation of prototype

M
ap

Co
n

tr
o

lle
r

+m
ap

M
ap

Se
rv

ic
e

+m
ap

O
b

j(
)

Fo
rm

C
o

nt
ro

lle
r

+q
u

er
y.

ru
n

Q
ue

ry
()

Fo
rm

Se
rv

ic
e

G
eo

Se
rv

er
Se

rv
ic

e

+g
et

Fe
at

u
re

()

B
B

o
xC

o
nt

ro
lle

r

+c
h

an
ge

()

A
le

rt
Se

rv
ic

e

+a
d

d
()D

at
eC

o
n

tr
o

lle
r

+f
ro

m
D

at
e

+c
le

ar
()

A
tt

ri
b

u
te

C
o

n
tr

o
lle

r

+c
o

u
nt

ry
C

ha
n

ge
d

()

Ta
b

le
Se

rv
ic

e

+e
xt

ra
ct

Ta
b

le
D

at
a(

)

C
ha

rt
Se

rv
ic

e

+s
e

le
ct

e
dF

ea
tu

re
sM

u
lt

iP
lo

t(
)

D
en

si
ty

Se
rv

ic
e

+d
en

si
ty

O
fS

ea
w

at
er

A
tH

ei
gh

t(
)

D
at

aC
on

ve
rt

er

+f
u

nc
ti

o
n(

)

D
at

eP
ic

ke
rP

o
p

u
p

+f
u

nc
ti

o
n(

)

C
o

n
tr

o
lle

rs

Se
rv

ic
es

D
ir

ec
ti

ve
s

+g
et

P
ro

p
er

ty
V

al
u

e
()

+g
et

P
re

vi
o

u
sP

ar
am

e
te

rs
()

-a
sy

nc
G

et
R

eq
u

es
t(

)

+s
e

tT
o

D
at

e
()

+s
e

tF
ro

m
D

at
e

()

+s
e

tS
o

u
rc

e
A

tt
ri

b
ut

e(
)

+s
e

tB
B

o
xF

ilt
e

r(
)

+s
e

tC
o

un
tr

yA
tt

ri
bu

te
()

+s
e

tV
e

ss
e

lA
tt

ri
b

u
te

()

+g
et

B
B

ox
Fi

lt
er

()

+g
et

Fr
o

m
D

at
e(

)

+g
et

To
D

at
e(

)

+g
et

C
o

u
n

tr
yA

tt
ri

b
u

te
()

+g
et

V
es

se
lA

tt
ri

b
u

te
()

+g
et

So
u

rc
eA

tt
ri

b
u

te
()

+h
ig

h
lig

h
tF

ea
tu

re
s(

)

+a
d

d
C

Q
LF

ilt
e

rs
()

+c
lo

se
A

le
rt

()

+c
lo

re
A

le
rt

Id
x(

)

+c
le

ar
()

+e
xt

ra
ct

Ta
b

le
Pr

o
pe

rt
ie

s(
)

+a
llF

ea
tu

re
sM

u
lt

iP
lo

t(
)

+d
en

si
ty

P
lo

t(
)

-a
d

d
M

ul
ti

P
lo

tS
er

ie
s(

)

-p
lo

tC
h

ar
t(

)

-c
al

cu
la

te
Pa

ra
m

et
er

Le
ve

ls
()

-i
te

ra
te

()

-s
al

Se
ri

es
()

-t
e

m
p

Se
ri

es
()

-a
d

d
Fe

at
ur

eS
er

ie
s(

)

-c
o

m
pu

te
D

e
ns

it
y(

)

-c
o

n
ct

ru
ct

D
at

e(
)

-v
al

id
at

eD
ay

M
o

n
th

()

+v
e

ss
e

lC
h

an
ge

d
()

+s
o

u
rc

e
C

ha
n

ge
d

()

-i
n

it
()

+r
es

et
Pa

ge
()

-g
et

B
B

ox
Fi

lt
er

()

-d
ra

gB
o

x(
)

-c
h

an
ge

V
ie

w
()

+q
u

er
y.

d
el

e
te

Q
u

er
y

+r
un

Q
ue

ry
()

+e
xp

o
rt

()

-r
un

C
u

rr
en

tQ
u

er
y(

)
-b

u
ild

Q
ue

ry
St

ri
n

g(
)

-p
lo

tF
ea

tu
re

s(
)

-p
lo

tC
u

rr
en

tD
en

si
ty

()

+p
lo

tD
en

si
ty

()
+p

lo
tS

el
e

ct
ed

Fe
at

u
re

s(
)

+p
lo

tA
llT

em
p

er
at

ur
e(

)
+p

lo
tA

llS
al

in
it

ie
s(

)
+t

e
m

p
e

ra
tu

re
C

o
nt

o
ur

()

M
od

al
C

on
tr

o
lle

r

+o
p

en
()

+i
n

fo
()

M
od

al
In

st
an

ce
C

tr
l

+o
k(

)

+o
p

en
()

+t
o

gg
le

M
in

()

-m
em

b
er

N
am

e

+t
o

D
at

e

D
O

M

O
p

en
La

ye
rs

 3
La

ye
rs

w
it

ch
er

XM
Lt

o
JS

O
N

M
ap

 la
ye

rs

La
ye

r
sw

it
ch

er

C
on

ve
rt

er

Figure 7.5: UML class diagram.
69

Chapter 7. Design and implementation of prototype

7.7.2 Controllers

The controllers and inheritance is illustrated in Figure 7.3 in page 63.

Form Controller

The Form controller connects the input from the form elements in the DOM. It is

a container for handling the form variables for DOM elements such as is a element is

visible or not, all captured in the $scope object. This controller activates every event

happening in the menu and manipulates the model and updates the view. Figure 7.3 on

page 63 defined the bounds of this controllers scope object.

Bounding Box Controller

The Bounding Box controller initialises the variables and methods inside the filter

menu for bounding box in the GUI. It validates and keeps track of text input and events

triggered by drawing a bounding box with the mouse.

Date Controller

The Date controller is initialising, validating and converting the JavaScript Date ob-

ject used in the date filter, into a format which is comparable and searchable in the

database. This is a generic and reusable controller.

Attribute Controller

The Attribute controller wrap the attribute filter in the query menu. It fetches the

list of parameters from the database in an init() call, to dynamically update the list

of parameters by the parameters in the database. It keeps track of attributes input and

with two-way data-binding updates the parameter list for the current query.

ModalCtrl and ModalInstanceCtrl Controller

These controllers handles the modal widget. The modal widget is a widget used to give

information about the Web GIS client. The controllers opens it and handles the content

and events such as close button. These are general controllers and reusable components.

70

Chapter 7. Design and implementation of prototype

7.7.3 Services

Map Service

This singleton service creates and maintain the instance of the map object and the map

controllers, zooming, layer-switcher, pointer move and data point pop-up widget. Code

Listing 7.6 creates a layer by a WMS request to GeoServer, see details of parameter list in

subsection 4.4.2. Code Listing 7.7 creates the map object and includes the layer created

in Code Listing 7.6. The map object is a singleton which are dynamically changed by

adding/deleting new layers and is updated in every controller injecting the Map service.

Listing 7.6: Initialise and create map layers.

1 var mapLayers =

2 new ol.layer.Image({

3 title: ’Measurements ’,

4 source: new ol.source.ImageWMS ({

5 url: ’http :// localhost :8080/ geoserver/wms’,

6 params: {’LAYERS ’: ’opengeo:station ’, VERSION: ’1.1.1’←↩

, ’TILED ’: true},

7 serverType: ’geoserver ’,

8 visible: true ,

9 opacity: 0.2

10 }),

11 renderOptions: {

12 zIndexing: true

13 }

14 });

Listing 7.7: Create map object.

1 map = new ol.Map({

2 target: ’map’,

3 renderer: ’canvas ’,

4 layers: [

5 new ol.layer.Group({

6 ’title ’: ’Base maps’,

71

Chapter 7. Design and implementation of prototype

7 layers: [

8 new ol.layer.Tile({

9 title: ’OSM’,

10 type: ’base’,

11 visible: false ,

12 source: new ol.source.OSM()

13 })

14]

15 }),

16 new ol.layer.Group({

17 title: ’Overlays ’,

18 layers: [mapLayers]

19 })

20],

21 view: view ,

22 controls: ol.control.defaults ().extend ([

23 new ol.control.ScaleLine (), new ol.control.ZoomSlider () ←↩

// ScaleLine in the bottom of the map

24])

25 });

The Map service has public methods supporting the map functions: setFilter() and

highlightFeatures() to change and or add new layers into the map. The Map service

is a reusable and independent component as illustrated in Figure 7.5.

GeoServer Service

GeoServer service is an independent AngularJS service component which main pur-

pose is to send HTTP requests to GeoServer. It is dependent of $http service which

communicates with the web service by XMLHttpRequest. The GeoServer component

uses the AngularJS core service $http to build requests and send them to GeoServer.

GeoServer has public methods which performs different HTTP requests. Figure 7.5

displays this service and its private and public functions. This component can easily be

extended to send other requests or be changed with some other component.

72

Chapter 7. Design and implementation of prototype

Code Listing 7.8 and 7.9 specifies a request to GeoServer with additional parameters.

The request is a query string as seen in Code Listing C.3 in page 137, how it is handled

in the implementation is described in Code Listing 7.10. It describes a response with

$http methods success() and error() which handles the callback from GeoServer.

The parameters are data, status, statusText in both cases.

Listing 7.8: Get data from GeoServer.

1

2 // fires a GetFeature WFS request to server

3 getFeature: function (extraParameters , callback) {

4 // some default parameters that will be set ←↩

automatically if not

5 // overridden in extraParams

6 var parameters = {

7 REQUEST : ’GetFeature ’,

8 SERVICE : ’WFS’,

9 VERSION : ’1.0.0’

10 };

11

12 // extend provided parameters onto default parameters , ←↩

make request

13 return asyncGetRequest(angular.extend(parameters , ←↩

extraParameters), callback);

14 }

Listing 7.9: Asynchronous request.

1

2 // fires an async. HTTP GET request to server

3 var asyncGetRequest = function(parameters , callback) {

4 previousRequestParameters = parameters;

5

6 return $http({

7 url: WFSserver ,

8 method: ’GET’,

73

Chapter 7. Design and implementation of prototype

9 params: parameters ,

10 callback: callback });

11 };

Listing 7.10: Use of GeoServer service.

1 GeoserverFactory.getFeature ({

2 TYPENAME : ’station ’,

3 OUTPUTFORMAT : ’json’,

4 SRSNAME : ’EPSG :4326’,

5 CQL_FILTER : filter

6 }).success(function(data , status , statusText) {

7 // some code

8 }).error(function(data , status , statusText){

9 $log.error(’Error in request to server ’ + status + ’Status ←↩

text from server ’ + statusText);

10 });

Form Service

Form service is a model for the form elements and its properties. It is designed to be

a setter/getter service to maintain access to properties across scopes in controllers.

Alert service

Alert service instantiates a global alert service for every component injecting it. Ev-

ery alert is customisable by a set of parameters type, msg, timeout. type defines what

kind of alert it is e.g warning or success, msg is the actual alert message and timeout

is parameter for how long the alert should be displayed. The alerts are attached to the

$rootscope which is available for every code component and independent of defined

controller scope. This service is a reusable utility component.

Density service

74

Chapter 7. Design and implementation of prototype

The Density service has a public API which provides the density calculation of tem-

perature and salinity measurements. Code Listing 7.11 specifies the public function call

and parameters used. This service is independent and fully reused from the old Web GIS

client application [2]. Code Listing 7.12 spesifies the call from Chart service in line

2 where the parameters for density, salinity value, temperature value and sea level are

included in the calculations. Illustration and demonstration of this feature is discussed

in subsection 8.6.2. Detail implementation for Density service is refereed reading to

[2].

Listing 7.11: Calculate density.

1 // Public API here

2 return {

3 densityOfSeawaterAtHeight: function (salinity , temperature←↩

, height) {

4 return densityOfSeawater(salinity , temperature ,

5 gaugePressureInSeaAtDepth(height));

6 }

7 };

Listing 7.12: Example of calculating density inside Chart service .

1 computedData[i]. properties.level = level;

2 computedData[i]. properties.value = densityFactory.←↩

densityOfSeawaterAtHeight(salVal , tempVal , level);

Table service

The Table service has two public functions. Code Listing 7.13 instantiates the col-

umn properties of a data table in the view. It uses a JavaScript function to iterate

the list of JSON objects and fetches the object data before returning the data. Line

5 gets each object property for the first JSON object in the data list. The other pub-

lic function extractTableData(JSONdata) extracts data from a HTTP JSON response.

75

Chapter 7. Design and implementation of prototype

Listing 7.13: Extract table properties.

1 extractTableProperties: function(JSONdata) {

2 // Construct the table headings from the data

3 angular.forEach(Object.keys(JSONdata [0]. properties), ←↩

function(key){

4 // Value of each properties for the Grid headings

5 colDefs.push({ field : key });

6 });

7 }

Chart service

Chart service uses Highcharts and constructs charts with different parameters to the

view. This service has a list of dependencies which make this service unique for this ap-

plication. It is not loosely coupled such as the other services and will obviously benefit

from decoupling in the future. Still the Chart service has a public API which draw

the different charts described in subsection 8.6.

7.8 Testing and quality assurance

7.8.1 W3C standard compliance

W3C standards define a quality assurance of HTML5 and CSS3 files through online

validators. The validators was easy to use by appending the HTML or a CSS text in

an online text field. The HTML file was validated by W3C mark up validation service

[96]. The validation had current errors regarding the AngularJS ng directive which was

altered by adding a data attribute in the beginning like data-ng-app to get the HTML

validate.

The CSS file was validated by W3C CSS3 [97] validator. The CSS file validated without

errors in the validator for CSS3 standard compliance. The validator assess the code to

assure the quality is updated to the standard compliance.

76

Chapter 7. Design and implementation of prototype

7.8.2 Unit testing

JavaScript is a dynamical language and hard to debug. It is hard for the compiler to

debug errors in asynchronous methods. A test suite is beneficial for building a main-

tainable and sustainable JavaScript application. The input and output of JavaScript

methods must be tested to assure the code is doing what it is supposed to. The client

prototype has a test suite. The test suite include sets of test cases covering a part of the

code. The test cases are simple component instantiation, state initialisation and unit

tests.

The unit test covering black box test between components assuring the interfaces be-

tween the components works as expected. Code Listing 7.14 specifies a test case for the

Map controller. The test verifies if the $scope.map variable in the Map controller

is initialised by calling the highlightFeatures() of the Map service. Code line 4-10

is the set up method for the test cases where dependencies are injected in the first line.

Line 6-8 set the spy on and adds the andcallFake() method to return the string ’map’.

A Jasmine spy is a test double [98] function which mocks the highlightfeatures()

method with specified values for testing. Line 9 initialises the controller being tested

and sets the dependencies. Line 12-14 is the test method expecting the scope variable

map being set to ’map’ when the controller is initialised.

Listing 7.14: Example of test case.

1

2 var scope , MapCtrl;

3

4 beforeEach(inject(function ($controller , $rootScope , ←↩

mapService) {

5 scope = $rootScope.$new();

6 spyOn(mapService , ’highlightFeatures ’).andCallFake(function ←↩

() {

7 return ’map’;

8 });

9 MapCtrl = $controller(’MapCtrl ’, { $scope: scope , mapService←↩

: mapService });

10 }));

11

77

Chapter 7. Design and implementation of prototype

12 it(’should verify the highlingtFeatures () is called properly←↩

’, function () {

13 expect(scope.map).toEqual(’map’);

14 });

Dependency injection easily replaces application components for mocks or stubs to test-

ing. The modular design makes the client testable by adding the components to test,

one by one.

Jasmine and Karma integration ran the unit tests in the test suite and were easily

managed through the Grunt terminal. Figure 7.6 illustrates test running with success

the Grunt terminal.

Figure 7.6: Grunt test GUI in WebStorm.

.

7.9 Prototype development

7.9.1 Rewriting Web GIS application

The old Web GIS client [2] was a single web page implemented with JSP and addi-

tional JavaScript libraries, mostly jQuery. JQuery is a library which simplifies DOM

78

Chapter 7. Design and implementation of prototype

Componenet Lisence

WebStorm Academic License

Yeoman Non

Grunt Non

Bower Non

Travis Non

Table 7.1: Development tools used in implementation

manipulation by focusing on document traversal, event handling, animation and AJAX

interactions [99].

AngularJS and jQuery have different approaches for handling DOM manipulation. JQuery

couples the logic in the controller to DOM with div tags, AngularJS decouples DOM

and the logic by introducing directives by the use of $scope variables. See subsection 7.4

for more on AngularJS DOM manipulation.

The rewriting of client code resulted in a completely new implementation code and struc-

ture. AngularJS uses part of the jQuery library but has its own implementation features

for building interactive web applications as described in subsection 4.5.2. AngularJS is

a web framework with unique syntax. It is a framework which give guidelines how the

structure and implementation code should appear in difference to jQuery which in a

JavaScript library for feature rich DOM manipulation.

7.10 Front-end development environment

The Web GIS client was implemented on a Windows 7 64 bit personal computer includ-

ing 4GB RAM, 2,4GHz processor. Subsection 4.5.6 and 4.5.7 describes the development

environment and Figure 7.7 represent the client technologies including development en-

vironment. Development tools are displayed in Table 7.1.

A software development environment was constructed as a supporting element to it-

erative development and CI. The build server, Travis CI was connected to a GitHub

repository for continuous testing of newly integrated code. WebStorm was managed by

an automatic build tool Grunt in addition to Yeoman, a code generator and a package

manager Bower. Read subsection 4.5.5 for technology description.

79

Chapter 7. Design and implementation of prototype

Figure 7.7: Software technology in the presentation layer

7.10.1 Continuous Integration

Travis CI support was successfully configured and linked with GitHub. Travis has good

integration support for GitHub. GitHub was the version control for the project, all

code pushed to Travis was built and all unit tests were tested. The CI and interaction

between GitHub and Travis was an important factor to assure the code base was running

as expected.

80

Chapter 8

System demonstration

This chapter describes the features of the client prototype. All core features are de-

scribed by examples illustrating the GUI and specifying the interactions between the

code components.

Implementation concerns such as the installation and configuration of geographic database

and web server is referred to chapter 6. Design and implementation decisions are dis-

cussed in chapter 7 and the choice of software technologies are presented in chapter 5.

8.1 Web GIS client front page

The Web GIS front page displays a map with a set of data points. The data points

are scoped to temperature and salinity measurements performed by Norwegians during

the year of 2003. Figure 8.1 illustrates the front page GUI. In the top left side is the

menu button, an accordion menu which extends when clicked. Figure 8.2 displays the

extended menu with it is content. The front page does not scroll other than the menu

content.

8.2 Display map and its controllers

The map and it is controllers are as illustrated in figure 7.3 a large part of the web page.

The map controllers for zooming, switching background or data layer and mouse pointer

81

Chapter 8. System demonstration

Figure 8.1: Map controller interface.

Figure 8.2: Map controller interface with menu.

coordinates are available whenever the map is present. Mouse events are also available

for scrolling for zooming in and out and panning. Section 7.7.3 describes how the Map

service component initialises and handles the map object during the application. This

section fulfils FR04, which requires a map widget and common map controllers.

8.3 Query data, search in data

A dataset query is initialised when the Run query button inside the menu is clicked.

The query can be customised with a set of filters as illustrated in Figure 8.5. The button

82

Chapter 8. System demonstration

event builds a request by collecting all filter attributes from the Form service and builds

a filter string attached as a parameter to the getFeature() function to the GeoServer

service component. The response from GeoServer service, a callback containing a

JSON object. Figure 8.3 illustrates the interaction between the client and geographic

web server and database during a request procedure. This functionality fulfils FR01,

Query data by a set of parameters.

controller: form.js
webserver:
GeoServer

datastore: PostGisGeoServerFactory

getFeature(TYPENAME, CQL_FILTER) GetFeature()

Spatial query

callback

service:Form

getCountryAttribute()

getVesselAttribute()

getSourceAttribute()

getFromDate()

getToDate()

buildQueryString()

getBBoxFilter()

Figure 8.3: Sequence diagram of requesting filtered data.

The design of the query, GUI has evolved during the iterative UCD process. Figure 8.4

illustrates the first GUI design. Feedback from the users has evolved the GUI. Figure 8.5

defines the latest menu GUI designed to improve the usability for the users.

Usability testing resulted in important feedback which emerged into new functionality,

as described in subsection 5.4.4. A new functionality of previewing resent queries and

their filters was developed into a new user story. The users wanted to customise the

query function for optimality.

User story

83

Chapter 8. System demonstration

Figure 8.4: First GUI design of the bounding box controller interface.

Figure 8.5: Final GUI design bounding box controller.

84

Chapter 8. System demonstration

As a user I want to rerun an old query from a list of my resent queries so I don’t have

to re-enter the query filters.

A list of previous queries lets the user reduce time and effort to run the queries again.

This procedure is as illustrated in Figure 8.3, initialised with a list of the previous query

objects containing all the filter parameters. Figure 8.6 displays the new GUI with a list

of queries in the top. Each query in the list can be reran and permanently deleted.

8.4 Display query response in map

For every query to GeoServer the new layer is being redrawn to display the response

dataset. The highlightFeatures(filter) method in the Map service component

is called, with the current query filters as parameter. The singleton map object in

Map service add the new map layer and draws the data points in the browser. This

functionality fulfils FR02, Present queried data inside map in browser.

Every data point inside the map widget has a information label attached to it. For

every data point clicked, a label containing information of the data point is opened.

The data point information is requested by the GetFeatureInfo() function, described

in subsection 4.4.2. A single click event in Map service activates the request and attach

the response to a pop-up in the view. This functionality fulfil FR05, which requires a

query by a specific point in the map. Figure 8.1 illustrates data point rendered as a

WMS raster layer into the map.

8.5 Display response data in tabular form

Figure 8.6 displays the result from a query, non geographic data in a tabular form. The

table can filter by parameter, add/remove columns as illustrated in the right drop down

menu in Figure 8.14. It can also show information about the number of items, showing

items and selected items as seen in the bottom of the table in Figure 8.6. The table

enables easy selecting/deselecting one or all rows of data.

85

Chapter 8. System demonstration

Table service generates the table properties by calling the method extractTableProperties(JSONdata).

Data in the tables are extracted from the response (callback) JSON object by calling

the extractTableData(JSONdata) method. The Angular UI-Grid is implemented as a

container for presenting the dataset.

Figure 8.6: View data result set in tabular form.

8.6 Display dataset in chart

Dataset in tabular form is meta data of current observations, and do not display values

of measurements done at the observation position. To display measurements in charts

one or several rows of data must be selected to request to view the measurement values in

a chart. FR07 requires data represented in charts to compare multiple measurements.

FR07 is fulfilled with the set of charts available in this client prototype. Figure 8.8

86

Chapter 8. System demonstration

illustrates the density chart were the y-axis present the depth in sea level and the x-axis

represent the values for the temperature, salinity and density.

To display unique temperature, salinity or density data values in a chart, the user has

to select the desired datasets in the result table. SQL views to access temperature and

salinity values based on a specific station are provided by GeoServer. Section 6.2.3

describes SQL view and their purpose. The data response from GeoServer is a param-

eter to allFeaturesMultiPlot() in the Chart service component. Chart service

uses the Highcharts library to create interactive charts displaying the data. Figure 8.7

illustrates the interactivity with the chart, zooming and label of data points.

Figure 8.7: Zooming and data point label in temperature chart.

8.6.1 Display temperature and salinity

A temperature and salinity measurement value can be generated and displayed in a chart

by selecting a row in the data table. It is displayed in Figure 8.8 without the density

plot. This functionality is also applicable for displaying all available temperature or

salinity measurements available within dataset.

87

Chapter 8. System demonstration

8.6.2 Display density chart

Displaying a density chart includes calculation of one temperature and one salinity value.

The result is displayed in a chart together with temperature and salinity values. The

densityPlot(selectedIDs) method inside Chart service activates the

densityOfSeawaterAtHeight(salVal, tempVal, level) of Density service. The

Chart service renders the density chart in the view.

This functionality implement FR08, which request density calculation of temperature

and salinity values and presented into a chart. Figure 8.8 displays a density chart

containing both temperature, salinity and density graph.

Figure 8.8: Density chart for a set of temperature and salinity data.

8.6.3 Calculations for density chart

The calculation for the density chart are based on a selected temperature and salinity

value for a data set. The Density service does the calculation; the calculation details

can be studied in [2]. The density is calculated using a JavaScript method for handling

asynchronous request to assure both temperature and salinity levels are available before

densityOfSeawaterAtHeight(salVal, tempVal, level) is called. Code Listing 8.1

shows the then() method which calls next method when the result from the callback is

finished.

88

Chapter 8. System demonstration

Listing 8.1: Handling asynchronous calls in AngularJS.

1 calculateParameterLevels(selectedIDs , ’←↩

testView_station_temperature ’)

2 .then(function(data) {

3 // some code ...

4

5 calculateParameterLevels(selectedIDs , ’←↩

testView_station_salinity ’)

6 .then(function(data) {

7 // some code ...

Figure 8.9 shows the interaction between the components during the density plot pro-

cedure.

controller: form.js
webserver:
GeoServer

datastore: PostGisservice:GeoServer.js

GetFeature()
Spatial query

callback

service:chart.js

densityPlot()

getFeature(TYPENAME, CQL_FILTER)

loop

service: density.js

densityOfSeawaterAtHeight

Figure 8.9: Sequence diagram illustrating the density calculation procedure.

8.7 Display temperature contour and contour grid

The contour menu is an independent menu from filter and query menu. The contour

layer is calculated on all available datasets within the requested range of sea depths.

Figure 8.11 shows the GUI inserting range of sea depths for the contour layer. This is

a request which uses a SQL view layer in GeoServer to extract the temperature values.

89

Chapter 8. System demonstration

The result is the contour layer including yellow data point where the measurement values

are interpolated by. This functionality fulfils FR09, present a contour plot within a range

of meters in sea depth.

8.7.1 Calculate and display contour layer

The temperatureContoure(low, high) method requests a contour layer with a SQL

view as layer in GeoServer. A SQL view layer in GeoServer gathers proper values within

the low and high parameters from the PostGIS database. The response data from the

PostGIS database is styled in GeoServer with Barnes Surface Interpolation [100],

a style layer implemented in GeoServer. The contour layer is added to the map and

drawn into the browser window. Data points, geographic locations defining where the

measurements were done are rendered into the browser. These data points specifies the

location of the data the contour layer is interpolated from.

This feature changed during the testing sessions with the users. Figure 8.10 illustrates

the first version and Figure 8.11 illustrates the latest version of the contour layer menu.

The differences are not extensive but important for the users to seamlessly explore this

contour feature.

User story

As a user I want to render a contour layer with a discrete set of values within a range

of meters so I can read the temperature values inside the map.

In addition a color scale displaying the range of temperature in the contour layer was

implemented.

8.7.2 Calculate and display contour grid

A contour grid, an alternative to the contour layer was requested by the users. Contour

grid are mostly created from raster layers. The process implemented was a dynamic ren-

dering process, where data points were interpolated by Barnes Surface Interpolation

into a contour layer, then contour grid lines was extracted. All the functions was imple-

mented in one style layer in GeoServer inspired by [101].

90

Chapter 8. System demonstration

Figure 8.10: Early contour menu before design change.

8.8 Export functionalities

The client has functionality for exporting datasets in text or PDF format and graphs

in image format. The export functionalities fulfils FR06, Offer export functionality of

requested data. Every table representing data and every chart has export functionalities.

8.8.1 Export dataset

There are several export functionalities available in the client prototype. Feedback from

the usability testers requested extended functionality which led to two types of dataset

export options, each of them providing different options and format for export.

Export with GeoServer

This export functionality is implemented by sending request to GeoServer by clicking

the Export button triggering export(format) with desired format. A URL string is

created with a filter and format for the response as specified in line 1 in Code Listing 8.2.

The export is written into a new page in the browser or downloaded depending on the

format. Figure 8.13 illustrates the available export formates.

91

Chapter 8. System demonstration

Figure 8.11: Display contour layer with latest design changes.

Listing 8.2: URL string for export data from GeoServer.

1 var url = ’http :// localhost :8080/ geoserver/wfs?CQL_FILTER=’ + ←↩

urlFilter + ’&OUTPUTFORMAT=’ + format + ’&REQUEST=GetFeature&←↩

SERVICE=WFS&TYPENAME=station&VERSION =1.0’

2 window.open(url);

This export function downloads all data in the table. It has no filtering feature and the

usability testers argued a filtered version of export was necessary to accomplish their

export as they desired. A new user story was created during the UCD process and

implemented as described next.

92

Chapter 8. System demonstration

Figure 8.12: Contour layer with yellow data points in the map widget.

Selective export in table

The data table in the AngularUI Grid has integrated functionality for data export

functions in PDF and CSV formats. Figure 8.14 displays the export options; Export

Selected data, Export visible data and Export All data. Export is customized in the

client implementation and downloaded to the browser.

8.8.2 Export graph

Every graph has an integrated menu in the upper right corner. Highcharts [65] provide

export formats JPG, PNG, PDF and SVG.

93

Chapter 8. System demonstration

Figure 8.13: Export data result to text (JSON) formate.

8.9 Other non functional requirements

This section demonstrates some of the implemented features to met the non functional

requirements (NFR) of the application.

8.9.1 Prevent user from making errors

The user are prevented from making errors for every input field. The input fields have

validation by scoping the possible inputs. Tha validation is implemented by AngularJS

core ng module directive for input[text]. Figure 8.15 illustrates the range of different

validation functions to prevent the user from making error in the requests. The figure

applies to the NFR, display meaningful error messages by defining meaningful error

messages which explains what error did occur.

94

Chapter 8. System demonstration

Figure 8.14: Export functionality in data table.

Figure 8.15: Example of input validation.

8.9.2 Information and guidance

This NFR is accessible throughout the client indicated by the information symbol. Click-

ing the information symbol displays information about the current feature. Figure 8.16

illustrates a system guidance, giving information about the features of the Web GIS

client.

95

Chapter 8. System demonstration

Figure 8.16: Give system information and guidance.

96

Chapter 9

Evaluation

This chapter evaluates the sub-goals stated in subsection 1.2.1 and the requirements

stated in section 3.2. Each sub-goal, functional- and non functional requirements are

evaluated and the achievement of each one of them are discussed. In the end of this

chapter an evaluation summary evaluates the state of the sub-goals and requirements

completeness of this thesis.

9.1 Sub-goals evaluation

The sub-goals are the guideline towards the fulfilment of the overall goals of this thesis.

Each sub-goal is justified with background information to evaluate if it is completely

fulfilled or not.

9.1.1 Conduct usability research in GIS and non GIS applications to

determine use of usability methods and principles

GIS usability research and UE articles have been studied during the work on this thesis.

The field of usability research in non GIS applications are much more comprehensive

in comparison with GIS applications. Many articles stated lack of proper methods to

evaluate task based applications in the geovisualization domain. These findings built

knowledge about performing usability studies in the GIS domain. Among others, that it

is important to get to know the user, their goals and how they work with the geographic

97

Chapter 9. Evaluation

data inside the application. Geographic data can be represented, visualized, explored

and analysed in different ways. With this in mind, articles and books on general usabil-

ity engineering methods, practises and principles were researched and evaluated to find

the best usability methods for the Web GIS client development.

Usability standards and practises

There are many usability papers on different models embracing the usability of soft-

ware development. The usability standard ISO/IEC 25010 for product quality was used

during the UE. The usability attribute in ISO 25010 [79] in addition to a selection of

Quensberrys E5s [81] usability attributes was the base target working towards usability.

It resulted in usability attributes for developing an easy to learn, error tolerant and

engaging Web GIS to improve the UX. The use of heuristics, resulted in a guideline for

developing GUI elements with focus on their usability.

Usability methods

The usability methods; heuristics, empirical usability testing, thinking aloud and ques-

tionnaires were applicable to achieve usability in the UE. As stated in section 5.4 these

methods were suitable for three testers.

Empirical testing resulted in feedback on how the testers perceived the client, their body

language, objective and subjective opinions. Thinking aloud was successful to under-

stand the users cognitive thinking. The communication and direct feedback from the

users gave valuable information to understand how the users were thinking and feeling

while interacting with the client.

Measurement

Research on how to measure usability, by quantitative and qualitative methods resulted

in a tool set were both methods was used. Empirical testing, thinking aloud, usability

testing tasks and questionnaires completes the tool set retrieving important feedback

from the users. Successfully measuring the outcome of usability studies was a key factor

to improve and evolve the usability in the client.

98

Chapter 9. Evaluation

Summary

The overall research resulted in a set of usability methods which worked toward the

goal of usability features in the Web GIS client successfully. The selections of usability

methods worked well together and capture both quantitative and qualitative data.

The tool set of usability methods can be implemented as a framework for Web GIS

system development, which is further discussed in future work in chapter 10. The

chosen usability methods proved success in a small sized Web GIS application with a

set of three usability testers. In further development when the application is growing

larger the methods should be revisited and analysed to find if the methods still apply.

The usability test results compiled together with an evaluation of the development pro-

cess, concluded in a Web GIS client implemented with an user-centred approach. The

UCD process evaluation is described next.

9.1.2 Develop an iterative user-centred design approach to achieve

software quality in terms of usability and UX

Based on the research presented in the previous subsection a user-centred design process

was developed and used in developing the Web GIS client. The process is illustrated

in Figure 5.4. The UCD process worked iteratively with the users to address usability

issues and in developing functionality to achieve the user tasks with satisfaction. The

process activities were building blocks performed one by one assuring a user-centred

developing process.

The outcome of the development based on the activities was rewarded. Every activity

outcome was important to the next step in the process. Picking a collection of valuable

UE methods was a key factor for this success.

The usability study activities, performing usability testing and the test process were

successful. Feedback from the testers were positive and the users were satisfied.

The work with multidisciplinary tasks worked with success, for a one person team.

Converting this process to work with larger teams would benefit from using a project

management tool which integrates the multidisciplinary work tasks. The designer, UX

99

Chapter 9. Evaluation

specialist, software architect, designer, developer, tester and others must be able to

cooperate within the development cycle artifacts.

9.1.3 Perform analysis and selections for software stack which best

complies to GIS technology and interactive web applications

The open source software (OSS) technologies were installed and configured with success.

The OSS criteria, requiring active development communities and proper documentation

were met. Criteria important for the successful implementation and further maintenance

and development.

PostGIS and GeoServer ran as expected, they served the client with geographic and non

geographic data and data layers. OpenLayers 3, the mapping library implemented most

features and functions regarding the mapping functionality. OpenLayers 3 had some

shortcomings in the API which are discussed in Appendix C.

The AngularJS framework introduced structure in code, readable code and modularity

in the code base. AngularJS is an extensive client framework which benefits the client

in present and future development.

The additional libraries created recognisable interface design elements (Bootstrap), inter-

active graphs to display the data (Highcharts) and displaying the data tables (AngularJS

UI Grid).

The criteria and standard compliance for the software stack were defined in chapter 4.

The outcome was a set of technologies which has served the Web GIS client well. The

software components was configured and worked together without major problems, a

successful choice of software technologies for the client requirements fulfils this sub-goal

and basis for further development.

9.1.4 Install, configure and populate GIS backend technologies

The installation and configuration of PostGIS data store and GeoServer data assessor

was successful. PostGIS was successfully populated with a dataset, measurements of

temperature and salinity of the year of 2003. The population of PostGIS was done

step by step instructed in the old Web GIS thesis rapport [2] with exceptions of minor

100

Chapter 9. Evaluation

adjustments changing modifying the test scripts and SQL view syntax. The steps for

this new Web GIS client is described in chapter 6.

GeoServer was populated with data from the PostGIS data base through the PostGIS

data store and served the client data through the WMS and WFS protocol. Standards

for compliance of GIS functionality described in chapter 4.2 was successfully available

and accessible to the client application. This sub-goal was fully achieved.

9.1.5 Develop, design and implement the Web GIS client

The client was implemented using OSS without third party software, a requirement in

subsection 3.2.1. The HTML and CSS files was validated to meet the W3C standards

of HTML5 and CSS3 compliance as described in subsection 7.8.1.

The completion of this goal can be assessed by addressing each of the FR listed in Ta-

ble 3.1. Each of the FR is listed bellow including the assessment of completion.

FR01: Query data by a set of parameters

This requirement is discussed in section 8.3 and illustrated in Figure 8.5. FR01 is fully

implemented.

FR02: Present queried data inside map in browser

Present data in map is fully implemented, explained in section 8.4 and displayed in

section 8.1.

FR03: Present queried data features in tabular form

Section 8.5 describe the completion of this requirement. Figure 8.6 illustrate the table

containing the response data and confirms the completion of this functionality.

FR04: Present a map widget with basic map functionality

This FR is demonstrated in section 8.2. Figure 8.1 illustrates the client front page map

where zooming, panning, layer-switcher and identification of mouse pointer in map are

101

Chapter 9. Evaluation

all fully implemented.

FR05 Do query based on a specific point on the map

This requirement is implemented to the extent of query a data point for its feature data.

The implementation supports a pop-up widget containing data point information is il-

lustrated in Figure 8.1. It is fully implemented for every data point in layers resulted

from a filtered query. Query based on data points in a contour data point layer is not

implemented.

FR06: Offer export functionality of requested data

The export functionality is fully implemented for a range of formats. Export formats

are available in the data table, filtered, selected or all data in table. See description

of export functionalities in subsection 8.8.1 and illustrated in Figure 8.14. Data export

based on GeoServer is also described in subsection 8.8.1 and illustrated in Figure 8.13.

Export of chart data is also fully implemented by Highchart implementation as described

in subsection 8.8.2.

FR07: Present graphs to illustrate and compare multiple data parameter

values

Presentation of data in interactive charts are supported for all available data. The

charts implement zooming, interactive data points and export chart to image file. See

Figure 8.7 and Figure 8.8 for examples, and section 8.6 for implementation details. This

requirement is fully implemented.

FR08: Calculate and present a chart of density for temperature and salinity

data values

This requirement is fully implemented by a calculation component which is described as

the Density service in section 7.7.3. The density chart is illustrated in Figure 8.8.

FR09: Present a contour plot within a range of meters in sea depth

Subsection 8.7.1 describes this functionality on a high level. The requirement is partly

102

Chapter 9. Evaluation

implemented. The contour layer is integrated by an range of sea depth as desired, but

the feedback from the users confirm the partly fulfilment of this requirement. The con-

tour layer does not display as desired. The contouring include lands in addition to the

sea. This can be modified in further development using land mask to remove lands from

the contouring.

Other new requirements

These are requirements requested from usability tests during the test sessions. Several

requirements for modification were requested developing the Web GIS client. Some of

them discussed next.

FR10 defines a list of previous queries including the filters. The queries can be easily

added or deleted from the history list. Subsection 8.3 describes this user story and

Figure 8.6 illustrates the GUI. This requirement was fully implemented.

FR11, a request from the users to view dynamic contour grid lines which has partly

been implemented but with no success. In comparison with contour layer does the grid

lines not render as desired. The dynamic process described in subsection 8.7.2 did not

resolve this FR when implemented.

9.1.6 Evaluate the usability engineering and usability outcome of the

new Web GIS client.

The list of non functional requirements (NFR) in Table 3.2 is evaluated in this subsection.

The list includes requirements to address the usability attributes described in subsec-

tion 5.1.1. These requirements are not as measurable as the functional requirements

listed in the previous subsection because it is harder to evaluate if the requirements

are fulfilled or not. NRF01 to NFR09 are fully implemented, the measurement of fully

completion is evaluated in the usability evaluation later in this subsection. Section 8.9

demonstrates some of the NFRs in the Web GIS client GUI. NF10 open source software

components is fully implemented.

The evaluation of the complete UE and usability outcome boils down to the usability

test evaluations. A summary of the questionnaires and thinking aloud session during

103

Chapter 9. Evaluation

the testing is illustrated in Figure 9.1, Figure 9.2 and Figure 9.3. These figures displays

subjective feedback given directly after test session. The bars defines the percent of

feedback in the range of strongly disagree to strongly agree. The feedback are subjective

and based on the questions listed in Table 9.1. These figures illustrate strengths and

weaknesses of the user interface and the change made during the iterations.

The bars of question 9 and 10 had negative progress from iteration I to II. There are

external factors that may have an impact. This was the first test session and for a first

time user the questions generated better feedback than the returning user, which may

had become more critical than prior. The nature of the questionnaire could also affect

the outcome. Many questions to answer and hard to give an concrete answer. Bar 7 had

a constant increase which can be explained by the users knowledge of the test procedure

and the prior experience with the Web GIS client.

Figure 9.4 compare the mean rating from test iteration 1-3 in the range from strongly

disagree=1 to strongly agree=5. Figure 9.4 skip numbers 2 and 3 in the x-axis because

the questions was changed from iteration I to II and III. This figure reveals a clearer

impression on the main trends in the usability evaluation. The development from each

iteration is easy to read underpins the point made for the other figures above.

Bar 6 and bar 7 in Figure 9.4 are the ones making the most progress. Bar 6, the

website was engaging, is indicating an increased satisfaction from the users and a desire

to investigate more. This result may indicate an increased knowledge about the client

user interface and its features, and is a great contribute to the overall evaluation. Bar 7

is emphasised above.

Bar 1 and 4 are related, question 1 and 4 in Table 9.1, the similar answers underpins the

creditability of the answers. The bars are identical through the iterations until the latest

bar in question 1 increases. This results reveals the satisfaction and level of learning the

client from the testers perspective, and how easy they think new users will experience

the client. The users experience the client as easy to use after using the client in several

occasions.

The conversations and feedback from the users were an important part of the outcome

of this sub-goal. The UCD process resulted in knowledge about the test users which

were essential for the usability outcome.

104

Chapter 9. Evaluation

1 Thought Website was easy to use

2 The website had god error detection for preventing errors

3 Found it difficult to keep track of where they were in website (I)

3 The website was effective and gave an accurate and successful outcome (II and III)

4 Thought most people would learn to use website quickly

5 Website provided information whenever needed

6 Website was engaging, would like to come back and explore more

7 There was no unclear situations during the testing

8 Website is well organized

9 Website reminds me of a GIS application user interface

10 The workflow was easy to understand and learn

Table 9.1: Questionnaire asked during test sessions.

Figure 9.1: Usability evaluation statistics Iteration I.

Figure 9.2: Usability evaluation statistics iteration II.

105

Chapter 9. Evaluation

Figure 9.3: Usability evaluation statistics iteration III.

Figure 9.4: Usability evaluation statistics, mean rating for user testing.

Summary results

It is important when reading the results to think about the setting the testing was done.

The test environment, the time scope and a specific set of testing tasks may have effected

the results. Even knowing the purpose of the thesis may affected the test users’ decision

making. User evaluation should be conducted with a broader set of factors than only

observing task completing in a laboratory [86]. In the context of human factors like

emotions, circumstances such as time of day and external factors like office environment

and test equipment.

Figure 9.1, Figure 9.2 and Figure 9.3 reveals an evolution towards satisfaction during

the usability evaluations. The results indicates a positive development during the three

iterations. This reflects the fulfilment of this sub-goal.

106

Chapter 9. Evaluation

The charts are a quantitative proof of concept of the UE and UCD process developed

during this thesis. The qualitative responses from the users were just as valuable during

the testing sessions. The responses contributed to develop the prototype to what it has

become today. Feedback such as feelings of frustration, excitement were also addressed

during the test session. The testers communicated their feelings, the qualitative data

reflected the user experience in an emotional level. Together the qualitative and quan-

titative results points to a positive increase of usability and UX in the Web GIS client.

This sub-goal is fulfilled.

9.2 Overall objective

The conducted research in the domain of developing a user-friendly Web GIS resulted

in a UCD process. The UCD process successfully improve the usability and UX of the

implemented Web GIS client.

The implementation, using OSS and standardised formats for geographic data manage-

ment was successfully conducted. The client has features to perform Web GIS operations

achieving user goals with satisfaction.

9.3 Research questions

The evaluation on the sub-goals above counts as the measurement for answering this

research questions.

Is it feasible to develop a user-centred Web GIS client by converging user interface design

and UX using open source software?

The Web GIS client is a proof of concept to answer this research question. All open

source software implemented a client by a UCD process influenced by similar applications

and using user interface design principles such as keep it simple stupid, consistency in

placement of controls, helpful information and guidance when needed and more. Testing

sessions during the UCD process was valuable for qualitative and quantitative feedback

for further development. By improving the design of user interface elements and features

107

Chapter 9. Evaluation

for the users. The client outcome proved to be satisfactory in use while providing UX

in the domain of Web GIS application.

Is it feasible to develop a user interface providing UX and still offer the functionality of

a Web GIS?

Subsection 9.1.5 defines the implemented GIS features and according to the results in

subsection 9.1.6, the results indicates successful user satisfaction interacting with the

Web GIS client. The client is highly functional in serving geographical data, charts

and interactive maps to the pressure of the users. This client application is a Web GIS

providing a positive UX.

9.4 Evaluation summary

The Web GIS client was successfully implemented. The set of functionality was small

and evolved with the UCD process. The Web GIS application is a working application

even if not all FRs were fully implemented. The FRs not fully implemented will be

further discussed in the next chapter.

The process of researching and developing UE methods and a UCD process was imple-

mented into the SDLC with success. The usability quality attributes and methods of

measurement presented the state of usability and UX in the Web GIS client. The overall

usability sub-goals resulting in the research questions above was performed with success.

108

Chapter 10

Discussion and conclusion

10.1 Outcome

The outcome of this thesis is a Web GIS client developed using a UCD process. The

client is a prototype developed as a proof of concept for developing Web GIS client using

UE methods and practises. The Web GIS system is based on a master thesis [2], but

with a extended set of features. The client prototype has been a total rewrite with new

client software technologies and libraries. It has usability attributes providing positive

UX for the users.

During the UE research a UCD process was developed. The UCD process was used

for three iterations performing usability studies with three highly qualified usability

testers. The testers had domain- and technical expertise and different levels of Web GIS

experiences.The users involvement in the UCD process, their feedback from the usability

test sessions have positively affected the outcome of this thesis.

The usability testing captured quantitative and qualitative data influencing the UI de-

sign, usability features and features of the Web GIS client. The testing results implied

that when the users got to know the testing procedure in addition to experience with

the client, more user satisfaction was achieved. This signify the importance and effect of

conduction several test iterations. The findings affected the outcome of the evaluation

and influenced the development of the Web GIS client during this thesis.

109

Chapter 10. Conclusion

The implementation using AngularJS and other JavaScript libraries resulted in a dy-

namic and interactive Web GIS client. Several components are reusable even if the client

is developed for a specific data set.

It is important to look at the big picture when analysing the results. Single results may

be effected by external influence (stress, time of day and more) and/or type of answers

in the questionnaire schema. The average results from the usability evaluation concludes

in an increase in the users satisfaction.

10.2 Further work

The Web GIS client has a small set of features implemented by JavaScript software

technologies. The client is working and provides valuable functionality. With future

work the client has potential to increase the overall quality and satisfaction of the users.

This section is separated into two subsections, future work in UE and implementation.

10.2.1 UE guideline for further work

The outcome of the UE work during the thesis resulted in a UCD process. It was impor-

tant to define a process to evaluate and improve quality of the system [24]. The UCD

model is initial and should be revised, modified and customized during further project

development. The UE techniques and methods was picked based on the requirements,

number of test users, scope of time and more. In further development other variables

may be introduced causing the UCD to change.

Web GIS quality framework

A system quality framework managing the UE for the development has been proposed

in this thesis. The research and findings in this thesis should be further extended. More

quality attributes from ISO/IEC 25010 could be incorporated in the future to increase

the product quality and quality of use of the Web GIS client.

The following extensions to the Web GIS quality framework are proposed:

110

Chapter 10. Conclusion

• New test users should be introduced to assure users with a fresh view on the client

give feedback and confirm the usability progress in the client application. The

current usability testers would preferable continue to contribute, they are valuable

assets with experience using the client. New test users would help expand the

perspective of the client to assure the user interface design are continuing to be

applicable for new users.

• Specialists in performing usability testing, UX experts, cartography expert should

be introduced to test the client to address usability issues regular users don’t find.

UX experts may discover usability issues about the position of GUI elements or

workflow issue. Cartography experts have expertise in colors works best in maps,

position and type of elements in the map to increase the exploration and analysing

of the geographic data. Usability issues the current testers may oversee during test

sessions.

• Evolve the use of Heuristicsby including more of the heuristics to achieve a wider

set of usability in the user interface design. Heuristic, user control and freedom [80]

would support undo and redo and effect the users efficiency and satisfaction. Match

between system and the real world [80] would benefit the users with descriptions

in words and concepts familiar to the users.

• Implement a guideline of standard GUI elements, color schemes, type of buttons

and menus and position of elements to assure a standardized GUI. The imple-

mentation should be based on cooperation of UX experts and feedback from the

usability testers to assemble the best possible attributes into a guideline.

10.2.2 Design, implementation guideline for further development

All the functional requirements were not fulfilled completely and are elements for further

development. Further work proposal has been made based on the experiences of devel-

oping the client application. The proposals are given to apply long term improvement

for enhancing the product quality of the Web GIS.

Filter encoding

111

Chapter 10. Conclusion

Appendix C describes filtering in OpenLayers 2 versus OpenLayers 3. The implemen-

tation described in Code Listing C.2 need improvements because the filters are made

by simple SQL strings appended to the query which is not a good solution. A preferred

solution would be a filter object assuring the filters are appended smoothly and assuring

easier maintenance of the client code. Making a request to WMS and WFS by creating

a Filter Encoding object is not trivial. There exist JSONIX [102] a library which have a

XML-JSON mapping for OGC schemas such as Filter Encoding [103]. JSONIX would

improve the data requests to GeoServer including the export functionality.

Test coverage

The test suite does not offer a complete test coverage. The code would have better

quality assurance by increasing test coverage. The test suite should be improved to

assure higher test coverage covering the main operations of the application. There are

several prioritised test cases which should be considered. Testing to verifying the requests

sent to GeoServer to assert the filter attributes are correct. Assert that the response

from server is the correct response due to the request sent. Conversion of response data

sets such as convert XML to JSON and extract data from JSON object into table data.

The client would also benefit from more types of tests such as integrations tests, accep-

tance tests and UI tests.

Data quality

Data quality should be addressed. The quality of large GIS datasets and data parame-

ters is a critical part of the task flow. Working with data set with missing parameters

and no specific quality assurance are confusing for the users, it leads to credibility is-

sues and the users looses their trust in the application. Trust is a quality attribute for

ISO/IEC 25010 Quality in use, which implies that lack of trust will decrease the UX of

the Web GIS client. A data quality model framework is proposed established. A frame-

work should work towards fulfil the data quality of the ODB database by introducing

a data set criteria to assure the data are complete and correct. Geographical data has

challengers which are important requirements for creating a Web GIS with accessibility

and usability [104]. The ISO/IEC 25012 Data quality model propose quality attributes

112

Chapter 10. Conclusion

to define quality in data [105].

10.3 Lessons learned

The project work from beginning to end has been an experience of freedom, initiative and

responsibility. The freedom to pick a part of the old Web GIS application to expand and

evolve. The initiative to angling the project work towards the users of the application,

and the responsibility given to conduct the assignment was embraced during the work

and greatly appreciated.

The work on this thesis has been a multidisciplinary experience. Working with UE

required initial research in order to develop a skill-set of usability methods and practises.

The skill-set laid the foundation for the work towards the satisfaction of the users, the

UX.

The experience valued the most was to work with the users. Involving the users at an

early stage in the development process resulted in high profit when converging the GIS

domain with modern web page design. A transaction which would be harder to adapt

to when a larger set of features were implemented. All of the usability testers were

responsive and enthusiastic during the test sessions. The development of specified user

task to satisfy the user needs could not been done without the test users.

The UCD process did not use any specific GIS domain usability methods such as cartog-

raphy or geographical visualisation. There are no UE knowledge developed specifically

for GIS [13] and general UE methods was therefore applied developing this client appli-

cation. The UCD process with all of its UE methods was based on the general domain

of UE.

It was expected the client implementation would be a more pleasant experience than it

has been. Due to the client application was totally rewritten, to implement new software

technologies for web and web mapping development including the expressive JavaScript

language for an interactive Web GIS client. The experience working with open source

technologies was positive still having issues with new versions. New versions of open

source libraries is often in lack of documentation and knowledge in communities, but it

113

Chapter 10. Conclusion

still important to use the new version to assure further development of the Web GIS

client.

The GIS domain and geographic data management consumed valuable implementation

time, but it was well spent time to acquire important experience. Working with a full

software stack was interesting and clarified how the geographic data operation’s between

the software layers.

10.4 Conclusion

A user-friendly Web GIS client has been built using a UCD process. The developed UCD

process was valuable involving the users developing an application that works with a

high level of satisfaction for the users. Usability could not be added into the end of

the Web GIS client development, it had to be developed from the beginning, creating

requirements of usability along with functional requirements.

No unique formula for developing usable Web GIS applications has been proposed, but a

experiment has been done. Regular UE methods with an iterative user-centred approach

has proven to give more satisfied users. Cooperation with the users gave valuable insight

in their cognitive thinking while performing their defined task which contributed to the

successful outcome.

Web GIS applications has matured into mainstream web applications and can therefore

benefit from using the same design principles as modern web pages to achieve usability

and UX. The new Web GIS client is not ready for deployment to a production envi-

ronment. The Filter encoding in subsection 10.2.2 should be considered implemented

and tested before deploying the application to a production environment. Filtering is

a important part of the application feature and should be properly implemented and

tested.

114

Appendix A

Personas

This appendix illustrated two of the three personas developed during the conceptual

development phase. One is illustrated in Figure 5.5 and the other two bellow.

Personal

Ms Natalia Geyer

34 years old

PhD Student, University of Edinburgh

Expertise

Novice in Web GIS applications.

Natali is part of a project team studying the environmental changes in

the north Arctic sea. She work remote from her project team and does

not have anyone with expertise of the application at her campus. She

uses the application for the first time. She has not much experience

with GIS technology other that discovery, search and analysis of online

maps applications.

Natali is on her second year of her PhD exploring the environmental

evolution in the north Atlantic Gulf stream.

Figure A.1: Example of a persona, Natalia.

115

Appendix A. Personas

Personal

Dr. Mikka Heikenen

Researcher, oceanography

43 years old

Finnish Institute of Marine Research

Expertise

Regular Web GIS user.

Works regularly with oceanography projects where similar GIS

applications occur. Used to work with commercial and non-commercial

GIS desktop applications and Web GIS’s. Do not have any special

expertise to a Web GIS, or a preferred type of GIS application. Mikka

encounter the Web GIS application while studying results given by

other project team members and look at the result inside the Web GIS

application. Mikka spend much of his time bicycling in the mountains

while enjoying his weekend with his girlfriend Vilma at their mountain

cottage.

Figure A.2: Example of a persona, Mikka.

116

Appendix B

Usability test schema

This appendix displays the complete usability test schema used by the usability testers

in every test session. One schema customised for each iteration.

117

Appendix B. Usability test plan

 U
sa

b
il

it
y

 t
e

st
 o

b
je

ct
iv

e
s

Th
is

 u
sa

b
ili

ty
 t

e
st

 w
ill

 a
d

d
re

ss
 u

sa
b

ili
ty

 p
ro

b
le

m
s

o
f

th
e

u
se

r
in

te
rf

ac
e

an
d

 in
co

n
si

st
en

cy
 w

it
h

in
 t

h
e

in
te

ra
ct

io
n

 w
it

h
 t

h
e

sy
st

e
m

.
P

o
te

n
ti

al
 f

in
d

in
gs

 m
ay

 in
cl

u
d

e
:

V
is

ib
ili

ty
 o

f
co

n
tr

o
lle

rs
, f

ai
lu

re
 t

o
 d

et
ec

t
p

ro
p

er
 in

fo
rm

at
io

n
 o

n
 t

h
e

sc
re

en
?

A
re

 t
h

e
fu

n
ct

io
n

s
o

f
th

e
co

n
tr

o
lle

rs
 u

n
d

er
st

an
d

ab
le

?

Fe
ed

b
ac

k
fr

o
m

 s
ys

te
m

, i
s

it
 e

rr
o

r
co

rr
ec

ti
o

n
 w

o
rk

in
g

p
ro

p
er

ly
 a

n
d

 d
o

es
 t

h
e

u
se

rs
 g

et
 n

o
ti

ce
 o

f
th

e
st

at
e

o
f

th
e

sy
st

e
m

?

C
o

n
st

ra
in

ts
 in

 t
h

e
sy

st
e

m
, i

s
th

e
n

ec
e

ss
ar

y
co

n
tr

o
lle

rs
 a

va
ila

b
le

, a
re

 t
h

ey
 c

re
at

in
g

co
n

st
ra

in
ts

 o
r

b
ei

n
g

co
n

fu
si

n
g?

 D
o

e
s

th
e

sy
st

em
 c

o
n

ta
in

im

p
ro

p
er

 e
n

tr
y

fi
e

ld
 o

r
to

o
lb

ar
?

N
av

ig
at

io
n

 e
rr

o
rs

, f
ai

lu
re

 t
o

 lo
ca

te
 f

u
n

ct
io

n
s

an
d

 t
o

 f
o

llo
w

 s
u

gg
es

te
d

 w
o

rk
fl

o
w

.
 Th

e
sy

st
e

m
 w

ill
 b

e
te

st
ed

 in
 a

 c
o

n
tr

o
lle

d
 e

n
vi

ro
n

m
en

t
b

y
re

p
re

se
n

ta
ti

ve
 t

e
st

er
s,

 o
n

e
u

se
r

at
 t

h
e

ti
m

e.
 T

h
e

te
st

in
g

d
at

a
w

ill
 b

e
u

se
d

 in
 a

n
 e

va
lu

at
io

n

an
d

 f
u

rt
h

er
 im

p
ro

ve
m

en
t

o
f

th
e

u
sa

b
ili

ty
 in

 t
h

e
sy

st
e

m
.

Th
es

e
u

sa
b

ili
ty

 t
es

ti
n

g
w

ill
 b

e
a

p
ar

t
o

f
th

e
sy

st
e

m
 d

ev
el

o
p

m
e

n
t

an
d

 t
h

e
sy

st
em

d

ev
el

o
p

m
en

t
w

ill
 b

as
ed

 o
n

 t
h

e
co

n
ve

rs
at

io
n

s
o

f
th

e
u

se
rs

.

 U
S

A
B

IL
IT

Y
 T

E
S

T
 P

L
A

N
 f

o
r

W
e

b
 G

IS
 p

ro
to

ty
p

e
 I

II

Figure B.1: Example of usability introduction schema.

118

Appendix B. Usability test plan

P
ro

d
u

ct
 u

n
d

e
r

te
st

:
W

h
at

 is
 b

ei
n

g
te

st
ed

?
 W

eb
 G

IS
 d

e
ve

lo
p

ed
 d

u
ri

n
g

m
as

te
r

th
e

si
s.

Th

e
sy

st
e

m
 in

cl
u

d
es

 a
 g

eo
gr

ap
h

ic
al

 d
at

as
et

o

f
te

m
p

er
at

u
re

 a
n

d
 s

al
in

it
y

o
f

th
e

A
rc

ti
c

O
ce

an
.

T
e

st
 o

b
je

ct
iv

e
s:

W

h
at

 a
re

 t
h

e
go

al
s

o
f

th
e

u
sa

b
il

it
y

 t
es

ti
n

g?
 W

h
at

ar

e
th

e
p

u
rp

o
se

 a
n

d
 d

es
ir

ed
 a

ch
ie

ve
m

en
t?

 U

sa
b

ili
ty

 e
va

lu
at

io
n

 a
n

d
 c

o
o

p
er

at
io

n
 w

it
h

u

se
rs

 t
o

 b
u

ild
 a

 s
ys

te
m

 b
as

ed
 o

n
 t

h
e

n
ee

d
s

o
f

th
e

u
se

rs
.

B
u

si
n

e
ss

 c
a

se
:

W
h

y
is

 t
h

is
 t

es
t

d
o

n
e?

 W
h

at
 a

re
 t

h
e

b
en

ef
it

s?

 Th
e

m
ai

n
 g

o
al

 is
 t

o
 d

ev
el

o
p

 t
h

e
W

e
b

 G
IS

b

as
ed

 o
n

 u
se

r
n

ee
d

s
an

d
 u

se
rs

 a
n

ti
ci

p
at

io
n

to

 u
sa

b
ili

ty
 in

 t
h

e
d

o
m

ai
n

 o
f

ge
o

gr
ap

h
ic

in

fo
rm

at
io

n
 s

ys
te

m
s.

P
a

rt
ic

ip
a

n
ts

:

T
e

st
 t

a
sk

s:

W
h

at
 a

re
 t

h
e

te
st

 t
as

k
s?

 Th

e
te

st
 t

as
ks

 a
re

 c
o

n
ta

in
s

p
e

rf
o

rm
in

g
si

m
p

le
 in

te
ra

ct
io

n
s

w
it

h
 t

h
e

sy
st

em
.

Th
e

ta
sk

s
ar

e
re

p
re

se
n

ta
ti

ve
 t

as
k

sc
en

ar
io

s
b

as
ed

 o
n

 c
o

re
 f

u
n

ct
io

n
al

it
ie

s
o

f
th

e
sy

st
e

m
.

T
e

st
 m

e
th

o
d

s:

W
h

at
 t

es
ti

n
g

m
et

h
o

d
s

ar
e

u
se

d
?

 P
re

 t
es

t
in

te
rv

ie
w

, g
et

 t
o

 k
n

o
w

 t
h

e
u

se
r,

th

e
ex

p
er

ie
n

ce
 w

it
h

 t
h

e
d

o
m

ai
n

.
U

se
r

te
st

in
g,

 p
er

fo
rm

in
g

sp
ec

if
ic

 t
as

ks

w
h

ile
 t

h
in

ki
n

g
al

o
u

d
.

P
o

st
 q

u
es

ti
o

n
n

ai
re

, a
n

sw
er

in
g

si
m

p
le

q

u
es

ti
o

n
s

o
f

th
e

ex
p

er
ie

n
ce

 in
te

ra
ct

 w
it

h

th
e

sy
st

e
m

.
D

eb
ri

e
f,

 d
is

cu
ss

 t
h

e
o

u
tc

o
m

e
o

f
th

e
te

st

se
ss

io
n

 a
n

d
 f

u
rt

h
er

 t
e

st
in

g
se

ss
io

n
s.

A
u

th
o

r:

C
o

n
ta

c
t:

L
o

c
a
ti

o
n

/d
a
te

:

N

E
R

SC
 0

9
.0

4
.1

5

 T

e
st

 s
ch

e
d

u
le

:

 D
es

cr
ib

e
th

e
st

ep
s

o
f

th
e

te
st

in
g

se
ss

io
n

.

U
S

A
B

IL
IT

Y
 T

E
S

T
 P

L
A

N
 f

o
r

W
e

b
 G

IS
 p

ro
to

ty
p

e
 I

II

E
q

u
ip

m
e

n
t:

W

h
at

 e
q

u
ip

m
en

t
is

 u
se

d

d
u

ri
n

g
th

e
te

st
in

g?

 P
er

so
n

al
 c

o
m

p
u

te
r

in
cl

u
d

in
g

d
ep

lo
ye

d

sy
st

e
m

.
P

en
 a

n
d

 p
ap

er
.

V
o

ic
e

re
co

rd
er

.

D
eb

ri
ef

U

se
r

te

st
in

g
Sh

o
rt

in

tr
o

d
u

ct
io

n

P
re

 t
es

t

in
te

rv
ju

P

o
st

 t
es

t
q

u
es

ti
o

n
ai

re

Figure B.2: Example of usability introduction schema.

119

Appendix B. Usability test plan

C
R

IT
E

R
IA

:
 W

h
at

 is
 t

h
e

p
u

rp
o

se
 o

f
th

e
te

st
?

U

S
E

R
 O

B
S

E
R

V
A

T
IO

N
S

:
 U

se
rs

 f
ee

d
b

ac
k

 s
p

ec
if

ie
d

 b
y

cr
it

er
ia

.

E
n

g
a

g
in

g
:

Is
 t

h
e

in
te

rf
ac

e
at

tr
ac

ti
v

e
a

n
d

 e
n

ga
gi

n
g?

 G
et

 t
o

k

n
o

w
 t

h
e

in
te

rf
ac

e.

 1
. P

la
y

ar
o

u
n

d
 w

it
h

 t
h

e
u

se
r

in
te

rf
ac

e
fo

r
so

m
e

m
in

u
te

s.
 In

ve
st

ig
at

e
th

e
u

se
r

in
te

rf
ac

e
an

d

fu
n

ct
io

n
s.

E
ff

e
ct

iv
e

:
A

re
 t

h
e

u
se

rs
 g

o
al

 m
et

 e
ff

ec
ti

v
el

y
,

A
cc

u
ra

te
 a

n
d

 s
u

cc
es

sf
u

ll
y

. I
s

d
es

ir
ed

 f
u

n
ct

io
n

al
it

y

ea
si

ly
 t

o
 lo

ca
te

?

 2
. P

er
fo

rm
 a

 q
u

er
y,

 (
se

t
fr

o
m

 d
at

e
=

2
0

0
3

/0
1

/1
5

an

d
 t

o
 d

at
e

=
2

0
0

3
/1

2
/1

5
 a

n
d

 a
tt

ri
b

u
te

 c
o

u
n

tr
y

=
C

an
ad

a
, r

ev
ie

w
 r

e
su

lt
 in

 t
ab

u
la

r
fo

rm
. S

o
rt

 b
y

la
ti

tu
d

e
6

6
 a

n
d

 e
xp

o
rt

 d
at

a
as

 p
d

f.

3
. U

se
 s

am
e

re
su

lt
 s

et
 a

s
ab

o
ve

. S
el

ec
t

5
 f

ir
st

d

at
as

et
 in

 r
es

u
lt

 t
ab

le
 a

n
d

 e
xp

o
rt

 a
s

p
d

f
an

d
 s

av
e

d
o

cu
m

en
t

to
 d

es
kt

o
p

.

E
ff

ic
ie

n
t:

T

as
k

 c
o

m
p

le
m

en
t,

 h
o

w
 f

as
t

is
 it

 c
o

m
p

le
te

d
?

Is
 t

h
e

n
av

ig
at

io
n

 a
n

d
 w

o
rk

fl
o

w
 e

ff
ic

ie
n

t?
 (

In
 t

er
m

s
o

f
cl

ic
k

s,
 s

h
o

rt
cu

ts
 e

tc
.)

 4

. P
er

fo
rm

 a
 q

u
er

y,
 (

se
t

b
o

u
n

d
in

g
b

o
x

ar
o

u
n

d

Ic
el

an
d

 a
u

to
m

at
ic

al
ly

 b
y

th
e

m
o

u
se

, c
h

an
ge

 f
ro

m

d
at

e
to

 2
0

0
3

/0
1

/1
5

 a
n

d
 c

o
u

n
tr

y
to

 Ic
el

an
d

).
 R

ev
ie

w

re
su

lt
 in

 r
e

su
lt

 t
ab

le
.

 A
u

th
o

r:

P
a

rt
ic

ip
a
n

t

L
o

c
a
ti

o
n

/d
a
te

:

N

E
R

SC
 0

9
.0

4
.1

5

U
S

A
B

IL
IT

Y
 T

E
S

T
 O

B
S

E
R

V
A

T
IO

N
S

 f
o

r
W

e
b

 G
IS

 p
ro

to
ty

p
e

 I
II

S
u

g
g

e
st

io
n

s
fr

o
m

 a
u

th
o

r:

 D
id

 a
u

th
o

r
co

m
e

u
p

 w
it

h
 a

n
y

 id
ea

s
d

u
ri

n
g

th
e

te
st

in
g?

W

h
at

 r
ec

o
m

m
en

d
at

io
n

 i
s

a
re

su
lt

 o
f

u
se

r
o

b
se

rv
at

io
n

s?

Figure B.3: Example of usability test task schema.

120

Appendix B. Usability test plan

C
R

IT
E

R
IA

:
 W

h
at

 is
 t

h
e

p
u

rp
o

se
 o

f
th

e
te

st
?

U

S
E

R
 O

B
S

E
R

V
A

T
IO

N
S

:
 U

se
rs

 f
ee

d
b

ac
k

 s
p

ec
if

ie
d

 b
y

cr
it

er
ia

.

E
ff

ic
ie

n
t

(c
o

n
ti

n
u

e
s)

5

. P
er

fo
rm

 a
 q

u
er

y,
 (

se
t

b
o

u
n

d
in

g
b

o
x

ar
o

u
n

d

N
o

rw
ay

 a
u

to
m

at
ic

al
ly

 b
y

th
e

m
o

u
se

, c
h

an
ge

 f
ro

m

d
at

e
to

 2
0

0
3

/0
1

/1
5

 a
n

d
 c

o
u

n
tr

y
to

 N
o

rw
ay

).
 R

ev
ie

w

re
su

lt
 in

 r
e

su
lt

 t
ab

le
. E

xp
o

rt
 r

es
u

lt
 d

at
a

in
 J

SO
N

6

. V
ie

w
 li

st
 o

f
q

u
er

ie
s

an
d

 r
er

u
n

 q
u

er
y

w
it

h
 t

h
e

sa
m

e
fi

lt
e

rs
 a

s
as

si
gn

m
en

t
4

.

 E
rr

o
r

to
le

ra
n

t
D

o
es

 t
h

e
sy

st
em

 h
av

e
a

co
rr

ec
t

er
ro

r
d

et
ec

ti
o

n

sy
st

em
?

D
o

es
 t

h
e

u
se

r
g

et
 c

o
n

fi
rm

at
io

n
 o

f
v

al
id

/n
o

n
 v

al
id

 a
ct

io
n

s?

 7
. D

ra
w

 a
 c

o
n

to
u

r
m

ap
 in

 a
 r

an
ge

 o
f

5
 t

o
 0

 m
et

er
s.

E
a

sy
 t

o
 l

e
a

rn
:

Is
 t

h
e

in
te

rf
ac

e
ea

sy
 t

o
 l

ea
rn

?

 8
. D

ra
w

 a
n

d
 c

o
m

p
ar

e
tw

o
 c

o
n

to
u

r
m

ap
s.

 O
n

e
at

 1
-5

m

et
er

s
an

d
 t

h
e

o
th

er
 a

t
1

0
-1

5
 m

et
er

s.

S
u

g
g

e
st

io
n

s
fr

o
m

 a
u

th
o

r:

 D
id

 a
u

th
o

r
co

m
e

u
p

 w
it

h
 a

n
y

 id
ea

s
d

u
ri

n
g

th
e

te
st

in
g?

W

h
at

 r
ec

o
m

m
en

d
at

io
n

 i
s

a
re

su
lt

 o
f

u
se

r
o

b
se

rv
at

io
n

s?

Figure B.4: Example of usability test task schema.

121

Appendix B. Usability test plan

S
tr

o
n

g
ly

D

is
a

g
re

e

D
is

a
g

re
e

N

e
u

tr
a

l
A

g
re

e

S
tr

o
n

g
ly

A

g
re

e

M
e

a
n

R

a
ti

n
g

P

e
rc

e
n

t
A

g
re

e

T
h

o
u

g
h

t
W

eb
si

te
 w

as
 e

as
y

to

 u
se

T
h

e
w

eb
si

te
 h

ad
 g

o
d

 e
rr

o
r

d
et

ec
ti

o
n

 f
o

r
p

re
ve

n
ti

n
g

er
ro

rs

T
h

e
w

eb
si

te
 w

as
 e

ff
ec

ti
v

e
an

d
 g

av
e

an
 a

cc
u

ra
te

 a
n

d

su
cc

es
sf

u
l o

u
tc

o
m

e

T
h

o
u

g
h

t
m

o
st

 p
eo

p
le

 w
o

u
ld

le

ar
n

 t
o

 u
se

 w
eb

si
te

 q
u

ic
k

ly

W
eb

si
te

 p
ro

vi
d

ed

in
fo

rm
at

io
n

 w
h

en
ev

er

n
ee

d
ed

W
eb

si
te

 w
as

 e
n

ga
gi

n
g,

w

o
u

ld
 li

k
e

to
 c

o
m

e
b

ac
k

 a
n

d

ex
p

lo
re

 m
o

re

 T
h

er
e

w
as

 n
o

 u
n

cl
ea

r
si

tu
at

io
n

s
d

u
ri

n
g

th
e

te
st

in
g

W
eb

si
te

 i
s

w
el

l o
rg

an
iz

ed

W
eb

si
te

 r
em

in
d

s
a

 G
IS

ap

p
li

ca
ti

o
n

 u
se

r
in

te
rf

ac
e

T
h

e
w

o
rk

fl
o

w
 w

as
 e

as
y

 t
o

u

n
d

er
st

an
d

 a
n

d
 le

ar
n

C
o

m
m

e
n

t

S

e
v
e
r
it

y

H

ig
h

L
o
w

A
u

th
o

r:

P
a

rt
ic

ip
a
n

t:

L

o
c

a
ti

o
n

/d
a
te

:

N

E
R

SC
 0

9
.0

4
.1

5

U
S

A
B

IL
IT

Y
 P

O
S

T
 T

E
S

T
 Q

U
E

S
T

IO
N

N
A

IR
E

 f
o

r
W

e
b

 G
IS

 p
ro

to
ty

p
e

 I
II

S
o
u
rc

e
 o

f
ta

b
le

s
:

h
tt

p
:/
/w

w
w

.u
s
a
b
ili

ty
.g

o
v
/h

o
w

-t
o
-a

n
d
-

to
o
ls

/r
e
s
o
u
rc

e
s
/t
e
m

p
la

te
s
/r

e
p
o
rt

-t
e
m

p
la

te
-u

s
a
b
ili

ty
-t

e
s
t.
h
tm

l

Figure B.5: Example of questionnaires schema.

122

Appendix C

Filtering in OpenLayers 2 verses

OpenLayers 3

The rewriting of OpenLayers 2 into OpenLayers 3 resulted in a complete rewriting of

the implementation. OpenLayers 3 does not have Filter Encoding which was used in

the old Web GIS [2] client implementation. Filter Encoding was used to create filter

objects and combining them to use in the request to GeoServer. More implementation

details can be read in [2]. This client implementation specified the filters as common

strings with the SQL syntax AND as described in line 2 in Code Listing C.2. The filter

parameter in the getFeature() in line 18 in Code Listing C.1 was changed to use the

CQL filter as spesified in line 12 in Code Listing C.2. Read more about CQL filter in

subsection 4.4.4. Both type of filter specifies the parameters to GeoServer.

123

Appendix X. Filtering in OpenLayers 2 verses OpenLayers 3.

Listing C.1: OpenLayers 2 syntax for handling filters.

1 // create filter object

2 var dateFilter = new OL.Filter.Comparison ({

3 type : OL.Filter.Comparison.BETWEEN ,

4 property : "stdate",

5 lowerBoundary : date.fromDate ,

6 upperBoundary : date.toDate

7 });

8

9 dateTimeFilterArray.push(dateFilter);

10

11 return combineFilters(dateTimeFilterArray);

12

13

14 // combine array of filters to single filter

15 function combineFilters(filtersToCombine) {

16 return new OL.Filter.Logical ({

17 type : OL.Filter.Logical.AND ,

18 filters : filtersToCombine

19 });

20 }

21 // call to GeoServer

22 getFeature ({

23 TYPENAME : "floats",

24 FILTER : filter

25 }, displayFeatures);

124

Appendix X. Filtering in OpenLayers 2 verses OpenLayers 3.

Listing C.2: OpenLayers 3 syntax for habdling filters.

1 // create filter object

2 var dateFilterString = ’stdate BETWEEN ’ + formFactory.←↩

getFromDate () + ’ AND ’ + formFactory.getToDate ();

3 filter_list.push(dateFilterString);

4 // joint filters by SQL syntax AND

5 return filter_list.join(’ AND ’);

6

7 // call to GeoServer

8 GeoserverFactory.getFeature ({

9 TYPENAME : ’station ’,

10 OUTPUTFORMAT : ’json’,

11 SRSNAME : ’EPSG :4326’,

12 CQL_FILTER : filter

13 })

Listing C.3: A request URL including CQL filter string.

1 http :// localhost :8080/ geoserver/wfs?CQL_FILTER=stdate+BETWEEN←↩

+2003 -01 -15+ AND +2003 -12 -15+ AND+stcountryname+LIKE +%27%25←↩

CANADA %25%27+ AND+stvesselname+LIKE +%27%2541900%25%27+ AND+←↩

stsource+LIKE +%27%25 ARGO %25%27& OUTPUTFORMAT=json&REQUEST=←↩

GetFeature&SERVICE=WFS&SRSNAME=EPSG :4326& TYPENAME=station&←↩

VERSION =1.0.0

125

Bibliography

[1] V. Volkov R. Gerdes A. Korablev V. Melsehko V. Maderich V. Denisov Johan-

nessen O.M., L.H Pettersson and G. Shapiro. 2007: The Nordic Seas in the global

climate. Final report to INTAS grant 03-51-4620. July, 2007.

[2] Torgeir Mossige Grønning. Data Structure, Access and Presentation in Web-GIS

for marine research. 2013.

[3] Jakob Nielsen & Don Norman. The definition of user experience, 2014. URL

http://www.nngroup.com/articles/definition-user-experience/.

[4] Philip Lew, Li Zhang, and Luis Olsina. Usability and user experience as

key drivers for evaluating GIS application quality. In 2010 18th International

Conference on Geoinformatics, Geoinformatics 2010, number 60773155, 2010.

ISBN 9781424473021. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5567803.

[5] Postgis spatial and geographic objects for postgresql, . URL http://postgis.

net/. Last visited 2015-04-29.

[6] Geoserver. URL http://geoserver.org/. Last visited 2014-08-19.

[7] Suzana Dragićević. The potential of Web-based GIS. Journal of Geographical

Systems, 6(2):79–81, June 2004. ISSN 1435-5930. URL http://link.springer.

com/10.1007/s10109-004-0133-4.

[8] map.geo.admin.ch. URL https://map.geo.admin.ch/?X=190000.00&Y=660000.

00&zoom=1&lang=de&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe.

Last visited 2014-01-12.

[9] Surging seas: Sea level rise analysis by climate central. URL http://sealevel.

climatecentral.org/. Last visited 2014-01-12.

127

http://www.nngroup.com/articles/definition-user-experience/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5567803
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5567803
http://postgis.net/
http://postgis.net/
http://geoserver.org/
http://link.springer.com/10.1007/s10109-004-0133-4
http://link.springer.com/10.1007/s10109-004-0133-4
https://map.geo.admin.ch/?X=190000.00&Y=660000.00&zoom=1&lang=de&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe
https://map.geo.admin.ch/?X=190000.00&Y=660000.00&zoom=1&lang=de&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe
http://sealevel.climatecentral.org/
http://sealevel.climatecentral.org/

Bibliography

[10] Ocean data — marinexplore. URL http://marinexplore.org/explore/

#explore/2d. Last visited 2014-01-12.

[11] Esri - gis mapping software, solutions, services, map apps, and data, . URL

http://www.esri.com/. Last visited 2014-01-12.

[12] Esri blog, . URL http://resources.arcgis.com/search/?do=search&

collection=blogs&filter=0&lg=en&q=usability&submit=. Last visited 2014-

01-12.

[13] Mordechai (Muki) Haklay and Antigoni Zafiri. Usability Engineering for GIS:

Learning from a Screenshot. The Cartographic Journal, 45(2):87–97, May

2008. ISSN 0008-7041. URL http://www.maneyonline.com/doi/abs/10.1179/

174327708X305085.

[14] Mordechai Muki, Haklay Corresponding, and Carolina Tobón. Usability Evalua-

tion and PPGIS : towards a user- centred design approach Usability Evaluation

and PPGIS : towards a user- centred design approach Abstract. (July):21–23,

2002.

[15] Usability 101: Introduction to usability. URL http://www.nngroup.com/

articles/usability-101-introduction-to-usability/. Last visited 2015-01-

07.

[16] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1993. ISBN 0125184050.

[17] Donald A. Norman. The Design of Everyday Things. Basic Books, Inc., New York,

NY, USA, 2002. ISBN 9780465067107.

[18] Steve Krug. Don’T Make Me Think: A Common Sense Approach to the Web

(2Nd Edition). New Riders Publishing, Thousand Oaks, CA, USA, 2005. ISBN

0321344758.

[19] N Andrienko and Gennady Andrienko. The complexity challenge to creating useful

and usable geovisualization tools. GIScience 4th International . . . , 2006. URL

http://geoanalytics.net/and/papers/giscience06.pdf.

[20] Alan M. MacEachren and Menno-Jan Kraak. Research Challenges in Geovisu-

alization. Cartography and Geographic Information Science, 28(1):3–12, January

128

http://marinexplore.org/explore/#explore/2d
http://marinexplore.org/explore/#explore/2d
http://www.esri.com/
http://resources.arcgis.com/search/?do=search&collection=blogs&filter=0&lg=en&q=usability&submit=
http://resources.arcgis.com/search/?do=search&collection=blogs&filter=0&lg=en&q=usability&submit=
http://www.maneyonline.com/doi/abs/10.1179/174327708X305085
http://www.maneyonline.com/doi/abs/10.1179/174327708X305085
http://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://geoanalytics.net/and/papers/giscience06.pdf

Bibliography

2001. ISSN 1523-0406. URL http://www.tandfonline.com/doi/abs/10.1559/

152304001782173970.

[21] David Schobesberger. Towards principles for usability evaluation in web mapping

-usability research for cartographic information systems. 2009.

[22] Annu-maaria Nivala. Usability perspectives for the design of Interactive Maps.

PhD thesis, 2007.

[23] Mike Cohn. User Stories Applied. Addison-Wesley, 2004. ISBN 0321413091.

[24] S. Wagner. Software Product Quality Control. Springer Berlin Heidelberg, 2013.

ISBN 9783642385704.

[25] Furps - wikipedia, the free encyclopedia. URL http://en.wikipedia.org/wiki/

FURPS. Last visited 2014-02-19.

[26] Nigel Bevan. Extending quality in use to provide a framework for usability mea-

surement. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 5619 LNCS(1991):

13–22, 2009. ISSN 03029743.

[27] Marc Hassenzahl. Marc Hassenzahl Chapter 3. Funology, 3:31–42, 2003. URL

http://www.springerlink.com/index/N667WUL417708T71.pdf.

[28] Empirical research - wikipedia, the free encyclopedia. URL http://en.

wikipedia.org/wiki/Empirical_research. Last visited 2014-02-02.

[29] Manifesto for agile software development. URL http://agilemanifesto.org/.

Last visited 2015-04-29.

[30] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-

tices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003. ISBN 0135974445.

[31] Boundless, formerly opengeo, . URL http://boundlessgeo.com/. Last visited

2014-08-19.

[32] Open geospatial consortium. URL http://www.opengeospatial.org/. Last vis-

ited 2015-04-29.

129

http://www.tandfonline.com/doi/abs/10.1559/152304001782173970
http://www.tandfonline.com/doi/abs/10.1559/152304001782173970
http://en.wikipedia.org/wiki/FURPS
http://en.wikipedia.org/wiki/FURPS
http://www.springerlink.com/index/N667WUL417708T71.pdf
http://en.wikipedia.org/wiki/Empirical_research
http://en.wikipedia.org/wiki/Empirical_research
http://agilemanifesto.org/
http://boundlessgeo.com/
http://www.opengeospatial.org/

Bibliography

[33] Wolfgang Kresse and David M. Danko. Springer Handbook of Geographic Infor-

mation. Springer Publishing Company, Incorporated, 2012. ISBN 3540726780,

9783540726784.

[34] Web map server implementation specification. URL https://earthdata.

nasa.gov/sites/default/files/field/document/06-042_opengis_web_map_

service_wms_implementation_specification.pdf. Last visited 2015-04-29.

[35] Wfs reference. URL http://docs.geoserver.org/stable/en/user/services/

wfs/reference.html. Last visited 2015-04-29.

[36] Filter function reference, . URL http://docs.geoserver.org/stable/en/user/

filter/function_reference.html#filter-function-reference. Last visited

2015-04-29.

[37] Html tutorial. URL http://www.w3schools.com/html/default.asp. Last vis-

ited 2015-05-10.

[38] Css introduction. URL http://www.w3schools.com/css/css3_intro.asp. Last

visited 2015-05-10.

[39] What is open source. URL http://opensource.com/resources/

what-open-source. Last visited 2015-05-10.

[40] Shyam Seshadri Brad Green. AngularJS. O’Reilly Media, 2013.

[41] Angular, ember, and backbone: Which javascript framework

is right for you? URL http://readwrite.com/2014/02/06/

angular-backbone-ember-best-javascript-framework-for-you. Last

visited 2015-05-10.

[42] Angular community. Angularjs: Superherioc javascript mvw framework, . URL

https://angularjs.org/. Last visited 2014-06-20.

[43] Github: Octoverse 2013, . URL https://octoverse.github.com/. Last visited

2014-06-19.

[44] Backbone community. Backbone.js, . URL http://backbonejs.org/. Last visited

2014-06-19.

[45] Addy Osmani. Developing Backbone.js Applications. O’Reilly Media, 2013.

130

https://earthdata.nasa.gov/sites/default/files/field/document/06-042_opengis_web_map_service_wms_implementation_specification.pdf
https://earthdata.nasa.gov/sites/default/files/field/document/06-042_opengis_web_map_service_wms_implementation_specification.pdf
https://earthdata.nasa.gov/sites/default/files/field/document/06-042_opengis_web_map_service_wms_implementation_specification.pdf
http://docs.geoserver.org/stable/en/user/services/wfs/reference.html
http://docs.geoserver.org/stable/en/user/services/wfs/reference.html
http://docs.geoserver.org/stable/en/user/filter/function_reference.html#filter-function-reference
http://docs.geoserver.org/stable/en/user/filter/function_reference.html#filter-function-reference
http://www.w3schools.com/html/default.asp
http://www.w3schools.com/css/css3_intro.asp
http://opensource.com/resources/what-open-source
http://opensource.com/resources/what-open-source
http://readwrite.com/2014/02/06/angular-backbone-ember-best-javascript-framework-for-you
http://readwrite.com/2014/02/06/angular-backbone-ember-best-javascript-framework-for-you
https://angularjs.org/
https://octoverse.github.com/
http://backbonejs.org/

Bibliography

[46] Joachim Haagen Skeie. Ember.js in Action. Manning Publications Co, 2014.

[47] Wikipedia. Convention over configuration. URL http://en.wikipedia.org/

wiki/Convention_over_configuration. Last visited 2014-06-20.

[48] Ember community. Ember.js - blog, . URL http://emberjs.com/blog/. Last

visited 2014-06-20.

[49] emberjs/ember.js - github, . URL https://github.com/emberjs/ember.js/.

Last visited 2014-06-20.

[50] Friedel Ziegelmayer. Karma - spectacular test runner for javascript. URL http:

//karma-runner.github.io/0.12/index.html. Last visited 2014-08-14.

[51] The jQuery Foundation. Qunit, . URL http://qunitjs.com/. Last visited 2014-

08-13.

[52] The jQuery Foundation. License — jquery foundation, . URL https://jquery.

org/license/. Last visited 2014-08-13.

[53] The jQuery Foundation. Lcookbook — qunit, . URL http://qunitjs.com/

cookbook/. Last visited 2014-08-13.

[54] TJ Holowaychuk. Mocha - the fun, simple, flexible javascript test framework. URL

http://visionmedia.github.io/mocha/. Last visited 2014-08-14.

[55] Behavior-driven development. URL http://en.wikipedia.org/wiki/

Behavior-driven_development. Last visited 2015-05-10.

[56] Maximilian Antoni. Home - visionmedia/mocha wiki - github. URL https://

github.com/visionmedia/mocha/wiki. Last visited 2014-08-14.

[57] Pivotal Labs. pivotal/jasmine git hub, . URL https://github.com/pivotal/

jasmine. Last visited 2014-08-13.

[58] Pivotal Labs. pivotal/jsunit git hub, . URL https://github.com/pivotal/

jsunit. Last visited 2014-08-13.

[59] Leaflet - a javascript library for mobile-friendly maps. URL http://leafletjs.

com/. Last visited 2014-08-15.

[60] Openlayers : Home. URL http://openlayers.org/. Last visited 2014-08-15.

131

http://en.wikipedia.org/wiki/Convention_over_configuration
http://en.wikipedia.org/wiki/Convention_over_configuration
http://emberjs.com/blog/
https://github.com/emberjs/ember.js/
http://karma-runner.github.io/0.12/index.html
http://karma-runner.github.io/0.12/index.html
http://qunitjs.com/
https://jquery.org/license/
https://jquery.org/license/
http://qunitjs.com/cookbook/
http://qunitjs.com/cookbook/
http://visionmedia.github.io/mocha/
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/visionmedia/mocha/wiki
https://github.com/visionmedia/mocha/wiki
https://github.com/pivotal/jasmine
https://github.com/pivotal/jasmine
https://github.com/pivotal/jsunit
https://github.com/pivotal/jsunit
http://leafletjs.com/
http://leafletjs.com/
http://openlayers.org/

Bibliography

[61] Opengeo suite - boundless, . URL http://boundlessgeo.com/solutions/

opengeo-suite/. Last visited 2014-08-15.

[62] Openlayers - boundless. URL http://boundlessgeo.com/solutions/

solutions-software/openlayers/. Last visited 2014-08-15.

[63] Bootstrap the world’s most popular mobile-first and responsive front-end frame-

work., . URL http://getbootstrap.com/. Last visited 2015-02-09.

[64] Ui grid. URL http://ui-grid.info/. Last visited 2015-05-12.

[65] Interactive javascript charts for your webpage. URL http://www.highcharts.

com/. Last visited 2015-02-09.

[66] Webstorm - the smartest javascript ide. URL https://www.jetbrains.com/

webstorm/. Last visited 2015-04-30.

[67] Ide comparison for html 5, css 3 + javascript. URL http://www.oio.de/public/

opensource/comparison-IDE-for-HTML5-CSS3-JavaScript-shootout.htm.

Last visited 2015-04-30.

[68] Welcome to netbeans. URL https://netbeans.org/. Last visited 2015-04-30.

[69] Aptana. URL http://www.aptana.com/. Last visited 2015-04-30.

[70] The web’s scaffolding tool for modern webapps — yeoman. URL http://yeoman.

io/. Last visited 2015-04-27.

[71] Grunt the javascript task runner. URL http://gruntjs.com/. Last visited 2015-

04-27.

[72] Bower. URL http://bower.io/. Last visited 2015-04-27.

[73] Jeffrey Rubin. Handbook of Usability Testing: How to Plan, Design, and Conduct

Effective Tests. John Wiley & Sons, Inc., New York, NY, USA, 1994. ISBN

0471594032.

[74] Terry a. Slocum, Connie Blok, Bin Jiang, Alexandra Koussoulakou, Daniel R.

Montello, Sven Fuhrmann, and Nicholas R. Hedley. Cognitive and Usability Issues

in Geovisualization. Cartography and Geographic Information Science, 28(1):61–

75, January 2001. ISSN 1523-0406. URL http://www.tandfonline.com/doi/

abs/10.1559/152304001782173998.

132

http://boundlessgeo.com/solutions/opengeo-suite/
http://boundlessgeo.com/solutions/opengeo-suite/
http://boundlessgeo.com/solutions/solutions-software/openlayers/
http://boundlessgeo.com/solutions/solutions-software/openlayers/
http://getbootstrap.com/
http://ui-grid.info/
http://www.highcharts.com/
http://www.highcharts.com/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
http://www.oio.de/public/opensource/comparison-IDE-for-HTML5-CSS3-JavaScript-shootout.htm
http://www.oio.de/public/opensource/comparison-IDE-for-HTML5-CSS3-JavaScript-shootout.htm
https://netbeans.org/
http://www.aptana.com/
http://yeoman.io/
http://yeoman.io/
http://gruntjs.com/
http://bower.io/
http://www.tandfonline.com/doi/abs/10.1559/152304001782173998
http://www.tandfonline.com/doi/abs/10.1559/152304001782173998

Bibliography

[75] Terry a. Slocum, Daniel C. Cliburn, Johannes J. Feddema, and James R. Miller.

Evaluating the Usability of a Tool for Visualizing the Uncertainty of the Future

Global Water Balance. Cartography and Geographic Information Science, 30(4):

299–317, January 2003. ISSN 1523-0406. URL http://www.tandfonline.com/

doi/abs/10.1559/152304003322606210.

[76] AC Robinson and Jin Chen. Combining usability techniques to design geovisual-

ization tools for epidemiology. Cartography and . . . , 32(4):243–255, 2005. URL

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786201/pdf/nihms68027.

pdfhttp://www.tandfonline.com/doi/abs/10.1559/152304005775194700.

[77] Sven Fuhrmann and William Pike. User-centered design of collabora-

tive geovisualization tools. Exploring . . . , (November 2004):0–8, 2005.

URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

User-centered+Design+of+Collaborative+Geovisualization+Tools#0.

[78] Gilbert Cockton. Putting Value into E-valu-ation. Maturing Usability,

pages 287–317, 2008. URL http://link.springer.com/chapter/10.1007/

978-1-84628-941-5_13.

[79] Iso/iec 25010:2011(en), . URL https://www.iso.org/obp/ui#iso:std:

iso-iec:25010:ed-1:v1:en. Last visited 2014-02-22.

[80] 10 usability heuristics for user interface design. URL http://www.nngroup.com/

articles/ten-usability-heuristics/. Last visited 2015-05-04.

[81] Whitney Quesenbery. Dimensions of Usability: Defining the Conversation, Driving

the Process. Proceedings of the Usability Professional’s Association (UPA) con-

ference on Ubiquitous Usability, 2003. URL http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.117.8658&rep=rep1&type=pdf.

[82] Balancing the 5es. URL http://www.wqusability.com/articles/

5es-citj0204.pdf. Last visited 2015-05-06.

[83] Iso 9241-210:2010, . URL http://www.iso.org/iso/home/store/catalogue_

ics/catalogue_detail_ics.htm?csnumber=52075. Last visited 2015-05-04.

133

http://www.tandfonline.com/doi/abs/10.1559/152304003322606210
http://www.tandfonline.com/doi/abs/10.1559/152304003322606210
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786201/pdf/nihms68027.pdf http://www.tandfonline.com/doi/abs/10.1559/152304005775194700
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786201/pdf/nihms68027.pdf http://www.tandfonline.com/doi/abs/10.1559/152304005775194700
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User-centered+Design+of+Collaborative+Geovisualization+Tools#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User-centered+Design+of+Collaborative+Geovisualization+Tools#0
http://link.springer.com/chapter/10.1007/978-1-84628-941-5_13
http://link.springer.com/chapter/10.1007/978-1-84628-941-5_13
https://www.iso.org/obp/ui#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui#iso:std:iso-iec:25010:ed-1:v1:en
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.8658&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.8658&rep=rep1&type=pdf
http://www.wqusability.com/articles/5es-citj0204.pdf
http://www.wqusability.com/articles/5es-citj0204.pdf
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=52075
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=52075

Bibliography

[84] WilliamE. Cartwright and GaryJ. Hunter. Towards a methodology for the eval-

uation of multimedia geographical information products. GeoInformatica, 5(3):

291–315, 2001. ISSN 1384-6175.

[85] Sven Fuhrmann, Paula Ahonen-Rainio, Robert M. Edsall, Sara I. Fabrikant,

Etien L. Koua, Carolina Tobón, Colin Ware, and Stephanie Wilson. Chapter

28 - making useful and useable geovisualization: Design and evaluation issues. In

Jason DykesAlan M. MacEachrenMenno-Jan Kraak, editor, Exploring Geovisual-

ization, International Cartographic Association, pages 551 – 566. Elsevier, Oxford,

2005. ISBN 978-0-08-044531-1. URL http://www.sciencedirect.com/science/

article/pii/B9780080445311504462.

[86] Virpi Roto, Marianna Obrist, and K Väänänen-Vainio-Mattila. User experience

evaluation methods in academic and industrial contexts. . . . User Experience

Evaluation . . . , 2009. URL http://scholar.google.com/scholar?hl=en&btnG=

Search&q=intitle:User+Experience+Evaluation+Methods+in+Academic+

and+Industrial+Contexts#0.

[87] Why you only need to test with 5 users. URL http://www.nngroup.com/

articles/why-you-only-need-to-test-with-5-users/. Last visited 2015-05-

13.

[88] Creating a spatial database, . URL http://revenant.ca/www/postgis/

workshop/creatingdb.html. Last visited 2015-05-02.

[89] Chapter 4. using postgis: Data management and queries, . URL http://postgis.

refractions.net/documentation/manual-1.4/ch04.html. Last visited 2015-

05-02.

[90] Epsg projection 4326 - wgs 84. URL http://spatialreference.org/ref/epsg/

4326/. Last visited 2015-05-02.

[91] World geodetic system 1984. URL http://www.unoosa.org/pdf/icg/2012/

template/WGS_84.pdf. Last visited 2015-05-02.

[92] Angular directives for bootstrap, . URL https://angular-ui.github.io/

bootstrap/. Last visited 2015-04-27.

134

http://www.sciencedirect.com/science/article/pii/B9780080445311504462
http://www.sciencedirect.com/science/article/pii/B9780080445311504462
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User+Experience+Evaluation+Methods+in+Academic+and+Industrial+Contexts#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User+Experience+Evaluation+Methods+in+Academic+and+Industrial+Contexts#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:User+Experience+Evaluation+Methods+in+Academic+and+Industrial+Contexts#0
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://revenant.ca/www/postgis/workshop/creatingdb.html
http://revenant.ca/www/postgis/workshop/creatingdb.html
http://postgis.refractions.net/documentation/manual-1.4/ch04.html
http://postgis.refractions.net/documentation/manual-1.4/ch04.html
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4326/
http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf
http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf
https://angular-ui.github.io/bootstrap/
https://angular-ui.github.io/bootstrap/

Bibliography

[93] Model–view–controller. URL http://en.wikipedia.org/wiki/

Model-view-controller. Last visited 2015-05-11.

[94] Singleton pattern. URL http://en.wikipedia.org/wiki/Singleton_pattern.

Last visited 2015-05-30.

[95] Shaumik Daityari. Working with and around the same-origin policy - sitepoint.

URL http://www.sitepoint.com/working-around-origin-policy/. Last vis-

ited 2015-03-10.

[96] The css markup validation service, . URL http://jigsaw.w3.org/

css-validator/validator.html.en. Last visited 2015-05-25.

[97] The css validation service, . URL http://jigsaw.w3.org/css-validator/

validator.html.en. Last visited 2015-05-25.

[98] Testdouble. URL http://www.martinfowler.com/bliki/TestDouble.html.

Last visited 2015-05-25.

[99] jQuery community. jquery. URL http://jquery.com/. Last visited 2014-06-19.

[100] Barnes surface. URL http://suite.opengeo.org/4.1/cartography/rt/

barnes.html. Last visited 2015-05-12.

[101] Rendering transformations. URL http://docs.geoserver.org/latest/en/

user/styling/sld-extensions/rendering-transform.html. Last visited 2015-

05-14.

[102] Jsonix. URL http://confluence.highsource.org/display/JSNX/Jsonix. Last

visited 2015-05-19.

[103] ogc-schemas, . URL https://github.com/highsource/ogc-schemas/tree/

master/scripts/lib. Last visited 2015-05-19.

[104] Elisa Bertino, Andrea Maurino, and Monica Scannapieco. Guest editors’ intro-

duction: Data quality in the internet era. IEEE Internet Computing, 14(4):11–13,

2010. URL http://dblp.uni-trier.de/db/journals/internet/internet14.

html#BertinoMS10.

[105] Iso/iec 25012:2008, . URL https://www.iso.org/obp/ui/#iso:std:iso-iec:

25012:ed-1:v1:en. Last visited 2015-05-19.

135

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Singleton_pattern
http://www.sitepoint.com/working-around-origin-policy/
http://jigsaw.w3.org/css-validator/validator.html.en
http://jigsaw.w3.org/css-validator/validator.html.en
http://jigsaw.w3.org/css-validator/validator.html.en
http://jigsaw.w3.org/css-validator/validator.html.en
http://www.martinfowler.com/bliki/TestDouble.html
http://jquery.com/
http://suite.opengeo.org/4.1/cartography/rt/barnes.html
http://suite.opengeo.org/4.1/cartography/rt/barnes.html
http://docs.geoserver.org/latest/en/user/styling/sld-extensions/rendering-transform.html
http://docs.geoserver.org/latest/en/user/styling/sld-extensions/rendering-transform.html
http://confluence.highsource.org/display/JSNX/Jsonix
https://github.com/highsource/ogc-schemas/tree/master/scripts/lib
https://github.com/highsource/ogc-schemas/tree/master/scripts/lib
http://dblp.uni-trier.de/db/journals/internet/internet14.html#BertinoMS10
http://dblp.uni-trier.de/db/journals/internet/internet14.html#BertinoMS10
https://www.iso.org/obp/ui/#iso:std:iso-iec:25012:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25012:ed-1:v1:en

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.1.1 Geographic Information System domain
	1.1.2 Oceanographic DataBase (ODB)
	1.1.3 Web GIS for marine research

	1.2 Goals
	1.2.1 Sub-goals

	1.3 Research question
	1.4 Thesis structure and outline

	2 Background
	2.1 Geographic technology
	2.1.1 Geographic data
	2.1.2 Geographic information system on the Web

	2.2 The Web GIS
	2.2.1 Geographic data store
	2.2.2 Geographic data accessor
	2.2.3 Web GIS client

	2.3 Web GIS technologies
	2.4 Usability engineering
	2.4.1 Usability engineering for GIS

	3 Problem analysis and requirements
	3.1 Problem description
	3.1.1 Problem decomposition
	3.1.2 Problem definition

	3.2 Requirements
	3.2.1 Web GIS client
	3.2.2 Scope of Web GIS client

	3.3 Methodology and considerations
	3.3.1 Usability methodology
	3.3.2 Development methodology
	3.3.3 Development considerations

	4 Software stack
	4.1 Software stack
	4.2 GIS standards
	4.2.1 Open Geospatial Consortium (OGC)

	4.3 Geographic data store
	4.3.1 Data store standards and compliance

	4.4 Geographic data accessors
	4.4.1 OGC web services (OWS)
	4.4.2 Web Map Service
	4.4.3 Web Feature Service
	4.4.4 Other relevant OGC concepts

	4.5 The Web GIS client application
	4.5.1 Selection criteria
	4.5.2 Client technologies
	4.5.3 JavaScript unit testing framework
	4.5.4 Web mapping technologies
	4.5.5 Additional technologies and libraries
	4.5.6 JavaScript IDE
	4.5.7 Build tool and code generators
	4.5.8 The complete software stack

	5 Usability engineering
	5.1 Usability methodology and standards
	5.1.1 ISO/IEC 25010 standard for system quality and measurement
	5.1.2 Nielsen heuristics
	5.1.3 5Es usabilty attributes

	5.2 User-centred design process
	5.2.1 Domain research
	5.2.2 Conceptual development

	5.3 Prototyping and implementation
	5.4 Usability study and evaluation
	5.4.1 Usability testing and evaluation methods
	5.4.2 Usability testers
	5.4.3 Planning usability testing
	5.4.4 Iterative usability testing
	5.4.5 Usability evaluation

	6 Data store and data accessor configuration
	6.1 Geographic data store
	6.1.1 Create and populate PostGIS database
	1. Create new geometry column
	2. Populate lon/lat data

	6.1.2 Complete geographic data store

	6.2 Data accessor
	6.2.1 Import data to GeoServer
	6.2.2 Providing geographic data through GeoServer
	6.2.3 Providing non geographic data through GeoServer

	7 Design and implementation of prototype
	7.1 Architecture
	7.2 User interface design
	7.3 AngularJS components
	7.3.1 View
	7.3.2 Model
	7.3.3 Directive
	7.3.4 Controller
	7.3.5 Service

	7.4 AngularJS principles and design patterns
	7.4.1 AngularJS design patterns
	7.4.2 AngularJS Service

	7.5 Front-end frameworks and libraries
	7.5.1 AngularJS
	7.5.2 Openlayers

	7.6 Development challenges
	7.6.1 OpenLayers 3
	7.6.2 Same origin Policy (SOP)

	7.7 Client prototype components
	7.7.1 Directives
	7.7.2 Controllers
	7.7.3 Services

	7.8 Testing and quality assurance
	7.8.1 W3C standard compliance
	7.8.2 Unit testing

	7.9 Prototype development
	7.9.1 Rewriting Web GIS application

	7.10 Front-end development environment
	7.10.1 Continuous Integration

	8 System demonstration
	8.1 Web GIS client front page
	8.2 Display map and its controllers
	8.3 Query data, search in data
	8.4 Display query response in map
	8.5 Display response data in tabular form
	8.6 Display dataset in chart
	8.6.1 Display temperature and salinity
	8.6.2 Display density chart
	8.6.3 Calculations for density chart

	8.7 Display temperature contour and contour grid
	8.7.1 Calculate and display contour layer
	8.7.2 Calculate and display contour grid

	8.8 Export functionalities
	8.8.1 Export dataset
	8.8.2 Export graph

	8.9 Other non functional requirements
	8.9.1 Prevent user from making errors
	8.9.2 Information and guidance

	9 Evaluation
	9.1 Sub-goals evaluation
	9.1.1 Conduct usability research in GIS and non GIS applications to determine use of usability methods and principles
	9.1.2 Develop an iterative user-centred design approach to achieve software quality in terms of usability and UX
	9.1.3 Perform analysis and selections for software stack which best complies to GIS technology and interactive web applications
	9.1.4 Install, configure and populate GIS backend technologies
	9.1.5 Develop, design and implement the Web GIS client
	9.1.6 Evaluate the usability engineering and usability outcome of the new Web GIS client.

	9.2 Overall objective
	9.3 Research questions
	9.4 Evaluation summary

	10 Discussion and conclusion
	10.1 Outcome
	10.2 Further work
	10.2.1 UE guideline for further work
	10.2.2 Design, implementation guideline for further development

	10.3 Lessons learned
	10.4 Conclusion

	A Personas
	B Usability test schema
	C Filtering in OpenLayers 2 verses OpenLayers 3
	Bibliography

