
Deterministic and Geostatistical Estimation
• Geostatistical Study Workflow

• Traditional
• Geostatistical

• Weighted Linear Estimators
• Kriging

• Simple kriging
• Kriging with External Drift

• Cross Validation
• Cokriging
• Kriging Exercises
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Steps in a Traditional Geological Study
• Establish stratigraphic framework
• Establish facies, flow units and geologic prototype areas

from logs and cores
• Develop log database, develop statistical model for

facies, flow units and permeability from cored wells
• Map facies, flow units and geologic areas across the

field with log data
Note: traditional approach does not provide a measure of

uncertainty in the spatial distribution of facies flow units
and associated f - k in each geologic area
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Steps in a Geostatistical Study
• Establish stratigraphic framework
• Establish facies, flow units and geologic prototype areas from logs and

cores
• Analyze the statistical f - k relationship in core, log and seismic data to

support a facies / flow unit model in each geologic area
• Perform a spatial continuity analysis of core/log and seismic data

constrained by stratigraphic framework
• Estimate (map) facies, flow units or f - k trends while honoring the

stratigraphic framework, the spatial continuity, and the spatial arrangement
of core/log (hard) or seismic (soft) data

• Simulate (model) facies, flow units or f - k variability while honoring the
stratigraphic framework, the spatial continuity and the spatial arrangement
of core/log (hard) or seismic (soft) data
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Goal of Estimation
• We want our estimates to…

• be unbiased (centered on the mean)
• have minimum variation about the mean and
• be based on a model
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Estimation Methods
• A wide variety of estimation methods have been

designed for different types of estimates:
• Local or global estimates
• Mean or full distribution of data values
• Point or block values (require variograms)
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n The Goal of Estimation is to Obtain the Single “Best” Value at an Unsampled
Location
¨ In Practice, the Estimated Value is a Function of the Algorithm (Model) Used
¨Many Algorithms Have Been Developed; Each Have Advantages and 

Disadvantages Compared to the Others
n All Estimation Methods Involve a Weighted Linear Combination of Sample Data 

Values.  That is,
where z(xi) = Sample Data Value at Location zi,  li = Weight Assigned to z(xi), and 
z* = Estimated Value at Location zi
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Estimation Methods
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n What is the porosity at the unsampled location?

n What do we need to consider?

0.15
0.25

0.26?

0.06

Estimation Exercise
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n Estimation Algorithms Can Be Classified In Many Ways. One
Useful Classification Is
¨Global Estimation

n Estimate Value Over Large Area (Volume)
n Consider Data Within Area (Volume) to Be Estimated

¨Point Estimation
n Estimate Value Over Small Area (Volume)

¨Point Values
¨Block Values

n Consider Data Outside Area (Volume) to be Estimated

Local Estimation
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n Point Estimation Methods
¨Geological Experience and/or Artistic License
¨Traditional Algorithms That Use Weights Based on Euclidean

(Geometric) Distance
n Polygon Method (Nearest Neighbor)
n Triangulation
n Local Sample Mean
n Inverse Distance

¨Geostatistical Algorithms That Use Weights Based on “Structural”
/ “Geological” (or Statistical) Distance
n Simple Kriging
n Ordinary Kriging
n Universal Kriging
n Kriging with Trend
n Collocated Cokriging
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n Problems Affecting All Point Estimation Methods
¨ How to Weight Samples
¨ Search Neighborhood
¨ Data Clustering / Redundancy

n For All Point Estimation Methods:
¨ Estimate (z*) is a Weighted Linear Combination

¨ Unbiasedness Condition Generally Given by
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n Example Data Set
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???

Well X Y Value Distance to X
1 61 139 477 4.47
2 63 140 696 3.61
3 64 129 227 8.06
4 68 128 646 9.49
5 71 140 606 6.71
6 73 141 791 8.94
7 75 128 783 13.45
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n Polygon (Nearest Neighbor) Method
¨Assign All Weight To Nearest Neighbor (Well 2 In This Case)
¨Use Perpendicular Bisectors to Divide Into Regions.  Note that X Is Closest to 

Well 2
¨Estimated Value = 696
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n Polygon (Nearest Neighbor) Method
¨Advantages
nEasy to Use
nQuick Calculation in 2D

¨Disadvantages
nDiscontinuous Estimates
nEdge Effects / Sensitive to Boundaries
nDifficult to Do in 3D
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n Triangulation
¨ Three Samples Receive All the Weight (Wells A, B, and E)
¨ Three Weights Are Proportional to the Area of the Opposite Sub-Triangle 

(See Next Page for Details)
¨ Estimated Value = 548.7
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n Triangulation (continued)
¨Can Also Calculate Estimate from the Equation of the Plane that Passes

Through Points 2, 5, and 3
¨Equation of Plane Derived From Solution of Three Simultaneous Equations

63a + 140b + c = 696
64a + 129b + c = 227
71a + 140b + c = 606

¨Solution to Set of Equations
a = -11.250, b = 41.614, c = -4421.159

¨Equation Used to Estimate Value of Any Point On Plane 2-5-3 Is
z* = -11.25x + 41.614y - 4421.159 where x, y are location coordinates

¨Estimate for Point X = 548.7

2 +
+ 5

3 +
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+ 2
696

n Triangulation (continued)
¨Calculation of Weights by Area

n Weight of 2 = Area 5X3 / Area 253 = 0.511
n Weight of 5 = Area 2X3 / Area 253 = 0.273
n Weight of 3 = Area 2X5 / Area 253 = 0.216

¨Estimate = (.511)(696) + (.273)(227) + (.216)(606) = 548.7

Triangle 2-5-3
Divided to Show
Sub-Triangles
Used in Calculation + 3

227

+ 5

606+ X
???
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n Triangulation (continued)
¨Advantages of Method

n Easy to Understand
n Fast Calculations in 2D
n Can Be Done Manually

¨Disadvantages
n Triangulation Network Is Not Unique.  The Use of Delaunay Triangles Is an Effort to Work 

With A “Standard” Set of Triangles
n Not Useful for Extrapolation
n Difficult to Implement in 3D
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n Local Sample Mean
¨ All Samples Weighted Equally Within Local Neighborhood
¨ If All Data Shown Are In the Local Neighborhood the Estimate = 603.7
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n Local Sample Mean (continued)
¨Advantages

n Easy to Understand
n Easy to Calculate in Both 2D and 3D
n Fast

¨Disadvantages
n Local Neighborhood Definition is Not Unique 
n Location of Samples is Not Used Except to Define Local Neighborhood
n Sensitive to Data Clustering
n Does Not Honor the Data.  At Data Locations, This Method Does Not Return the Data 

Value

¨This Method Is Rarely Used!
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n Inverse Distance Methods
¨ Sample Weight is Inversely Proportional to Some  Exponent of the Distance 

Between the Sample and the Point Being Estimated
¨ The Estimate is Given By

¨ where d = distances, z(x) = sample values, p = exponent
¨ Note:  Local Sample Mean is Equivalent to Exponent = 0 and the Nearest 

Neighbor Method is Equivalent to Exponent = Infinity.
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n Inverse Distance Methods (continued)
¨ For Example Data, the Calculation Yields Using an Exponent of 1, 2, and 3 

Yields
Well X Y Value Distance to X 1/d w = (1/d)/[Sum of (1/d)] w * Data Value

1 61 139 477 4.47 0.2236 0.2098 100.0938
2 63 140 696 3.61 0.2774 0.2603 181.1513
3 64 129 227 8.06 0.1240 0.1164 26.4224
4 68 128 646 9.49 0.1054 0.0989 63.9021
5 71 140 606 6.71 0.1491 0.1399 84.7755
6 73 141 791 8.94 0.1118 0.1049 82.9918
7 75 128 783 13.45 0.0743 0.0698 54.6168

1.0656 1.0000 593.9537

Exp = 1

Exp = 3

Exp = 2

Well X Y Value Distance to X 1/d w = (1/d)/[Sum of (1/d)] w * Data Value
1 61 139 477 4.47 0.0500 0.2582 123.1502
2 63 140 696 3.61 0.0769 0.3972 276.4476
3 64 129 227 8.06 0.0154 0.0794 18.0326
4 68 128 646 9.49 0.0111 0.0574 37.0627
5 71 140 606 6.71 0.0222 0.1147 69.5356
6 73 141 791 8.94 0.0125 0.0645 51.0544
7 75 128 783 13.45 0.0055 0.0285 22.3373

0.1937 1.0000 597.6204

Well X Y Value Distance to X 1/d w = (1/d)/[Sum of (1/d)] w * Data Value
1 61 139 477 4.47 0.0112 0.2746 130.9832
2 63 140 696 3.61 0.0213 0.5240 364.7007
3 64 129 227 8.06 0.0019 0.0469 10.6389
4 68 128 646 9.49 0.0012 0.0288 18.5828
5 71 140 606 6.71 0.0033 0.0814 49.3056
6 73 141 791 8.94 0.0014 0.0343 27.1509
7 75 128 783 13.45 0.0004 0.0101 7.8974

0.0407 1.0000 609.2596
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n Inverse Distance Methods (continued)
¨Advantages

n Easy to Understand
n Easy to Implement
n Changing Exponent Adds Some Flexibility to Adapt method to Different Estimation Problems
n This Method Can Handle Anisotropy

¨Disadvantages
n Difficulties Encountered When Point to Estimate Coincides With Data Point (d = 0, Weight is 

Undefined)
¨ Possible Solutions
§ Assign Data Value to Point to Be Estimated
§ Add Small Constant to Weights (Data Are No Longer Honored!)

n Susceptible to Clustering
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n Inverse Distance Methods (continued)
¨ Comparison of Results Obtained From Different Exponents

Exponent = 1 Exponent = 3Exponent = 2
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Local Estimation
n Limitations of Traditional Estimation Methods
¨Weights Are Based On Arbitrary Schemes
¨ No Model of Spatial Continuity Is Used
¨ Estimates Are Biased Towards Clustered Data / No Accounting for 

Clustering!!
¨ No Measure of Estimate Uncertainty
¨ Estimated Field of Values Is Much Smoother Than the Underlying Random 

Field (Function) That Was Sampled.  (This Is True For All Estimation 
Techniques, Including Kriging.)  

ESTIMATION:
TOO SMOOTH!!!  DISTRIBUTION IS
WRONG!!!  SPATIAL CONTINUITY IS 
WRONG!!!
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Clustering
n The Effect of Clustering
¨ For Methods Based on Euclidean Distances, The Estimates Will Be Biased 

Towards Clustered Data
¨ Consider the Following Data Arrangement

¨ The Estimate at X =  lAZ(A) + lBZ(B) + lCZ(C) + lDZ(D)
¨ For Inverse Distance Method All Weights Are About 0.25
¨ For Kriging Method the Approximate Weights Are Given By lA= lB = lC = 

0.167 and lD= 0.5

C

B
A DX
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Estimation Methods
• Kriging

• a minimum variance estimator based on a knowledge
of variograms

• an unbiased estimate that accounts for the data
• provides for data declustering
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Assigning Weights
• Polygon-type estimates
• Inverse distance estimates
• Local sample mean estimates
• Local sample median estimates
• Use variogram => kriging
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Variograms
Modeling Spatial Correlation

• Data points further away from a point to be kriged are less correlated than
those closer to the point
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Kriging

Variogram
Model

Well Data

Kriged Map

Kriging Example using Well Data
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Properties of Kriging
• Kriging provides the Best Linear Unbiased Estimate (BLUE)
• Kriging is an exact interpolator (kriged estimates match data value at data

locations)
• Kriging system depends only on the covariance's and data configuration,

not the data values
• By accounting for configuration, Kriging declusters the data
• The kriging error is uncorrelated with the kriged distribution (important for

conditional simulation)
• Problems in application of kriging to reservoir modeling

• Underrepresents the variability
• Deterministic and cannot be used for estimation of uncertainty
• The fields generated tend to be Gaussian
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Kriging
• Kriging is a procedure for constructing a minimum error variance linear

estimate at a location where the true value is unknown
• The main controls on the kriging weights are:

• closeness of the data to the location being estimated
• redundancy between the data
• the variogram

• Simple Kriging (SK) does not constrain the weights and works with the
residual from the mean

• Ordinary Kriging (OK) constrains the sum of the weights to be 1.0,
therefore, the mean does not need to be known

• Two implicit assumptions are stationarity (work around with different types
of kriging) and ergodicity (more slippery)

• Kriging is not used directly for mapping the spatial distribution of an
attribute.
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Types of Kriging
• Simple Kriging (SK):

• Ordinary Kriging (OK)

• Other Types:
• Universal Kriging (UK) 

• accounts for simple trends
• External Drift 

• accounts for more complex trends
• Locally Varying Mean 

• accounts for secondary information
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Some Definitions

• Consider the residual data values:

where m(u) could be constant, locally varying, or
considered constant but unknown.
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Some Definitions

• Variogram is defined as:

• Covariance is defined as:

( ) ( ) ( ){ }huYuYEhC +×=

( ) ( ) ( )[ ]{ }22 huYuYEh +-=g
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Some Definitions

• Link between the Variogram and Covariance:

• So, C(h) = C(0) - g(h)

( ) ( ){ }[ ] ( ){ }[ ]
( ) ( ){ }[ ]huYuYE

huYEuYEh
+××-

++=
2

2 22g

( ){ } ( ){ } ( )hChuYVaruYVar ×-++= 2

( ) ( )[ ]hCC -= 02
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Simple Kriging

• Consider a linear estimator:

where Y(ui) are the residual data (data values minus the 
mean) and Y*(u) is the estimate
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• The error variance is defined as

Simple Kriging
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• Optimal weights li, i = 1,…,n may be determined by setting
partial derivatives of the error variance w.r.t. the weights to zero

Simple Kriging System
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Simple Kriging:  Some Details

g1,2 g2,3

g0,1

g1,3

g0,3

g0,2
1

2
3

?

30 1 2 4 5
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Simple Kriging:  Some Details

( ) ( ) ( ) ( )1,03,12,11,1 321 CCCC =×+×+× lll
( ) ( ) ( ) ( )2,03,22,21,2 321 CCCC =×+×+× lll
( ) ( ) ( ) ( )3,03,32,31,3 321 CCCC =×+×+× lll

• There are three equations to determine the three 
weights:
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Simple Kriging:  Some Details
• In matrix notation:  

(Recall that C(h) = C(0) - g(h))
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Simple Kriging
Changing the Range

• Simple kriging with a zero nugget effect and an isotropic spherical variogram with three
different ranges:

1 2 3

range = 10 0.781 0.012 0.065
5 0.648 -0.027 0.001
1 0.000 0.000 0.000

l l l
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Simple Kriging
Changing the Nugget Effect

• Simple kriging with an isotropic spherical variogram with a range of 10 distance units and 
three different nugget effects:

1 2 3

nugget = 0% 0.781 0.012 0.065
25% 0.468 0.203 0.064
75% 0.172 0.130 0.053

100% 0.000 0.000 0.000

l l l
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Simple Kriging
Changing the Anisotropy

• Simple kriging with a spherical variogram with a nugget of 25%, a principal range of 10 
distance units and different “minor” ranges:

1 2 3

anisotropy  1:1 0.468 0.203 0.064
2:1 0.395 0.087 0.141
5:1 0.152 -0.055 0.232

20:1 0.000 0.000 0.239

l l l
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Kriging Example

X/Y Position of Wells
X Y Value

Well 1 3.0 4.0 120
Well 2 6.3 3.4 103
Well 3 2.0 1.3 142
P 3.0 3.0

Distance between Wells
Well 1 Well 2 Well 3 P

Well 1 0 3.35 2.88 1.00
Well 2 3.35 0 4.79 3.32
Well 3 2.88 1.3 0 1.97
P 1 3.32 1.97 0W3

142

P
?

W2
103

W1
120

SemiVariance for Wells and Location P
Well 1 Well 2 Well 3 P

Well 1 0 13.42 11.52 4.00
Well 2 13.42 0 19.14 13.30
Well 3 11.52 19.14 0 7.89
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Kriging Example

-0.0680 0.0326 0.0354 0.1932
0.0326 -0.0433 0.0106 0.4072
0.0354 0.0106 -0.0461 0.3995
0.1932 0.4072 0.3995 -9.5851

[ ]
Yp = 0.5954(120) + 0.0975(103) + 0.3071(142)

= 125.1

Error Variance = 0.5954(4) + 0.0975(12.1) + 0.3071(7.9) - 0.7298(1)
= Sqrt(5.25) = 2.3

Yp = 125.1 +/- 4.6 with 95% Probability

l 1
l 2
l 3
Mui

[ ] 0.5954
0.0975
0.3071
-0.7298

[ ]=
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Kriging
n Kriging Varieties Can Be Distinguished According to the Model Used for the

Trend m(u)
¨ Simple Kriging (SK) Considers the Mean m(u) Known and Constant In the

Study Area. That is,
m(u) = m

¨ Ordinary Kriging (OK) Accounts for Local Fluctuations of the Mean by Limiting
the Domain of Stationarity of the Mean to the Local Neighborhood W(u).
That is,
m(u’) = Constant but Unknown

¨ Kriging with Trend (KT) Considers that the Unknown Local Mean (m(u’))
Smoothly Varies Within Each Local Neighborhood W(u). The Trend
Component Is Modeled as a Linear Combination of Functions fk(u). That is,
m(u’) = S ak(u’) fk(u’) with ak(u’) = ak Constant but Unknown
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Ordinary Kriging
n Ordinary Kriging - Mathematical Approach
¨An Overview of the Derivation of the Kriging Equations Is 

Provided On Pages 278-290 In An Introduction to Applied 
Geostatistics.
¨The Unknown Local Mean m(u) Is Filtered from the 

Estimator by Forcing the Weights to sum to 1!
¨The Lagrange Parameter (m) Is Used to Convert a 

Constrained Minimization Problem Into An 
Unconstrained Minimization Problem – with out too 
many constraints – not enough unknowns…
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Ordinary Kriging
n OK Equations in Terms of Covariance (C)

n Error Variance
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Ordinary Kriging
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Ordinary Kriging
n Kriging - Calculation of Estimate for Example

¨ Step 1 - Determine Spatial Model.  For This Example Assume C(h) = 10e(-0.3[h]). This is an 
Exponential Model.

¨ Step 2 - Fill the C and D Matrices (Next Page)
¨ Step 3 - Calculate Inverse of C Matrix and Use to Obtain Weights.
¨ Step 4. - Calculate Estimate

60 70 80

130

140 + 1
477

+ 2
696

+ 7
783

+ 6
791

+ 5
606

+ 4
646

+ 3
227

* X
???

The Kriging 
Matrix Setup
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Ordinary Kriging
n Kriging Example (continued)
¨ Distance Matrix

¨ Covariance Matrix (Assumes Exponential Model)

Well 1 2 3 4 5 6 7
1 0.00 2.24 10.44 13.04 10.05 12.17 17.80
2 2.24 0.00 11.05 13.00 8.00 10.05 16.97
3 10.44 11.05 0.00 4.12 13.04 15.00 11.05
4 13.04 13.00 4.12 0.00 12.37 13.93 7.00
5 10.05 8.00 13.04 12.37 0.00 2.24 12.65
6 12.17 10.05 15.00 13.93 2.24 0.00 13.15
7 17.80 16.97 11.05 7.00 12.65 13.15 0.00

10.00 5.11 0.44 0.20 0.49 0.26 0.05 1.00
5.11 10.00 0.36 0.20 0.91 0.49 0.06 1.00
0.44 0.36 10.00 2.90 0.20 0.11 0.36 1.00
0.20 0.20 2.90 10.00 0.24 0.15 1.22 1.00
0.49 0.91 0.20 0.24 10.00 5.11 0.22 1.00
0.26 0.49 0.11 0.15 5.11 10.00 0.19 1.00
0.05 0.06 0.36 1.22 0.22 0.19 10.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
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Ordinary Kriging
n Kriging Example (continued)

¨ Inverse of C Matrix (=C-1)

¨ The D Matrix (Covariances Between Data Locations and Point to be Estimated)

0.127 -0.077 -0.013 -0.009 -0.008 -0.009 -0.012 0.136
-0.077 0.129 -0.010 -0.008 -0.015 -0.008 -0.011 0.121
-0.013 -0.010 0.098 -0.042 -0.010 -0.010 -0.014 0.156
-0.009 -0.008 -0.042 0.102 -0.009 -0.009 -0.024 0.139
-0.008 -0.015 -0.010 -0.009 0.130 -0.077 -0.012 0.118
-0.009 -0.008 -0.010 -0.009 -0.077 0.126 -0.013 0.141
-0.012 -0.011 -0.014 -0.024 -0.012 -0.013 0.085 0.188
0.136 0.121 0.156 0.139 0.118 0.141 0.188 -2.180

2.614
3.390
0.890
0.581
1.337
0.683
0.177

1
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n Kriging Example 
(continued)
¨ Inverse of C Matrix (C-1) x D 

Matrix = Weights
¨ Note that Sum of Weights = 

1.000

¨ Weights x Data Values = z* 
¨ z* = Estimate = 592.3

0.173
0.318
0.129
0.086
0.151
0.057
0.086

1.000

82.491
221.184
29.223
55.812
91.583
45.273
67.163

592.729
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n Kriging Example (continued) 
¨Minimized Estimation Variance, s2

R, Is Calculated Using the Equation

s2
R = s2

DATA - S(li Ci 0 ) - m = 8.96

¨Weights  x   D Matrix (Covariance between Data Locations and Points Being Estimated).  Note 
that m = -.907

0.050
0.202
0.039
0.015

8.956

Pick your own weights, calculate Kriging Variance – you will not do better!

Lagrange Parameter
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Kriging
n Kriging Varieties Can Be Distinguished According to the Model Used for the

Trend m(u)
¨ Simple Kriging (SK) Considers the Mean m(u) Known and Constant In the

Study Area. That is,
m(u) = m

¨ Ordinary Kriging (OK) Accounts for Local Fluctuations of the Mean by Limiting
the Domain of Stationarity of the Mean to the Local Neighborhood W(u).
That is,
m(u’) = Constant but Unknown

¨ Kriging with Trend (KT) Considers that the Unknown Local Mean (m(u’))
Smoothly Varies Within Each Local Neighborhood W(u). The Trend
Component Is Modeled as a Linear Combination of Functions fk(u). That is,
m(u’) = S ak(u’) fk(u’) with ak(u’) = ak Constant but Unknown
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5/31/2015 Deterministic and Geostatistical Estination 56



SK Vs OK
n Ordinary Kriging Normally Preferred Over Simple Kriging
¨Knowledge of Mean Not Required
¨Stationarity of Mean Over Entire Study Area Also Not Required

n In Areas of High Values, SK Estimates will be Lower than OK
Estimates

n In Areas of Low Values, SK Estimates will be Higher than OK
Estimates

n Why? Remember, OK Uses a Local Neighborhood.
¨Mean in High Value Areas will be Greater than m(u)
¨Mean in Low Value Areas will be Lower than m(u)

n Note - Both SK and OK Are Exact Estimators!
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Kriging with Trend (KT)

n The Local Re-Estimation of the Mean in OK Allows One to Account for a “Global”
Trend in the Data. Thus, OK Implicitly Considers a Non-Stationary RF Model
Where Stationarity is Limited to the Local Neighborhood W(u’).

n In Some Cases it may not be Appropriate to Even Consider the Local Mean m(u’)
to be Constant In Even Small Local Neighborhoods.

n Kriging with Trend (KT) Allows Modeling of the Local “Trend” Within the
Neighborhood W(u) as a Smoothly Varying Function of the Coordinates.
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Kriging with Trend

n Modeling the Trend
¨ Trend May Be Suggested by the Physics of the Process
¨ Usually, the Physics Are Not Understood Well Enough to Justify a Particular 

Trend.  This Is the Case for Most Earth Science Data
¨ Usually Choose Low Order Polynomials (Second Order or Lower)

n Linear 

¨ m(u)=m(x,y)=a + bx + cy
n Quadratic

¨ m(u)=m(x,y)=a+bx+cy+dx2+ey2+fxy
n Trend May Be Directional

Estimate weights and Trend Coefficients 
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OK Vs KT

n Both OK and KT Account for a Trend In the Data. The Trend
Component Is Implicit in OK and Is a Function of the Local
Neighborhood. In KT the Trend Component Is Explicit.

n Any Difference Between KT and OK Is a Function of the Trend
Difference

n In General, KT Will Preserve Trends Better Beyond the Limits of the
Data (Extrapolation) than Will OK. OK Estimates Outside of Data
Limits Approach the Local Neighborhood Mean (Example on Next
Page)
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Kriging with External Drift

• Implicit correlation between primary and secondary (external variable)
• Requirements

• external variable needs to vary smoothly in space (kriging system may
otherwise by unstable

• external variable must be known at all locations of the primary data and
at the estimation locations

• need to calculate and model the variogram of residuals for the primary
variable

• Kriging with an external drift yields a map which reflects the spatial trend of
the secondary variable
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Seismic Data

Well Data

Kriging with
External Drift

Variogram
Model

Kriging with
External Drift Map

Kriging with External Drift Example using Well 
and Seismic Data
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Cross-Validation
• Cross-validation is an attempt to check how well the estimation procedure can be

expected to perform
• this is accomplished by comparing estimates with true values in production areas
• the way around this is to re-estimate each known sample value at the time for surrounding

information
• cross-validation may provide the following

• warnings, invalidation
• reveal weaknesses, shortcomings
• suggest improvements
• it will never provide any guarantee
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Cross-validation
• Analyze the error distribution

• error = estimated - actual
• The items to look for are

• averaged error (global bias)
• spread (standard deviation)
• maximum, minimum error
• shape of distribution

• Plot the residual on maps
• any persistent overestimation
• any persistent underestimation's

• Which criterion is relevant to the study?
• misclassification
• minimizing underestimation
• minimizing overestimation
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n Cross Validation Example  
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Cross Validation
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Cross Validation
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Cross Validation
K True K Estimated

Mean 4.350 4.608
Standard Error 0.569 0.400

Median 2.195 3.215
Mode 0.190 1.837

Standard Deviation 6.727 4.732
Sample Variance 45.247 22.395

Kurtosis 29.837 7.203
Skewness 4.450 2.290

Range 58.260 26.958
Minimum 0.060 -0.193
Maximum 58.320 26.765

Sum 609.060 645.144
Count 140 140

Q3 - Largest ( 35 ) 5.380 6.183
Q1 - Smallest ( 35 ) 0.670 1.092

Confidence Level ( 95.0%  ) 1.124 0.791
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Kriging - Advantages and Disadvantages
n Advantages

n Uses A Model of Spatial Continuity
¨ Usually Derived From Sample Data
¨ Analogues Are Useful In the Absence of Sufficient Real Data

n Forces Consistency in Estimation
n Built In Correction for Data Redundancy (Clustering)
n Unbiased
n Minimum Variation About the True Mean
n Provides a Measure Error (Kriging Variance)
n Best Linear Unbiased Estimator  (or GLUE)

n Disadvantages
n Not Easy to Understand Mathematical Details! 
n Model of Spatial Continuity (Variogram) Is Needed
n More computationally intensive than other estimation methods 
n String Effect
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• Two porosity models:
• High Resolution Model (geocellular model resolution)

• 200 vertical layers
• 320,000 Model cells

• Low Resolution model
• 30 vertical layers 
• 48,000 Model cells

Kriging - Effective Porosity Egyptian Example
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200 vertical layers 
320,000 model cells

High Resolution Model 
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32 vertical layers 
48,000 Model cells

Intermediate 
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Types of Secondary Data 

n Reservoir Property Trends 
¨Linear Trend / Drift in Porosity Mean

n Categories / Groups 
¨Facies with Unique Distributions and Spatial Structures

n Sparsely Sampled / Correlated Secondary Data
¨Porosity Samples Applied to Improve Permeability Estimation

n Exhaustive Secondary Data
¨Realization of Porosity Applied to Inform a Permeability 

Realization

5/31/2015 Deterministic and Geostatistical Estination 73



• Problem
• Petrophysical data (e.g. porosity,permeability) is

sampled sparsely (i.e. at wells)
• Seismic data (amplitude) is sampled densely but

does not directly measure desired property (e.g.
porosity or permeability)

• A solution
• Cokriging correlates desired undersampled reservoir

property to widely sampled parameter

Cokriging
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Cokriging
n Estimate primary varaible considering all relavant primary and secondary data
n Non-Exhaustive Secondary Data Can Be Incorporated Using the Cokriging Approach that

Explicitly Accounts for Spatial Cross Correlation Between Primary and Secondary Variables
n Need Semivariograms (or Covariance Functions) for:

¨ Primary Data
¨ Secondary Data

n Need Cross Semivariograms (or Covariance Functions) Between Primary and Secondary
Variables

x(u1)
y(u3)

x(u2)
y(u2)

x(u4)

x(u5)

y(u6)
x*(u) ?
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Cross-
Variogram

Model

Variogram
Model

Cokriging

Variogram
Model

Well Data

Seismic Data

Cokriged Map

Cokriging Example Using Well and Seismic Data
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Cokriging
• The system of equations is the same as for simple kriging with one spatial variable
• The cokriging system requires more inference of the correlation's between the different

variables and their spatial correlation's
• The cokriging system requires measurement and modeling of the covariance's of each of

the data types and the cross-covariance's of each data type with the others
• Cokriging is the most labor intensive option since it requires variograms of the secondary

variable as well as a cross covariance.
• It is the slowest algorithm to run because the matrix is far more complicated since it must

handle the additional covariance values from the primary and secondary variables as well
as the cross covariance.

• Cokriging is best used when the primary variable is significantly undersampled while the
secondary variable is well sampled. It is also recommended when the secondary variable
is quite heterogeneous.

• Cokriging does not require, like KT or KED, that the secondary sample be smoothly
varying. Neither is it required that the secondary variable exist at the primary data
locations and the locations to be estimated like KED.

• The same variogram model type must be used for primary, secondary and cross
variograms.
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Ordinary Cokriging
n Ordinary Cokriging

¨ The Ordinary Cokriging Estimator Is

¨ Where the Weights Are Subject to the Constraints
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n Or, In Terms of Covariances and Cross Covariances

n this is the system of equations we are solving when we estimate at each location.
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n Or, In Matrix Form
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Advantages of Collocated Cokriging

• Advantages
• Easy to implement (as easy as external drift)
• Includes level of correlation between hard and soft data
• Compared to cokriging, collocated cokriging is fast because of the

smaller cokriging system.
• It doesn’t require modeling the secondary attribute nor the cross

variogram.
• However, the secondary variable needs to be known at all output

locations being estimated.

• Collocated Cokriging Model for Combining Seismic and Well Log Data
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Disadvantages of Collocated Cokriging

• Disadvantages
• Collocated cokriging maps will not look like 

secondary variable unless there is a high correlation 
coefficient between the two variable

• Secondary variable need to be sampled at all primary 
variable locations

• Ignores information brought by non-collocated data 
beyond that of the collocated datum
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Co-Kriging Exercises
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Impact of Changing the Type of Variogram Model

Spherical

Exponential
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Impact of Changing the Vertical Range on the Exponential Variogram

Vertical Range 1%

Vertical Range 5%

Vertical Range 10%
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Impact of Changing the Horizontal Range on the Exponential Variogram

Horizontal  Range 2%

Horizontal  Range 4%

Horizontal Range 6%

Horizontal Range 8%

Horizontal Range 10%
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The Quiz
Estimation
n What is the basic method for all estimation methods?

n What is the difference between inverse distance and kriging?

n What is the difference between simple and ordinary kriging? 

n What does indicator kriging estimate?

n What is the method for cross validating a kriged map.
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Exercise 3
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Well X Y Porosity
1 871,276.03 1,157,062.00 20.149
2 868,781.64 1,156,673.00 17.979
3 869,174.71 1,156,453.00 24.375
4 868,880.48 1,156,271.00 23.332
5 869,933.78 1,156,292.00 25.073
6 870,284.11 1,156,329.00 24.637
7 870,548.96 1,156,710.00 26.256
8 870,853.51 1,156,067.00 27.099
9 870,503.30 1,156,399.00 24.503

10 869,994.58 1,155,822.00 28.227
11 869,786.45 1,155,760.00 27.589
12 870,304.50 1,155,607.00 23.984
13 870,017.09 1,155,574.00 25.321
14 870,000.00 1,156,400.00 ?

Using the Ordinary Kriging
method, estimate the value
of porosity at the given
location P.



Exercise 5
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Consider the data configuration, x(u1)=10, x(u2)=20, and m=18.
Further, assume that the isotropic variogram, representing the
spatial relationship, is given by:

Estimate the value at location u0.


